1
|
Refaya AK, Vetrivel U, Palaniyandi K. Genomic Characterization of IS 6110 Insertions in Mycobacterium orygis. Evol Bioinform Online 2024; 20:11769343241240558. [PMID: 38586439 PMCID: PMC10996354 DOI: 10.1177/11769343241240558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 03/04/2024] [Indexed: 04/09/2024] Open
Abstract
Mycobacterium orygis, a subspecies of the Mycobacterium tuberculosis complex (MTBC), has emerged as a significant concern in the context of One Health, with implications for zoonosis or zooanthroponosis or both. MTBC strains are characterized by the unique insertion element IS6110, which is widely used as a diagnostic marker. IS6110 transposition drives genetic modifications in MTBC, imparting genome plasticity and profound biological consequences. While IS6110 insertions are customarily found in the MTBC genomes, the evolutionary trajectory of strains seems to correlate with the number of IS6110 copies, indicating enhanced adaptability with increasing copy numbers. Here, we present a comprehensive analysis of IS6110 insertions in the M. orygis genome, utilizing ISMapper, and elucidate their genetic consequences in promoting successful host adaptation. Our study encompasses a panel of 67 paired-end reads, comprising 11 isolates from our laboratory and 56 sequences downloaded from public databases. Among these sequences, 91% exhibited high-copy, 4.5% low-copy, and 4.5% lacked IS6110 insertions. We identified 255 insertion loci, including 141 intragenic and 114 intergenic insertions. Most of these loci were either unique or shared among a limited number of isolates, potentially influencing strain behavior. Furthermore, we conducted gene ontology and pathway analysis, using eggNOG-mapper 5.0, on the protein sequences disrupted by IS6110 insertions, revealing 63 genes involved in diverse functions of Gene Ontology and 45 genes participating in various KEGG pathways. Our findings offer novel insights into IS6110 insertions, their preferential insertion regions, and their impact on metabolic processes and pathways, providing valuable knowledge on the genetic changes underpinning IS6110 transposition in M. orygis.
Collapse
Affiliation(s)
- Ahmed Kabir Refaya
- Department of Immunology, ICMR-National Institute for Research in Tuberculosis, Chetpet, Chennai, India
| | - Umashankar Vetrivel
- Department of Virology & Biotechnology/Bioinformatics Division, ICMR-National Institute for Research in Tuberculosis, Chetpet, Chennai, India
| | - Kannan Palaniyandi
- Department of Immunology, ICMR-National Institute for Research in Tuberculosis, Chetpet, Chennai, India
| |
Collapse
|
2
|
Chandler M, Ross K, Varani AM. The insertion sequence excision enhancer: A PrimPol-based primer invasion system for immobilizing transposon-transmitted antibiotic resistance genes. Mol Microbiol 2023; 120:658-669. [PMID: 37574851 DOI: 10.1111/mmi.15140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/15/2023]
Abstract
Evolutionary studies often identify genes that have been exchanged between different organisms and the phrase Lateral or Horizontal Gene Transfer is often used in this context. However, they rarely provide any mechanistic information concerning how these gene transfers might have occurred. With the astonishing increase in the number of sequences in public databases over the past two or three decades, identical antibiotic resistance genes have been identified in many different sequence contexts. One explanation for this would be that genes are initially transmitted by transposons which have subsequently decayed and can no longer be detected. Here, we provide an overview of a protein, IEE (Insertion Sequence Excision Enhancer) observed to facilitate high-frequency excision of IS629 from clinically important Escherichia coli O157:H7 and subsequently shown to affect a large class of bacterial insertion sequences which all transpose using the copy-out-paste-in transposition mechanism. Excision depends on both IEE and transposase indicating association with the transposition process itself. We review genetic and biochemical data and propose that IEE immobilizes genes carried by compound transposons by removing the flanking insertion sequence (IS) copies. The biochemical activities of IEE as a primase with the capacity to recognize DNA microhomologies and the observation that its effect appears restricted to IS families which use copy-out-paste-in transposition, suggests IS deletion occurs by abortive transposition involving strand switching (primer invasion) during the copy-out step. This reinforces the proposal made for understanding the widespread phenomenon loss of ISApl1 flanking mcr-1 in the compound transposon Tn6330 which we illustrate with a detailed model. This model also provides a convincing way to explain the high levels of IEE-induced precise IS excision.
Collapse
Affiliation(s)
- Mick Chandler
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC, USA
| | - Karen Ross
- Protein Information Resource, Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC, USA
| | - Alessandro M Varani
- School of Agricultural and Veterinary Sciences, Universidade Estadual Paulista, Sao Paulo, Brazil
| |
Collapse
|
3
|
Siguier P, Rousseau P, Cornet F, Chandler M. A subclass of the IS1202 family of bacterial insertion sequences targets XerCD recombination sites. Plasmid 2023; 127:102696. [PMID: 37302728 DOI: 10.1016/j.plasmid.2023.102696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/13/2023]
Abstract
We describe here a new family of IS which are related to IS1202, originally isolated from Streptococcus pneumoniae in the mid-1990s and previously tagged as an emerging IS family in the ISfinder database. Members of this family have impacted some important properties of their hosts. We describe here another potentially important property of certain family members: specific targeting of xrs recombination sites. The family could be divided into three subgroups based on their transposase sequences and the length on the target repeats (DR) they generate on insertion: subgroup IS1202 (24-29 bp); ISTde1 (15-18 bp); and ISAba32 (5-6 bp). Members of the ISAba32 subgroup were repeatedly found abutting Xer recombinase recombination sites (xrs), separated by an intervening copy of a DR. These xrs sites, present in multiple copies in a number of Acinetobacter plasmids flanking antibiotic resistance genes, were proposed to form a new type of mobile genetic element using the chromosomally-encoded XerCD recombinase for mobility. Transposase alignments identified subgroup-specific indels which may be responsible for the differences in the transposition properties of the three subgroups (i.e. DR length and target specificity). We propose that this collection of IS be classed as a new insertion sequence family: the IS1202 family composed of three subgroups, only one of which specifically targets plasmid-borne xrs. We discuss the implications of xrs targeting for gene mobility.
Collapse
Affiliation(s)
- Patricia Siguier
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Integrative, Université de Toulouse, CNRS, UPS, France.
| | - Philippe Rousseau
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Integrative, Université de Toulouse, CNRS, UPS, France
| | - François Cornet
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Integrative, Université de Toulouse, CNRS, UPS, France
| | - Michael Chandler
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|
4
|
Idola D, Mori H, Nagata Y, Nonaka L, Yano H. Host range of strand-biased circularizing integrative elements: a new class of mobile DNA elements nesting in Gammaproteobacteria. Mob DNA 2023; 14:7. [PMID: 37237359 DOI: 10.1186/s13100-023-00295-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND The strand-biased circularizing integrative elements (SEs) are putatively non-mobilizable integrative elements for transmitting antimicrobial resistance genes. The transposition mode and the prevalence of SEs in prokaryotes remain vague. RESULTS To corroborate the transposition mode and the prevalence of SEs, hypothetical transposition intermediates of an SE were searched for in genomic DNA fractions of an SE host. Then, the SE core genes were defined based on gene knockout experiments, and the synteny blocks of their distant homologs were searched for in the RefSeq complete genome sequence database using PSI-BLAST. A genomic DNA fractionation experiment revealed that SE copies are present in a double-stranded nicked circular form in vivo. Operonic structure of three conserved coding sequences (intA, tfp, intB) and srap located at the left end of SEs were identified as essential for attL × attR recombination. The synteny blocks of tfp and srap homologs were detected in 3.6% of the replicons of Gammaproteobacteria but not in other taxa, implying that SE movement is host-dependent. SEs have been discovered most frequently in the orders Vibrionales (19% of replicons), Pseudomonadales (18%), Alteromonadales (17%), and Aeromonadales (12%). Genomic comparisons revealed 35 new SE members with identifiable termini. SEs are present at 1 to 2 copies per replicon and have a median length of 15.7 kb. Three newly identified SE members carry antimicrobial resistance genes, like tmexCD-toprJ, mcr-9, and blaGMA-1. Further experiments validated that three new SE members possess the strand-biased attL × attR recombination activity. CONCLUSIONS This study suggested that transposition intermediates of SEs are double-stranded circular DNA. The main hosts of SEs are a subset of free-living Gammaproteobacteria; this represents a rather narrow host range compared to those of mobile DNA element groups discovered to date. As the host range, genetic organization, and movements are unique among the mobile DNA elements, SEs provide a new model system for host-mobile DNA element coevolution studies.
Collapse
Affiliation(s)
- Desmila Idola
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aobaku, Sendai, 980-8577, Japan
| | - Hiroshi Mori
- Department of Informatics, National Institute of Genetics, 1111 Yata, Mishima, 411-8540, Japan
| | - Yuji Nagata
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aobaku, Sendai, 980-8577, Japan
| | - Lisa Nonaka
- Faculty of Human Life Sciences, Shokei University, 2-6-78 Kuhonji, Kumamoto, 862-8678, Japan
| | - Hirokazu Yano
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aobaku, Sendai, 980-8577, Japan.
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, 4-2-1 Aobacho, Higashimurayama, Tokyo, 189-0002, Japan.
| |
Collapse
|
5
|
Atypical integrative element with strand-biased circularization activity assists interspecies antimicrobial resistance gene transfer from Vibrio alfacsensis. PLoS One 2022; 17:e0271627. [PMID: 35917316 PMCID: PMC9345347 DOI: 10.1371/journal.pone.0271627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 07/06/2022] [Indexed: 11/19/2022] Open
Abstract
The exchange of antimicrobial resistance (AMR) genes between aquaculture and terrestrial microbial populations has emerged as a serious public health concern. However, the nature of the mobile genetic elements in marine bacteria is poorly documented. To gain insight into the genetic mechanisms underlying AMR gene transfer from marine bacteria, we mated a multidrug-resistant Vibrio alfacsensis strain with an Escherichia coli strain, and then determined the complete genome sequences of the donor and the transconjugant strains. Sequence analysis revealed a conjugative multidrug resistance plasmid in the donor strain, which was integrated into the chromosome of the recipient. The plasmid backbone in the transconjugant chromosome was flanked by two copies of a 7.1 kb unclassifiable integrative element harboring a β-lactamase gene. The 7.1 kb element and the previously reported element Tn6283 share four coding sequences, two of which encode the catalytic R-H-R-Y motif of tyrosine recombinases. Polymerase chain reaction and sequencing experiments revealed that these elements generate a circular copy of one specific strand without leaving an empty site on the donor molecule, in contrast to the movement of integron gene cassettes or ICE/IMEs discovered to date. These elements are termed SEs (strand-biased circularizing integrative elements): SE-6945 (the 7.1 kb element) and SE-6283 (Tn6283). The copy number and location of SE-6945 in the chromosome affected the antibiotic resistance levels of the transconjugants. SEs were identified in the genomes of other Vibrio species. Overall, these results suggest that SEs are involved in the spread of AMR genes among marine bacteria.
Collapse
|
6
|
Kosek D, Hickman AB, Ghirlando R, He S, Dyda F. Structures of ISCth4 transpososomes reveal the role of asymmetry in copy-out/paste-in DNA transposition. EMBO J 2021; 40:e105666. [PMID: 33006208 PMCID: PMC7780238 DOI: 10.15252/embj.2020105666] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/07/2020] [Accepted: 09/10/2020] [Indexed: 01/23/2023] Open
Abstract
Copy-out/paste-in transposition is a major bacterial DNA mobility pathway. It contributes significantly to the emergence of antibiotic resistance, often by upregulating expression of downstream genes upon integration. Unlike other transposition pathways, it requires both asymmetric and symmetric strand transfer steps. Here, we report the first structural study of a copy-out/paste-in transposase and demonstrate its ability to catalyze all pathway steps in vitro. X-ray structures of ISCth4 transposase, a member of the IS256 family of insertion sequences, bound to DNA substrates corresponding to three sequential steps in the reaction reveal an unusual asymmetric dimeric transpososome. During transposition, an array of N-terminal domains binds a single transposon end while the catalytic domain moves to accommodate the varying substrates. These conformational changes control the path of DNA flanking the transposon end and the generation of DNA-binding sites. Our results explain the asymmetric outcome of the initial strand transfer and show how DNA binding is modulated by the asymmetric transposase to allow the capture of a second transposon end and to integrate a circular intermediate.
Collapse
Affiliation(s)
- Dalibor Kosek
- Laboratory of Molecular BiologyNational Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaMDUSA
| | - Alison B Hickman
- Laboratory of Molecular BiologyNational Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaMDUSA
| | - Rodolfo Ghirlando
- Laboratory of Molecular BiologyNational Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaMDUSA
| | - Susu He
- Laboratory of Molecular BiologyNational Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaMDUSA
- Present address:
State Key Laboratory of Pharmaceutical BiotechnologyMedical School of Nanjing UniversityNanjingJiangsuChina
| | - Fred Dyda
- Laboratory of Molecular BiologyNational Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaMDUSA
| |
Collapse
|
7
|
Gonzalo-Asensio J, Pérez I, Aguiló N, Uranga S, Picó A, Lampreave C, Cebollada A, Otal I, Samper S, Martín C. New insights into the transposition mechanisms of IS6110 and its dynamic distribution between Mycobacterium tuberculosis Complex lineages. PLoS Genet 2018; 14:e1007282. [PMID: 29649213 PMCID: PMC5896891 DOI: 10.1371/journal.pgen.1007282] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 02/28/2018] [Indexed: 11/19/2022] Open
Abstract
The insertion Sequence IS6110, only present in the pathogens of the Mycobacterium tuberculosis Complex (MTBC), has been the gold-standard epidemiological marker for TB for more than 25 years, but biological implications of IS6110 transposition during MTBC adaptation to humans remain elusive. By studying 2,236 clinical isolates typed by IS6110-RFLP and covering the MTBC, we remarked a lineage-specific content of IS6110 being higher in modern globally distributed strains. Once observed the IS6110 distribution in the MTBC, we selected representative isolates and found a correlation between the normalized expression of IS6110 and its abundance in MTBC chromosomes. We also studied the molecular regulation of IS6110 transposition and we found a synergistic action of two post-transcriptional mechanisms: a -1 ribosomal frameshift and a RNA pseudoknot which interferes translation. The construction of a transcriptionally active transposase resulted in 20-fold increase of the transposition frequency. Finally, we examined transposition in M. bovis and M. tuberculosis during laboratory starvation and in a mouse infection model of TB. Our results shown a higher transposition in M. tuberculosis, that preferably happens during TB infection in mice and after one year of laboratory culture, suggesting that IS6110 transposition is dynamically adapted to the host and to adverse growth conditions. Since the pioneering discovery of transposition by Barbara McClintock in eukaryotes and later in prokaryotes by Robert W. Hedges and Alan E. Jacob, it has become clear the key role of mobile genetics elements in chromosome remodelling, microbial evolution and host adaptation. The insertion sequence IS6110 is widely recognized for its utility in TB diagnosis and epidemiology because it is only present in the M. tuberculosis Complex (MTBC) and its transposition provides an excellent chromosomal polymorphic variability allowing the study of recent TB transmission. This inherent feature of IS6110 leads us to hypothesize that IS6110 plays a crucial role during the TB infectious cycle. However, the biological significance of IS6110 has been hindered by its almost exclusive use as an epidemiological marker. Here, we study the regulatory mechanisms and the distribution of IS6110 in the different MTBC lineages. We discuss the potential biological implications of IS6110, that is much more than an excellent TB epidemiological tool. Since IS6110 could play an important role in the adaptation of MTBC to the host, this study opens new avenues to decipher the biological roles of IS6110 in TB pathogenesis.
Collapse
Affiliation(s)
- Jesús Gonzalo-Asensio
- Grupo de Genética de Micobacterias, Departamento de Microbiología y Medicina Preventiva. Facultad de Medicina, Universidad de Zaragoza, IIS Aragón, Zaragoza, Spain
- CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Zaragoza, Spain
- * E-mail: (JGA); (CM)
| | - Irene Pérez
- Grupo de Genética de Micobacterias, Departamento de Microbiología y Medicina Preventiva. Facultad de Medicina, Universidad de Zaragoza, IIS Aragón, Zaragoza, Spain
- CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Nacho Aguiló
- Grupo de Genética de Micobacterias, Departamento de Microbiología y Medicina Preventiva. Facultad de Medicina, Universidad de Zaragoza, IIS Aragón, Zaragoza, Spain
- CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Santiago Uranga
- Grupo de Genética de Micobacterias, Departamento de Microbiología y Medicina Preventiva. Facultad de Medicina, Universidad de Zaragoza, IIS Aragón, Zaragoza, Spain
- CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Picó
- Grupo de Genética de Micobacterias, Departamento de Microbiología y Medicina Preventiva. Facultad de Medicina, Universidad de Zaragoza, IIS Aragón, Zaragoza, Spain
- CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Lampreave
- Grupo de Genética de Micobacterias, Departamento de Microbiología y Medicina Preventiva. Facultad de Medicina, Universidad de Zaragoza, IIS Aragón, Zaragoza, Spain
- CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Alberto Cebollada
- Grupo de Genética de Micobacterias, Departamento de Microbiología y Medicina Preventiva. Facultad de Medicina, Universidad de Zaragoza, IIS Aragón, Zaragoza, Spain
- CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Isabel Otal
- Grupo de Genética de Micobacterias, Departamento de Microbiología y Medicina Preventiva. Facultad de Medicina, Universidad de Zaragoza, IIS Aragón, Zaragoza, Spain
- CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Sofía Samper
- Grupo de Genética de Micobacterias, Departamento de Microbiología y Medicina Preventiva. Facultad de Medicina, Universidad de Zaragoza, IIS Aragón, Zaragoza, Spain
- CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Unidad de Investigación Translacional, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón. Zaragoza, Spain
| | - Carlos Martín
- Grupo de Genética de Micobacterias, Departamento de Microbiología y Medicina Preventiva. Facultad de Medicina, Universidad de Zaragoza, IIS Aragón, Zaragoza, Spain
- CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Servicio de Microbiología, Hospital Universitario Miguel Servet, Zaragoza, Spain
- * E-mail: (JGA); (CM)
| |
Collapse
|
8
|
Wang L, Si W, Xue H, Zhao X. Characterization of a functional insertion sequence IS Sau2 from Staphylococcus aureus. Mob DNA 2018; 9:3. [PMID: 29371891 PMCID: PMC5771124 DOI: 10.1186/s13100-018-0108-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 01/08/2018] [Indexed: 11/26/2022] Open
Abstract
Background ISSau2 has been suggested as a member of the IS150 f subgroup in the IS3 family. It encodes a fusion transposase OrfAB produced by programmed − 1 translational frameshifting with two overlapping reading frames orfA and orfB. To better characterize ISSau2, the binding and cleaving activities of the ISSau2 transposase and its transposition frequency were studied. Results The purified ISSau2 transposase OrfAB was a functional protein in vitro since it bound specifically to ISSau2 terminal inverted repeat sequences (IRs) and cleaved the transposon ends at the artificial mini-transposon pUC19-IRL-gfp-IRR. In addition, the transposition frequency of ISSau2 in vivo was approximately 1.76 ± 0.13 × 10− 3, based on a GFP hop-on assay. Furthermore, OrfB cleaved IRs with the similar catalytic activity of OrfAB, while OrfA had no catalytic activity. Finally, either OrfA or OrfB significantly reduced the transposition of ISSau2 induced by OrfAB. Conclusion We have confirmed that ISSau2 is a member of IS150/IS3 family. The ISSau2 transposase OrfAB could bind to and cleave the specific fragments containing the terminal inverted repeat sequences and induce the transposition, suggesting that ISSau2 is at least partially functional. Meanwhile, both OrfA and OrfB inhibited the transposition by ISSau2. Our results will help understand biological roles of ISSau2 in its host S. aureus.
Collapse
Affiliation(s)
- Liangliang Wang
- 1College of Animal Science and Technology, Northwest A&F University, No.3 Taicheng Road, Yangling, 712100 Shaanxi Province People's Republic of China.,2School of Pharmaceutical Sciences, Tsinghua University, Beijing, People's Republic of China.,3Tsinghua University-Peking University Joint Center for Life Sciences, Beijing, People's Republic of China
| | - Wei Si
- 1College of Animal Science and Technology, Northwest A&F University, No.3 Taicheng Road, Yangling, 712100 Shaanxi Province People's Republic of China
| | - Huping Xue
- 1College of Animal Science and Technology, Northwest A&F University, No.3 Taicheng Road, Yangling, 712100 Shaanxi Province People's Republic of China
| | - Xin Zhao
- 1College of Animal Science and Technology, Northwest A&F University, No.3 Taicheng Road, Yangling, 712100 Shaanxi Province People's Republic of China.,4Department of Animal Science, McGill University, Quebec, Canada
| |
Collapse
|
9
|
Abstract
IS911 has provided a powerful model for studying the transposition of members of a large class of transposable element: the IS3 family of bacterial Insertion Sequences (IS). These transpose by a Copy-out-Paste-in mechanism in which a double-strand IS circle transposition intermediate is generated from the donor site by replication and proceeds to integrate into a suitable double strand DNA target. This is perhaps one of the most common transposition mechanisms known to date. Copy-out-Paste-in transposition has been adopted by members of at least eight large IS families. This chapter details the different steps of the Copy-out-Paste-in mechanism involved in IS911 transposition. At a more biological level it also describes various aspects of regulation of the transposition process. These include transposase production by programmed translational frameshifting, transposase expression from the circular intermediate using a specialized promoter assembled at the circle junction and binding of the nascent transposase while it remains attached to the ribosome during translation (co-translational binding). This co-translational binding of the transposase to neighboring IS ends provides an explanation for the longstanding observation that transposases show a cis-preference for their activities.
Collapse
|
10
|
Abstract
DNA transposases use a limited repertoire of structurally and mechanistically distinct nuclease domains to catalyze the DNA strand breaking and rejoining reactions that comprise DNA transposition. Here, we review the mechanisms of the four known types of transposition reactions catalyzed by (1) RNase H-like transposases (also known as DD(E/D) enzymes); (2) HUH single-stranded DNA transposases; (3) serine transposases; and (4) tyrosine transposases. The large body of accumulated biochemical and structural data, particularly for the RNase H-like transposases, has revealed not only the distinguishing features of each transposon family, but also some emerging themes that appear conserved across all families. The more-recently characterized single-stranded DNA transposases provide insight into how an ancient HUH domain fold has been adapted for transposition to accomplish excision and then site-specific integration. The serine and tyrosine transposases are structurally and mechanistically related to their cousins, the serine and tyrosine site-specific recombinases, but have to date been less intensively studied. These types of enzymes are particularly intriguing as in the context of site-specific recombination they require strict homology between recombining sites, yet for transposition can catalyze the joining of transposon ends to form an excised circle and then integration into a genomic site with much relaxed sequence specificity.
Collapse
Affiliation(s)
- Alison B Hickman
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 5 Center Dr., Bethesda, MD 20892, USA
| | - Fred Dyda
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 5 Center Dr., Bethesda, MD 20892, USA
| |
Collapse
|
11
|
Pasternak C, Dulermo R, Ton-Hoang B, Debuchy R, Siguier P, Coste G, Chandler M, Sommer S. ISDra2 transposition in Deinococcus radiodurans is downregulated by TnpB. Mol Microbiol 2013; 88:443-55. [PMID: 23461641 DOI: 10.1111/mmi.12194] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2013] [Indexed: 11/30/2022]
Abstract
Transposable elements belonging to the recently identified IS200/IS605 family radically differ from classical insertion sequences in their transposition mechanism by strictly requiring single-stranded DNA substrates. This IS family includes elements encoding only the transposase (TnpA), and others, like ISDra2 from Deinococcus radiodurans, which contain a second gene, tnpB, dispensable for transposition and of unknown function to date. Here, we show that TnpB has an inhibitory effect on the excision and insertion steps of ISDra2 transposition. This inhibitory action of TnpB was maintained when ISDra2 transposition was induced by γ-irradiation of the host cells and required the integrity of its putative zinc finger motif. We also demonstrate the negative role of TnpB when ISDra2 transposition was monitored in a heterologous Escherichia coli host, indicating that TnpB-mediated inhibition does not involve Deinococcus-specific factors. TnpB therefore appears to play a regulatory role in ISDra2 transposition.
Collapse
Affiliation(s)
- Cécile Pasternak
- University Paris-Sud, Institut de Génétique et Microbiologie (Bât. 409), UMR 8621, Orsay F-91405, France
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Duval-Valentin G, Chandler M. Cotranslational control of DNA transposition: a window of opportunity. Mol Cell 2012; 44:989-96. [PMID: 22195971 DOI: 10.1016/j.molcel.2011.09.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 06/17/2011] [Accepted: 09/30/2011] [Indexed: 10/14/2022]
Abstract
Transposable elements are important in genome dynamics and evolution. Bacterial insertion sequences (IS) constitute a major group in number and impact. Understanding their role in shaping genomes requires knowledge of how their transposition activity is regulated and interfaced with the host cell. One IS regulatory phenomenon is a preference of their transposases (Tpases) for action on the element from which they are expressed (cis) rather than on other copies of the same element (trans). Using IS911, we show in vivo that activity in cis was ~200 fold higher than in trans. We also demonstrate that a translational frameshifting pause signal influences cis preference presumably by facilitating sequential folding and cotranslational binding of the Tpase. In vitro, IS911 Tpase bound IS ends during translation but not after complete translation. Cotranslational binding of nascent Tpase permits tight control of IS proliferation providing a mechanistic explanation for cis regulation of transposition involving an unexpected partner, the ribosome.
Collapse
Affiliation(s)
- Guy Duval-Valentin
- Laboratoire de Microbiologie et Génétique Moléculaires, CNRS UMR5100, Campus Université Paul Sabatier, 118 Route de Narbonne, F31062 Toulouse Cedex, France
| | | |
Collapse
|
13
|
Lewis LA, Astatke M, Umekubo PT, Alvi S, Saby R, Afrose J, Oliveira PH, Monteiro GA, Prazeres DM. Protein-DNA interactions define the mechanistic aspects of circle formation and insertion reactions in IS2 transposition. Mob DNA 2012; 3:1. [PMID: 22277150 PMCID: PMC3299598 DOI: 10.1186/1759-8753-3-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 01/26/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Transposition in IS3, IS30, IS21 and IS256 insertion sequence (IS) families utilizes an unconventional two-step pathway. A figure-of-eight intermediate in Step I, from asymmetric single-strand cleavage and joining reactions, is converted into a double-stranded minicircle whose junction (the abutted left and right ends) is the substrate for symmetrical transesterification attacks on target DNA in Step II, suggesting intrinsically different synaptic complexes (SC) for each step. Transposases of these ISs bind poorly to cognate DNA and comparative biophysical analyses of SC I and SC II have proven elusive. We have prepared a native, soluble, active, GFP-tagged fusion derivative of the IS2 transposase that creates fully formed complexes with single-end and minicircle junction (MCJ) substrates and used these successfully in hydroxyl radical footprinting experiments. RESULTS In IS2, Step I reactions are physically and chemically asymmetric; the left imperfect, inverted repeat (IRL), the exclusive recipient end, lacks donor function. In SC I, different protection patterns of the cleavage domains (CDs) of the right imperfect inverted repeat (IRR; extensive in cis) and IRL (selective in trans) at the single active cognate IRR catalytic center (CC) are related to their donor and recipient functions. In SC II, extensive binding of the IRL CD in trans and of the abutted IRR CD in cis at this CC represents the first phase of the complex. An MCJ substrate precleaved at the 3' end of IRR revealed a temporary transition state with the IRL CD disengaged from the protein. We propose that in SC II, sequential 3' cleavages at the bound abutted CDs trigger a conformational change, allowing the IRL CD to complex to its cognate CC, producing the second phase. Corroborating data from enhanced residues and curvature propensity plots suggest that CD to CD interactions in SC I and SC II require IRL to assume a bent structure, to facilitate binding in trans. CONCLUSIONS Different transpososomes are assembled in each step of the IS2 transposition pathway. Recipient versus donor end functions of the IRL CD in SC I and SC II and the conformational change in SC II that produces the phase needed for symmetrical IRL and IRR donor attacks on target DNA highlight the differences.
Collapse
Affiliation(s)
- Leslie A Lewis
- Department of Biology, York College of the City University of New York, Jamaica, New York 11451, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Lewis LA, Astatke M, Umekubo PT, Alvi S, Saby R, Afrose J. Soluble expression, purification and characterization of the full length IS2 Transposase. Mob DNA 2011; 2:14. [PMID: 22032517 PMCID: PMC3219604 DOI: 10.1186/1759-8753-2-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 10/27/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The two-step transposition pathway of insertion sequences of the IS3 family, and several other families, involves first the formation of a branched figure-of-eight (F-8) structure by an asymmetric single strand cleavage at one optional donor end and joining to the flanking host DNA near the target end. Its conversion to a double stranded minicircle precedes the second insertional step, where both ends function as donors. In IS2, the left end which lacks donor function in Step I acquires it in Step II. The assembly of two intrinsically different protein-DNA complexes in these F-8 generating elements has been intuitively proposed, but a barrier to testing this hypothesis has been the difficulty of isolating a full length, soluble and active transposase that creates fully formed synaptic complexes in vitro with protein bound to both binding and catalytic domains of the ends. We address here a solution to expressing, purifying and structurally analyzing such a protein. RESULTS A soluble and active IS2 transposase derivative with GFP fused to its C-terminus functions as efficiently as the native protein in in vivo transposition assays. In vitro electrophoretic mobility shift assay data show that the partially purified protein prepared under native conditions binds very efficiently to cognate DNA, utilizing both N- and C-terminal residues. As a precursor to biophysical analyses of these complexes, a fluorescence-based random mutagenesis protocol was developed that enabled a structure-function analysis of the protein with good resolution at the secondary structure level. The results extend previous structure-function work on IS3 family transposases, identifying the binding domain as a three helix H + HTH bundle and explaining the function of an atypical leucine zipper-like motif in IS2. In addition gain- and loss-of-function mutations in the catalytic active site define its role in regional and global binding and identify functional signatures that are common to the three dimensional catalytic core motif of the retroviral integrase superfamily. CONCLUSIONS Intractably insoluble transposases, such as the IS2 transposase, prepared by solubilization protocols are often refractory to whole protein structure-function studies. The results described here have validated the use of GFP-tagging and fluorescence-based random mutagenesis in overcoming this limitation at the secondary structure level.
Collapse
Affiliation(s)
- Leslie A Lewis
- Department of Biology, York College of the City University of New York, Jamaica, New York, 11451, USA
- Program in Cellular, Molecular and Developmental Biology, Graduate Center, City University of New York, New York, New York 11016, USA
| | - Mekbib Astatke
- Johns Hopkins University, Applied Physics Laboratory, Laurel, MD 20723, USA
| | - Peter T Umekubo
- Department of Biology, York College of the City University of New York, Jamaica, New York, 11451, USA
- Accera Inc, Broomfield, CO 80021, USA
| | - Shaheen Alvi
- Department of Biology, York College of the City University of New York, Jamaica, New York, 11451, USA
- Ross Medical School, Roseau, Dominica
| | - Robert Saby
- Department of Biology, York College of the City University of New York, Jamaica, New York, 11451, USA
- Department of Occupational Therapy, York College of the City University of New York, Jamaica, New York, 11451, USA
| | - Jehan Afrose
- Department of Biology, York College of the City University of New York, Jamaica, New York, 11451, USA
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York, 10016, USA
| |
Collapse
|
15
|
Wang B, Kitney RI, Joly N, Buck M. Engineering modular and orthogonal genetic logic gates for robust digital-like synthetic biology. Nat Commun 2011; 2:508. [PMID: 22009040 PMCID: PMC3207208 DOI: 10.1038/ncomms1516] [Citation(s) in RCA: 274] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 09/21/2011] [Indexed: 01/08/2023] Open
Abstract
Modular and orthogonal genetic logic gates are essential for building robust biologically based digital devices to customize cell signalling in synthetic biology. Here we constructed an orthogonal AND gate in Escherichia coli using a novel hetero-regulation module from Pseudomonas syringae. The device comprises two co-activating genes hrpR and hrpS controlled by separate promoter inputs, and a σ54-dependent hrpL promoter driving the output. The hrpL promoter is activated only when both genes are expressed, generating digital-like AND integration behaviour. The AND gate is demonstrated to be modular by applying new regulated promoters to the inputs, and connecting the output to a NOT gate module to produce a combinatorial NAND gate. The circuits were assembled using a parts-based engineering approach of quantitative characterization, modelling, followed by construction and testing. The results show that new genetic logic devices can be engineered predictably from novel native orthogonal biological control elements using quantitatively in-context characterized parts. Biological digital sensors require the fabrication of modular genetic logic gates. Using the Pseudomonas syringae hrp system, Wang and colleagues generate AND, NOT and NAND gates, demonstrating the ability to engineer a modular system from biological elements.
Collapse
Affiliation(s)
- Baojun Wang
- Centre for Synthetic Biology and Innovation and Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | | | | | | |
Collapse
|
16
|
Rousseau P, Tardin C, Tolou N, Salomé L, Chandler M. A model for the molecular organisation of the IS911 transpososome. Mob DNA 2010; 1:16. [PMID: 20553579 PMCID: PMC2909936 DOI: 10.1186/1759-8753-1-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 06/16/2010] [Indexed: 11/10/2022] Open
Abstract
Tight regulation of transposition activity is essential to limit damage transposons may cause by generating potentially lethal DNA rearrangements. Assembly of a bona fide protein-DNA complex, the transpososome, within which transposition is catalysed, is a crucial checkpoint in this regulation. In the case of IS911, a member of the large IS3 bacterial insertion sequence family, the transpososome (synaptic complex A; SCA) is composed of the right and left inverted repeated DNA sequences (IRR and IRL) bridged by the transposase, OrfAB (the IS911-encoded enzyme that catalyses transposition). To characterise further this important protein-DNA complex in vitro, we used different tagged and/or truncated transposase forms and analysed their interaction with IS911 ends using gel electrophoresis. Our results allow us to propose a model in which SCA is assembled with a dimeric form of the transposase. Furthermore, we present atomic force microscopy results showing that the terminal inverted repeat sequences are probably assembled in a parallel configuration within the SCA. These results represent the first step in the structural description of the IS911 transpososome, and are discussed in comparison with the very few other transpososome examples described in the literature.
Collapse
Affiliation(s)
- Philippe Rousseau
- Centre National de la Recherche Scientifique, LMGM, F-31000 Toulouse, France.
| | | | | | | | | |
Collapse
|
17
|
Characterization of the transposase encoded by IS256, the prototype of a major family of bacterial insertion sequence elements. J Bacteriol 2010; 192:4153-63. [PMID: 20543074 DOI: 10.1128/jb.00226-10] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
IS256 is the founding member of the IS256 family of insertion sequence (IS) elements. These elements encode a poorly characterized transposase, which features a conserved DDE catalytic motif and produces circular IS intermediates. Here, we characterized the IS256 transposase as a DNA-binding protein and obtained insight into the subdomain organization and functional properties of this prototype enzyme of IS256 family transposases. Recombinant forms of the transposase were shown to bind specifically to inverted repeats present in the IS256 noncoding regions. A DNA-binding domain was identified in the N-terminal part of the transposase, and a mutagenesis study targeting conserved amino acid residues in this region revealed a putative helix-turn-helix structure as a key element involved in DNA binding. Furthermore, we obtained evidence to suggest that the terminal nucleotides of IS256 are critically involved in IS circularization. Although small deletions at both ends reduced the formation of IS circles, changes at the left-hand IS256 terminus proved to be significantly more detrimental to circle production. Taken together, the data lead us to suggest that the IS256 transposase-mediated circularization reaction preferentially starts with a sequence-specific first-strand cleavage at the left-hand IS terminus.
Collapse
|
18
|
Abstract
The mobile element IS30 has 26-bp imperfect terminal inverted repeats (IRs) that are indispensable for transposition. We have analyzed the effects of IR mutations on both major transposition steps, the circle formation and integration of the abutted ends, characteristic for IS30. Several mutants show strikingly different phenotypes if the mutations are present at one or both ends and differentially influence the transposition steps. The two IRs are equivalent in the recombination reactions and contain several functional regions. We have determined that positions 20 to 26 are responsible for binding of the N-terminal domain of the transposase and the formation of a correct 2-bp spacer between the abutted ends. However, integration is efficient without this region, suggesting that a second binding site for the transposase may exist, possibly within the region from 4 to 11 bp. Several mutations at this part of the IRs, which are highly conserved in the IS30 family, considerably affected both major transposition steps. In addition, positions 16 and 17 seem to be responsible for distinguishing the IRs of related insertion sequences by providing specificity for the transposase to recognize its cognate ends. Finally, we show both in vivo and in vitro that position 3 has a determining role in the donor function of the ends, especially in DNA cleavage adjacent to the IRs. Taken together, the present work provides evidence for a more complex organization of the IS30 IRs than was previously suggested.
Collapse
|
19
|
Castanié-Cornet MP, Cam K, Bastiat B, Cros A, Bordes P, Gutierrez C. Acid stress response in Escherichia coli: mechanism of regulation of gadA transcription by RcsB and GadE. Nucleic Acids Res 2010; 38:3546-54. [PMID: 20189963 PMCID: PMC2887963 DOI: 10.1093/nar/gkq097] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Escherichia coli can survive extreme acid stress for several hours. The most efficient acid resistance system is based on glutamate decarboxylation by the GadA and GadB decarboxylases and the import of glutamate via the GadC membrane protein. The expression of the corresponding genes is controlled by GadE, the central activator of glutamate-dependent acid resistance (GDAR). We have previously shown by genetic approaches that as well as GadE, the response regulator of the Rcs system, RcsB is absolutely required for control of gadA/BC transcription. In the presence of GadE, basal activity of RcsB stimulates the expression of gadA/BC, whereas activation of RcsB leads to general repression of the gad genes. We report here the results of various in vitro assays that show RcsB to regulate by direct binding to the gadA promoter region. Furthermore, activation of gadA transcription requires a GAD box and binding of an RcsB/GadE heterodimer. In addition, we have identified an RcsB box, which lies just upstream of the −10 element of gadA promoter and is involved in repression of this operon.
Collapse
Affiliation(s)
- Marie-Pierre Castanié-Cornet
- Université de Toulouse, UPS, Laboratoire de Microbiologie et Génétique Moléculaires, F-31000 Toulouse and CNRS, LMGM, F-31000 Toulouse, France.
| | | | | | | | | | | |
Collapse
|
20
|
Barsoum E, Martinez P, Aström SU. Alpha3, a transposable element that promotes host sexual reproduction. Genes Dev 2009; 24:33-44. [PMID: 20008928 DOI: 10.1101/gad.557310] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Theoretical models predict that selfish DNA elements require host sex to persist in a population. Therefore, a transposon that induces sex would strongly favor its own spread. We demonstrate that a protein homologous to transposases, called alpha3, was essential for mating type switch in Kluyveromyces lactis. Mutational analysis showed that amino acids conserved among transposases were essential for its function. During switching, sequences in the 5' and 3' flanking regions of the alpha3 gene were joined, forming a DNA circle, showing that alpha3 mobilized from the genome. The sequences encompassing the alpha3 gene circle junctions in the mating type alpha (MATalpha) locus were essential for switching from MATalpha to MATa, suggesting that alpha3 mobilization was a coupled event. Switching also required a DNA-binding protein, Mating type switch 1 (Mts1), whose binding sites in MATalpha were important. Expression of Mts1 was repressed in MATa/MATalpha diploids and by nutrients, limiting switching to haploids in low-nutrient conditions. A hairpin-capped DNA double-strand break (DSB) was observed in the MATa locus in mre11 mutant strains, indicating that mating type switch was induced by MAT-specific DSBs. This study provides empirical evidence for selfish DNA promoting host sexual reproduction by mediating mating type switch.
Collapse
Affiliation(s)
- Emad Barsoum
- Department of Developmental Biology, Wennergren Institute, Stockholm University, SE-10691 Stockholm, Sweden
| | | | | |
Collapse
|
21
|
Bias between the left and right inverted repeats during IS911 targeted insertion. J Bacteriol 2008; 190:6111-8. [PMID: 18586933 DOI: 10.1128/jb.00452-08] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
IS911 is a bacterial insertion sequence composed of two consecutive overlapping open reading frames (ORFs [orfA and orfB]) encoding the transposase (OrfAB) as well as a regulatory protein (OrfA). These ORFs are bordered by terminal left and right inverted repeats (IRL and IRR, respectively) with several differences in nucleotide sequence. IS911 transposition is asymmetric: each end is cleaved on one strand to generate a free 3'-OH, which is then used as the nucleophile in attacking the opposite insertion sequence (IS) end to generate a free IS circle. This will be inserted into a new target site. We show here that the ends exhibit functional differences which, in vivo, may favor the use of one compared to the other during transposition. Electromobility shift assays showed that a truncated form of the transposase [OrfAB(1-149)] exhibits higher affinity for IRR than for IRL. While there was no detectable difference in IR activities during the early steps of transposition, IRR was more efficient during the final insertion steps. We show here that the differential activities between the two IRs correlate with the different affinities of OrfAB(1-149) for the IRs during assembly of the nucleoprotein complexes leading to transposition. We conclude that the two inverted repeats are not equivalent during IS911 transposition and that this asymmetry may intervene to determine the ordered assembly of the different protein-DNA complexes involved in the reaction.
Collapse
|
22
|
Szabó M, Kiss J, Nagy Z, Chandler M, Olasz F. Sub-terminal sequences modulating IS30 transposition in vivo and in vitro. J Mol Biol 2007; 375:337-52. [PMID: 18022196 DOI: 10.1016/j.jmb.2007.10.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 10/12/2007] [Accepted: 10/16/2007] [Indexed: 11/18/2022]
Abstract
Inverted repeats of insertion sequences (ISs) are indispensable for transposition. We demonstrate that sub-terminal sequences adjacent to the inverted repeats of IS30 are also required for optimal transposition activity. We have developed a cell-free recombination system and showed that the transposase catalyses formation of a figure-of-eight transposition intermediate, where a 2 bp long single strand bridge holds the inverted repeat sequences (IRs) together. This is the first demonstration of the figure-of-eight structure in a non-IS3 family element, suggesting that this mechanism is likely more widely adopted among IS families. We show that the absence of sub-terminal IS30 sequences negatively influences figure-of-eight production both in vivo and in vitro. These regions enhance IR-IR junction formation and IR-targeting events in vivo. Enhancer elements have been identified within 51 bp internal to IRL and 17 bp internal to IRR. In the right end, a decanucleotide, 5'-GAGATAATTG-3', is responsible for wild-type activity, while in the left end, a complex assembly of repetitive elements is required. Functioning of the 10 bp element in the right end is position-dependent and the repetitive elements in the left end act cooperatively and may influence bendability of the end. In vitro kinetic experiments suggest that the sub-terminal enhancers may, at least partly, be transposase-dependent. Such enhancers may reflect a subtle regulatory mechanism for IS30 transposition.
Collapse
MESH Headings
- Base Sequence
- Binding Sites
- Cell-Free System
- DNA Mutational Analysis
- DNA Primers
- DNA Transposable Elements
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Bacterial/isolation & purification
- DNA, Circular/genetics
- Dimerization
- Electrophoresis, Polyacrylamide Gel
- Enhancer Elements, Genetic
- Escherichia coli/genetics
- Genes, Bacterial
- In Vitro Techniques
- Kinetics
- Models, Genetic
- Models, Molecular
- Molecular Sequence Data
- Mutagenesis, Insertional
- Nucleic Acid Conformation
- Open Reading Frames
- Plasmids
- Point Mutation
- Polymerase Chain Reaction
- Recombination, Genetic
- Salmonella typhimurium/genetics
- Terminal Repeat Sequences
- Transposases/chemistry
- Transposases/genetics
- Transposases/isolation & purification
- Transposases/metabolism
Collapse
Affiliation(s)
- Mónika Szabó
- Agricultural Biotechnology Center, 4 Szent-Györgyi Albert str., H-2100, Gödöllo, Hungary
| | | | | | | | | |
Collapse
|
23
|
Rousseau P, Loot C, Guynet C, Ah-Seng Y, Ton-Hoang B, Chandler M. Control of IS911 target selection: how OrfA may ensure IS dispersion. Mol Microbiol 2007; 63:1701-9. [PMID: 17367389 DOI: 10.1111/j.1365-2958.2007.05615.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
IS911 transposition involves a closed circular insertion sequence intermediate (IS-circle) and two IS-encoded proteins: the transposase OrfAB and OrfA which regulates IS911 insertion. OrfAB alone promotes insertion preferentially next to DNA sequences resembling IS911 ends while the addition of OrfA strongly stimulates insertion principally into DNA targets devoid of the IS911 end sequences. OrfAB shares its N-terminal region with OrfA. This includes a helix-turn-helix (HTH) motif and the first three of four heptads of a leucine zipper (LZ). OrfAB binds specifically to IS911 ends via its HTH whereas OrfA does not. We show here: that OrfA binds DNA non-specifically and that this requires the HTH; that OrfA LZ is required for its multimerization; and that both motifs are essential for OrfA activity. We propose that these OrfA properties are required to assemble a nucleoprotein complex committed to random IS911 insertion. This control of IS911 insertion activity by OrfA in this way would assure its dispersion.
Collapse
Affiliation(s)
- Philippe Rousseau
- Laboratoire de Microbiologie et Génétique Moléculaire (UMR 5100 CNRS - U.Toulouse-3), 118 rte. de Narbonne, Bât. IBCG, 31062 Toulouse Cedex 09, France.
| | | | | | | | | | | |
Collapse
|
24
|
Gueguen E, Rousseau P, Duval-Valentin G, Chandler M. Truncated forms of IS911 transposase downregulate transposition. Mol Microbiol 2007; 62:1102-16. [PMID: 17078817 DOI: 10.1111/j.1365-2958.2006.05424.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
IS911 naturally produces transposase (OrfAB) derivatives truncated at the C-terminal end (OrfAB-CTF) and devoid of the catalytic domain. A majority species, OrfAB*, was produced at higher levels at 42 degrees C than at 30 degrees C suggesting that it is at least partly responsible for the innate reduction in IS911 transposition activity at higher temperatures. An engineered equivalent of similar length, OrfAB[1-149], inhibited transposition activity in vivo or in vitro when produced along with full-length transposase. We isolated several point mutants showing higher activity than the wild-type IS911 at 42 degrees C. These fall into two regions of the transposase. One, located in the N-terminal segment of OrfAB, lies between or within two regions involved in protein multimerization. The other is located within the C-terminal catalytic domain. The N-terminal mutations resulted in reduced levels of OrfAB* while the C-terminal mutation alone appeared not to affect OrfAB* levels. Combination of N- and C-terminal mutations greatly reduced OrfAB* levels and transposition was concomitantly high even at 42 degrees C. The mechanism by which truncated transposase species are generated and how they intervene to reduce transposition activity is discussed. While transposition activity of these multiply mutated derivatives in vivo was resistant to temperature, the purified OrfAB derivatives retained an inherent temperature-sensitive phenotype in vitro. This clearly demonstrates that temperature sensitivity of IS911 transposition is a complex phenomenon with several mechanistic components. These results have important implications for the several other transposons and insertion sequences whose transposition has also been shown to be temperature-sensitive.
Collapse
Affiliation(s)
- Erwan Gueguen
- Laboratoire de Microbiologie et de Génétique Moléculaire, UMR 5100 CNRS (Campus Paul Sabatier), 118 route de Narbonne, 31062 Toulouse Cedex 09, France
| | | | | | | |
Collapse
|
25
|
Bouet JY, Bouvier M, Lane D. Concerted action of plasmid maintenance functions: partition complexes create a requirement for dimer resolution. Mol Microbiol 2006; 62:1447-59. [PMID: 17059567 DOI: 10.1111/j.1365-2958.2006.05454.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Partition of prokaryotic DNA requires formation of specific protein-centromere complexes, but an excess of the protein can disrupt segregation. The mechanisms underlying this destabilization are unknown. We have found that destabilization by the F plasmid partition protein, SopB, of plasmids carrying the F centromere, sopC, results from the capacity of the SopB-sopC partition complex to stimulate plasmid multimerization. Mutant SopBs unable to destabilize failed to increase multimerization. Stability of wild-type mini-F, whose ResD/rfsF site-specific recombination system enables it to resolve multimers to monomers, was barely affected by excess SopB. Destabilization of plasmids lacking the rfsF site was suppressed by recF, recO and recR, but not by recB, mutant alleles, indicating that multimerization is initiated from single-strand gaps. SopB did not alter the amounts or distribution of replication intermediates, implying that SopB-DNA complexes do not create single-strand gaps by blocking replication forks. Rather, the results are consistent with SopB-DNA complexes channelling gapped molecules into the RecFOR recombination pathway. We suggest that extended SopB-DNA complexes increase the likelihood of recombination between sibling plasmids by keeping them in close contact prior to SopA-mediated segregation. These results cast plasmid site-specific resolution in a new role - compensation for untoward consequences of partition complex formation.
Collapse
Affiliation(s)
- Jean-Yves Bouet
- Laboratoire de Microbiologie et Génétique Moléculaire, Centre National de Recherche, Scientifique, Faculté Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse, France
| | | | | |
Collapse
|
26
|
Pouget N, Turlan C, Destainville N, Salomé L, Chandler M. IS911 transpososome assembly as analysed by tethered particle motion. Nucleic Acids Res 2006; 34:4313-23. [PMID: 16923775 PMCID: PMC1636345 DOI: 10.1093/nar/gkl420] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Initiation of transposition requires formation of a synaptic complex between both transposon ends and the transposase (Tpase), the enzyme which catalyses DNA cleavage and strand transfer and which ensures transposon mobility. We have used a single-molecule approach, tethered particle motion (TPM), to observe binding of a Tpase derivative, OrfAB[149], amputated for its C-terminal catalytic domain, to DNA molecules carrying one or two IS911 ends. Binding of OrfAB[149] to a single IS911 end provoked a small shortening of the DNA. This is consistent with a DNA bend introduced by protein binding to a single end. This was confirmed using a classic gel retardation assay with circularly permuted DNA substrates. When two ends were present on the tethered DNA in their natural, inverted, configuration, Tpase not only provoked the short reduction in length but also generated species with greatly reduce effective length consistent with DNA looping between the ends. Once formed, this 'looped' species was very stable. Kinetic analysis in real-time suggested that passage from the bound unlooped to the looped state could involve another species of intermediate length in which both transposon ends are bound. DNA carrying directly repeated ends also gave rise to the looped species but the level of the intermediate species was significantly enhanced. Its accumulation could reflect a less favourable synapse formation from this configuration than for the inverted ends. This is compatible with a model in which Tpase binds separately to and bends each end (the intermediate species) and protein-protein interactions then lead to synapsis (the looped species).
Collapse
Affiliation(s)
- N. Pouget
- Laboratoire de Microbiologie et Génétique Moléculaire (UMR CNRS 5100)118 route de Narbonne, 31062 Toulouse cedex, France
- Institut de Pharmacologie et Biologie Structurale (UMR CNRS 5089)205 route de Narbonne 31077 Toulouse cedex, France
| | - C. Turlan
- Laboratoire de Microbiologie et Génétique Moléculaire (UMR CNRS 5100)118 route de Narbonne, 31062 Toulouse cedex, France
| | - N. Destainville
- Laboratoire de Physique Théorique (UMR CNRS 5152), IRSAMC, Université Paul Sabatier118 route de Narbonne, 31062 Toulouse cedex, France
| | - L. Salomé
- Institut de Pharmacologie et Biologie Structurale (UMR CNRS 5089)205 route de Narbonne 31077 Toulouse cedex, France
| | - M. Chandler
- Laboratoire de Microbiologie et Génétique Moléculaire (UMR CNRS 5100)118 route de Narbonne, 31062 Toulouse cedex, France
- To whom correspondence should be addressed. Tel: +33 5 61 33 58 61; Fax: +33 5 61 33 58 58.
| |
Collapse
|
27
|
Jovanovic G, Lloyd LJ, Stumpf MPH, Mayhew AJ, Buck M. Induction and Function of the Phage Shock Protein Extracytoplasmic Stress Response in Escherichia coli. J Biol Chem 2006; 281:21147-21161. [PMID: 16709570 DOI: 10.1074/jbc.m602323200] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The phage shock protein (Psp) F regulon response in Escherichia coli is thought to be induced by impaired inner membrane integrity and an associated decrease in proton motive force (pmf). Mechanisms by which the Psp system detects the stress signal and responds have so far remained undetermined. Here we demonstrate that PspA and PspG directly confront a variety of inducing stimuli by switching the cell to anaerobic respiration and fermentation and by down-regulating motility, thereby subtly adjusting and maintaining energy usage and pmf. Additionally, PspG controls iron usage. We show that the Psp-inducing protein IV secretin stress, in the absence of Psp proteins, decreases the pmf in an ArcB-dependent manner and that ArcB is required for amplifying and transducing the stress signal to the PspF regulon. The requirement of the ArcB signal transduction protein for induction of psp provides clear evidence for a direct link between the physiological redox state of the cell, the electron transport chain, and induction of the Psp response. Under normal growth conditions PspA and PspD control the level of activity of ArcB/ArcA system that senses the redox/metabolic state of the cell, whereas under stress conditions PspA, PspD, and PspG deliver their effector functions at least in part by activating ArcB/ArcA through positive feedback.
Collapse
Affiliation(s)
- Goran Jovanovic
- Division of Biology, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Louise J Lloyd
- Division of Biology, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Michael P H Stumpf
- Centre for Bioinformatics, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Antony J Mayhew
- Division of Biology, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Martin Buck
- Division of Biology, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom.
| |
Collapse
|
28
|
Ton-Hoang B, Guynet C, Ronning DR, Cointin-Marty B, Dyda F, Chandler M. Transposition of ISHp608, member of an unusual family of bacterial insertion sequences. EMBO J 2005; 24:3325-38. [PMID: 16163392 PMCID: PMC1224677 DOI: 10.1038/sj.emboj.7600787] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Accepted: 07/25/2005] [Indexed: 11/09/2022] Open
Abstract
ISHp608 from Helicobacter pylori is active in Escherichia coli and represents a recently recognised group of insertion sequences. Its transposase and organisation suggest that it transposes using a different mechanism to that of other known transposons. The IS was shown to excise as a circular form, which is accompanied by the formation of a resealed donor plasmid backbone. We also demonstrate that TnpA, which is less than half the length of other transposases, is responsible for this and for ISHp608 transposition. Transposition was shown to be site specific: both insertion and transposon excision require a conserved target, 5'TTAC. Deletion analysis suggested that potential secondary structures at the left and right ends are important for transposition. In vitro TnpA bound both ends, showed a strong preference for a specific single-stranded DNA and introduced a single-strand break on the same strand at each end. Although many of the characteristics of ISHp608 appear similar to rolling-circle transposons, there are differences suggesting that, overall, transposition occurs by a different mechanism. The results have permitted the formulation of several related models.
Collapse
Affiliation(s)
- Bao Ton-Hoang
- Laboratoire de Microbiologie et Génétique Moléculaires, CNRS UMR5100, Toulouse, France
| | - Catherine Guynet
- Laboratoire de Microbiologie et Génétique Moléculaires, CNRS UMR5100, Toulouse, France
| | - Donald R Ronning
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | | | - Fred Dyda
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Michael Chandler
- Laboratoire de Microbiologie et Génétique Moléculaires, CNRS UMR5100, Toulouse, France
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), CNRS UMR5100, 118 route de Narbonne, 31062 Toulouse Cedex, France. Tel.: +33 561 335858; Fax: +33 561 335861/-5886; E-mail:
| |
Collapse
|
29
|
Elderkin S, Bordes P, Jones S, Rappas M, Buck M. Molecular determinants for PspA-mediated repression of the AAA transcriptional activator PspF. J Bacteriol 2005; 187:3238-48. [PMID: 15838051 PMCID: PMC1082823 DOI: 10.1128/jb.187.9.3238-3248.2005] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Escherichia coli phage shock protein system (pspABCDE operon and pspG gene) is induced by numerous stresses related to the membrane integrity state. Transcription of the psp genes requires the RNA polymerase containing the sigma(54) subunit and the AAA transcriptional activator PspF. PspF belongs to an atypical class of sigma(54) AAA activators in that it lacks an N-terminal regulatory domain and is instead negatively regulated by another regulatory protein, PspA. PspA therefore represses its own expression. The PspA protein is distributed between the cytoplasm and the inner membrane fraction. In addition to its transcriptional inhibitory role, PspA assists maintenance of the proton motive force and protein export. Several lines of in vitro evidence indicate that PspA-PspF interactions inhibit the ATPase activity of PspF, resulting in the inhibition of PspF-dependent gene expression. In this study, we characterize sequences within PspA and PspF crucial for the negative effect of PspA upon PspF. Using a protein fragmentation approach, we show that the integrity of the three putative N-terminal alpha-helical domains of PspA is crucial for the role of PspA as a negative regulator of PspF. A bacterial two-hybrid system allowed us to provide clear evidence for an interaction in E. coli between PspA and PspF in vivo, which strongly suggests that PspA-directed inhibition of PspF occurs via an inhibitory complex. Finally, we identify a single PspF residue that is a binding determinant for PspA.
Collapse
Affiliation(s)
- Sarah Elderkin
- Imperial College London, Department of Biological Sciences, Sir Alexander Fleming Building, South Kensington Campus, London SW7 2AZ, UK
| | | | | | | | | |
Collapse
|
30
|
Ton-Hoang B, Turlan C, Chandler M. Functional domains of the IS1 transposase: analysis in vivo and in vitro. Mol Microbiol 2005; 53:1529-43. [PMID: 15387827 DOI: 10.1111/j.1365-2958.2004.04223.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The IS1 bacterial insertion sequence family, considered to be restricted to Enterobacteria, has now been extended to other Eubacteria and to Archaebacteria, reviving interest in its study. To analyse the functional domains of the InsAB' transposase of IS1A, a representative of this family, we used an in vivo system which measures IS1-promoted rescue of a temperature-sensitive pSC101 plasmid by fusion with a pBR322::IS1 derivative. We also describe the partial purification of the IS1 transposase and the development of several in vitro assays for transposase activity. These included a DNA band shift assay, a transposase-mediated cleavage assay and an integration assay. Alignments of IS family members (http://www-is.biotoul.fr) not only confirmed the presence of an N-terminal helix-turn-helix and a C-terminal DDE motif in InsAB', but also revealed a putative N-terminal zinc finger. We have combined the in vitro and in vivo tests to carry out a functional analysis of InsAB' using a series of site-directed InsAB' mutants based on these alignments. The results demonstrate that appropriate mutations in the zinc finger and helix-turn-helix motifs result in loss of binding activity to the ends of IS1 whereas mutations in the DDE domain are affected in subsequent transposition steps but not in end binding.
Collapse
Affiliation(s)
- Bao Ton-Hoang
- Laboratoire de Microbiologie et de Génétique Moléculaire, CNRS, 118 route de Narbonne, 31062, Toulouse Cedex, France.
| | | | | |
Collapse
|
31
|
Turlan C, Loot C, Chandler M. IS911 partial transposition products and their processing by the Escherichia coli RecG helicase. Mol Microbiol 2004; 53:1021-33. [PMID: 15306008 DOI: 10.1111/j.1365-2958.2004.04165.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Insertion of bacterial insertion sequence IS911 can often be directed to sequences resembling its ends. We have investigated this type of transposition and shown that it can occur via cleavage of a single end and its targeted transfer next to another end. The single end transfer (SET) events generate branched DNA molecules that contain a nicked Holliday junction and can be considered as partial transposition products. Our results indicate that these can be processed by the Escherichia coli host independently of IS911-encoded proteins. Such resolution depends on the presence of homologous DNA regions neighbouring the cross-over point in the SET molecule. Processing is often accompanied by sequence conversion between donor and target sequences, suggesting that branch migration is involved. We show that resolution is greatly reduced in a recG host. Thus, the branched DNA-specific helicase, RecG, involved in processing of potentially lethal DNA structures such as stalled replication forks, also intervenes in the resolution of partial IS911 transposition products.
Collapse
Affiliation(s)
- Catherine Turlan
- Laboratoire de Microbiologie et Génétique Moléculaires, CNRS UMR5100, 118 Rte de Narbonne, F31062 Toulouse Cedex, France.
| | | | | |
Collapse
|
32
|
Duval-Valentin G, Marty-Cointin B, Chandler M. Requirement of IS911 replication before integration defines a new bacterial transposition pathway. EMBO J 2004; 23:3897-906. [PMID: 15359283 PMCID: PMC522794 DOI: 10.1038/sj.emboj.7600395] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2004] [Accepted: 08/12/2004] [Indexed: 11/08/2022] Open
Abstract
Movement of transposable elements is often accompanied by replication to ensure their proliferation. Replication is associated with both major classes of transposition mechanisms: cut-and-paste and cointegrate formation (paste-and-copy). Cut-and-paste transposition is often activated by replication of the transposon, while in cointegrate formation replication completes integration. We describe a novel transposition mechanism used by insertion sequence IS911, which we call copy-and-paste. IS911 transposes using a circular intermediate (circle), which then integrates into a target. We demonstrate that this is derived from a branched intermediate (figure-eight) in which both ends are joined by a single-strand bridge after a first-strand transfer. In vivo labelling experiments show that the process of circle formation is replicative. The results indicate that the replication pathway not only produces circles from figure-eight but also regenerates the transposon donor plasmid. To confirm the replicative mechanism, we have also used the Escherichia coli terminators (terC) which, when bound by the Tus protein, inhibit replication forks in a polarised manner. Finally, we demonstrate that the primase DnaG is essential, implicating a host-specific replication pathway.
Collapse
Affiliation(s)
- G Duval-Valentin
- Laboratoire de Microbiologie et Génétique Moléculaire, Route de Narbonne, Toulouse Cedex, France.
| | | | | |
Collapse
|
33
|
Loot C, Turlan C, Chandler M. Host processing of branched DNA intermediates is involved in targeted transposition of IS911. Mol Microbiol 2004; 51:385-93. [PMID: 14756780 DOI: 10.1046/j.1365-2958.2003.03850.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A simplified system using bacterial insertion sequence IS911 has been developed to investigate targeted insertion next to DNA sequences resembling IS ends. We show here that these IR-targeted events occur by an unusual mechanism. In the circular IS911 transposition intermediate the two IRs are abutted to form an IR/IR junction. IR-targeted insertion involves transfer of a single end of the junction to the target IR to generate a branched DNA structure. The single-end transfer (SET) intermediate, but not the final insertion product, can be detected in an in vitro reaction. SET intermediates must be processed by the bacterial host to obtain the final insertion products. Sequence analysis of these IR-targeted insertion products and of those obtained in vivo revealed high levels of DNA sequence conversion in which mutations from one IR were transferred to another. These sequence changes cannot be explained by the classic transposition pathway. A model is presented in which the four-way Holliday-like junction created by SET is processed by host-mediated branch migration, resolution, repair and replication. This pathway resembles those described for processing other branched DNA structures such as stalled replication forks.
Collapse
Affiliation(s)
- Celine Loot
- Laboratoire de Microbiologie et Génétique Moléculaires, CNRS UMR5100, 118 Rte de Narbonne, F31062 Toulouse, France
| | | | | |
Collapse
|
34
|
Rousseau P, Gueguen E, Duval-Valentin G, Chandler M. The helix-turn-helix motif of bacterial insertion sequence IS911 transposase is required for DNA binding. Nucleic Acids Res 2004; 32:1335-44. [PMID: 14981152 PMCID: PMC390272 DOI: 10.1093/nar/gkh276] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The transposase of IS911, a member of the IS3 family of bacterial insertion sequences, is composed of a catalytic domain located at its C-terminal end and a DNA binding domain located at its N-terminal end. Analysis of the transposases of over 60 members of the IS3 family revealed the presence of a helix-turn-helix (HTH) motif within the N-terminal region. Alignment of these potential secondary structures further revealed a completely conserved tryptophan residue similar to that found in the HTH motifs of certain homeodomain proteins. The analysis also uncovered a similarity between the IS3 family HTH and that of members of the LysR family of bacterial transcription factors. This information was used to design site-directed mutations permitting an assessment of its role in transposase function. A series of in vivo and in vitro tests demonstrated that the HTH domain is important in directing the transposase to bind the terminal inverted repeats of IS911.
Collapse
Affiliation(s)
- Philippe Rousseau
- Laboratoire de Microbiologie et de Génétique Moléculaire, CNRS, 118 Route de Narbonne, F-31062 Toulouse Cedex, France.
| | | | | | | |
Collapse
|
35
|
Lewis LA, Cylin E, Lee HK, Saby R, Wong W, Grindley NDF. The left end of IS2: a compromise between transpositional activity and an essential promoter function that regulates the transposition pathway. J Bacteriol 2004; 186:858-65. [PMID: 14729714 PMCID: PMC321474 DOI: 10.1128/jb.186.3.858-865.2004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cut-and-paste (simple insertion) and replicative transposition pathways are the two classical paradigms by which transposable elements are mobilized. A novel variation of cut and paste, a two-step transposition cycle, has recently been proposed for insertion sequences of the IS3 family. In IS2 this variation involves the formation of a circular, putative transposition intermediate (the minicircle) in the first step. Two aspects of the minicircle may involve its proposed role in the second step (integration into the target). The first is the presence of a highly reactive junction formed by the two abutted ends of the element. The second is the assembly at the minicircle junction of a strong hybrid promoter which generates higher levels of transposase. In this report we show that IS2 possesses a highly reactive minicircle junction at which a strong promoter is assembled and that the promoter is needed for the efficient completion of the pathway. We show that the sequence diversions which characterize the imperfect inverted repeats or ends of this element have evolved specifically to permit the formation and optimal function of this promoter. While these sequence diversions eliminate catalytic activity of the left end (IRL) in the linear element, sufficient sequence information essential for catalysis is retained by the IRL in the context of the minicircle junction. These data confirm that the minicircle is an essential intermediate in the two-step transposition pathway of IS2.
Collapse
Affiliation(s)
- Leslie A Lewis
- Department of Biology, York College of the City University of New York, Jamaica, New York 11451, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Olasz F, Fischer T, Szabó M, Nagy Z, Kiss J. Gene conversion in transposition of Escherichia coli element IS30. J Mol Biol 2004; 334:967-78. [PMID: 14643660 DOI: 10.1016/j.jmb.2003.10.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The mobile element IS30 has dual target specificity, since it can integrate adjacent to the inverted repeat (IR) of another IS30 copy or into hot-spot sequences characterized by a well-defined consensus showing no similarity to the ends of the element. The result of such integrations into these targets is different, as gene conversion events take place frequently during insertion next to an IR end, while this phenomenon has never been observed in targeting hot-spot sequences. Conversion events in IR-targeting cannot be explained exclusively by the activity of the transposase, but suggest the involvement of the homologous recombination and repair machinery of the host cell. Here, we show that the homology between the donor and target sequences is required for conversion and the starting point of the process is the site of integration. The frequency of conversion depends on the distance of mutations from the end of the targeted element. Remarkable bias is found in the role of donor and target DNA, since generally the donor sequence is converted depending on the target. Conversion was shown to occur also without formation of transposition products. All these data are consistent with the idea of the establishment, migration and resolution of a Holliday-like cruciform structure, which can be responsible for conversion events. To explain the variety of conversion products in IR-targeting, a molecular model has been proposed and discussed.
Collapse
Affiliation(s)
- Ferenc Olasz
- Environmental Biosafety Research Institute, Agricultural Biotechnology Center, Szent-Györgyi Albert u. 4., H-2100 Gödöllo, Hungary.
| | | | | | | | | |
Collapse
|
37
|
Curcio MJ, Derbyshire KM. The outs and ins of transposition: from Mu to Kangaroo. Nat Rev Mol Cell Biol 2003; 4:865-77. [PMID: 14682279 DOI: 10.1038/nrm1241] [Citation(s) in RCA: 206] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- M Joan Curcio
- Laboratory of Developmental Genetics, Wadsworth Center, New York State Department of Health and Department of Biomedical Sciences, School of Public Health, University of New York at Albany, 12201-2002, USA
| | | |
Collapse
|
38
|
Sturny R, Cam K, Gutierrez C, Conter A. NhaR and RcsB independently regulate the osmCp1 promoter of Escherichia coli at overlapping regulatory sites. J Bacteriol 2003; 185:4298-304. [PMID: 12867437 PMCID: PMC165750 DOI: 10.1128/jb.185.15.4298-4304.2003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription of the Escherichia coli osmC gene is induced by several stress conditions. osmC is expressed from two overlapping promoters, osmCp1 and osmCp2. The proximal promoter, osmCp2, is transcribed at the entry into the stationary phase by the sigma(s) sigma factor. The distal promoter, osmCp1, is activated by NhaR and RcsB. NhaR is a positive regulator of the LysR family and is known to be an activator of the nhaA gene encoding an Na(+)/H(+) antiporter. RcsB is the response regulator of the RcsCDB His-Asp phosphorelay signal transduction system. Genetic data indicated that activation of osmCp1 by both NhaR and RcsB requires the same short sequences upstream of the -35 region of the promoter. Accordingly, DNase I footprint analysis indicated that both activators protect an overlapping region close to the -35 box of the promoter and suggested that the regulatory effect is direct. Despite the overlap of the binding sites, each activator acts independent of the other and is specific for a particular stress. NhaR can stimulate osmCp1 in response to an osmotic signal even in the absence of RcsB. RcsB is responsible for the induction of osmCp1 by alteration of the cell envelope, even in the absence of NhaR. osmCp1 as an example of multiple-stress-responsive promoter is discussed in light of a comparison of the NhaR and RcsB target regions in the Enterobacteriaceae.
Collapse
Affiliation(s)
- Rachel Sturny
- Laboratoire de Microbiologie et de Génétique Moléculaire, UMR5100 CNRS-Université Toulouse III, 31062 Toulouse Cedex, France
| | | | | | | |
Collapse
|
39
|
Loessner I, Dietrich K, Dittrich D, Hacker J, Ziebuhr W. Transposase-dependent formation of circular IS256 derivatives in Staphylococcus epidermidis and Staphylococcus aureus. J Bacteriol 2002; 184:4709-14. [PMID: 12169594 PMCID: PMC135277 DOI: 10.1128/jb.184.17.4709-4714.2002] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
IS256 is a highly active insertion sequence (IS) element of multiresistant staphylococci and enterococci. Here we show that, in a Staphylococcus epidermidis clinical isolate, as well as in recombinant Staphylococcus aureus and Escherichia coli carrying a single IS256 insertion on a plasmid, IS256 excises as an extrachromosomal circular DNA molecule. First, circles were identified that contained a complete copy of IS256. In this case, the sequence connecting the left and right ends of IS256 was derived from flanking DNA sequences of the parental genetic locus. Second, circle junctions were detected in which one end of IS256 was truncated. Nucleotide sequencing of circle junctions revealed that (i) either end of IS256 can attack the opposite terminus and (ii) the circle junctions vary significantly in size. Upon deletion of the IS256 open reading frame at the 3' end and site-directed mutageneses of the putative DDE motif, circular IS256 molecules were no longer detectable, which implicates the IS256-encoded transposase protein with the circularization of the element.
Collapse
Affiliation(s)
- Isabel Loessner
- Institut für Molekulare Infektionsbiologie, University of Würzburg, Röntgenring 11, D-97070 Würzburg, Germany
| | | | | | | | | |
Collapse
|
40
|
Loot C, Turlan C, Rousseau P, Ton-Hoang B, Chandler M. A target specificity switch in IS911 transposition: the role of the OrfA protein. EMBO J 2002; 21:4172-82. [PMID: 12145217 PMCID: PMC126149 DOI: 10.1093/emboj/cdf403] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The role played by insertion sequence IS911 proteins, OrfA and OrfAB, in the choice of a target for insertion was studied. IS911 transposition occurs in several steps: synapsis of the two transposon ends (IRR and IRL); formation of a figure-of-eight intermediate where both ends are joined by a single-strand bridge; resolution into a circular form carrying an IRR-IRL junction; and insertion into a DNA target. In vivo, with OrfAB alone, an IS911-based transposon integrated with high probability next to an IS911 end located on the target plasmid. OrfA greatly reduced the proportion of these events. This was confirmed in vitro using a transposon with a preformed IRR-IRL junction to examine the final insertion step. Addition of OrfA resulted in a large increase in insertion frequency and greatly increased the proportion of non-targeted insertions. The intermolecular reaction leading to targeted insertion may resemble the intramolecular reaction involving figure-of-eight molecules, which leads to the formation of circles. OrfA could, therefore, be considered as a molecular switch modulating the site-specific recombination activity of OrfAB and facilitating dispersion of the insertion sequence (IS) to 'non-homologous' target sites.
Collapse
Affiliation(s)
| | | | | | | | - M. Chandler
- Laboratoire de Microbiologie et Génétique Moléculaire, CNRS UMR5100, 118 Rte de Narbonne, F-31062 Toulouse Cedex, France
Corresponding author e-mail:
| |
Collapse
|
41
|
Prudhomme M, Turlan C, Claverys JP, Chandler M. Diversity of Tn4001 transposition products: the flanking IS256 elements can form tandem dimers and IS circles. J Bacteriol 2002; 184:433-43. [PMID: 11751820 PMCID: PMC139565 DOI: 10.1128/jb.184.2.433-443.2002] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We show that both flanking IS256 elements carried by transposon Tn4001 are capable of generating head-to-tail tandem copies and free circular forms, implying that both are active. Our results suggest that the tandem structures arise from dimeric copies of the donor or vector plasmid present in the population by a mechanism in which an IS256 belonging to one Tn4001 copy attacks an IS256 end carried by the second Tn4001 copy. The resulting structures carry abutted left (inverted left repeat [IRL]) and right (inverted right repeat [IRR]) IS256 ends. Examination of the junction sequence suggested that it may form a relatively good promoter capable of driving transposase synthesis in Escherichia coli. This behavior resembles that of an increasing number of bacterial insertion sequences which generate integrative junctions as part of the transposition cycle. Sequence analysis of the IRL-IRR junctions demonstrated that attack of one end by the other is largely oriented (IRL attacks IRR). Our experiments also defined the functional tips of IS256 as the tips predicted from sequence alignments, confirming that the terminal 4 bp at each end are indeed different. The appearance of these multiple plasmid and transposon forms indicates that care should be exercised when Tn4001 is used in transposition mutagenesis. This is especially true when it is used with naturally transformable hosts, such as Streptococcus pneumoniae, in which reconstitution of the donor plasmid may select for higher-order multimers.
Collapse
Affiliation(s)
- M Prudhomme
- Laboratoire de Microbiologie et Génétique Moléculaires, CNRS UMR5100, F31062 Toulouse Cedex, France
| | | | | | | |
Collapse
|
42
|
Abstract
In the first step of IS2 transposition, the formation of an IS2 minicircle, the roles of the two IS ends differ. Terminal cleavage initiates exclusively at the right inverted repeat (IRR) - the donor end - whereas IRL is always the target. At the resulting minicircle junction, the two abutted ends are separated by a spacer of 1 or 2 basepairs. In this study, we have identified the determinants of donor and target function. The inability of IRL to act as a donor results largely from two sequence differences between IRL and IRR - an extra basepair between the conserved transposase binding sequences and the end of the element, and a change of the terminal dinucleotide from CA-3' to TA-3'. These two changes also impose a characteristic size on the minicircle junction spacer. The only sequences required for the efficient target function of IRL appear to be contained within the segment from position 11-42. Although IRR can function as a target, its shorter length and additional contacts with transposase (positions 1-7) result in minicircles with longer, and inappropriate, spacers. We propose a model for the synaptic complex in which the terminus of IRL makes different contacts with the transposase for the initial and final strand transfer steps. The sequence differences between IRR and IRL, and the behavioural characteristics of IRL that result from them, have probably been selected because they optimize expression of transposase from the minicircle junction promoter, Pjunc.
Collapse
Affiliation(s)
- L A Lewis
- Department of Biology, York College and Program in Cellular, Molecular and Developmental Biology, Graduate School and University Center, City University of New York, Jamaica, NY 11451, USA.
| | | | | | | | | |
Collapse
|
43
|
Duval-Valentin G, Normand C, Khemici V, Marty B, Chandler M. Transient promoter formation: a new feedback mechanism for regulation of IS911 transposition. EMBO J 2001; 20:5802-11. [PMID: 11598022 PMCID: PMC125674 DOI: 10.1093/emboj/20.20.5802] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
IS911 transposition involves a free circular transposon intermediate where the terminal inverted repeat sequences are connected. Transposase synthesis is usually driven by a weak promoter, p(IRL), in the left end (IRL). Circle junction formation creates a strong promoter, p(junc), with a -35 sequence located in the right end and the -10 sequence in the left. p(junc) assembly would permit an increase in synthesis of transposase from the transposon circle, which would be expected to stimulate integration. Insertion results in p(junc) disassembly and a return to the low p(IRL)- driven transposase levels. We demonstrate that p(junc) plays an important role in regulating IS911 transposition. Inactivation of p(junc) strongly decreased IS911 transposition when transposase was produced in its natural configuration. This novel feedback mechanism permits transient and controlled activation of integration only in the presence of the correct (circular) intermediate. We have also investigated other members of the IS3 and other IS families. Several, but not all, IS3 family members possess p(junc) equivalents, underlining that the regulatory mechanisms adopted to fine-tune transposition may be different.
Collapse
Affiliation(s)
| | | | | | | | - Michael Chandler
- Laboratoire de Microbiologie et Génétique Moléculaire, CNRS, 118 Route de Narbonne, 31062 Toulouse, France
Corresponding author e-mail:
| |
Collapse
|
44
|
Toesca I, Perard C, Bouvier J, Gutierrez C, Conter A. The transcriptional activator NhaR is responsible for the osmotic induction of osmC(p1), a promoter of the stress-inducible gene osmC in Escherichia coli. MICROBIOLOGY (READING, ENGLAND) 2001; 147:2795-2803. [PMID: 11577158 DOI: 10.1099/00221287-147-10-2795] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Two overlapping promoters, osmC(p1) and osmC(p2), direct the transcription of the osmC gene of Escherichia coli. The proximal promoter, osmC(p2), is induced upon entry into stationary phase under the control of Esigma(s), the RNA polymerase that uses the sigma(s) (RpoS) sigma factor. Transcription from the distal promoter, osmC(p1), is independent of sigma(s). Previous analysis demonstrated that the osmolarity of the growth medium modulates expression of both promoters. The use of an E. coli genomic library showed that the cloned nhaR gene was able to stimulate transcription of an osmC-lac reporter fusion. NhaR is a positive regulator of the LysR family, previously identified as an activator of nhaA, a gene encoding a Na+/H+ antiporter involved in adaptation to Na+ and alkaline pH in E. coli and other enteric bacteria. NhaR was shown to activate only the expression of osmC(p1) and to be necessary for the induction of this promoter by LiCl, NaCl and sucrose. Therefore, activation by NhaR is responsible for the osmotic induction of osmC(p1). In contrast to its action on nhaA, NhaR activation of osmC(p1) is independent of H-NS. Activation of osmC(p1) by NhaR requires a site located just upstream of the atypical -35 region of the promoter.
Collapse
Affiliation(s)
- Isabelle Toesca
- Laboratoire de Microbiologie et Génétique Moléculaire, UMR 5100 CNRS - Université Toulouse III, 118 Route de Narbonne, F-31062, Toulouse Cedex, France1
| | - Catherine Perard
- Laboratoire de Microbiologie et Génétique Moléculaire, UMR 5100 CNRS - Université Toulouse III, 118 Route de Narbonne, F-31062, Toulouse Cedex, France1
| | - Jean Bouvier
- Laboratoire de Microbiologie et Génétique Moléculaire, UMR 5100 CNRS - Université Toulouse III, 118 Route de Narbonne, F-31062, Toulouse Cedex, France1
| | - Claude Gutierrez
- Laboratoire de Microbiologie et Génétique Moléculaire, UMR 5100 CNRS - Université Toulouse III, 118 Route de Narbonne, F-31062, Toulouse Cedex, France1
| | - Annie Conter
- Laboratoire de Microbiologie et Génétique Moléculaire, UMR 5100 CNRS - Université Toulouse III, 118 Route de Narbonne, F-31062, Toulouse Cedex, France1
| |
Collapse
|
45
|
Normand C, Duval-Valentin G, Haren L, Chandler M. The terminal inverted repeats of IS911: requirements for synaptic complex assembly and activity. J Mol Biol 2001; 308:853-71. [PMID: 11352577 DOI: 10.1006/jmbi.2001.4641] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The bacterial insertion sequence IS911 transposes via a covalently closed circular intermediate. Circle formation involves transposase-mediated pairing of both insertion sequence ends. While full-length transposase, OrfAB, binds poorly in vitro to IS911 DNA fragments carrying a copy of the IS911 end, truncated protein derivatives carrying the first 135 (OrfAB[1-135]) or 149 (OrfAB[1-149]) amino acid residues bind efficiently. They generate a paired-end complex containing two such fragments which resembles that expected for the first synaptic complex. Shorter protein derivatives lacking a region involved in multimerisation do not form these complexes but modify the binding of OrfAB[1-135] and OrfAB[1-149]. DNaseI footprinting demonstrated that OrfAB[1-149] protects a sub-terminal (internal) region of the inverted repeats which includes two blocks of sequence (beta and gamma) conserved between the left (IRL) and right (IRR) ends. DNA binding assays in vitro and measurement of recombination activity in vivo of sequential deletion derivatives of the two inverted repeats suggested a model in which the N-terminal region of OrfAB binds the conserved boxes beta and gamma in a sequence-specific manner and anchors the two insertion sequence ends into a paired-end complex. The external region of the inverted repeat is proposed to contact the C-terminal transposase domain carrying the catalytic site.
Collapse
Affiliation(s)
- C Normand
- Laboratoire de Microbiologie et Génétique Moléculaire, CNRS, 118 Route de Narbonne, Toulouse, 31062, France
| | | | | | | |
Collapse
|
46
|
Kennedy AK, Haniford DB, Mizuuchi K. Single active site catalysis of the successive phosphoryl transfer steps by DNA transposases: insights from phosphorothioate stereoselectivity. Cell 2000; 101:295-305. [PMID: 10847684 DOI: 10.1016/s0092-8674(00)80839-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The transposase family of proteins mediate DNA transposition or retroviral DNA integration via multistep phosphoryl transfer reactions. For Tn10 and phage Mu, a single active site of one transposase protomer catalyzes the successive transposition reaction steps. We examined phosphorothioate stereoselectivity at the scissile position for all four reaction steps catalyzed by the Tn10 transposase. The results suggest that the first three steps required for double-strand cutting at the transposon end proceed as a succession of pseudo-reverse reaction steps while the 3' end of the transposon remains bound to the same side of the active site. However, the mode of substrate binding to the active site changes for the cut transposon 3' end to target DNA strand joining. The phosphorothioate stereoselectivity of the corresponding steps of phage Mu transposition and HIV DNA integration matches that of Tn10 reaction, indicating a common mode of substrate-active site interactions for this class of DNA transposition reactions.
Collapse
Affiliation(s)
- A K Kennedy
- Department of Biochemistry, University of Western Ontario, London, Canada
| | | | | |
Collapse
|
47
|
Biery MC, Lopata M, Craig NL. A minimal system for Tn7 transposition: the transposon-encoded proteins TnsA and TnsB can execute DNA breakage and joining reactions that generate circularized Tn7 species. J Mol Biol 2000; 297:25-37. [PMID: 10704304 DOI: 10.1006/jmbi.2000.3558] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the presence of ATP and Mg(2+), the bacterial transposon Tn7 translocates via a cut and paste mechanism executed by the transposon-encoded proteins TnsA+TnsB+TnsC+TnsD. We report here that in the presence of Mn(2+), TnsA+TnsB alone can execute the DNA breakage and joining reactions of Tn7 recombination. ATP is not essential in this minimal system, revealing that this cofactor is not directly involved in the chemical steps of recombination. In both the TnsAB and TnsABC+D systems, recombination initiates with double-strand breaks at each transposon end that cut Tn7 away from flanking donor DNA. In the minimal system, breakage occurs predominantly at a single transposon end and the subsequent end-joining reactions are intramolecular, with the exposed 3' termini of a broken transposon end joining near the other end of the Tn7 element in the same donor molecule to form circular transposon species. In contrast, in TnsABC+D recombination, breaks occur at both ends of Tn7 and the two ends join to a target site on a different DNA molecule to form an intermolecular simple insertion. This demonstration of the capacity of TnsAB to execute breakage and joining reactions supports the view that these proteins form the Tn7 transposase.
Collapse
MESH Headings
- Bacterial Proteins/metabolism
- Base Sequence
- Cations, Divalent/pharmacology
- DNA Probes
- DNA Transposable Elements/genetics
- DNA Transposable Elements/physiology
- DNA, Circular/genetics
- DNA, Circular/isolation & purification
- DNA, Circular/metabolism
- DNA, Circular/ultrastructure
- DNA, Superhelical/genetics
- DNA, Superhelical/isolation & purification
- DNA, Superhelical/metabolism
- DNA, Superhelical/ultrastructure
- DNA-Binding Proteins/metabolism
- Escherichia coli/enzymology
- Escherichia coli/genetics
- Escherichia coli Proteins
- Manganese/pharmacology
- Microscopy, Electron
- Molecular Weight
- Mutation/drug effects
- Mutation/genetics
- Nucleic Acid Conformation
- Nucleotides/genetics
- Recombination, Genetic/drug effects
- Recombination, Genetic/genetics
Collapse
Affiliation(s)
- M C Biery
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
48
|
Abstract
Using a combined in vivo and in vitro approach, we demonstrated that the transposition products generated by IS911 from a dimeric donor plasmid are different from those generated from a plasmid monomer. When carried by a monomeric plasmid donor, free IS911 transposon circles are generated by intra-IS recombination in which one IS end undergoes attack by the other. These represent transposition intermediates that undergo integration using the abutted left (IRL) and right (IRR) ends of the element, the active IRR-IRL junction, to generate simple insertions. In contrast, the two IS911 copies carried by a dimeric donor plasmid not only underwent intra-IS recombination to generate transposon circles but additionally participated in inter-IS recombination. This also creates an active IRR-IRL junction by generating a head-to-tail IS tandem dimer ([IS]2) in which one of the original plasmid backbone copies is eliminated in the formation of the junction. Both transposon circles and IS tandem dimers are generated from an intermediate in which two transposon ends are retained by a single strand joint to generate a figure 8 molecule. Inter-IS figure 8 molecules generated in vitro could be resolved into the [IS]2 form following introduction into a host strain by transformation. Resolution did not require IS911 transposase. The [IS]2 structure was stable in the absence of transposase but was highly unstable in its presence both in vivo and in vitro. Previous studies had demonstrated that the IRR-IRL junction promotes efficient intermolecular integration and intramolecular deletions both in vivo and in vitro. Integration of the [IS]2 derivative would result in a product that resembles a co-integrate structure. It is also shown here that the IRR-IRL junction of the [IS]2 form and derivative structures can specifically target one of the other ends in an intramolecular transposition reaction to generate transposon circles in vitro. These results not only demonstrate that IS911 (and presumably other members of the IS3 family) is capable of generating a range of transposition products, it also provides a mechanistic framework which explains the formation and activity of such structures previously observed for several other unrelated IS elements. This behaviour is probably characteristic of a large number of IS elements.
Collapse
Affiliation(s)
- C Turlan
- Laboratoire de Microbiologie et Génétique Moléculaires, CNRS UPR9007, 118 Rte de Narbonne, F31062 Toulouse Cedex, France
| | | | | |
Collapse
|
49
|
Haren L, Normand C, Polard P, Alazard R, Chandler M. IS911 transposition is regulated by protein-protein interactions via a leucine zipper motif. J Mol Biol 2000; 296:757-68. [PMID: 10677279 DOI: 10.1006/jmbi.1999.3485] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Efficient intermolecular transposition of bacterial insertion sequence IS911 involves the activities of two element-encoded proteins: the transposase, OrfAB, and a regulatory factor, OrfA. OrfA shares the majority of its amino acid sequence with the N-terminal part of OrfAB. This includes a putative helix-turn-helix and three of four heptads of a leucine zipper motif. OrfA strongly stimulates OrfAB-mediated intermolecular transposition both in vivo and in vitro. The present results support the notion that this is accomplished by direct interaction between these two proteins via the leucine zipper. We used both a genetic approach, based on gene fusions with phage lambda repressor, and a physical approach, involving co-immunoprecipitation, to show that OrfA not only undergoes oligomerisation but is capable of engaging with OrfAB to form heteromultimers, and that the leucine zipper is necessary for both types of interaction. Furthermore, mutation of the leucine zipper in OrfA inactivated its regulatory function. Previous observations demonstrated that the integrity of the leucine zipper motif was also important for OrfAB binding to the IS911 terminal inverted repeats. Here, we show, in gel shift experiments, using a derivative of OrfAB deleted for the C-terminal catalytic domain, OrfAB[1-149], that the protein is capable of pairing two inverted repeats to generate a species resembling a "synaptic complex". Preincubation of OrfAB[1-149] with OrfA dramatically reduced formation of this complex and favored formation of an alternative complex devoid of OrfA. Together these results suggest that OrfA exerts its regulatory effect by interacting transiently with OrfAB via the leucine zipper and modifying OrfAB binding to the inverted repeats.
Collapse
Affiliation(s)
- L Haren
- Laboratoire de Microbiologie et Génétique Moléculaire, CNRS Université Paul Sabatier, 118 Route de Narbonne, Toulouse, 31062, France
| | | | | | | | | |
Collapse
|
50
|
Sekine Y, Aihara K, Ohtsubo E. Linearization and transposition of circular molecules of insertion sequence IS3. J Mol Biol 1999; 294:21-34. [PMID: 10556026 DOI: 10.1006/jmbi.1999.3181] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
IS3 transposase has been shown to promote production of characteristic circular and linear IS3 molecules from the IS3-carrying plasmid; IS3 circles have the entire IS3 sequence with terminal inverted repeats, IRL and IRR, which are separated by a three base-pair sequence originally flanking either end in the parental plasmid, whereas linear IS3 molecules have three nucleotide overhangs at their 5' ends. Here, we showed that a plasmid carrying an IS3 derivative, which is flanked by different sequences at both ends, generated IS3 circles and linear IS3 molecules owing to the action of transposase. Cloning and sequencing analyses of the linear molecules showed that each had the same 5'-protruding three nucleotide overhanging sequences at both ends, suggesting that the linear molecules were not generated from the parental plasmid by the two double-strand breaks at both end regions of IS3. The plasmid carrying IS3 with a two base-pair mutation in the terminal dinucleotide, which would be required for transposase to cleave the 3' end of IS3, could still generate linear molecules as well as circles. Plasmids bearing an IS3 circle were cleaved by transposase and gave linear molecules with the same 5'-protruding three nucleotide overhanging sequences. These show that the linear molecules are generated from IS3 circles via a double-strand break at the three base-pair intervening sequence. Plasmids carrying an IS3 circle with the two base-pair end mutation still were cleaved by transposase, though with reduced efficiencies, suggesting that IS3 transposase has the ability to cleave not only the 3' end of IS3, but a site three nucleotides from the 5' end of IS3. IS3 circles also were shown to transpose to the target plasmids. The end mutation almost completely inhibited this transposition, showing that the terminal dinucleotides are important for the transfer of the 3' end of IS3 to the target as well as for the end cleavage.
Collapse
Affiliation(s)
- Y Sekine
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Bunkyo-ku, 113-0032, Japan
| | | | | |
Collapse
|