1
|
Ádám B, Golcs Á, Tóth T, Huszthy P. Ultrafast Solid-Phase Oxidation of Aldehydes to Carboxylic Acids by Atmosphseric Plasma Treatment. ACS OMEGA 2024; 9:27269-27277. [PMID: 38947793 PMCID: PMC11209928 DOI: 10.1021/acsomega.4c01596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/28/2024] [Accepted: 05/30/2024] [Indexed: 07/02/2024]
Abstract
Although atmospheric plasma treatment is an industrially widespread, scalable, and environmentally friendly method, it has been generally used for surface modification, decontamination, or sterilization. In this paper, a novel, sustainable, green, and ultrafast oxidation method is described for aldehydes on a preparative thin-layer chromatographic plate as a solid support. The plasma treatment has proven to be suitable for producing the corresponding carboxylic acids by using only air as a reactant source under mild reaction conditions, while the isolation of the products is also directly integrated into the oxidation process. Extensibility to other reaction types is not explored yet, but we are sure that this novel synthesis conception carries a lot of possibilities.
Collapse
Affiliation(s)
- Bálint
Árpád Ádám
- Department
of Organic Chemistry and Technology, Budapest
University of Technology and Economics, Szent Gellért tér 4., H-1111 Budapest, Hungary
| | - Ádám Golcs
- Department
of Organic Chemistry and Technology, Budapest
University of Technology and Economics, Szent Gellért tér 4., H-1111 Budapest, Hungary
- Department
of Pharmaceutical Chemistry, Semmelweis
University, Hőgyes Endre utca 9., H-1092 Budapest, Hungary
| | - Tünde Tóth
- Department
of Organic Chemistry and Technology, Budapest
University of Technology and Economics, Szent Gellért tér 4., H-1111 Budapest, Hungary
- HUN-REN
Centre for Energy Research, Konkoly-Thege Miklós út 29-33., H-1121 Budapest, Hungary
| | - Péter Huszthy
- Department
of Organic Chemistry and Technology, Budapest
University of Technology and Economics, Szent Gellért tér 4., H-1111 Budapest, Hungary
| |
Collapse
|
2
|
Lone WI, Rashid A, Bhat BA, Rashid S. Chemoselective oxidation of aromatic aldehydes to carboxylic acids: potassium tert-butoxide as an anomalous source of oxygen. Chem Commun (Camb) 2024; 60:6544-6547. [PMID: 38842029 DOI: 10.1039/d4cc01639d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Chemoselective oxidation of aromatic and heteroaromatic aldehydes (>45 examples) to their corresponding carboxylic acids has been developed. Potassium tert-butoxide acts as an oxygen source during this transformation that delivers the corresponding acids without chromatographic purifications. The use of bench-top reagents, operational simplicity, and high level of chemo-selectivity with respect to oxidation of the least preferred aldehyde functionality, in the presence of more susceptible functional groups, are some of the highlights of this strategy.
Collapse
Affiliation(s)
- Waseem I Lone
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine (IIIM), Jammu, Jammu and Kashmir 180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Auqib Rashid
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine (IIIM), Jammu, Jammu and Kashmir 180001, India.
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar 190005, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Bilal A Bhat
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar 190005, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Showkat Rashid
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine (IIIM), Jammu, Jammu and Kashmir 180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
3
|
Zeng K, Stückl AC, Qin J, Simon M, Spyra CJ, Li J, Meyer F, Zhang K. Iodoarene mediated efficient aerobic oxidation of aldehydes for carboxylic acids. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.112919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
4
|
Ravichandran R, Annamalai K, Annamalai A, Elumalai S. Solid State – Green Construction of Starch- beaded Fe3O4@Ag nanocomposite as Superior Redox Catalyst. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
5
|
Pardeshi S, Pownthurai B, Ganesan G, Keshari H, Jadhav Y, Chaskar A. Selective oxidation of vinylbenzenes & acyloins in the presence of silver catalyst using molecular oxygen as terminal oxidant. Tetrahedron Lett 2023. [DOI: 10.1016/j.tetlet.2023.154409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
6
|
Jeong D, Kim H, Cho J. Oxidation of Aldehydes into Carboxylic Acids by a Mononuclear Manganese(III) Iodosylbenzene Complex through Electrophilic C-H Bond Activation. J Am Chem Soc 2023; 145:888-897. [PMID: 36598425 DOI: 10.1021/jacs.2c09274] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The oxidation of aldehyde is one of the fundamental reactions in the biological system. Various synthetic procedures and catalysts have been developed to convert aldehydes into corresponding carboxylic acids efficiently under ambient conditions. In this work, we report the oxidation of aldehydes by a mononuclear manganese(III) iodosylbenzene complex, [MnIII(TBDAP)(OIPh)(OH)]2+ (1), with kinetic and mechanistic studies in detail. The reaction of 1 with aldehydes resulted in the formation of corresponding carboxylic acids via a pre-equilibrium state. Hammett plot and reaction rates of 1 with 1°-, 2°-, and 3°-aldehydes revealed the electrophilicity of 1 in the aldehyde oxidation. A kinetic isotope effect experiment and reactivity of 1 toward cyclohexanecarboxaldehyde (CCA) analogues indicate that the reaction of 1 with aldehyde occurs through the rate-determining C-H bond activation at the formyl group. The reaction rate of 1 with CCA is correlated to the bond dissociation energy of the formyl group plotting a linear correlation with other aliphatic C-H bonds. Density functional theory calculations found that 1 electrostatically interacts with CCA at the pre-equilibrium state in which the C-H bond activation of the formyl group is performed as the most feasible pathway. Surprisingly, the rate-determining step is characterized as hydride transfer from CCA to 1, affording an (oxo)methylium intermediate. At the fundamental level, it is revealed that the hydride transfer is composed of H atom abstraction followed by a fast electron transfer. Catalytic reactions of aldehydes by 1 are also presented with a broad substrate scope. This novel mechanistic study gives better insights into the metal oxygen chemistry and would be prominently valuable for development of transition metal catalysts.
Collapse
Affiliation(s)
- Donghyun Jeong
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan44919, Republic of Korea
| | - Hyokyung Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan44919, Republic of Korea
| | - Jaeheung Cho
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan44919, Republic of Korea.,Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), Ulsan44919, Republic of Korea
| |
Collapse
|
7
|
Xu H, Li X, Hu W, Yu Z, Zhou H, Zhu Y, Lu L, Si C. Research Progress of Highly Efficient Noble Metal Catalysts for the Oxidation of 5-Hydroxymethylfurfural. CHEMSUSCHEM 2022; 15:e202200352. [PMID: 35575041 DOI: 10.1002/cssc.202200352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/11/2022] [Indexed: 06/15/2023]
Abstract
5-hydroxymethylfurfural (HMF) is considered to be one of the most pivotal multifunctional biomass platform chemicals. This Review discusses recent advances in catalytic oxidation of HMF towards high-value products. The reaction mechanism of different noble metals and the path of HMF oxidation to high-value products have been deeply investigated in the noble metal catalytic system. The reaction mechanisms of different noble metals and HMF conversion paths were compared in detail. Moreover, the factors affecting the performance of different noble metal catalysts were summarized. Finally, effective strategies were put forward to improve the catalytic performance of noble metal catalysts. The purpose is to provide a valuable reference for the academic research on the preparation of oxidation products from biomass-based HMF and the industrial application of noble metal catalysts.
Collapse
Affiliation(s)
- Haocheng Xu
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, P. R. China
- School of Agriculture, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Xiaoyun Li
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, P. R. China
- School of Agriculture, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Wenxuan Hu
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, P. R. China
- School of Agriculture, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Zhihao Yu
- Department of Chemistry and Environmental Science, School of Science, Tibet University, Lhasa, 850000, P. R. China
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Huanran Zhou
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, P. R. China
- School of Agriculture, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Yameng Zhu
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, P. R. China
- School of Agriculture, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Lefu Lu
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, P. R. China
- School of Agriculture, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Chuanling Si
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| |
Collapse
|
8
|
Xie T, Yue S, Su T, Song M, Xu W, Xiao Y, Yang Z, Len C, Zhao D. High selective oxidation of 5-hydroxymethyl furfural to 5-hydroxymethyl-2-furan carboxylic acid using Ag-TiO2. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Wang Z, Qin Y, Huang H, Li G, Xu Y, Jin P, Peng B, Zhao Y. Solvent Effect on Product Distribution in the Aerobic Autoxidation of 2-Ethylhexanal: Critical Role of Polarity. Front Chem 2022; 10:855843. [PMID: 35402373 PMCID: PMC8989829 DOI: 10.3389/fchem.2022.855843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
In the aerobic oxidation of aldehydes to acids, how the solvent affect the reaction remains unclear. Herein, the solvent effect in the oxidation of 2-ethylhexanal (2-ETH) to 2-ethylhexanoic acid (2-ETA) was systematically investigated. The vastly different product distributions were observed which could be ascribed to the dominant intermolecular forces. Though strong intermolecular forces in protic solvents limit the oxidation, the optimal 2-ETA yield (96%) was obtained in ipropanol via gradually evaporating the solvent to remove the interactions. Theoretical calculations further revealed that the hydrogen bonds between reactant and protic solvent increase the C-H bond energy (-CHO in 2-ETH). Meanwhile, the hydrogen bonds may improve 2-ETA selectivity by promoting H transfer in the oxidation rearrangement step. Our work discloses the critical role of polarity in determining the reactivity and selectivity of 2-ETH oxidation, and could guide the rational design of more desirable reaction processes with solvent effect.
Collapse
Affiliation(s)
- Zheng Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Yitong Qin
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Huijiang Huang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Guobing Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Yan Xu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Peng Jin
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, China
- *Correspondence: Peng Jin, ; Bo Peng, ; Yujun Zhao,
| | - Bo Peng
- SINOPEC Research Institute of Petroleum Processing, Beijing, China
- *Correspondence: Peng Jin, ; Bo Peng, ; Yujun Zhao,
| | - Yujun Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- *Correspondence: Peng Jin, ; Bo Peng, ; Yujun Zhao,
| |
Collapse
|
10
|
Khan SR, Saini S, Naresh K, Kumari A, Aniya V, Khatri PK, Ray A, Jain SL. CO 2 as oxidant: an unusual light-assisted catalyst free oxidation of aldehydes to acids under mild conditions. Chem Commun (Camb) 2022; 58:2208-2211. [PMID: 35072682 DOI: 10.1039/d1cc06057k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A novel visible light-driven catalyst-free oxidation of aldehydes using CO2 both in batch and flow photoreactors to get corresponding acids along with the formation of CO in the effluent gas is described.
Collapse
Affiliation(s)
- Shafiur Rehman Khan
- Chemical & Material Sciences Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Mohkampur, Dehradun-248005, India.
| | - Sandhya Saini
- Chemical & Material Sciences Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Mohkampur, Dehradun-248005, India.
- Academy of Scientific and Innovative Research, Ghaziabad-201002, India
| | - K Naresh
- Process Engineering Technology Transfer Division, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India
| | - Alka Kumari
- Process Engineering Technology Transfer Division, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India
| | - Vineet Aniya
- Process Engineering Technology Transfer Division, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India
| | - Praveen K Khatri
- Chemical & Material Sciences Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Mohkampur, Dehradun-248005, India.
| | - Anjan Ray
- Chemical & Material Sciences Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Mohkampur, Dehradun-248005, India.
- Director, CSIR-Indian Institute of Petroleum, Mohkampur, Dehradun-248004, India
| | - Suman L Jain
- Chemical & Material Sciences Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Mohkampur, Dehradun-248005, India.
| |
Collapse
|
11
|
Liao Y, Aspin A, Yang Z. Anaerobic oxidation of aldehydes to carboxylic acids under hydrothermal conditions. RSC Adv 2022; 12:1738-1741. [PMID: 35425195 PMCID: PMC8979077 DOI: 10.1039/d1ra08444e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/29/2021] [Indexed: 12/18/2022] Open
Abstract
Examples of anaerobic oxidation of aldehydes in hydrothermal solutions are reported. The reaction using iron(iii) nitrate as the oxidant occurs under mild hydrothermal conditions and generates carboxylic acids in good yields. This method differs from previous studies which use atmospheric oxygen as the oxidant.
Collapse
Affiliation(s)
- Yiju Liao
- Department of Chemistry, Oakland University Rochester MI 48309 USA
| | - Alexandria Aspin
- Department of Chemistry, Oakland University Rochester MI 48309 USA
| | - Ziming Yang
- Department of Chemistry, Oakland University Rochester MI 48309 USA
| |
Collapse
|
12
|
Fu X, Han Y, Chen R, Han Q, Zhang R, Li J. Selective oxidation of aldehydes by oxygen over macroporous alkaline resin. REACT CHEM ENG 2022. [DOI: 10.1039/d2re00200k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this reaction, the oxidation of aldehydes is selectively catalyzed by basic resin D201-OH for the first time. Moreover, mild and high-yield oxidation of aldehydes can be achieved without any cocatalyst.
Collapse
Affiliation(s)
- Xiaojing Fu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Yuchan Han
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Rui Chen
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Qi Han
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Rongfan Zhang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Jun Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| |
Collapse
|
13
|
Xu S, Zhang X, Xiong W, Li P, Ma W, Hu X, Wu Y. Aerobic oxidation of aldehydes to acids in water with cyclic (alkyl)(amino)carbene copper under mild conditions. Chem Commun (Camb) 2021; 58:2132-2135. [PMID: 34704994 DOI: 10.1039/d1cc04812k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, cyclic (alkyl)(amino)carbene copper ((CAAC)Cu) catalyzed aerobic oxidation of aldehydes in water at room temperature has been reported. Good to excellent yields were obtained using different substrates. A possible reaction mechanism was proposed, in which (CAAC)Cu dioxygen activates the C-H bond of aldehyde with a low barrier of 10.6 kcal mol-1.
Collapse
Affiliation(s)
- Songbo Xu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China. .,Shandong Kanbo Biochemical Technology Co., Ltd, Dongying, 257400, P. R. China
| | - Xiaomin Zhang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China. .,Yuxiu Postdoctoral Institute, Nanjing University, Nanjing 210023, P. R. China
| | - Wenjie Xiong
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Ping Li
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Wentao Ma
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Xingbang Hu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China. .,Yuxiu Postdoctoral Institute, Nanjing University, Nanjing 210023, P. R. China
| | - Youting Wu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China. .,Yuxiu Postdoctoral Institute, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
14
|
Wu H, Wang YC, Shatskiy A, Li QY, Liu JQ, Kärkäs MD, Wang XS. Modular synthesis of 3-substituted isocoumarins via silver-catalyzed aerobic oxidation/ 6-endo heterocyclization of ortho-alkynylbenzaldehydes. Org Biomol Chem 2021; 19:6657-6664. [PMID: 34271583 DOI: 10.1039/d1ob01065d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A method involving silver-catalyzed aerobic oxidation/6-endo heterocyclization of ortho-alkynylbenzaldehydes to yield 3-substituted isocoumarins is described. The developed protocol allows convenient access to a range of synthetically useful 3-substituted isocoumarins and related fused heterocyclolactones in good to high yields, using silver tetrafluoroborate as the catalyst, and atmospheric oxygen as the terminal oxidant and the source of endocyclic oxygen. Mechanistic studies suggest the involvement of a free-radical pathway.
Collapse
Affiliation(s)
- Hao Wu
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthesis for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China.
| | - Yi-Chun Wang
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthesis for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China.
| | - Andrey Shatskiy
- Department of Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| | - Qiu-Yan Li
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthesis for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China.
| | - Jian-Quan Liu
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthesis for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China. and Department of Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| | - Markus D Kärkäs
- Department of Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| | - Xiang-Shan Wang
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthesis for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China.
| |
Collapse
|
15
|
Saini P, Krishnan A, Yadav D, Hazra S, Elias AJ. External Catalyst‐Free Oxidation of Benzyl Halides to Benzoic Acids Using NaOH/TBHP in Water. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Parul Saini
- Department of Chemistry Indian Institute of Technology Delhi, Hauz Khas New Delhi 110016 India
| | - Anandhu Krishnan
- Department of Chemistry Indian Institute of Technology Delhi, Hauz Khas New Delhi 110016 India
| | - Deepak Yadav
- Department of Chemistry Indian Institute of Technology Delhi, Hauz Khas New Delhi 110016 India
| | - Susanta Hazra
- Department of Chemistry Indian Institute of Technology Delhi, Hauz Khas New Delhi 110016 India
| | - Anil J. Elias
- Department of Chemistry Indian Institute of Technology Delhi, Hauz Khas New Delhi 110016 India
| |
Collapse
|
16
|
Wang Z, Tzouras NV, Nolan SP, Bi X. Silver N-heterocyclic carbenes: emerging powerful catalysts. TRENDS IN CHEMISTRY 2021. [DOI: 10.1016/j.trechm.2021.04.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
17
|
Laouini SE, Bouafia A, Soldatov AV, Algarni H, Tedjani ML, Ali GAM, Barhoum A. Green Synthesized of Ag/Ag 2O Nanoparticles Using Aqueous Leaves Extracts of Phoenix dactylifera L. and Their Azo Dye Photodegradation. MEMBRANES 2021; 11:468. [PMID: 34202049 PMCID: PMC8306034 DOI: 10.3390/membranes11070468] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/19/2021] [Accepted: 06/22/2021] [Indexed: 12/31/2022]
Abstract
In this study, silver/silver oxide nanoparticles (Ag/Ag2O NPs) were successfully biosynthesized using Phoenix dactylifera L. aqueous leaves extract. The effect of different plant extract/precursor contractions (volume ratio, v/v%) on Ag/Ag2O NP formation, their optical properties, and photocatalytic activity towards azo dye degradation, i.e., Congo red (CR) and methylene blue (MB), were investigated. X-ray diffraction confirmed the crystalline nature of Ag/Ag2O NPs with a crystallite size range from 28 to 39 nm. Scanning electron microscope images showed that the Ag/Ag2O NPs have an oval and spherical shape. UV-vis spectroscopy showed that Ag/Ag2O NPs have a direct bandgap of 2.07-2.86 eV and an indirect bandgap of 1.60-1.76 eV. Fourier transform infrared analysis suggests that the synthesized Ag/Ag2O NPs might be stabilized through the interactions of -OH and C=O groups in the carbohydrates, flavonoids, tannins, and phenolic acids present in Phoenix dactylifera L. Interestingly, the prepared Ag/Ag2O NPs showed high catalytic degradation activity for CR dye. The photocatalytic degradation of the azo dye was monitored spectrophotometrically in a wavelength range of 250-900 nm, and a high decolorization efficiency (84.50%) was obtained after 50 min of reaction. As a result, the use of Phoenix dactylifera L. aqueous leaves extract offers a cost-effective and eco-friendly method.
Collapse
Affiliation(s)
- Salah Eddine Laouini
- Department of Process Engineering and Petrochemistry, Faculty of Technology, University of Echahid Hamma Lakhdar El Oued, El-Oued 39000, Algeria; (S.E.L.); (M.L.T.)
| | - Abderrhmane Bouafia
- Department of Process Engineering and Petrochemistry, Faculty of Technology, University of Echahid Hamma Lakhdar El Oued, El-Oued 39000, Algeria; (S.E.L.); (M.L.T.)
| | - Alexander V. Soldatov
- The Smart Materials Research Institute, Southern Federal University, Sladkova Str. 178/24, Rostov-on-Don 344090, Russia;
| | - Hamed Algarni
- Research Centre for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
- Department of Physics, Faculty of Sciences, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Mohammed Laid Tedjani
- Department of Process Engineering and Petrochemistry, Faculty of Technology, University of Echahid Hamma Lakhdar El Oued, El-Oued 39000, Algeria; (S.E.L.); (M.L.T.)
| | - Gomaa A. M. Ali
- Chemistry Department, Faculty of Science, Al–Azhar University, Assiut 71524, Egypt
| | - Ahmed Barhoum
- NanoStruc Research Group, Chemistry Department, Faculty of Science, Helwan University, Helwan 11795, Egypt
- School of Chemical Sciences, Fraunhofer Project Centre, Dublin City University, D09 V209 Dublin, Ireland
| |
Collapse
|
18
|
Mittal R, Kumar A, Awasthi SK. Practical scale up synthesis of carboxylic acids and their bioisosteres 5-substituted-1 H-tetrazoles catalyzed by a graphene oxide-based solid acid carbocatalyst. RSC Adv 2021; 11:11166-11176. [PMID: 35423636 PMCID: PMC8695831 DOI: 10.1039/d1ra01053k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 02/26/2021] [Indexed: 12/25/2022] Open
Abstract
Herein, catalytic application of a metal-free sulfonic acid functionalized reduced graphene oxide (SA-rGO) material is reported for the synthesis of both carboxylic acids and their bioisosteres, 5-substituted-1H-tetrazoles. SA-rGO as a catalytic material incorporates the intriguing properties of graphene oxide material with additional benefits of highly acidic sites due to sulfonic acid groups. The oxidation of aldehydes to carboxylic acids could be efficiently achieved using H2O2 as a green oxidant with high TOF values (9.06-9.89 h-1). The 5-substituted-1H-tetrazoles could also be effectively synthesized with high TOF values (12.08-16.96 h-1). The synthesis of 5-substituted-1H-tetrazoles was corroborated by single crystal X-ray analysis and computational calculations of the proposed reaction mechanism which correlated well with experimental findings. Both of the reactions could be performed efficiently at gram scale (10 g) using the SA-rGO catalyst. SA-rGO displays eminent reusability up to eight runs without significant decrease in its productivity. Thus, these features make SA-rGO riveting from an industrial perspective.
Collapse
Affiliation(s)
- Rupali Mittal
- Chemical Biology Laboratory, Department of Chemistry, University of Delhi Delhi-110007 India
| | - Amit Kumar
- Department of Chemistry, Jamia Millia Islamia Jamia Nagar New Delhi-110025 India
| | - Satish Kumar Awasthi
- Chemical Biology Laboratory, Department of Chemistry, University of Delhi Delhi-110007 India
| |
Collapse
|
19
|
Akhtar MS, Yang W, Kim SH, Lee YR. Organic‐Inorganic Dual Catalytic System for the Regioselective Construction of Diverse Quinone Derivatives
via
Benzannulation. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202000725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Muhammad Saeed Akhtar
- School of Chemical Engineering Yeungnam University Gyeongsan 38541 Republic of Korea
| | - Won‐Guen Yang
- Analysis Research Division, Daegu Center Korea Basic Science Institute Daegu 41566 Republic of Korea
| | - Sung Hong Kim
- Analysis Research Division, Daegu Center Korea Basic Science Institute Daegu 41566 Republic of Korea
| | - Yong Rok Lee
- School of Chemical Engineering Yeungnam University Gyeongsan 38541 Republic of Korea
| |
Collapse
|
20
|
Yu M, Wu C, Zhou L, Zhu L, Yao X. Aerobic Oxidation of Aldehydes to Carboxylic Acids Catalyzed by Recyclable Ag/C3N4 Catalyst. LETT ORG CHEM 2021. [DOI: 10.2174/1570178617999200807210137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The oxidation of aldehydes is an efficient methodology for the synthesis of carboxylic acids. Herein we hope to report a simple, efficient and recyclable protocol for aerobic oxidation of aldehydes to carboxylic acid by using C3N4 supported silver nanoparticles (Ag/3N4) as a catalyst in aqueous solution under mild conditions. Under standard conditions, the corresponding carboxylic acids can be obtained in good to excellent yields. In addition, Ag/C3N4 is convenient for recovery and could be reused three times with satisfactory yields.
Collapse
Affiliation(s)
- Min Yu
- College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016,China
| | - Chaolong Wu
- College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016,China
| | - Li Zhou
- College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016,China
| | - Li Zhu
- School of Pharmacy, Nanjing Medical University, Nanjing 210029,China
| | - Xiaoquan Yao
- College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016,China
| |
Collapse
|
21
|
Zhuang X, Tao J, Luo Z, Hong C, Liu Z, Li Q, Ren L, Luo Q, Liu T. Silver catalyzed pyridine‐directed acceptorless dehydrogenation of secondary alcohols. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202000517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xin Zhuang
- School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 China
| | - Jing Tao
- School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 China
| | - Zhen Luo
- School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 China
| | - Chuan‐Ming Hong
- School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 China
| | - Zheng‐Qiang Liu
- School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 China
| | - Qing‐Hua Li
- School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 China
| | - Li‐Qing Ren
- School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 China
| | - Qun‐Li Luo
- School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 China
| | - Tang‐Lin Liu
- School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 China
| |
Collapse
|
22
|
Selective oxidation of 5-hydroxymethylfurfural to 5-hydroxymethyl-2-furancarboxylic acid using silver oxide supported on calcium carbonate. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2020.111374] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Zhao D, Su T, Wang Y, Varma RS, Len C. Recent advances in catalytic oxidation of 5-hydroxymethylfurfural. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.111133] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
Kaiser SK, Chen Z, Faust Akl D, Mitchell S, Pérez-Ramírez J. Single-Atom Catalysts across the Periodic Table. Chem Rev 2020; 120:11703-11809. [PMID: 33085890 DOI: 10.1021/acs.chemrev.0c00576] [Citation(s) in RCA: 366] [Impact Index Per Article: 91.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Isolated atoms featuring unique reactivity are at the heart of enzymatic and homogeneous catalysts. In contrast, although the concept has long existed, single-atom heterogeneous catalysts (SACs) have only recently gained prominence. Host materials have similar functions to ligands in homogeneous catalysts, determining the stability, local environment, and electronic properties of isolated atoms and thus providing a platform for tailoring heterogeneous catalysts for targeted applications. Within just a decade, we have witnessed many examples of SACs both disrupting diverse fields of heterogeneous catalysis with their distinctive reactivity and substantially enriching our understanding of molecular processes on surfaces. To date, the term SAC mostly refers to late transition metal-based systems, but numerous examples exist in which isolated atoms of other elements play key catalytic roles. This review provides a compositional encyclopedia of SACs, celebrating the 10th anniversary of the introduction of this term. By defining single-atom catalysis in the broadest sense, we explore the full elemental diversity, joining different areas across the whole periodic table, and discussing historical milestones and recent developments. In particular, we examine the coordination structures and associated properties accessed through distinct single-atom-host combinations and relate them to their main applications in thermo-, electro-, and photocatalysis, revealing trends in element-specific evolution, host design, and uses. Finally, we highlight frontiers in the field, including multimetallic SACs, atom proximity control, and possible applications for multistep and cascade reactions, identifying challenges, and propose directions for future development in this flourishing field.
Collapse
Affiliation(s)
- Selina K Kaiser
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Zupeng Chen
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Dario Faust Akl
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Sharon Mitchell
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Javier Pérez-Ramírez
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| |
Collapse
|
25
|
Troiano D, Orsat V, Dumont MJ. Status of Biocatalysis in the Production of 2,5-Furandicarboxylic Acid. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02378] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Derek Troiano
- Bioresource Engineering Department, McGill University, Ste-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Valérie Orsat
- Bioresource Engineering Department, McGill University, Ste-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Marie-Josée Dumont
- Bioresource Engineering Department, McGill University, Ste-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| |
Collapse
|
26
|
Xu Y, Du C, Zhou C, Yang S. A new Ni-diaminoglyoxime-g-C 3N 4 complex towards efficient photocatalytic ethanol splitting via a ligand-to-metal charge transfer (LMCT) mechanism. Chem Commun (Camb) 2020; 56:7171-7174. [PMID: 32463031 DOI: 10.1039/d0cc01120g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We report a novel Ni-diaminoglyoxime-g-C3N4 (Ni-DAG-CN) complex for H2 evolution through photocatalytic ethanol splitting. Compared to that of pristine g-C3N4, Ni-DAG-CN exhibits a 21-fold enhancement of photocatalytic activity (296.1 μmol h-1 g-1) under irradiation with excellent stability. The enhanced photocatalytic activity can be attributed to a proposed ligand-to-metal charge transfer (LMCT) mechanism, which is illustrated both experimentally and theoretically. This work provides great potential in the future design of low-cost, high-performance photocatalysts for H2 evolution from alcohol splitting.
Collapse
Affiliation(s)
- Yanqi Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China.
| | | | | | | |
Collapse
|
27
|
Catalytic and stoichiometric oxoiron(IV) assisted oxidation of hydrocynnamaldehyde under air. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Liu M, Zhang Z, Song J, Liu S, Liu H, Han B. Nitrogen Dioxide Catalyzed Aerobic Oxidative Cleavage of C(OH)–C Bonds of Secondary Alcohols to Produce Acids. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908788] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mingyang Liu
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Colloid and Interface and ThermodynamicsCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of Sciences Zhongguancun North First Street 2 100190 Beijing P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Physical Science LaboratoryHuairou National Comprehensive Science Center No. 5 Yanqi East Second Street Beijing 101400 China
| | - Zhanrong Zhang
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Colloid and Interface and ThermodynamicsCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of Sciences Zhongguancun North First Street 2 100190 Beijing P. R. China
| | - Jinliang Song
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Colloid and Interface and ThermodynamicsCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of Sciences Zhongguancun North First Street 2 100190 Beijing P. R. China
- Physical Science LaboratoryHuairou National Comprehensive Science Center No. 5 Yanqi East Second Street Beijing 101400 China
| | - Shuaishuai Liu
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Colloid and Interface and ThermodynamicsCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of Sciences Zhongguancun North First Street 2 100190 Beijing P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Physical Science LaboratoryHuairou National Comprehensive Science Center No. 5 Yanqi East Second Street Beijing 101400 China
| | - Huizhen Liu
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Colloid and Interface and ThermodynamicsCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of Sciences Zhongguancun North First Street 2 100190 Beijing P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Physical Science LaboratoryHuairou National Comprehensive Science Center No. 5 Yanqi East Second Street Beijing 101400 China
| | - Buxing Han
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Colloid and Interface and ThermodynamicsCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of Sciences Zhongguancun North First Street 2 100190 Beijing P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Physical Science LaboratoryHuairou National Comprehensive Science Center No. 5 Yanqi East Second Street Beijing 101400 China
| |
Collapse
|
29
|
Liu M, Zhang Z, Song J, Liu S, Liu H, Han B. Nitrogen Dioxide Catalyzed Aerobic Oxidative Cleavage of C(OH)–C Bonds of Secondary Alcohols to Produce Acids. Angew Chem Int Ed Engl 2019; 58:17393-17398. [DOI: 10.1002/anie.201908788] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/05/2019] [Indexed: 02/05/2023]
Affiliation(s)
- Mingyang Liu
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Colloid and Interface and ThermodynamicsCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of Sciences Zhongguancun North First Street 2 100190 Beijing P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Physical Science LaboratoryHuairou National Comprehensive Science Center No. 5 Yanqi East Second Street Beijing 101400 China
| | - Zhanrong Zhang
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Colloid and Interface and ThermodynamicsCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of Sciences Zhongguancun North First Street 2 100190 Beijing P. R. China
| | - Jinliang Song
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Colloid and Interface and ThermodynamicsCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of Sciences Zhongguancun North First Street 2 100190 Beijing P. R. China
- Physical Science LaboratoryHuairou National Comprehensive Science Center No. 5 Yanqi East Second Street Beijing 101400 China
| | - Shuaishuai Liu
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Colloid and Interface and ThermodynamicsCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of Sciences Zhongguancun North First Street 2 100190 Beijing P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Physical Science LaboratoryHuairou National Comprehensive Science Center No. 5 Yanqi East Second Street Beijing 101400 China
| | - Huizhen Liu
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Colloid and Interface and ThermodynamicsCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of Sciences Zhongguancun North First Street 2 100190 Beijing P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Physical Science LaboratoryHuairou National Comprehensive Science Center No. 5 Yanqi East Second Street Beijing 101400 China
| | - Buxing Han
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Colloid and Interface and ThermodynamicsCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of Sciences Zhongguancun North First Street 2 100190 Beijing P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Physical Science LaboratoryHuairou National Comprehensive Science Center No. 5 Yanqi East Second Street Beijing 101400 China
| |
Collapse
|
30
|
Xia Q, Shi Z, Yuan J, Bian Q, Xu Y, Liu B, Huang Y, Yang X, Xu H. Visible‐Light‐Enabled Selective Oxidation of Primary Alcohols through Hydrogen‐Atom Transfer and its Application in the Synthesis of Quinazolinones. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900491] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Qiangqiang Xia
- Institute of Functional Organic Molecular EngineeringCollege of Chemistry and Chemical EngineeringHenan University Kaifeng 475004 China
| | - Zuodong Shi
- Institute of Functional Organic Molecular EngineeringCollege of Chemistry and Chemical EngineeringHenan University Kaifeng 475004 China
| | - Jiangpei Yuan
- Institute of Functional Organic Molecular EngineeringCollege of Chemistry and Chemical EngineeringHenan University Kaifeng 475004 China
| | - Qilong Bian
- Institute of Functional Organic Molecular EngineeringCollege of Chemistry and Chemical EngineeringHenan University Kaifeng 475004 China
| | - Yuanqing Xu
- Institute of Functional Organic Molecular EngineeringCollege of Chemistry and Chemical EngineeringHenan University Kaifeng 475004 China
| | - Baoying Liu
- Institute of Functional Organic Molecular EngineeringCollege of Chemistry and Chemical EngineeringHenan University Kaifeng 475004 China
| | - Yongwei Huang
- Institute of Functional Organic Molecular EngineeringCollege of Chemistry and Chemical EngineeringHenan University Kaifeng 475004 China
| | - Xiaobo Yang
- Institute of Catalysis for Energy and EnvironmentCollege ofChemistry and Chemical EngineeringShenyang Normal University Shenyang, Liaoning 110034 China
| | - Hao Xu
- Institute of Functional Organic Molecular EngineeringCollege of Chemistry and Chemical EngineeringHenan University Kaifeng 475004 China
| |
Collapse
|
31
|
Zhang Q, Du C, Zhao Q, Zhou C, Yang S. Visible light-driven the splitting of ethanol into hydrogen and acetaldehyde catalyzed by fibrous AgNPs/CdS hybrids at room temperature. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2019.05.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
32
|
Kruppa SV, Groß C, Gui X, Bäppler F, Kwasigroch B, Sun Y, Diller R, Klopper W, Niedner-Schatteburg G, Riehn C, Thiel WR. Photoinitiated Charge Transfer in a Triangular Silver(I) Hydride Complex and Its Oxophilicity. Chemistry 2019; 25:11269-11284. [PMID: 31188502 DOI: 10.1002/chem.201901981] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/08/2019] [Indexed: 12/28/2022]
Abstract
The photoexcitation of a triangular silver(I) hydride complex, [Ag3 (μ3 -H)(μ2 -dcpm)3 ](PF6 )2 ([P](PF6 )2 , dcpm=bis(dicyclohexylphosphino)methane), designed with "UV-silent" bis-phosphine ligands, provokes hydride-to-Ag3 single and double electron transfer. The nature of the electronic transitions has been authenticated by absorption and photodissociation spectroscopy in parallel with high-level quantum-chemical computations utilizing the GW method and Bethe-Salpeter equation (GW-BSE). Specific photofragments of mass-selected [P]2+ ions testify to charge transfer and competing pathways resulting from the unique [Ag3 (μ3 -H)]2+ scaffold. This structural motif of [P](PF6 )2 has been unequivocally verified by 1 H NMR spectroscopy in concert with DFT and X-ray diffraction structural analysis, which revealed short equilateral Ag-Ag distances (dAgAg =3.08 Å) within the range of argentophilic interactions. The reduced radical cation [P]. + exhibits strong oxophilicity, forming [P+O2 ].+ ,which is a model intermediate for silver oxidation catalysis.
Collapse
Affiliation(s)
- Sebastian V Kruppa
- Department of Chemistry, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger. Str. 52, 67663, Kaiserslautern, Germany
| | - Cedric Groß
- Department of Chemistry, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger. Str. 52, 67663, Kaiserslautern, Germany
| | - Xin Gui
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131, Karlsruhe, Germany
| | - Florian Bäppler
- Department of Physics, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger. Str. 46, 67663, Kaiserslautern, Germany
| | - Björn Kwasigroch
- Department of Chemistry, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger. Str. 52, 67663, Kaiserslautern, Germany
| | - Yu Sun
- Department of Chemistry, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger. Str. 52, 67663, Kaiserslautern, Germany
| | - Rolf Diller
- Department of Physics, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger. Str. 46, 67663, Kaiserslautern, Germany
| | - Wim Klopper
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131, Karlsruhe, Germany
| | - Gereon Niedner-Schatteburg
- Department of Chemistry, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger. Str. 52, 67663, Kaiserslautern, Germany.,Research Center OPTIMAS, Erwin-Schrödinger Str. 46, 67663, Kaiserslautern, Germany
| | - Christoph Riehn
- Department of Chemistry, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger. Str. 52, 67663, Kaiserslautern, Germany.,Research Center OPTIMAS, Erwin-Schrödinger Str. 46, 67663, Kaiserslautern, Germany
| | - Werner R Thiel
- Department of Chemistry, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger. Str. 52, 67663, Kaiserslautern, Germany
| |
Collapse
|
33
|
Abstract
A ligand- and base-free silver-catalyzed reduction of quinolines and electron-deficient aromatic N-heteroarenes in water has been described. Mechanistic studies revealed that the effective reducing species was Ag-H. This versatile catalytic protocol provided facile, environmentally friendly, and practical access to a variety of 1,2,3,4-tetrahydroquinoline derivatives at room temperature.
Collapse
Affiliation(s)
- Yan Wang
- School of Chemistry and Life Science , Changchun University of Technology , Changchun 130012 , China
| | - Baobiao Dong
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry , Northeast Normal University , Changchun 130024 , China
| | - Zikun Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry , Northeast Normal University , Changchun 130024 , China
| | - Xuefeng Cong
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry , Northeast Normal University , Changchun 130024 , China
| | - Xihe Bi
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry , Northeast Normal University , Changchun 130024 , China
| |
Collapse
|
34
|
Abstract
The first example organocatalyzed aerobic oxidation of aldehydes to carboxylic acids in both organic solvent and water under mild conditions is developed. As low as 5 mol % N-hydroxyphthalimide was used as the organocatalyst, and molecular O2 was used as the sole oxidant. No transition metals or hazardous oxidants or cocatalysts were involved. A wide range of carboxylic acids bearing diverse functional groups were obtained from aldehydes, even from alcohols, in high yields.
Collapse
Affiliation(s)
- Peng-Fei Dai
- Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Jian-Ping Qu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , Nanjing 211816 , China
| | - Yan-Biao Kang
- Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , China
| |
Collapse
|
35
|
Zeng M, Chen K, Tan J, Zhang J, Wei Y. A Supramolecular Catalyst Self-Assembled From Polyoxometalates and Cationic Pillar[5]arenes for the Room Temperature Oxidation of Aldehydes. Front Chem 2018; 6:457. [PMID: 30386765 PMCID: PMC6198131 DOI: 10.3389/fchem.2018.00457] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 09/13/2018] [Indexed: 11/17/2022] Open
Abstract
Oxidizing aldehydes to generate carboxylic acids is a crucial reaction in nature and in chemical industry. The aldehyde oxidation, an easily achieved process in liver cells, is inert toward autoxidation in industrial production and difficultly achieved under enzymatic condition (in water, at pH 7, at room temperature). Herein, we prepared a supramolecular catalyst which are nanospheres assembled in aqueous media by chromium centered Anderson polyoxometalates Na3[CrMo6O18(OH)3] (namely, CrMo6) and cationic pillar[5]arenes (namely, P5A) with 10 positive charges which can be used as the phase transfer catalysts (PTCs). This supramolecular catalyst was exploited on aldehydes oxidation under enzymatic condition with relatively good conversion. Through DLS monitoring, the diameters of nanospheres were variable while changing the charge ratios of the ionic complexes (P5A-CrMo6), and it is probably because of the closer charge ratios causing the more compact assemblies. Also, the nano-morphologies were monitored by TEM and SEM, and the nanostructures were characterized by zeta potential, the X-ray energy-dispersive spectroscopy (EDS), elemental analysis.
Collapse
Affiliation(s)
- Mengyan Zeng
- Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, China
| | - Kun Chen
- Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, China
| | - Junyan Tan
- Beijing National Lab for Molecular Sciences, Key Lab of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Jie Zhang
- Beijing National Lab for Molecular Sciences, Key Lab of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Yongge Wei
- Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, China
| |
Collapse
|
36
|
Knaus T, Tseliou V, Humphreys LD, Scrutton NS, Mutti FG. A biocatalytic method for the chemoselective aerobic oxidation of aldehydes to carboxylic acids. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2018; 20:3931-3943. [PMID: 33568964 PMCID: PMC7116709 DOI: 10.1039/c8gc01381k] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Herein, we present a study on the oxidation of aldehydes to carboxylic acids using three recombinant aldehyde dehydrogenases (ALDHs). The ALDHs were used in purified form with a nicotinamide oxidase (NOx), which recycles the catalytic NAD+ at the expense of dioxygen (air at atmospheric pressure). The reaction was studied also with lyophilised whole cell as well as resting cell biocatalysts for more convenient practical application. The optimised biocatalytic oxidation runs in phosphate buffer at pH 8.5 and at 40 °C. From a set of sixty-one aliphatic, aryl-aliphatic, benzylic, hetero-aromatic and bicyclic aldehydes, fifty were converted with elevated yield (up to >99%). The exceptions were a few ortho-substituted benzaldehydes, bicyclic heteroaromatic aldehydes and 2-phenylpropanal. In all cases, the expected carboxylic acid was shown to be the only product (>99% chemoselectivity). Other oxidisable functionalities within the same molecule (e.g. hydroxyl, alkene, and heteroaromatic nitrogen or sulphur atoms) remained untouched. The reaction was scaled for the oxidation of 5-(hydroxymethyl)furfural (2 g), a bio-based starting material, to afford 5-(hydroxymethyl)furoic acid in 61% isolated yield. The new biocatalytic method avoids the use of toxic or unsafe oxidants, strong acids or bases, or undesired solvents. It shows applicability across a wide range of substrates, and retains perfect chemoselectivity. Alternative oxidisable groups were not converted, and other classical side-reactions (e.g. halogenation of unsaturated functionalities, Dakin-type oxidation) did not occur. In comparison to other established enzymatic methods such as the use of oxidases (where the concomitant oxidation of alcohols and aldehydes is common), ALDHs offer greatly improved selectivity.
Collapse
Affiliation(s)
- Tanja Knaus
- Van’t Hoff Institute for Molecular Sciences, HIMS-Biocat, University of Amsterdam, Science Park 904, 1098 XH, The Netherlands
| | - Vasilis Tseliou
- Van’t Hoff Institute for Molecular Sciences, HIMS-Biocat, University of Amsterdam, Science Park 904, 1098 XH, The Netherlands
| | - Luke D. Humphreys
- GlaxoSmithKline Medicines Research Centre, Gunnel’s Wood Road, Stevenage, SG1 2NY, UK
| | - Nigel S. Scrutton
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Francesco G. Mutti
- Van’t Hoff Institute for Molecular Sciences, HIMS-Biocat, University of Amsterdam, Science Park 904, 1098 XH, The Netherlands
| |
Collapse
|
37
|
Li C, Wang SM, Qin HL. A Rh-Catalyzed Air and Moisture Tolerable Aldehyde (Ketone)-Directed Fluorosulfonylvinylation of Aryl C(sp2)–H Bonds. Org Lett 2018; 20:4699-4703. [DOI: 10.1021/acs.orglett.8b02037] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chen Li
- State Key Laboratory of Silicate Materials for Architectures; and School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, China
| | - Shi-Meng Wang
- State Key Laboratory of Silicate Materials for Architectures; and School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, China
| | - Hua-Li Qin
- State Key Laboratory of Silicate Materials for Architectures; and School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, China
| |
Collapse
|
38
|
Fang K, Li G, She Y. Metal-Free Aerobic Oxidation of Nitro-Substituted Alkylarenes to Carboxylic Acids or Benzyl Alcohols Promoted by NaOH. J Org Chem 2018; 83:8092-8103. [PMID: 29905478 DOI: 10.1021/acs.joc.8b00903] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Efficient and selective aerobic oxidation of nitro-substituted alkylarenes to functional compounds is a fundamental process that remains a challenge. Here, we report a metal-free, efficient, and practical approach for the direct and selective aerobic oxidation of nitro-substituted alkylarenes to carboxylic acids or benzyl alcohols. This sustainable system uses O2 as clean oxidant in a cheap and green NaOH/EtOH mixture. The position and type of substituent critically affect the products. In addition, this sustainable protocol enabled gram-scale preparation of carboxylic acid and benzyl alcohol derivatives with high chemoselectivities. Finally, the reactions can be conducted in a pressure reactor, which can conserve oxygen and prevent solvent loss. The approach was conducive to environmental protection and potential industrial application.
Collapse
Affiliation(s)
- Kun Fang
- College of Chemical Engineering , Zhejiang University of Technology , Hangzhou , Zhejiang 310014 , People's Republic of China
| | - Guijie Li
- College of Chemical Engineering , Zhejiang University of Technology , Hangzhou , Zhejiang 310014 , People's Republic of China
| | - Yuanbin She
- College of Chemical Engineering , Zhejiang University of Technology , Hangzhou , Zhejiang 310014 , People's Republic of China
| |
Collapse
|
39
|
Yu H, Ru S, Zhai Y, Dai G, Han S, Wei Y. An Efficient Aerobic Oxidation Protocol of Aldehydes to Carboxylic Acids in Water Catalyzed by an Inorganic-Ligand-Supported Copper Catalyst. ChemCatChem 2018. [DOI: 10.1002/cctc.201701599] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Han Yu
- School of Chemical and Environmental Engineering; Shanghai Institute of Technology; 100 Haiquan Road Shanghai 201418 P.R. China
- Key Lab of Organic Optoelectronics & Molecular Engineering of the Ministry of Education; Department of Chemistry; Tsinghua University; Beijing 100084 P.R. China
- State Key Laboratory of Natural and Biomimetic Drugs; Peking University; Beijing 100191 P.R. China
| | - Shi Ru
- School of Chemical and Environmental Engineering; Shanghai Institute of Technology; 100 Haiquan Road Shanghai 201418 P.R. China
| | - Yongyan Zhai
- School of Chemical and Environmental Engineering; Shanghai Institute of Technology; 100 Haiquan Road Shanghai 201418 P.R. China
| | - Guoyong Dai
- School of Chemical and Environmental Engineering; Shanghai Institute of Technology; 100 Haiquan Road Shanghai 201418 P.R. China
| | - Sheng Han
- School of Chemical and Environmental Engineering; Shanghai Institute of Technology; 100 Haiquan Road Shanghai 201418 P.R. China
| | - Yongge Wei
- Key Lab of Organic Optoelectronics & Molecular Engineering of the Ministry of Education; Department of Chemistry; Tsinghua University; Beijing 100084 P.R. China
- State Key Laboratory of Natural and Biomimetic Drugs; Peking University; Beijing 100191 P.R. China
| |
Collapse
|
40
|
Zhou ZZ, Liu M, Lv L, Li CJ. Silver(I)-Catalyzed Widely Applicable Aerobic 1,2-Diol Oxidative Cleavage. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201711531] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Zhong-zhen Zhou
- Department of Chemistry and FRQNT Center for Green Chemistry and Catalysis; McGill University; Montreal QC H3A 0B8 Canada
- School of Pharmaceutical Sciences; Southern Medical University; No.1023 South Shatai Road Guangzhou 510515 China
| | - Mingxin Liu
- Department of Chemistry and FRQNT Center for Green Chemistry and Catalysis; McGill University; Montreal QC H3A 0B8 Canada
| | - Leiyang Lv
- Department of Chemistry and FRQNT Center for Green Chemistry and Catalysis; McGill University; Montreal QC H3A 0B8 Canada
- Department State Key Laboratory of Applied Organic Chemistry; Lanzhou University; 222 Tianshui Road Lanzhou Gansu 730000 China
| | - Chao-Jun Li
- Department of Chemistry and FRQNT Center for Green Chemistry and Catalysis; McGill University; Montreal QC H3A 0B8 Canada
| |
Collapse
|
41
|
Zhou ZZ, Liu M, Lv L, Li CJ. Silver(I)-Catalyzed Widely Applicable Aerobic 1,2-Diol Oxidative Cleavage. Angew Chem Int Ed Engl 2018; 57:2616-2620. [DOI: 10.1002/anie.201711531] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Zhong-zhen Zhou
- Department of Chemistry and FRQNT Center for Green Chemistry and Catalysis; McGill University; Montreal QC H3A 0B8 Canada
- School of Pharmaceutical Sciences; Southern Medical University; No.1023 South Shatai Road Guangzhou 510515 China
| | - Mingxin Liu
- Department of Chemistry and FRQNT Center for Green Chemistry and Catalysis; McGill University; Montreal QC H3A 0B8 Canada
| | - Leiyang Lv
- Department of Chemistry and FRQNT Center for Green Chemistry and Catalysis; McGill University; Montreal QC H3A 0B8 Canada
- Department State Key Laboratory of Applied Organic Chemistry; Lanzhou University; 222 Tianshui Road Lanzhou Gansu 730000 China
| | - Chao-Jun Li
- Department of Chemistry and FRQNT Center for Green Chemistry and Catalysis; McGill University; Montreal QC H3A 0B8 Canada
| |
Collapse
|
42
|
Jiang X, Zhai Y, Chen J, Han Y, Yang Z, Ma S. Iron-Catalyzed Aerobic Oxidation of Aldehydes: Single Component Catalyst and Mechanistic Studies. CHINESE J CHEM 2017. [DOI: 10.1002/cjoc.201700576] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xingguo Jiang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences, 345 Lingling Lu; Shanghai 200032 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Yizhan Zhai
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences, 345 Lingling Lu; Shanghai 200032 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Junyu Chen
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences, 345 Lingling Lu; Shanghai 200032 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Yulin Han
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences, 345 Lingling Lu; Shanghai 200032 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Zheng Yang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences, 345 Lingling Lu; Shanghai 200032 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Shengming Ma
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences, 345 Lingling Lu; Shanghai 200032 China
- Department of Chemistry; Fudan University, 220 Handan Lu; Shanghai 200433 China
| |
Collapse
|
43
|
Yang Z, Luo R, Zhu Z, Yang X, Tang W. Harnessing the Reactivity of Iridium Hydrides by Air: Iridium-Catalyzed Oxidation of Aldehydes to Acids in Water. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00634] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhanhui Yang
- School
of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, Wisconsin 53705, United States
- Faculty
of Science, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Renshi Luo
- School
of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, Wisconsin 53705, United States
- School
of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi Province, PR China
| | - Zhongpeng Zhu
- School
of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Xuerong Yang
- School
of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Weiping Tang
- School
of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, Wisconsin 53705, United States
- Department
of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| |
Collapse
|
44
|
Yu H, Ru S, Dai G, Zhai Y, Lin H, Han S, Wei Y. An Efficient Iron(III)-Catalyzed Aerobic Oxidation of Aldehydes in Water for the Green Preparation of Carboxylic Acids. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201612225] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Han Yu
- School of Chemical and Environmental Engineering; Shanghai Institute of Technology; 100 Haiquan Road Shanghai 201418 P.R. China
- Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education; Department of Chemistry; Tsinghua University; Beijing 100084 P.R. China
| | - Shi Ru
- School of Chemical and Environmental Engineering; Shanghai Institute of Technology; 100 Haiquan Road Shanghai 201418 P.R. China
| | - Guoyong Dai
- School of Chemical and Environmental Engineering; Shanghai Institute of Technology; 100 Haiquan Road Shanghai 201418 P.R. China
| | - Yongyan Zhai
- School of Chemical and Environmental Engineering; Shanghai Institute of Technology; 100 Haiquan Road Shanghai 201418 P.R. China
| | - Hualin Lin
- School of Chemical and Environmental Engineering; Shanghai Institute of Technology; 100 Haiquan Road Shanghai 201418 P.R. China
| | - Sheng Han
- School of Chemical and Environmental Engineering; Shanghai Institute of Technology; 100 Haiquan Road Shanghai 201418 P.R. China
| | - Yongge Wei
- Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education; Department of Chemistry; Tsinghua University; Beijing 100084 P.R. China
- State Key Laboratory of Natural and Biomimetic Drugs; Peking University; Beijing 100191 P.R. China
| |
Collapse
|
45
|
Yu H, Ru S, Dai G, Zhai Y, Lin H, Han S, Wei Y. An Efficient Iron(III)-Catalyzed Aerobic Oxidation of Aldehydes in Water for the Green Preparation of Carboxylic Acids. Angew Chem Int Ed Engl 2017; 56:3867-3871. [DOI: 10.1002/anie.201612225] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Han Yu
- School of Chemical and Environmental Engineering; Shanghai Institute of Technology; 100 Haiquan Road Shanghai 201418 P.R. China
- Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education; Department of Chemistry; Tsinghua University; Beijing 100084 P.R. China
| | - Shi Ru
- School of Chemical and Environmental Engineering; Shanghai Institute of Technology; 100 Haiquan Road Shanghai 201418 P.R. China
| | - Guoyong Dai
- School of Chemical and Environmental Engineering; Shanghai Institute of Technology; 100 Haiquan Road Shanghai 201418 P.R. China
| | - Yongyan Zhai
- School of Chemical and Environmental Engineering; Shanghai Institute of Technology; 100 Haiquan Road Shanghai 201418 P.R. China
| | - Hualin Lin
- School of Chemical and Environmental Engineering; Shanghai Institute of Technology; 100 Haiquan Road Shanghai 201418 P.R. China
| | - Sheng Han
- School of Chemical and Environmental Engineering; Shanghai Institute of Technology; 100 Haiquan Road Shanghai 201418 P.R. China
| | - Yongge Wei
- Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education; Department of Chemistry; Tsinghua University; Beijing 100084 P.R. China
- State Key Laboratory of Natural and Biomimetic Drugs; Peking University; Beijing 100191 P.R. China
| |
Collapse
|
46
|
Liu H, Wang M, Li H, Luo N, Xu S, Wang F. New protocol of copper-catalyzed oxidative C(CO) C bond cleavage of aryl and aliphatic ketones to organic acids using O2 as the terminal oxidant. J Catal 2017. [DOI: 10.1016/j.jcat.2016.12.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Fisher E, Kenisgberg L, Carreira M, Fernández-Gallardo J, Baldwin R, Contel M. Water-compatible gold and silver nanoparticles as catalysts for the oxidation of alkenes. Polyhedron 2016. [DOI: 10.1016/j.poly.2016.06.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
48
|
Adiraju VAK, Ferrence GM, Lash TD. Regioselective oxidation and metalation of meso-unsubstituted azuliporphyrins. Org Biomol Chem 2016; 14:10523-10533. [PMID: 27775128 DOI: 10.1039/c6ob02052f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Azuliporphyrins are intriguing porphyrin analogues that incorporate an azulene ring in place of a pyrrolic unit. This system undergoes regioselective oxidation reactions and favors the formation of stable organometallic derivatives. Reaction of meso-unsubstituted azuliporphyrins with Co2(CO)8 or CoCl2·6H2O gave 21-oxyazuliporphyrins, while Cu(OAc)2 produced the corresponding copper(ii) complexes. Treatment of an oxyazuliporphyrin with Ni(OAc)2 or Pd(OAc)2 afforded analogous nickel(ii) and palladium(ii) derivatives. Silver(i) acetate in pyridine reacted with azuliporphyrins to give moderate yields of silver(iii) benzocarbaporphyrins, and the prevalence of structures with a formyl moiety at the sterically crowded 21-position suggested that the ring contraction reactions were triggered in part by intramolecular attack from an axial peroxide ligand. Related thiaazuliporphyrins reacted with palladium(ii) acetate to give palladium(ii) benzothiacarbaporphyrins but this chemistry did not give rise to structures with 21-formyl groups, suggesting that the ring contraction reactions occurred by a different mechanistic pathway. These results demonstrate the existence of a rich tapestry of oxidation and metalation reactions for azuliporphyrin systems.
Collapse
Affiliation(s)
- Venkata A K Adiraju
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, USA.
| | - Gregory M Ferrence
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, USA.
| | - Timothy D Lash
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, USA.
| |
Collapse
|
49
|
Bauman NP, Hansen JA, Piecuch P. Coupled-cluster interpretation of the photoelectron spectrum of Ag3−. J Chem Phys 2016; 145:084306. [DOI: 10.1063/1.4961455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Nicholas P. Bauman
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | - Jared A. Hansen
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | - Piotr Piecuch
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| |
Collapse
|
50
|
Liu M, Li CJ. Catalytic Fehling's Reaction: An Efficient Aerobic Oxidation of Aldehyde Catalyzed by Copper in Water. Angew Chem Int Ed Engl 2016; 55:10806-10. [DOI: 10.1002/anie.201604847] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 06/22/2016] [Indexed: 02/04/2023]
Affiliation(s)
- Mingxin Liu
- Department of Chemistry and FRQNT Center for Green Chemistry and Catalysis; McGill University; Montreal Quebec H3A 0B8 Canada
| | - Chao-Jun Li
- Department of Chemistry and FRQNT Center for Green Chemistry and Catalysis; McGill University; Montreal Quebec H3A 0B8 Canada
| |
Collapse
|