1
|
Yang D, Chiang CH, Wititsuwannakul T, Brooks CL, Zimmerman PM, Narayan ARH. Engineering the Reaction Pathway of a Non-heme Iron Oxygenase Using Ancestral Sequence Reconstruction. J Am Chem Soc 2024; 146:34352-34363. [PMID: 39642058 DOI: 10.1021/jacs.4c08420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2024]
Abstract
Non-heme iron (FeII), α-ketoglutarate (α-KG)-dependent oxygenases are a family of enzymes that catalyze an array of transformations that cascade forward after the formation of radical intermediates. Achieving control over the reaction pathway is highly valuable and a necessary step toward broadening the applications of these biocatalysts. Numerous approaches have been used to engineer the reaction pathway of FeII/α-KG-dependent enzymes, including site-directed mutagenesis, DNA shuffling, and site-saturation mutagenesis, among others. Herein, we showcase a novel ancestral sequence reconstruction (ASR)-guided strategy in which evolutionary information is used to pinpoint the residues critical for controlling different reaction pathways. Following this, a combinatorial site-directed mutagenesis approach was used to quickly evaluate the importance of each residue. These results were validated using a DNA shuffling strategy and through quantum mechanical/molecular mechanical (QM/MM) simulations. Using this approach, we identified a set of active site residues together with a key hydrogen bond between the substrate and an active site residue, which are crucial for dictating the dominant reaction pathway. Ultimately, we successfully converted both extant and ancestral enzymes that perform benzylic hydroxylation into variants that can catalyze an oxidative ring-expansion reaction, showcasing the potential of utilizing ASR to accelerate the reaction pathway engineering within enzyme families that share common structural and mechanistic features.
Collapse
Affiliation(s)
- Di Yang
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Life Science Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Chang-Hwa Chiang
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Life Science Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | - Charles L Brooks
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Life Science Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Enhanced Program in Biophysics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Paul M Zimmerman
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Alison R H Narayan
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Life Science Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
2
|
Barkman TJ. Applications of ancestral sequence reconstruction for understanding the evolution of plant specialized metabolism. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230348. [PMID: 39343033 PMCID: PMC11439504 DOI: 10.1098/rstb.2023.0348] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 10/01/2024] Open
Abstract
Studies of enzymes in modern-day plants have documented the diversity of metabolic activities retained by species today but only provide limited insight into how those properties evolved. Ancestral sequence reconstruction (ASR) is an approach that provides statistical estimates of ancient plant enzyme sequences which can then be resurrected to test hypotheses about the evolution of catalytic activities and pathway assembly. Here, I review the insights that have been obtained using ASR to study plant metabolism and highlight important methodological aspects. Overall, studies of resurrected plant enzymes show that (i) exaptation is widespread such that even low or undetectable levels of ancestral activity with a substrate can later become the apparent primary activity of descendant enzymes, (ii) intramolecular epistasis may or may not limit evolutionary paths towards catalytic or substrate preference switches, and (iii) ancient pathway flux often differs from modern-day metabolic networks. These and other insights gained from ASR would not have been possible using only modern-day sequences. Future ASR studies characterizing entire ancestral metabolic networks as well as those that link ancient structures with enzymatic properties should continue to provide novel insights into how the chemical diversity of plants evolved. This article is part of the theme issue 'The evolution of plant metabolism'.
Collapse
Affiliation(s)
- Todd J. Barkman
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI49008, USA
| |
Collapse
|
3
|
Vila JA. The origin of mutational epistasis. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2024; 53:473-480. [PMID: 39443382 DOI: 10.1007/s00249-024-01725-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/03/2024] [Accepted: 10/06/2024] [Indexed: 10/25/2024]
Abstract
The interconnected processes of protein folding, mutations, epistasis, and evolution have all been the subject of extensive analysis throughout the years due to their significance for structural and evolutionary biology. The origin (molecular basis) of epistasis-the non-additive interactions between mutations-is still, nonetheless, unknown. The existence of a new perspective on protein folding, a problem that needs to be conceived as an 'analytic whole', will enable us to shed light on the origin of mutational epistasis at the simplest level-within proteins-while also uncovering the reasons why the genetic background in which they occur, a key component of molecular evolution, could foster changes in epistasis effects. Additionally, because mutations are the source of epistasis, more research is needed to determine the impact of post-translational modifications, which can potentially increase the proteome's diversity by several orders of magnitude, on mutational epistasis and protein evolvability. Finally, a protein evolution thermodynamic-based analysis that does not consider specific mutational steps or epistasis effects will be briefly discussed. Our study explores the complex processes behind the evolution of proteins upon mutations, clearing up some previously unresolved issues, and providing direction for further research.
Collapse
Affiliation(s)
- Jorge A Vila
- IMASL-CONICET, Ejército de Los Andes 950, 5700, San Luis, Argentina.
| |
Collapse
|
4
|
Crandall JG, Zhou X, Rokas A, Hittinger CT. Specialization Restricts the Evolutionary Paths Available to Yeast Sugar Transporters. Mol Biol Evol 2024; 41:msae228. [PMID: 39492761 PMCID: PMC11571961 DOI: 10.1093/molbev/msae228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/22/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024] Open
Abstract
Functional innovation at the protein level is a key source of evolutionary novelties. The constraints on functional innovations are likely to be highly specific in different proteins, which are shaped by their unique histories and the extent of global epistasis that arises from their structures and biochemistries. These contextual nuances in the sequence-function relationship have implications both for a basic understanding of the evolutionary process and for engineering proteins with desirable properties. Here, we have investigated the molecular basis of novel function in a model member of an ancient, conserved, and biotechnologically relevant protein family. These Major Facilitator Superfamily sugar porters are a functionally diverse group of proteins that are thought to be highly plastic and evolvable. By dissecting a recent evolutionary innovation in an α-glucoside transporter from the yeast Saccharomyces eubayanus, we show that the ability to transport a novel substrate requires high-order interactions between many protein regions and numerous specific residues proximal to the transport channel. To reconcile the functional diversity of this family with the constrained evolution of this model protein, we generated new, state-of-the-art genome annotations for 332 Saccharomycotina yeast species spanning ∼400 My of evolution. By integrating phylogenetic and phenotypic analyses across these species, we show that the model yeast α-glucoside transporters likely evolved from a multifunctional ancestor and became subfunctionalized. The accumulation of additive and epistatic substitutions likely entrenched this subfunction, which made the simultaneous acquisition of multiple interacting substitutions the only reasonably accessible path to novelty.
Collapse
Affiliation(s)
- Johnathan G Crandall
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Center for Genomic Science Innovation, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Xiaofan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou 510642, China
- Department of Biological Sciences and Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Antonis Rokas
- Department of Biological Sciences and Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Chris Todd Hittinger
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Center for Genomic Science Innovation, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53726, USA
| |
Collapse
|
5
|
Yehorova D, Crean RM, Kasson PM, Kamerlin SCL. Friends and relatives: insight into conformational regulation from orthologues and evolutionary lineages using KIF and KIN. Faraday Discuss 2024; 252:341-353. [PMID: 38842247 PMCID: PMC11389856 DOI: 10.1039/d4fd00018h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Noncovalent interaction networks provide a powerful means to represent and analyze protein structure. Such networks can represent both static structures and dynamic conformational ensembles. We have recently developed two tools for analyzing such interaction networks and generating hypotheses for protein engineering. Here, we apply these tools to the conformational regulation of substrate specificity in class A β-lactamases, particularly the evolutionary development from generalist to specialist catalytic function and how that can be recapitulated or reversed by protein engineering. These tools, KIF and KIN, generate a set of prioritized residues and interactions as targets for experimental protein engineering.
Collapse
Affiliation(s)
- Dariia Yehorova
- School of Chemistry and Biochemistry, Georgia Institute of Technology, USA.
| | - Rory M Crean
- Department of Chemistry-BMC, Uppsala University, Sweden
| | - Peter M Kasson
- Department of Biomedical Engineering, University of Virginia, USA
- Department of Cell and Molecular Biology, Uppsala University, Sweden
- Departments of Chemistry & Biochemistry and Biomedical Engineering, Georgia Institute of Technology, USA.
| | | |
Collapse
|
6
|
Lipsh-Sokolik R, Fleishman SJ. Addressing epistasis in the design of protein function. Proc Natl Acad Sci U S A 2024; 121:e2314999121. [PMID: 39133844 PMCID: PMC11348311 DOI: 10.1073/pnas.2314999121] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024] Open
Abstract
Mutations in protein active sites can dramatically improve function. The active site, however, is densely packed and extremely sensitive to mutations. Therefore, some mutations may only be tolerated in combination with others in a phenomenon known as epistasis. Epistasis reduces the likelihood of obtaining improved functional variants and dramatically slows natural and lab evolutionary processes. Research has shed light on the molecular origins of epistasis and its role in shaping evolutionary trajectories and outcomes. In addition, sequence- and AI-based strategies that infer epistatic relationships from mutational patterns in natural or experimental evolution data have been used to design functional protein variants. In recent years, combinations of such approaches and atomistic design calculations have successfully predicted highly functional combinatorial mutations in active sites. These were used to design thousands of functional active-site variants, demonstrating that, while our understanding of epistasis remains incomplete, some of the determinants that are critical for accurate design are now sufficiently understood. We conclude that the space of active-site variants that has been explored by evolution may be expanded dramatically to enhance natural activities or discover new ones. Furthermore, design opens the way to systematically exploring sequence and structure space and mutational impacts on function, deepening our understanding and control over protein activity.
Collapse
Affiliation(s)
- Rosalie Lipsh-Sokolik
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sarel J Fleishman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
7
|
Crandall JG, Zhou X, Rokas A, Hittinger CT. Specialization restricts the evolutionary paths available to yeast sugar transporters. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.22.604696. [PMID: 39091816 PMCID: PMC11291069 DOI: 10.1101/2024.07.22.604696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Functional innovation at the protein level is a key source of evolutionary novelties. The constraints on functional innovations are likely to be highly specific in different proteins, which are shaped by their unique histories and the extent of global epistasis that arises from their structures and biochemistries. These contextual nuances in the sequence-function relationship have implications both for a basic understanding of the evolutionary process and for engineering proteins with desirable properties. Here, we have investigated the molecular basis of novel function in a model member of an ancient, conserved, and biotechnologically relevant protein family. These Major Facilitator Superfamily sugar porters are a functionally diverse group of proteins that are thought to be highly plastic and evolvable. By dissecting a recent evolutionary innovation in an α-glucoside transporter from the yeast Saccharomyces eubayanus, we show that the ability to transport a novel substrate requires high-order interactions between many protein regions and numerous specific residues proximal to the transport channel. To reconcile the functional diversity of this family with the constrained evolution of this model protein, we generated new, state-of-the-art genome annotations for 332 Saccharomycotina yeast species spanning approximately 400 million years of evolution. By integrating phylogenetic and phenotypic analyses across these species, we show that the model yeast α-glucoside transporters likely evolved from a multifunctional ancestor and became subfunctionalized. The accumulation of additive and epistatic substitutions likely entrenched this subfunction, which made the simultaneous acquisition of multiple interacting substitutions the only reasonably accessible path to novelty.
Collapse
Affiliation(s)
- Johnathan G. Crandall
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Center for Genomic Science Innovation, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Xiaofan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou 510642, China
- Department of Biological Sciences and Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Antonis Rokas
- Department of Biological Sciences and Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Chris Todd Hittinger
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Center for Genomic Science Innovation, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53726, USA
| |
Collapse
|
8
|
Wiseglass G, Rubinstein R. Following the Evolutionary Paths of Dscam1 Proteins toward Highly Specific Homophilic Interactions. Mol Biol Evol 2024; 41:msae141. [PMID: 38989909 PMCID: PMC11272049 DOI: 10.1093/molbev/msae141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/05/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024] Open
Abstract
Many adhesion proteins, evolutionarily related through gene duplication, exhibit distinct and precise interaction preferences and affinities crucial for cell patterning. Yet, the evolutionary paths by which these proteins acquire new specificities and prevent cross-interactions within their family members remain unknown. To bridge this gap, this study focuses on Drosophila Down syndrome cell adhesion molecule-1 (Dscam1) proteins, which are cell adhesion proteins that have undergone extensive gene duplication. Dscam1 evolved under strong selective pressure to achieve strict homophilic recognition, essential for neuronal self-avoidance and patterning. Through a combination of phylogenetic analyses, ancestral sequence reconstruction, and cell aggregation assays, we studied the evolutionary trajectory of Dscam1 exon 4 across various insect lineages. We demonstrated that recent Dscam1 duplications in the mosquito lineage bind with strict homophilic specificities without any cross-interactions. We found that ancestral and intermediate Dscam1 isoforms maintained their homophilic binding capabilities, with some intermediate isoforms also engaging in promiscuous interactions with other paralogs. Our results highlight the robust selective pressure for homophilic specificity integral to the Dscam1 function within the process of neuronal self-avoidance. Importantly, our study suggests that the path to achieving such selective specificity does not introduce disruptive mutations that prevent self-binding but includes evolutionary intermediates that demonstrate promiscuous heterophilic interactions. Overall, these results offer insights into evolutionary strategies that underlie adhesion protein interaction specificities.
Collapse
Affiliation(s)
- Gil Wiseglass
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Rotem Rubinstein
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
9
|
Metzger BPH, Park Y, Starr TN, Thornton JW. Epistasis facilitates functional evolution in an ancient transcription factor. eLife 2024; 12:RP88737. [PMID: 38767330 PMCID: PMC11105156 DOI: 10.7554/elife.88737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
A protein's genetic architecture - the set of causal rules by which its sequence produces its functions - also determines its possible evolutionary trajectories. Prior research has proposed that the genetic architecture of proteins is very complex, with pervasive epistatic interactions that constrain evolution and make function difficult to predict from sequence. Most of this work has analyzed only the direct paths between two proteins of interest - excluding the vast majority of possible genotypes and evolutionary trajectories - and has considered only a single protein function, leaving unaddressed the genetic architecture of functional specificity and its impact on the evolution of new functions. Here, we develop a new method based on ordinal logistic regression to directly characterize the global genetic determinants of multiple protein functions from 20-state combinatorial deep mutational scanning (DMS) experiments. We use it to dissect the genetic architecture and evolution of a transcription factor's specificity for DNA, using data from a combinatorial DMS of an ancient steroid hormone receptor's capacity to activate transcription from two biologically relevant DNA elements. We show that the genetic architecture of DNA recognition consists of a dense set of main and pairwise effects that involve virtually every possible amino acid state in the protein-DNA interface, but higher-order epistasis plays only a tiny role. Pairwise interactions enlarge the set of functional sequences and are the primary determinants of specificity for different DNA elements. They also massively expand the number of opportunities for single-residue mutations to switch specificity from one DNA target to another. By bringing variants with different functions close together in sequence space, pairwise epistasis therefore facilitates rather than constrains the evolution of new functions.
Collapse
Affiliation(s)
- Brian PH Metzger
- Department of Ecology and Evolution, University of ChicagoChicagoUnited States
| | - Yeonwoo Park
- Program in Genetics, Genomics, and Systems Biology, University of ChicagoChicagoUnited States
| | - Tyler N Starr
- Department of Biochemistry and Molecular Biophysics, University of ChicagoChicagoUnited States
| | - Joseph W Thornton
- Department of Ecology and Evolution, University of ChicagoChicagoUnited States
- Department of Human Genetics, University of ChicagoChicagoUnited States
| |
Collapse
|
10
|
Sennett MA, Theobald DL. Extant Sequence Reconstruction: The Accuracy of Ancestral Sequence Reconstructions Evaluated by Extant Sequence Cross-Validation. J Mol Evol 2024; 92:181-206. [PMID: 38502220 PMCID: PMC10978691 DOI: 10.1007/s00239-024-10162-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 02/20/2024] [Indexed: 03/21/2024]
Abstract
Ancestral sequence reconstruction (ASR) is a phylogenetic method widely used to analyze the properties of ancient biomolecules and to elucidate mechanisms of molecular evolution. Despite its increasingly widespread application, the accuracy of ASR is currently unknown, as it is generally impossible to compare resurrected proteins to the true ancestors. Which evolutionary models are best for ASR? How accurate are the resulting inferences? Here we answer these questions using a cross-validation method to reconstruct each extant sequence in an alignment with ASR methodology, a method we term "extant sequence reconstruction" (ESR). We thus can evaluate the accuracy of ASR methodology by comparing ESR reconstructions to the corresponding known true sequences. We find that a common measure of the quality of a reconstructed sequence, the average probability, is indeed a good estimate of the fraction of correct amino acids when the evolutionary model is accurate or overparameterized. However, the average probability is a poor measure for comparing reconstructions from different models, because, surprisingly, a more accurate phylogenetic model often results in reconstructions with lower probability. While better (more predictive) models may produce reconstructions with lower sequence identity to the true sequences, better models nevertheless produce reconstructions that are more biophysically similar to true ancestors. In addition, we find that a large fraction of sequences sampled from the reconstruction distribution may have fewer errors than the single most probable (SMP) sequence reconstruction, despite the fact that the SMP has the lowest expected error of all possible sequences. Our results emphasize the importance of model selection for ASR and the usefulness of sampling sequence reconstructions for analyzing ancestral protein properties. ESR is a powerful method for validating the evolutionary models used for ASR and can be applied in practice to any phylogenetic analysis of real biological sequences. Most significantly, ESR uses ASR methodology to provide a general method by which the biophysical properties of resurrected proteins can be compared to the properties of the true protein.
Collapse
Affiliation(s)
- Michael A Sennett
- Department of Biochemistry, Brandeis University, Waltham, MA, 02453, USA
| | - Douglas L Theobald
- Department of Biochemistry, Brandeis University, Waltham, MA, 02453, USA.
| |
Collapse
|
11
|
Jabeen M, Shoukat S, Shireen H, Bao Y, Khan A, Abbasi AA. Unraveling the genetic variations underlying virulence disparities among SARS-CoV-2 strains across global regions: insights from Pakistan. Virol J 2024; 21:55. [PMID: 38449001 PMCID: PMC10916261 DOI: 10.1186/s12985-024-02328-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 02/26/2024] [Indexed: 03/08/2024] Open
Abstract
Over the course of the COVID-19 pandemic, several SARS-CoV-2 variants have emerged that may exhibit different etiological effects such as enhanced transmissibility and infectivity. However, genetic variations that reduce virulence and deteriorate viral fitness have not yet been thoroughly investigated. The present study sought to evaluate the effects of viral genetic makeup on COVID-19 epidemiology in Pakistan, where the infectivity and mortality rate was comparatively lower than other countries during the first pandemic wave. For this purpose, we focused on the comparative analyses of 7096 amino-acid long polyprotein pp1ab. Comparative sequence analysis of 203 SARS-CoV-2 genomes, sampled from Pakistan during the first wave of the pandemic revealed 179 amino acid substitutions in pp1ab. Within this set, 38 substitutions were identified within the Nsp3 region of the pp1ab polyprotein. Structural and biophysical analysis of proteins revealed that amino acid variations within Nsp3's macrodomains induced conformational changes and modified protein-ligand interactions, consequently diminishing the virulence and fitness of SARS-CoV-2. Additionally, the epistatic effects resulting from evolutionary substitutions in SARS-CoV-2 proteins may have unnoticed implications for reducing disease burden. In light of these findings, further characterization of such deleterious SARS-CoV-2 mutations will not only aid in identifying potential therapeutic targets but will also provide a roadmap for maintaining vigilance against the genetic variability of diverse SARS-CoV-2 strains circulating globally. Furthermore, these insights empower us to more effectively manage and respond to potential viral-based pandemic outbreaks of a similar nature in the future.
Collapse
Affiliation(s)
- Momina Jabeen
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Shifa Shoukat
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Huma Shireen
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Yiming Bao
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100101, Beijing, China
| | - Abbas Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China
- School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia
| | - Amir Ali Abbasi
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad, Pakistan.
| |
Collapse
|
12
|
Heckmeier PJ, Ruf J, Rochereau C, Hamm P. A billion years of evolution manifest in nanosecond protein dynamics. Proc Natl Acad Sci U S A 2024; 121:e2318743121. [PMID: 38412135 DOI: 10.1073/pnas.2318743121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/24/2024] [Indexed: 02/29/2024] Open
Abstract
Protein dynamics form a critical bridge between protein structure and function, yet the impact of evolution on ultrafast processes inside proteins remains enigmatic. This study delves deep into nanosecond-scale protein dynamics of a structurally and functionally conserved protein across species separated by almost a billion years, investigating ten homologs in complex with their ligand. By inducing a photo-triggered destabilization of the ligand inside the binding pocket, we resolved distinct kinetic footprints for each homolog via transient infrared spectroscopy. Strikingly, we found a cascade of rearrangements within the protein complex which manifest in time points of increased dynamic activity conserved over hundreds of millions of years within a narrow window. Among these processes, one displays a subtle temporal shift correlating with evolutionary divergence, suggesting reduced selective pressure in the past. Our study not only uncovers the impact of evolution on molecular processes in a specific case, but has also the potential to initiate a field of scientific inquiry within molecular paleontology, where species are compared and classified based on the rapid pace of protein dynamic processes; a field which connects the shortest conceivable time scale in living matter (10[Formula: see text] s) with the largest ones (10[Formula: see text] s).
Collapse
Affiliation(s)
| | - Jeannette Ruf
- Department of Chemistry, University of Zurich, Zurich 8057, Switzerland
| | | | - Peter Hamm
- Department of Chemistry, University of Zurich, Zurich 8057, Switzerland
| |
Collapse
|
13
|
Fröhlich C, Bunzel HA, Buda K, Mulholland AJ, van der Kamp MW, Johnsen PJ, Leiros HKS, Tokuriki N. Epistasis arises from shifting the rate-limiting step during enzyme evolution of a β-lactamase. Nat Catal 2024; 7:499-509. [PMID: 38828429 PMCID: PMC11136654 DOI: 10.1038/s41929-024-01117-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/25/2024] [Indexed: 06/05/2024]
Abstract
Epistasis, the non-additive effect of mutations, can provide combinatorial improvements to enzyme activity that substantially exceed the gains from individual mutations. Yet the molecular mechanisms of epistasis remain elusive, undermining our ability to predict pathogen evolution and engineer biocatalysts. Here we reveal how directed evolution of a β-lactamase yielded highly epistatic activity enhancements. Evolution selected four mutations that increase antibiotic resistance 40-fold, despite their marginal individual effects (≤2-fold). Synergistic improvements coincided with the introduction of super-stochiometric burst kinetics, indicating that epistasis is rooted in the enzyme's conformational dynamics. Our analysis reveals that epistasis stemmed from distinct effects of each mutation on the catalytic cycle. The initial mutation increased protein flexibility and accelerated substrate binding, which is rate-limiting in the wild-type enzyme. Subsequent mutations predominantly boosted the chemical steps by fine-tuning substrate interactions. Our work identifies an overlooked cause for epistasis: changing the rate-limiting step can result in substantial synergy that boosts enzyme activity.
Collapse
Affiliation(s)
| | - H. Adrian Bunzel
- Department of Biosystem Science and Engineering, ETH Zurich, Basel, Switzerland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, UK
- School of Biochemistry, University of Bristol, Bristol, UK
| | - Karol Buda
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia Canada
| | - Adrian J. Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, UK
| | - Marc W. van der Kamp
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, UK
- School of Biochemistry, University of Bristol, Bristol, UK
| | - Pål J. Johnsen
- Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway
| | | | - Nobuhiko Tokuriki
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia Canada
| |
Collapse
|
14
|
Catania EM, Dubs NM, Soumen S, Barkman TJ. The Mutational Road not Taken: Using Ancestral Sequence Resurrection to Evaluate the Evolution of Plant Enzyme Substrate Preferences. Genome Biol Evol 2024; 16:evae016. [PMID: 38290535 PMCID: PMC10853004 DOI: 10.1093/gbe/evae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 01/19/2024] [Indexed: 02/01/2024] Open
Abstract
We investigated the flowering plant salicylic acid methyl transferase (SAMT) enzyme lineage to understand the evolution of substrate preference change. Previous studies indicated that a single amino acid replacement to the SAMT active site (H150M) was sufficient to change ancestral enzyme substrate preference from benzoic acid to the structurally similar substrate, salicylic acid (SA). Yet, subsequent studies have shown that the H150M function-changing replacement did not likely occur during the historical episode of enzymatic divergence studied. Therefore, we reinvestigated the origin of SA methylation preference here and additionally assessed the extent to which epistasis may act to limit mutational paths. We found that the SAMT lineage of enzymes acquired preference to methylate SA from an ancestor that preferred to methylate benzoic acid as previously reported. In contrast, we found that a different amino acid replacement, Y267Q, was sufficient to change substrate preference with others providing small positive-magnitude epistatic improvements. We show that the kinetic basis for the ancestral enzymatic change in substate preference by Y267Q appears to be due to both a reduced specificity constant, kcat/KM, for benzoic acid and an improvement in KM for SA. Therefore, this lineage of enzymes appears to have had multiple mutational paths available to achieve the same evolutionary divergence. While the reasons remain unclear for why one path was taken, and the other was not, the mutational distance between ancestral and descendant codons may be a factor.
Collapse
Affiliation(s)
- Emily M Catania
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008, USA
| | - Nicole M Dubs
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008, USA
| | - Shejal Soumen
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008, USA
| | - Todd J Barkman
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008, USA
| |
Collapse
|
15
|
Eccleston RC, Manko E, Campino S, Clark TG, Furnham N. A computational method for predicting the most likely evolutionary trajectories in the stepwise accumulation of resistance mutations. eLife 2023; 12:e84756. [PMID: 38132182 PMCID: PMC10807863 DOI: 10.7554/elife.84756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/21/2023] [Indexed: 12/23/2023] Open
Abstract
Pathogen evolution of drug resistance often occurs in a stepwise manner via the accumulation of multiple mutations that in combination have a non-additive impact on fitness, a phenomenon known as epistasis. The evolution of resistance via the accumulation of point mutations in the DHFR genes of Plasmodium falciparum (Pf) and Plasmodium vivax (Pv) has been studied extensively and multiple studies have shown epistatic interactions between these mutations determine the accessible evolutionary trajectories to highly resistant multiple mutations. Here, we simulated these evolutionary trajectories using a model of molecular evolution, parameterised using Rosetta Flex ddG predictions, where selection acts to reduce the target-drug binding affinity. We observe strong agreement with pathways determined using experimentally measured IC50 values of pyrimethamine binding, which suggests binding affinity is strongly predictive of resistance and epistasis in binding affinity strongly influences the order of fixation of resistance mutations. We also infer pathways directly from the frequency of mutations found in isolate data, and observe remarkable agreement with the most likely pathways predicted by our mechanistic model, as well as those determined experimentally. This suggests mutation frequency data can be used to intuitively infer evolutionary pathways, provided sufficient sampling of the population.
Collapse
Affiliation(s)
- Ruth Charlotte Eccleston
- Department of Infection Biology, London School of Hygiene and Tropical MedicineLondonUnited Kingdom
| | - Emilia Manko
- Department of Infection Biology, London School of Hygiene and Tropical MedicineLondonUnited Kingdom
| | - Susana Campino
- Department of Infection Biology, London School of Hygiene and Tropical MedicineLondonUnited Kingdom
| | - Taane G Clark
- Department of Infection Biology, London School of Hygiene and Tropical MedicineLondonUnited Kingdom
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical MedicineLondonUnited Kingdom
| | - Nicholas Furnham
- Department of Infection Biology, London School of Hygiene and Tropical MedicineLondonUnited Kingdom
| |
Collapse
|
16
|
Avizemer Z, Martí-Gómez C, Hoch SY, McCandlish DM, Fleishman SJ. Evolutionary paths that link orthogonal pairs of binding proteins. RESEARCH SQUARE 2023:rs.3.rs-2836905. [PMID: 37131620 PMCID: PMC10153392 DOI: 10.21203/rs.3.rs-2836905/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Some protein binding pairs exhibit extreme specificities that functionally insulate them from homologs. Such pairs evolve mostly by accumulating single-point mutations, and mutants are selected if their affinity exceeds the threshold required for function1-4. Thus, homologous and high-specificity binding pairs bring to light an evolutionary conundrum: how does a new specificity evolve while maintaining the required affinity in each intermediate5,6? Until now, a fully functional single-mutation path that connects two orthogonal pairs has only been described where the pairs were mutationally close thus enabling experimental enumeration of all intermediates2. We present an atomistic and graph-theoretical framework for discovering low molecular strain single-mutation paths that connect two extant pairs, enabling enumeration beyond experimental capability. We apply it to two orthogonal bacterial colicin endonuclease-immunity pairs separated by 17 interface mutations7. We were not able to find a strain-free and functional path in the sequence space defined by the two extant pairs. But including mutations that bridge amino acids that cannot be exchanged through single-nucleotide mutations led us to a strain-free 19-mutation trajectory that is completely viable in vivo. Our experiments show that the specificity switch is remarkably abrupt, resulting from only one radical mutation on each partner. Furthermore, each of the critical specificity-switch mutations increases fitness, demonstrating that functional divergence could be driven by positive Darwinian selection. These results reveal how even radical functional changes in an epistatic fitness landscape may evolve.
Collapse
Affiliation(s)
- Ziv Avizemer
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Carlos Martí-Gómez
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Shlomo Yakir Hoch
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - David M. McCandlish
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Sarel J. Fleishman
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001, Rehovot, Israel
| |
Collapse
|
17
|
Lynch VJ, Wagner GP. Cooption of polyalanine tract into a repressor domain in the mammalian transcription factor HoxA11. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2023; 340:486-495. [PMID: 34125492 DOI: 10.1002/jez.b.23063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
An enduring problem in biology is explaining how novel functions of genes originated and how those functions diverge between species. Despite detailed studies on the functional evolution of a few proteins, the molecular mechanisms by which protein functions have evolved are almost entirely unknown. Here, we show that a polyalanine tract in the homeodomain transcription factor HoxA11 arose in the stem-lineage of mammals and functions as an autonomous repressor module by physically interacting with the PAH domains of SIN3 proteins. These results suggest that long polyalanine tracts, which are common in transcription factors and often associated with disease, may tend to function as repressor domains and can contribute to the diversification of transcription factor functions despite the deleterious consequences of polyalanine tract expansion.
Collapse
Affiliation(s)
- Vincent J Lynch
- Department of Biological Sciences, University at Buffalo, Buffalo, New York, USA
| | - Gunter P Wagner
- Department of Ecology and Evolutionary Biology and Yale Systems Biology Institute, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
18
|
Ogbunugafor CB, Guerrero RF, Miller-Dickson MD, Shakhnovich EI, Shoulders MD. Epistasis and pleiotropy shape biophysical protein subspaces associated with drug resistance. Phys Rev E 2023; 108:054408. [PMID: 38115433 PMCID: PMC10935598 DOI: 10.1103/physreve.108.054408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 09/19/2023] [Indexed: 12/21/2023]
Abstract
Protein space is a rich analogy for genotype-phenotype maps, where amino acid sequence is organized into a high-dimensional space that highlights the connectivity between protein variants. It is a useful abstraction for understanding the process of evolution, and for efforts to engineer proteins towards desirable phenotypes. Few mentions of protein space consider how protein phenotypes can be described in terms of their biophysical components, nor do they rigorously interrogate how forces like epistasis-describing the nonlinear interaction between mutations and their phenotypic consequences-manifest across these components. In this study, we deconstruct a low-dimensional protein space of a bacterial enzyme (dihydrofolate reductase; DHFR) into "subspaces" corresponding to a set of kinetic and thermodynamic traits [k_{cat}, K_{M}, K_{i}, and T_{m} (melting temperature)]. We then examine how combinations of three mutations (eight alleles in total) display pleiotropy, or unique effects on individual subspace traits. We examine protein spaces across three orthologous DHFR enzymes (Escherichia coli, Listeria grayi, and Chlamydia muridarum), adding a genotypic context dimension through which epistasis occurs across subspaces. In doing so, we reveal that protein space is a deceptively complex notion, and that future applications to bioengineering should consider how interactions between amino acid substitutions manifest across different phenotypic subspaces.
Collapse
Affiliation(s)
- C. Brandon Ogbunugafor
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Santa Fe Institute, Santa Fe, New Mexico, USA
| | - Rafael F. Guerrero
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | | | - Eugene I. Shakhnovich
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Matthew D. Shoulders
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
19
|
Nicoll CR, Massari M, Fraaije MW, Mascotti ML, Mattevi A. Impact of ancestral sequence reconstruction on mechanistic and structural enzymology. Curr Opin Struct Biol 2023; 82:102669. [PMID: 37544113 DOI: 10.1016/j.sbi.2023.102669] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/19/2023] [Accepted: 07/10/2023] [Indexed: 08/08/2023]
Abstract
Ancestral sequence reconstruction (ASR) provides insight into the changes within a protein sequence across evolution. More specifically, it can illustrate how specific amino acid changes give rise to different phenotypes within a protein family. Over the last few decades it has established itself as a powerful technique for revealing molecular common denominators that govern enzyme function. Here, we describe the strength of ASR in unveiling catalytic mechanisms and emerging phenotypes for a range of different proteins, also highlighting biotechnological applications the methodology can provide.
Collapse
Affiliation(s)
- Callum R Nicoll
- Department of Biology and Biotechnology Lazzaro Spallanzani, University of Pavia, Via Ferrata 9, 27100, Pavia, Italy
| | - Marta Massari
- Department of Biology and Biotechnology Lazzaro Spallanzani, University of Pavia, Via Ferrata 9, 27100, Pavia, Italy
| | - Marco W Fraaije
- Molecular Enzymology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747, AG Groningen, the Netherlands. https://twitter.com/fraaije1
| | - Maria Laura Mascotti
- Molecular Enzymology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747, AG Groningen, the Netherlands; IMIBIO-SL CONICET, Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejército de los Andes 950, D5700HHW, San Luis, Argentina
| | - Andrea Mattevi
- Department of Biology and Biotechnology Lazzaro Spallanzani, University of Pavia, Via Ferrata 9, 27100, Pavia, Italy.
| |
Collapse
|
20
|
Carscadden KA, Batstone RT, Hauser FE. Origins and evolution of biological novelty. Biol Rev Camb Philos Soc 2023; 98:1472-1491. [PMID: 37056155 DOI: 10.1111/brv.12963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/15/2023]
Abstract
Understanding the origins and impacts of novel traits has been a perennial interest in many realms of ecology and evolutionary biology. Here, we build on previous evolutionary and philosophical treatments of this subject to encompass novelties across biological scales and eco-evolutionary perspectives. By defining novelties as new features at one biological scale that have emergent effects at other biological scales, we incorporate many forms of novelty that have previously been treated in isolation (such as novelty from genetic mutations, new developmental pathways, new morphological features, and new species). Our perspective is based on the fundamental idea that the emergence of a novelty, at any biological scale, depends on its environmental and genetic context. Through this lens, we outline a broad array of generative mechanisms underlying novelty and highlight how genomic tools are transforming our understanding of the origins of novelty. Lastly, we present several case studies to illustrate how novelties across biological scales and systems can be understood based on common mechanisms of change and their environmental and genetic contexts. Specifically, we highlight how gene duplication contributes to the evolution of new complex structures in visual systems; how genetic exchange in symbiosis alters functions of both host and symbiont, resulting in a novel organism; and how hybridisation between species can generate new species with new niches.
Collapse
Affiliation(s)
- Kelly A Carscadden
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, 1900 Pleasant St, Boulder, CO, 80309, USA
| | - Rebecca T Batstone
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL, 61801, USA
| | - Frances E Hauser
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
| |
Collapse
|
21
|
Patel AK, Vilela P, Shaik TB, McEwen A, Hazemann I, Brillet K, Ennifar E, Hamiche A, Markov G, Laudet V, Moras D, Klaholz B, Billas IL. Asymmetric dimerization in a transcription factor superfamily is promoted by allosteric interactions with DNA. Nucleic Acids Res 2023; 51:8864-8879. [PMID: 37503845 PMCID: PMC10484738 DOI: 10.1093/nar/gkad632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 07/05/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023] Open
Abstract
Transcription factors, such as nuclear receptors achieve precise transcriptional regulation by means of a tight and reciprocal communication with DNA, where cooperativity gained by receptor dimerization is added to binding site sequence specificity to expand the range of DNA target gene sequences. To unravel the evolutionary steps in the emergence of DNA selection by steroid receptors (SRs) from monomeric to dimeric palindromic binding sites, we carried out crystallographic, biophysical and phylogenetic studies, focusing on the estrogen-related receptors (ERRs, NR3B) that represent closest relatives of SRs. Our results, showing the structure of the ERR DNA-binding domain bound to a palindromic response element (RE), unveil the molecular mechanisms of ERR dimerization which are imprinted in the protein itself with DNA acting as an allosteric driver by allowing the formation of a novel extended asymmetric dimerization region (KR-box). Phylogenetic analyses suggest that this dimerization asymmetry is an ancestral feature necessary for establishing a strong overall dimerization interface, which was progressively modified in other SRs in the course of evolution.
Collapse
Affiliation(s)
- Abdul Kareem Mohideen Patel
- IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Centre for Integrative Biology (CBI), Illkirch, France
- Université de Strasbourg (Unistra), Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France
| | - Pierre Vilela
- IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Centre for Integrative Biology (CBI), Illkirch, France
- Université de Strasbourg (Unistra), Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France
| | - Tajith Baba Shaik
- IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Centre for Integrative Biology (CBI), Illkirch, France
- Université de Strasbourg (Unistra), Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France
| | - Alastair G McEwen
- IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Centre for Integrative Biology (CBI), Illkirch, France
- Université de Strasbourg (Unistra), Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France
| | - Isabelle Hazemann
- IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Centre for Integrative Biology (CBI), Illkirch, France
- Université de Strasbourg (Unistra), Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France
| | - Karl Brillet
- Architecture et Réactivité de L’ARN, CNRS UPR 9002, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 67000, Strasbourg, France
| | - Eric Ennifar
- Architecture et Réactivité de L’ARN, CNRS UPR 9002, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 67000, Strasbourg, France
| | - Ali Hamiche
- IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Centre for Integrative Biology (CBI), Illkirch, France
- Université de Strasbourg (Unistra), Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France
| | - Gabriel V Markov
- Sorbonne Université, CNRS, UMR 8227, Integrative Biology of Marine Models, (LBI2M, UMR8227), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - Vincent Laudet
- Marine Eco-Evo-Devo Unit. Okinawa Institute of Science and Technology. 1919-1 Tancha, Onna-son, 904-0495 Okinawa, Japan
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10, Dah-Uen Rd, Jiau Shi, I-Lan 262, Taiwan
| | - Dino Moras
- IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Centre for Integrative Biology (CBI), Illkirch, France
- Université de Strasbourg (Unistra), Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France
| | - Bruno P Klaholz
- IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Centre for Integrative Biology (CBI), Illkirch, France
- Université de Strasbourg (Unistra), Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France
| | - Isabelle M L Billas
- IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Centre for Integrative Biology (CBI), Illkirch, France
- Université de Strasbourg (Unistra), Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France
| |
Collapse
|
22
|
Tang GQ, Elder JJH, Douglas J, Carter CW. Domain acquisition by class I aminoacyl-tRNA synthetase urzymes coordinated the catalytic functions of HVGH and KMSKS motifs. Nucleic Acids Res 2023; 51:8070-8084. [PMID: 37470821 PMCID: PMC10450160 DOI: 10.1093/nar/gkad590] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/23/2023] [Accepted: 07/11/2023] [Indexed: 07/21/2023] Open
Abstract
Leucyl-tRNA synthetase (LeuRS) is a Class I aminoacyl-tRNA synthetase (aaRS) that synthesizes leucyl-tRNAleu for codon-directed protein synthesis. Two signature sequences, HxGH and KMSKS help stabilize transition-states for amino acid activation and tRNA aminoacylation by all Class I aaRS. Separate alanine mutants of each signature, together with the double mutant, behave in opposite ways in Pyrococcus horikoshii LeuRS and the 129-residue urzyme ancestral model generated from it (LeuAC). Free energy coupling terms, Δ(ΔG‡), for both reactions are large and favourable for LeuRS, but unfavourable for LeuAC. Single turnover assays with 32Pα-ATP show correspondingly different internal products. These results implicate domain motion in catalysis by full-length LeuRS. The distributed thermodynamic cycle of mutational changes authenticates LeuAC urzyme catalysis far more convincingly than do single point mutations. Most importantly, the evolutionary gain of function induced by acquiring the anticodon-binding (ABD) and multiple insertion modules in the catalytic domain appears to be to coordinate the catalytic function of the HxGH and KMSKS signature sequences. The implication that backbone elements of secondary structures achieve a major portion of the overall transition-state stabilization by LeuAC is also consistent with coevolution of the genetic code and metabolic pathways necessary to produce histidine and lysine sidechains.
Collapse
Affiliation(s)
- Guo Qing Tang
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, USA
| | - Jessica J H Elder
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, USA
| | - Jordan Douglas
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, USA
- Department of Physics, The University of Auckland, New Zealand
| | - Charles W Carter
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, USA
| |
Collapse
|
23
|
Corbella M, Pinto GP, Kamerlin SCL. Loop dynamics and the evolution of enzyme activity. Nat Rev Chem 2023; 7:536-547. [PMID: 37225920 DOI: 10.1038/s41570-023-00495-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2023] [Indexed: 05/26/2023]
Abstract
In the early 2000s, Tawfik presented his 'New View' on enzyme evolution, highlighting the role of conformational plasticity in expanding the functional diversity of limited repertoires of sequences. This view is gaining increasing traction with increasing evidence of the importance of conformational dynamics in both natural and laboratory evolution of enzymes. The past years have seen several elegant examples of harnessing conformational (particularly loop) dynamics to successfully manipulate protein function. This Review revisits flexible loops as critical participants in regulating enzyme activity. We showcase several systems of particular interest: triosephosphate isomerase barrel proteins, protein tyrosine phosphatases and β-lactamases, while briefly discussing other systems in which loop dynamics are important for selectivity and turnover. We then discuss the implications for engineering, presenting examples of successful loop manipulation in either improving catalytic efficiency, or changing selectivity completely. Overall, it is becoming clearer that mimicking nature by manipulating the conformational dynamics of key protein loops is a powerful method of tailoring enzyme activity, without needing to target active-site residues.
Collapse
Affiliation(s)
- Marina Corbella
- Department of Chemistry, Uppsala University, Uppsala, Sweden
| | - Gaspar P Pinto
- Department of Chemistry, Uppsala University, Uppsala, Sweden
- Cortex Discovery GmbH, Regensburg, Germany
| | - Shina C L Kamerlin
- Department of Chemistry, Uppsala University, Uppsala, Sweden.
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
24
|
Nicolaides NC, Chrousos GP. The human glucocorticoid receptor. VITAMINS AND HORMONES 2023; 123:417-438. [PMID: 37717993 DOI: 10.1016/bs.vh.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Glucocorticoids are members of steroid hormones that are biosynthesized in the intermediate cellular zone of the adrenal cortex (zona fasciculata) and released into the peripheral blood as final products of the hypothalamic-pituitary-adrenal (HPA) axis, as well as under the control of the circadian biologic system. These molecules regulate every physiologic function of the organism as they bind to an almost ubiquitous hormone-activated transcription factor, the glucocorticoid receptor (GR), which influences the rate of transcription of a huge number of target genes amounting to up to 20% of the mammalian genome. The evolving progress of cellular, molecular and computational-structural biology and the implication of epigenetics in every-day clinical practice have enabled us a deeper and ever-increasing understanding of how target tissues respond to natural and synthetic glucocorticoids. In this chapter, we summarize the current knowledge on the structure, expression, function and signaling of the human glucocorticoid receptor in normal and pathologic conditions.
Collapse
Affiliation(s)
- Nicolas C Nicolaides
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, 'Aghia Sophia' Children's Hospital, Athens, Greece; Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece; University Research Institute of Maternal and Child Health and Precision Medicine and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens Medical School, Athens, Greece.
| | - George P Chrousos
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, 'Aghia Sophia' Children's Hospital, Athens, Greece; Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece; University Research Institute of Maternal and Child Health and Precision Medicine and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens Medical School, Athens, Greece
| |
Collapse
|
25
|
Wonderlick DR, Widom JR, Harms MJ. Disentangling contact and ensemble epistasis in a riboswitch. Biophys J 2023; 122:1600-1612. [PMID: 36710492 PMCID: PMC10183321 DOI: 10.1016/j.bpj.2023.01.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/09/2023] [Accepted: 01/24/2023] [Indexed: 01/29/2023] Open
Abstract
Mutations introduced into macromolecules often exhibit epistasis, where the effect of one mutation alters the effect of another. Knowing the mechanisms that lead to epistasis is important for understanding how macromolecules work and evolve, as well as for effective macromolecular engineering. Here, we investigate the interplay between "contact epistasis" (epistasis arising from physical interactions between mutated residues) and "ensemble epistasis" (epistasis that occurs when a mutation redistributes the conformational ensemble of a macromolecule, thus changing the effect of the second mutation). We argue that the two mechanisms can be distinguished in allosteric macromolecules by measuring epistasis at differing allosteric effector concentrations. Contact epistasis manifests as nonadditivity in the microscopic equilibrium constants describing the conformational ensemble. This epistatic effect is independent of allosteric effector concentration. Ensemble epistasis manifests as nonadditivity in thermodynamic observables-such as ligand binding-that are determined by the distribution of ensemble conformations. This epistatic effect strongly depends on allosteric effector concentration. Using this framework, we experimentally investigated the origins of epistasis in three pairwise mutant cycles introduced into the adenine riboswitch aptamer domain by measuring ligand binding as a function of allosteric effector concentration. We found evidence for both contact and ensemble epistasis in all cycles. Furthermore, we found that the two mechanisms of epistasis could interact with each other. For example, in one mutant cycle we observed 6 kcal/mol of contact epistasis in a microscopic equilibrium constant. In that same cycle, the maximum epistasis in ligand binding was only 1.5 kcal/mol: shifts in the ensemble masked the contribution of contact epistasis. Finally, our work yields simple heuristics for identifying contact and ensemble epistasis based on measurements of a biochemical observable as a function of allosteric effector concentration.
Collapse
Affiliation(s)
- Daria R Wonderlick
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon
| | - Julia R Widom
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon; Institute for Molecular Biology, University of Oregon, Eugene, Oregon; Oregon Center for Optical, Molecular, & Quantum Science, University of Oregon, Eugene, Oregon
| | - Michael J Harms
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon; Institute for Molecular Biology, University of Oregon, Eugene, Oregon.
| |
Collapse
|
26
|
Ogbunugafor CB, Guerrero RF, Shakhnovich EI, Shoulders MD. Epistasis meets pleiotropy in shaping biophysical protein subspaces associated with antimicrobial resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.09.535490. [PMID: 37066177 PMCID: PMC10104174 DOI: 10.1101/2023.04.09.535490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Protein space is a rich analogy for genotype-phenotype maps, where amino acid sequence is organized into a high-dimensional space that highlights the connectivity between protein variants. It is a useful abstraction for understanding the process of evolution, and for efforts to engineer proteins towards desirable phenotypes. Few framings of protein space consider how higher-level protein phenotypes can be described in terms of their biophysical dimensions, nor do they rigorously interrogate how forces like epistasis-describing the nonlinear interaction between mutations and their phenotypic consequences-manifest across these dimensions. In this study, we deconstruct a low-dimensional protein space of a bacterial enzyme (dihydrofolate reductase; DHFR) into "subspaces" corresponding to a set of kinetic and thermodynamic traits [(kcat, KM, Ki, and Tm (melting temperature)]. We then examine how three mutations (eight alleles in total) display pleiotropy in their interactions across these subspaces. We extend this approach to examine protein spaces across three orthologous DHFR enzymes (Escherichia coli, Listeria grayi, and Chlamydia muridarum), adding a genotypic context dimension through which epistasis occurs across subspaces. In doing so, we reveal that protein space is a deceptively complex notion, and that the process of protein evolution and engineering should consider how interactions between amino acid substitutions manifest across different phenotypic subspaces.
Collapse
Affiliation(s)
- C. Brandon Ogbunugafor
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA
- Santa Fe Institute, Santa Fe, NM
| | - Rafael F. Guerrero
- Department of Biological Sciences, North Carolina State University, Raleigh, NC
| | | | | |
Collapse
|
27
|
Duan B, Qiu C, Sze SH, Kaplan C. Widespread epistasis shapes RNA Polymerase II active site function and evolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.27.530048. [PMID: 36909581 PMCID: PMC10002619 DOI: 10.1101/2023.02.27.530048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Multi-subunit RNA Polymerases (msRNAPs) are responsible for transcription in all kingdoms of life. At the heart of these msRNAPs is an ultra-conserved active site domain, the trigger loop (TL), coordinating transcription speed and fidelity by critical conformational changes impacting multiple steps in substrate selection, catalysis, and translocation. Previous studies have observed several different types of genetic interactions between eukaryotic RNA polymerase II (Pol II) TL residues, suggesting that the TL's function is shaped by functional interactions of residues within and around the TL. The extent of these interaction networks and how they control msRNAP function and evolution remain to be determined. Here we have dissected the Pol II TL interaction landscape by deep mutational scanning in Saccharomyces cerevisiae Pol II. Through analysis of over 15000 alleles, representing all single mutants, a rationally designed subset of double mutants, and evolutionarily observed TL haplotypes, we identify interaction networks controlling TL function. Substituting residues creates allele-specific networks and propagates epistatic effects across the Pol II active site. Furthermore, the interaction landscape further distinguishes alleles with similar growth phenotypes, suggesting increased resolution over the previously reported single mutant phenotypic landscape. Finally, co-evolutionary analyses reveal groups of co-evolving residues across Pol II converge onto the active site, where evolutionary constraints interface with pervasive epistasis. Our studies provide a powerful system to understand the plasticity of RNA polymerase mechanism and evolution, and provide the first example of pervasive epistatic landscape in a highly conserved and constrained domain within an essential enzyme.
Collapse
Affiliation(s)
- Bingbing Duan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| | - Chenxi Qiu
- Department of Genetics, Harvard Medical School, Boston, MA 02215
| | - Sing-Hoi Sze
- Department of Computer Science and Engineering, Texas A&M University, College Station, TX 77843
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843
| | - Craig Kaplan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| |
Collapse
|
28
|
Katsu Y, Lin X, Ji R, Chen Z, Kamisaka Y, Bamba K, Baker ME. N-terminal domain influences steroid activation of the Atlantic sea lamprey corticoid receptor. J Steroid Biochem Mol Biol 2023; 228:106249. [PMID: 36646152 DOI: 10.1016/j.jsbmb.2023.106249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
Lampreys are jawless fish that evolved about 550 million years ago at the base of the vertebrate line. Modern lampreys contain a corticoid receptor (CR), the common ancestor of the glucocorticoid receptor (GR) and mineralocorticoid receptor (MR), which first appear in cartilaginous fish, such as sharks. Until recently, 344 amino acids at the amino terminus of adult lamprey CR were not present in the lamprey CR sequence in GenBank. A search of the recently sequenced lamprey germline genome identified two CR sequences, CR1 and CR2, containing the 344 previously un-identified amino acids. CR1 also contains a novel four amino acid insertion in the DNA-binding domain (DBD). We studied corticosteroid and progesterone activation of CR1 and CR2 and found their strongest response was to 11-deoxycorticosterone and 11-deoxycortisol, the two circulating corticosteroids in lamprey. Based on steroid specificity, both CRs are close to elephant shark MR and distant from elephant shark GR. HEK293 cells that were transfected with full-length CR1 or CR2 and the MMTV promoter have about 3-fold higher steroid-mediated activation compared to HEK293 cells transfected with these CRs and the TAT3 promoter. Deletion of the amino-terminal domain (NTD) of lamprey CR1 and CR2 to form truncated CRs decreased transcriptional activation by about 70% in HEK293 cells that were transfected with MMTV, but increased transcription by about 6-fold in cells transfected with TAT3. This indicated that the promoter has an important effect on NTD regulation of transcriptional activation of the CR by steroids. Our results also indicate that the entire lamprey CR sequence is needed for an accurate determination of steroid-mediated transcription.
Collapse
Affiliation(s)
| | - Xiaozhi Lin
- Graduate School of Life Science Hokkaido University Sapporo, Japan
| | - Ruigeng Ji
- Graduate School of Life Science Hokkaido University Sapporo, Japan
| | - Ze Chen
- Graduate School of Life Science Hokkaido University Sapporo, Japan
| | - Yui Kamisaka
- Graduate School of Life Science Hokkaido University Sapporo, Japan
| | - Koto Bamba
- Faculty of Science Hokkaido University Sapporo, Japan
| | - Michael E Baker
- Division of Nephrology-Hypertension Department of Medicine, 0693 University of California, San Diego 9500 Gilman Drive La Jolla, CA 92093-0693, USA; Center for Academic Research and Training in Anthropogeny (CARTA) University of California, San Diego La Jolla, CA 92093, USA.
| |
Collapse
|
29
|
Zhao F, Akanuma S. Ancestral Sequence Reconstruction of the Ribosomal Protein uS8 and Reduction of Amino Acid Usage to a Smaller Alphabet. J Mol Evol 2023; 91:10-23. [PMID: 36396786 DOI: 10.1007/s00239-022-10078-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022]
Abstract
Understanding the origin and early evolution of proteins is important for unveiling how the RNA world developed into an RNA-protein world. Because the composition of organic molecules in the Earth's primitive environment was plausibly not as diverse as today, the number of different amino acids used in early protein synthesis is likely to be substantially less than the current 20 proteinogenic residues. In this study, we have explored the thermal stability and RNA binding of ancestral variants of the ribosomal protein uS8 constructed from a reduced-alphabet of amino acids. First, we built a phylogenetic tree based on the amino acid sequences of uS8 from multiple extant organisms and used the tree to infer two plausible amino acid sequences corresponding to the last bacterial common ancestor of uS8. Both ancestral proteins were thermally stable and bound to an RNA fragment. By eliminating individual amino acid letters and monitoring thermal stability and RNA binding in the resulting proteins, we reduced the size of the amino acid set constituting one of the ancestral proteins, eventually finding that convergent sequences consisting of 15- or 14-amino acid alphabets still folded into stable structures that bound to the RNA fragment. Furthermore, a simplified variant reconstructed from a 13-amino-acid alphabet retained affinity for the RNA fragment, although it lost conformational stability. Collectively, RNA-binding activity may be achieved with a subset of the current 20 amino acids, raising the possibility of a simpler composition of RNA-binding proteins in the earliest stage of protein evolution.
Collapse
Affiliation(s)
- Fangzheng Zhao
- Faculty of Human Sciences, Waseda University, 2-579-15, Mikajima, Tokorozawa, Saitama, 359-1192, Japan
| | - Satoshi Akanuma
- Faculty of Human Sciences, Waseda University, 2-579-15, Mikajima, Tokorozawa, Saitama, 359-1192, Japan.
| |
Collapse
|
30
|
Dube N, Khan SH, Sasse R, Okafor CD. Identification of an Evolutionarily Conserved Allosteric Network in Steroid Receptors. J Chem Inf Model 2023; 63:571-582. [PMID: 36594606 PMCID: PMC9875803 DOI: 10.1021/acs.jcim.2c01096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Indexed: 01/04/2023]
Abstract
Allosteric pathways in proteins describe networks comprising amino acid residues which may facilitate the propagation of signals between distant sites. Through inter-residue interactions, dynamic and conformational changes can be transmitted from the site of perturbation to an allosteric site. While sophisticated computational methods have been developed to characterize such allosteric pathways linking specific sites on proteins, few attempts have been made to apply these approaches toward identifying new allosteric sites. Here, we use molecular dynamics simulations and suboptimal path analysis to discover new allosteric networks in steroid receptors with a focus on evolutionarily conserved pathways. Using modern receptors and a reconstructed ancestral receptor, we identify networks connecting several sites to the activation function surface 2 (AF-2), the site of coregulator recruitment. One of these networks is conserved across the entire family, connecting a predicted allosteric site located between helices 9 and 10 of the ligand-binding domain. We investigate the basis of this conserved network as well as the importance of this site, discovering that the site lies in a region of the ligand-binding domain characterized by conserved inter-residue contacts. This study suggests an evolutionarily importance of the helix 9-helix 10 site in steroid receptors and identifies an approach that may be applied to discover previously unknown allosteric sites in proteins.
Collapse
Affiliation(s)
- Namita Dube
- Department
of Biochemistry and Molecular Biology, Pennsylvania
State University, University Park, State College, Pennsylvania 16802, United States
| | - Sabab Hasan Khan
- Department
of Biochemistry and Molecular Biology, Pennsylvania
State University, University Park, State College, Pennsylvania 16802, United States
| | - Riley Sasse
- Department
of Chemistry, Pennsylvania State University, University Park, State College, Pennsylvania 16802, United States
| | - C. Denise Okafor
- Department
of Biochemistry and Molecular Biology, Pennsylvania
State University, University Park, State College, Pennsylvania 16802, United States
- Department
of Chemistry, Pennsylvania State University, University Park, State College, Pennsylvania 16802, United States
| |
Collapse
|
31
|
Segredo-Otero E, Sanjuán R. Genetic complementation fosters evolvability in complex fitness landscapes. Sci Rep 2023; 13:662. [PMID: 36635310 PMCID: PMC9837146 DOI: 10.1038/s41598-022-26588-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/16/2022] [Indexed: 01/14/2023] Open
Abstract
The ability of natural selection to optimize traits depends on the topology of the genotype-fitness map (fitness landscape). Epistatic interactions produce rugged fitness landscapes, where adaptation is constrained by the presence of low-fitness intermediates. Here, we used simulations to explore how evolvability in rugged fitness landscapes is influenced by genetic complementation, a process whereby different sequence variants mutually compensate for their deleterious mutations. We designed our model inspired by viral populations, in which genetic variants are known to interact frequently through coinfection. Our simulations indicate that genetic complementation enables a more efficient exploration of rugged fitness landscapes. Although this benefit may be undermined by genetic parasites, its overall effect on evolvability remains positive in populations that exhibit strong relatedness between interacting sequences. Similar processes could operate in contexts other than viral coinfection, such as in the evolution of ploidy.
Collapse
Affiliation(s)
- Ernesto Segredo-Otero
- grid.4711.30000 0001 2183 4846Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas-Universitat de València, C/ Catedrático Agustín Escardino 9, 46980 Paterna, València, Spain
| | - Rafael Sanjuán
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas-Universitat de València, C/ Catedrático Agustín Escardino 9, 46980, Paterna, València, Spain.
| |
Collapse
|
32
|
Schlosser G. Rebuilding ships while at sea-Character individuality, homology, and evolutionary innovation. J Morphol 2023; 284:e21522. [PMID: 36282954 PMCID: PMC10100095 DOI: 10.1002/jmor.21522] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/15/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022]
Abstract
How novel traits originate in evolution is still one of the most perplexing questions in Evolutionary Biology. Building on a previous account of evolutionary innovation, I here propose that evolutionary novelties are those individualized characters that are not homologous to any characters in the ancestor. To clarify this definition, I here provide a detailed analysis of the concepts of "character individuality" and "homology" first, before addressing their role for our understanding of evolutionary innovation. I will argue (1) that functional as well as structural considerations are important for character individualization; and (2) that compositional (structural) and positional homology need to be clearly distinguished to properly describe the evolutionary transformations of hierarchically structured characters. My account will therefore integrate functional and structural perspectives and put forward a new multi-level view of character identity and transformation.
Collapse
Affiliation(s)
- Gerhard Schlosser
- School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| |
Collapse
|
33
|
Jiménez-Panizo A, Alegre-Martí A, Tettey T, Fettweis G, Abella M, Antón R, Johnson T, Kim S, Schiltz R, Núñez-Barrios I, Font-Díaz J, Caelles C, Valledor A, Pérez P, Rojas A, Fernández-Recio J, Presman D, Hager G, Fuentes-Prior P, Estébanez-Perpiñá E. The multivalency of the glucocorticoid receptor ligand-binding domain explains its manifold physiological activities. Nucleic Acids Res 2022; 50:13063-13082. [PMID: 36464162 PMCID: PMC9825158 DOI: 10.1093/nar/gkac1119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 10/28/2022] [Accepted: 11/08/2022] [Indexed: 12/05/2022] Open
Abstract
The glucocorticoid receptor (GR) is a ubiquitously expressed transcription factor that controls metabolic and homeostatic processes essential for life. Although numerous crystal structures of the GR ligand-binding domain (GR-LBD) have been reported, the functional oligomeric state of the full-length receptor, which is essential for its transcriptional activity, remains disputed. Here we present five new crystal structures of agonist-bound GR-LBD, along with a thorough analysis of previous structural work. We identify four distinct homodimerization interfaces on the GR-LBD surface, which can associate into 20 topologically different homodimers. Biologically relevant homodimers were identified by studying a battery of GR point mutants including crosslinking assays in solution, quantitative fluorescence microscopy in living cells, and transcriptomic analyses. Our results highlight the relevance of non-canonical dimerization modes for GR, especially of contacts made by loop L1-3 residues such as Tyr545. Our work illustrates the unique flexibility of GR's LBD and suggests different dimeric conformations within cells. In addition, we unveil pathophysiologically relevant quaternary assemblies of the receptor with important implications for glucocorticoid action and drug design.
Collapse
Affiliation(s)
| | | | | | - Gregory Fettweis
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-5055, USA
| | - Montserrat Abella
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain,Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona (UB), 08028 Barcelona, Spain
| | - Rosa Antón
- Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
| | - Thomas A Johnson
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-5055, USA
| | - Sohyoung Kim
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-5055, USA
| | - R Louis Schiltz
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-5055, USA
| | - Israel Núñez-Barrios
- Andalusian Center for Developmental Biology (CABD-CSIC). Campus Universitario Pablo de Olavide, 41013 Sevilla, Spain
| | - Joan Font-Díaz
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona (UB), 08028 Barcelona, Spain,Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Carme Caelles
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona (UB), 08028 Barcelona, Spain,Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona 08028, Spain
| | - Annabel F Valledor
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona (UB), 08028 Barcelona, Spain,Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Paloma Pérez
- Instituto de Biomedicina de Valencia (IBV)-CSIC, 46010, Valencia, Spain
| | - Ana M Rojas
- Andalusian Center for Developmental Biology (CABD-CSIC). Campus Universitario Pablo de Olavide, 41013 Sevilla, Spain
| | - Juan Fernández-Recio
- Instituto de Ciencias de la Vid y del Vino (ICVV), CSIC - Universidad de La Rioja - Gobierno de La Rioja, 26007 Logroño, Spain
| | - Diego M Presman
- IFIBYNE, UBA-CONICET, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires C1428EGA, Argentina
| | - Gordon L Hager
- Correspondence may also be addressed to Gordon L. Hager. Tel: +1 240 760 6618;
| | | | | |
Collapse
|
34
|
Slobodyanyuk M, Banda-Vázquez JA, Thompson MJ, Dean RA, Baenziger JE, Chica RA, daCosta CJB. Origin of acetylcholine antagonism in ELIC, a bacterial pentameric ligand-gated ion channel. Commun Biol 2022; 5:1264. [PMID: 36400839 PMCID: PMC9674596 DOI: 10.1038/s42003-022-04227-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 11/04/2022] [Indexed: 11/20/2022] Open
Abstract
ELIC is a prokaryotic homopentameric ligand-gated ion channel that is homologous to vertebrate nicotinic acetylcholine receptors. Acetylcholine binds to ELIC but fails to activate it, despite bringing about conformational changes indicative of activation. Instead, acetylcholine competitively inhibits agonist-activated ELIC currents. What makes acetylcholine an agonist in an acetylcholine receptor context, and an antagonist in an ELIC context, is not known. Here we use available structures and statistical coupling analysis to identify residues in the ELIC agonist-binding site that contribute to agonism. Substitution of these ELIC residues for their acetylcholine receptor counterparts does not convert acetylcholine into an ELIC agonist, but in some cases reduces the sensitivity of ELIC to acetylcholine antagonism. Acetylcholine antagonism can be abolished by combining two substitutions that together appear to knock out acetylcholine binding. Thus, making the ELIC agonist-binding site more acetylcholine receptor-like, paradoxically reduces the apparent affinity for acetylcholine, demonstrating that residues important for agonist binding in one context can be deleterious in another. These findings reinforce the notion that although agonism originates from local interactions within the agonist-binding site, it is a global property with cryptic contributions from distant residues. Finally, our results highlight an underappreciated mechanism of antagonism, where agonists with appreciable affinity, but negligible efficacy, present as competitive antagonists. A structural and functional study of the prokaryotic ligand-gated ion channel, ELIC, provides insight into the origin of agonism and antagonism at nicotinic acetylcholine receptors.
Collapse
|
35
|
Azbukina N, Zharikova A, Ramensky V. Intragenic compensation through the lens of deep mutational scanning. Biophys Rev 2022; 14:1161-1182. [PMID: 36345285 PMCID: PMC9636336 DOI: 10.1007/s12551-022-01005-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/26/2022] [Indexed: 12/20/2022] Open
Abstract
A significant fraction of mutations in proteins are deleterious and result in adverse consequences for protein function, stability, or interaction with other molecules. Intragenic compensation is a specific case of positive epistasis when a neutral missense mutation cancels effect of a deleterious mutation in the same protein. Permissive compensatory mutations facilitate protein evolution, since without them all sequences would be extremely conserved. Understanding compensatory mechanisms is an important scientific challenge at the intersection of protein biophysics and evolution. In human genetics, intragenic compensatory interactions are important since they may result in variable penetrance of pathogenic mutations or fixation of pathogenic human alleles in orthologous proteins from related species. The latter phenomenon complicates computational and clinical inference of an allele's pathogenicity. Deep mutational scanning is a relatively new technique that enables experimental studies of functional effects of thousands of mutations in proteins. We review the important aspects of the field and discuss existing limitations of current datasets. We reviewed ten published DMS datasets with quantified functional effects of single and double mutations and described rates and patterns of intragenic compensation in eight of them. Supplementary Information The online version contains supplementary material available at 10.1007/s12551-022-01005-w.
Collapse
Affiliation(s)
- Nadezhda Azbukina
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 1-73, Leninskie Gory, 119991 Moscow, Russia
| | - Anastasia Zharikova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 1-73, Leninskie Gory, 119991 Moscow, Russia
- National Medical Research Center for Therapy and Preventive Medicine, Petroverigsky per., 10, Bld.3, 101000 Moscow, Russia
| | - Vasily Ramensky
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 1-73, Leninskie Gory, 119991 Moscow, Russia
- National Medical Research Center for Therapy and Preventive Medicine, Petroverigsky per., 10, Bld.3, 101000 Moscow, Russia
| |
Collapse
|
36
|
Kim I, Dubrow A, Zuniga B, Zhao B, Sherer N, Bastiray A, Li P, Cho JH. Energy landscape reshaped by strain-specific mutations underlies epistasis in NS1 evolution of influenza A virus. Nat Commun 2022; 13:5775. [PMID: 36182933 PMCID: PMC9526705 DOI: 10.1038/s41467-022-33554-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/22/2022] [Indexed: 11/24/2022] Open
Abstract
Elucidating how individual mutations affect the protein energy landscape is crucial for understanding how proteins evolve. However, predicting mutational effects remains challenging because of epistasis—the nonadditive interactions between mutations. Here, we investigate the biophysical mechanism of strain-specific epistasis in the nonstructural protein 1 (NS1) of influenza A viruses (IAVs). We integrate structural, kinetic, thermodynamic, and conformational dynamics analyses of four NS1s of influenza strains that emerged between 1918 and 2004. Although functionally near-neutral, strain-specific NS1 mutations exhibit long-range epistatic interactions with residues at the p85β-binding interface. We reveal that strain-specific mutations reshaped the NS1 energy landscape during evolution. Using NMR spin dynamics, we find that the strain-specific mutations altered the conformational dynamics of the hidden network of tightly packed residues, underlying the evolution of long-range epistasis. This work shows how near-neutral mutations silently alter the biophysical energy landscapes, resulting in diverse background effects during molecular evolution. Influenza A virus (IAV) nonstructural protein 1 (NS1) is a multifunctional virulence factor that interacts with several host factors such as phosphatidylinositol-3-kinase (PI3K). NS1 binds specifically to the p85β regulatory subunit of PI3K and subsequently activates PI3K signaling. Here, Kim et al. show that functionally near-neutral, strain-specific NS1 mutations lead to variations in binding kinetics to p85β exhibit long-range epistatic interactions. Applying NMR they provide evidence that the structural dynamics of the NS1 hydrophobic core have evolved over time and contributed to epistasis.
Collapse
Affiliation(s)
- Iktae Kim
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Alyssa Dubrow
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Bryan Zuniga
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Baoyu Zhao
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Noah Sherer
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Abhishek Bastiray
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Pingwei Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Jae-Hyun Cho
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
37
|
Word KR, Austin SH, Wingfield JC. Allostasis revisited: A perception, variation, and risk framework. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.954708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The framework of allostasis, allostatic load and overload (i.e., stability through change) attempts to combine homeostasis processes in day-to-day responses of physiology and behavior. These include predictive changes in environment such as seasons, and facultative responses to perturbations. The latter can be severe, occur at any time, and may present considerable additional challenges to homeostasis. Hormonal cascades, such as the hypothalamo-pituitary-adrenal cortex (HPA) axis, play a key role in responses to perturbations across vertebrate taxa. Glucocorticoids have been implicated in these processes in relation to energy balance that plays a role in determining responses to energetic demand (allostatic load) and influencing subsequent physiology and behavior associated with coping. Circulating glucocorticoid levels are likely regulated in part based on an individual’s proximity to energetic crisis, identified as the perturbation resistance potential (PRP). In the model of allostatic load, PRP is quantified as the difference between available resources and all energetic costs of allostatic load such as daily routines, life history stages (breeding, migration, molt and so on), and the impact of environmental perturbations. PRP can change gradually or abruptly and may be reflected by spikes in blood hormone levels. The pattern of individual responsiveness to PRP may vary and has specific implications for the activation of mineralocorticoid vs glucocorticoid-type receptors, hormone metabolizing enzymes and other downstream factors in target tissues. However, PRP is a difficult metric to measure. Here, we examine the variety of cues that animals may use to inform them about the status of their PRP and probability of energetic crisis. We consider (1) elevation in glucocorticoids as an endocrine “decision,” and (2) error management strategies in evaluating responsiveness to cues that may reflect or predict an impending energetic crisis. The potential for differential receptor activation as well as further integrative “decisions” to determine the diverse and sometimes contradictory effects of receptor activation and its downstream actions are important to the consideration of error management. This perspective offers insight into the basis of intra- and inter-individual variability in responsiveness and opens an avenue toward improving compatibility of the allostasis model with more classical views on “stress”.
Collapse
|
38
|
Abstract
The rediscovery of Mendel’s work showing that the heredity of phenotypes is controlled by discrete genes was followed by the reconciliation of Mendelian genetics with evolution by natural selection in the middle of the last century with the Modern Synthesis. In the past two decades, dramatic advances in genomic methods have facilitated the identification of the loci, genes, and even individual mutations that underlie phenotypic variants that are the putative targets of natural selection. Moreover, these methods have also changed how we can study adaptation by flipping the problem around, allowing us to first examine what loci show evidence of having been under selection, and then connecting these genetic variants to phenotypic variation. As a result, we now have an expanding list of actual genetic changes that underlie potentially adaptive phenotypic variation. Here, we synthesize how considering the effects of these adaptive loci in the context of cellular environments, genomes, organisms, and populations has provided new insights to the genetic architecture of adaptation.
Collapse
|
39
|
Barnes JE, Miller CR, Ytreberg FM. Searching for a mechanistic description of pairwise epistasis in protein systems. Proteins 2022; 90:1474-1485. [DOI: 10.1002/prot.26328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 11/05/2021] [Accepted: 02/22/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Jonathan E. Barnes
- Department of Physics University of Idaho Moscow Idaho USA
- Institute for Modeling Collaboration and Innovation, University of Idaho Moscow Idaho USA
| | - Craig R. Miller
- Institute for Modeling Collaboration and Innovation, University of Idaho Moscow Idaho USA
- Department of Biological Sciences University of Idaho Moscow Idaho USA
- Institute for Interdisciplinary Data Sciences, University of Idaho Moscow Idaho USA
| | - Frederick Marty Ytreberg
- Department of Physics University of Idaho Moscow Idaho USA
- Institute for Modeling Collaboration and Innovation, University of Idaho Moscow Idaho USA
- Institute for Interdisciplinary Data Sciences, University of Idaho Moscow Idaho USA
| |
Collapse
|
40
|
Park Y, Metzger BPH, Thornton JW. Epistatic drift causes gradual decay of predictability in protein evolution. Science 2022; 376:823-830. [PMID: 35587978 DOI: 10.1126/science.abn6895] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Epistatic interactions can make the outcomes of evolution unpredictable, but no comprehensive data are available on the extent and temporal dynamics of changes in the effects of mutations as protein sequences evolve. Here, we use phylogenetic deep mutational scanning to measure the functional effect of every possible amino acid mutation in a series of ancestral and extant steroid receptor DNA binding domains. Across 700 million years of evolution, epistatic interactions caused the effects of most mutations to become decorrelated from their initial effects and their windows of evolutionary accessibility to open and close transiently. Most effects changed gradually and without bias at rates that were largely constant across time, indicating a neutral process caused by many weak epistatic interactions. Our findings show that protein sequences drift inexorably into contingency and unpredictability, but that the process is statistically predictable, given sufficient phylogenetic and experimental data.
Collapse
Affiliation(s)
- Yeonwoo Park
- Committee on Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, IL, USA
| | - Brian P H Metzger
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Joseph W Thornton
- Committee on Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, IL, USA.,Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA.,Department of Human Genetics, University of Chicago, Chicago, IL, USA
| |
Collapse
|
41
|
Local and Global Protein Interactions Contribute to Residue Entrenchment in Beta-Lactamase TEM-1. Antibiotics (Basel) 2022; 11:antibiotics11050652. [PMID: 35625296 PMCID: PMC9137480 DOI: 10.3390/antibiotics11050652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 11/22/2022] Open
Abstract
Due to their rapid evolution and their impact on healthcare, beta-lactamases, protein degrading beta-lactam antibiotics, are used as generic models of protein evolution. Therefore, we investigated the mutation effects in two distant beta-lactamases, TEM-1 and CTX-M-15. Interestingly, we found a site with a complex pattern of genetic interactions. Mutation G251W in TEM-1 inactivates the protein’s function, just as the reciprocal mutation, W251G, does in CTX-M-15. The phylogenetic analysis revealed that mutation G has been entrenched in TEM-1’s background: while rarely observed throughout the phylogeny, it is essential in TEM-1. Using a rescue experiment, in the TEM-1 G251W mutant, we identified sites that alleviate the deviation from G to W. While few of these mutations could potentially involve local interactions, most of them were found on distant residues in the 3D structure. Many well-known mutations that have an impact on protein stability, such as M182T, were recovered. Our results therefore suggest that entrenchment of an amino acid may rely on diffuse interactions among multiple sites, with a major impact on protein stability.
Collapse
|
42
|
Ding D, Green AG, Wang B, Lite TLV, Weinstein EN, Marks DS, Laub MT. Co-evolution of interacting proteins through non-contacting and non-specific mutations. Nat Ecol Evol 2022; 6:590-603. [PMID: 35361892 PMCID: PMC9090974 DOI: 10.1038/s41559-022-01688-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 01/31/2022] [Indexed: 01/08/2023]
Abstract
Proteins often accumulate neutral mutations that do not affect current functions but can profoundly influence future mutational possibilities and functions. Understanding such hidden potential has major implications for protein design and evolutionary forecasting but has been limited by a lack of systematic efforts to identify potentiating mutations. Here, through the comprehensive analysis of a bacterial toxin-antitoxin system, we identified all possible single substitutions in the toxin that enable it to tolerate otherwise interface-disrupting mutations in its antitoxin. Strikingly, the majority of enabling mutations in the toxin do not contact and promote tolerance non-specifically to many different antitoxin mutations, despite covariation in homologues occurring primarily between specific pairs of contacting residues across the interface. In addition, the enabling mutations we identified expand future mutational paths that both maintain old toxin-antitoxin interactions and form new ones. These non-specific mutations are missed by widely used covariation and machine learning methods. Identifying such enabling mutations will be critical for ensuring continued binding of therapeutically relevant proteins, such as antibodies, aimed at evolving targets.
Collapse
Affiliation(s)
- David Ding
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Anna G Green
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Boyuan Wang
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Thuy-Lan Vo Lite
- Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA, USA
| | | | - Debora S Marks
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Michael T Laub
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
43
|
Youssef N, Susko E, Roger AJ, Bielawski JP. Evolution of amino acid propensities under stability-mediated epistasis. Mol Biol Evol 2022; 39:6522130. [PMID: 35134997 PMCID: PMC8896634 DOI: 10.1093/molbev/msac030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Site-specific amino acid preferences are influenced by the genetic background of the protein. The preferences for resident amino acids are expected to, on average, increase over time because of replacements at other sites - a nonadaptive phenomenon referred to as the 'evolutionary Stokes shift'. Alternatively, decreases in resident amino acid propensity have recently been viewed as evidence of adaptations to external environmental changes. Using population genetics theory and thermodynamic stability-constraints, we show that nonadaptive evolution can lead to both positive and negative shifts in propensities following the fixation of an amino acid, emphasizing that the detection of negative shifts is not conclusive evidence of adaptation. Considering shifts in propensities over windows between substitutions at a focal site, we find that following ≈ 50% of substitutions the propensity for the new resident amino acid decreases over time, and both positive and negative shifts were comparable in magnitude. Preferences were often conserved via a significant negative autocorrelation in propensity changes-increases in propensities often followed by decreases, and vice versa. Lastly, we explore the underlying mechanisms that lead propensities to fluctuate. We observe that stabilizing replacements increase the mutational tolerance at a site and in doing so decrease the propensity for the resident amino acid. In contrast, destabilizing substitutions result in more rugged fitness landscapes that tend to favor the resident amino acid. In summary, our results characterize propensity trajectories under nonadaptive stability-constrained evolution against which evidence of adaptations should be calibrated.
Collapse
Affiliation(s)
- Noor Youssef
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Edward Susko
- Department of Mathematics and Statistics, Dalhousie University, Halifax, NS, Canada
| | - Andrew J Roger
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Joseph P Bielawski
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada Department of Mathematics and Statistics, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
44
|
Truong DP, Rousseau S, Machala BW, Huddleston JP, Zhu M, Hull KG, Romo D, Raushel FM, Sacchettini JC, Glasner ME. Second-Shell Amino Acid R266 Helps Determine N-Succinylamino Acid Racemase Reaction Specificity in Promiscuous N-Succinylamino Acid Racemase/ o-Succinylbenzoate Synthase Enzymes. Biochemistry 2021; 60:3829-3840. [PMID: 34845903 DOI: 10.1021/acs.biochem.1c00627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Catalytic promiscuity is the coincidental ability to catalyze nonbiological reactions in the same active site as the native biological reaction. Several lines of evidence show that catalytic promiscuity plays a role in the evolution of new enzyme functions. Thus, studying catalytic promiscuity can help identify structural features that predispose an enzyme to evolve new functions. This study identifies a potentially preadaptive residue in a promiscuous N-succinylamino acid racemase/o-succinylbenzoate synthase (NSAR/OSBS) enzyme from Amycolatopsis sp. T-1-60. This enzyme belongs to a branch of the OSBS family which includes many catalytically promiscuous NSAR/OSBS enzymes. R266 is conserved in all members of the NSAR/OSBS subfamily. However, the homologous position is usually hydrophobic in other OSBS subfamilies, whose enzymes lack NSAR activity. The second-shell amino acid R266 is close to the catalytic acid/base K263, but it does not contact the substrate, suggesting that R266 could affect the catalytic mechanism. Mutating R266 to glutamine in Amycolatopsis NSAR/OSBS profoundly reduces NSAR activity but moderately reduces OSBS activity. This is due to a 1000-fold decrease in the rate of proton exchange between the substrate and the general acid/base catalyst K263. This mutation is less deleterious for the OSBS reaction because K263 forms a cation-π interaction with the OSBS substrate and/or the intermediate, rather than acting as a general acid/base catalyst. Together, the data explain how R266 contributes to NSAR reaction specificity and was likely an essential preadaptation for the evolution of NSAR activity.
Collapse
Affiliation(s)
- Dat P Truong
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, Texas 77843-2128, United States
| | - Simon Rousseau
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, Texas 77843-2128, United States
| | - Benjamin W Machala
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, Texas 77843-2128, United States
| | - Jamison P Huddleston
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77843-3255, United States
| | - Mingzhao Zhu
- Baylor Synthesis and Drug-Lead Discovery Laboratory, Department of Chemistry and Biochemistry, Baylor University, One Bear Place, Waco, Texas 76798-7348, United States
| | - Kenneth G Hull
- Baylor Synthesis and Drug-Lead Discovery Laboratory, Department of Chemistry and Biochemistry, Baylor University, One Bear Place, Waco, Texas 76798-7348, United States
| | - Daniel Romo
- Baylor Synthesis and Drug-Lead Discovery Laboratory, Department of Chemistry and Biochemistry, Baylor University, One Bear Place, Waco, Texas 76798-7348, United States
| | - Frank M Raushel
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, Texas 77843-2128, United States.,Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77843-3255, United States
| | - James C Sacchettini
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77843-3255, United States
| | - Margaret E Glasner
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, Texas 77843-2128, United States
| |
Collapse
|
45
|
Phillips AM, Lawrence KR, Moulana A, Dupic T, Chang J, Johnson MS, Cvijovic I, Mora T, Walczak AM, Desai MM. Binding affinity landscapes constrain the evolution of broadly neutralizing anti-influenza antibodies. eLife 2021; 10:71393. [PMID: 34491198 PMCID: PMC8476123 DOI: 10.7554/elife.71393] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/05/2021] [Indexed: 12/12/2022] Open
Abstract
Over the past two decades, several broadly neutralizing antibodies (bnAbs) that confer protection against diverse influenza strains have been isolated. Structural and biochemical characterization of these bnAbs has provided molecular insight into how they bind distinct antigens. However, our understanding of the evolutionary pathways leading to bnAbs, and thus how best to elicit them, remains limited. Here, we measure equilibrium dissociation constants of combinatorially complete mutational libraries for two naturally isolated influenza bnAbs (CR9114, 16 heavy-chain mutations; CR6261, 11 heavy-chain mutations), reconstructing all possible evolutionary intermediates back to the unmutated germline sequences. We find that these two libraries exhibit strikingly different patterns of breadth: while many variants of CR6261 display moderate affinity to diverse antigens, those of CR9114 display appreciable affinity only in specific, nested combinations. By examining the extensive pairwise and higher order epistasis between mutations, we find key sites with strong synergistic interactions that are highly similar across antigens for CR6261 and different for CR9114. Together, these features of the binding affinity landscapes strongly favor sequential acquisition of affinity to diverse antigens for CR9114, while the acquisition of breadth to more similar antigens for CR6261 is less constrained. These results, if generalizable to other bnAbs, may explain the molecular basis for the widespread observation that sequential exposure favors greater breadth, and such mechanistic insight will be essential for predicting and eliciting broadly protective immune responses.
Collapse
Affiliation(s)
- Angela M Phillips
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States
| | - Katherine R Lawrence
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States.,NSF-Simons Center for Mathematical and Statistical Analysis of Biology, Harvard University, Cambridge, United States.,Quantitative Biology Initiative, Harvard University, Cambridge, United States.,Department of Physics, Massachusetts Institute of Technology, Cambridge, United States
| | - Alief Moulana
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States
| | - Thomas Dupic
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States
| | - Jeffrey Chang
- Department of Physics, Harvard University, Cambridge, United States
| | - Milo S Johnson
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States
| | - Ivana Cvijovic
- Department of Applied Physics, Stanford University, Stanford, United States
| | - Thierry Mora
- Laboratoire de physique de ÍÉcole Normale Supérieure, CNRS, PSL University, Sorbonne Université, and Université de Paris, Paris, France
| | - Aleksandra M Walczak
- Laboratoire de physique de ÍÉcole Normale Supérieure, CNRS, PSL University, Sorbonne Université, and Université de Paris, Paris, France
| | - Michael M Desai
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States.,NSF-Simons Center for Mathematical and Statistical Analysis of Biology, Harvard University, Cambridge, United States.,Quantitative Biology Initiative, Harvard University, Cambridge, United States.,Department of Physics, Harvard University, Cambridge, United States
| |
Collapse
|
46
|
Morrison AJ, Wonderlick DR, Harms MJ. Ensemble epistasis: thermodynamic origins of nonadditivity between mutations. Genetics 2021; 219:iyab105. [PMID: 34849909 PMCID: PMC8633102 DOI: 10.1093/genetics/iyab105] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/19/2021] [Indexed: 01/02/2023] Open
Abstract
Epistasis-when mutations combine nonadditively-is a profoundly important aspect of biology. It is often difficult to understand its mechanistic origins. Here, we show that epistasis can arise from the thermodynamic ensemble, or the set of interchanging conformations a protein adopts. Ensemble epistasis occurs because mutations can have different effects on different conformations of the same protein, leading to nonadditive effects on its average, observable properties. Using a simple analytical model, we found that ensemble epistasis arises when two conditions are met: (1) a protein populates at least three conformations and (2) mutations have differential effects on at least two conformations. To explore the relative magnitude of ensemble epistasis, we performed a virtual deep-mutational scan of the allosteric Ca2+ signaling protein S100A4. We found that 47% of mutation pairs exhibited ensemble epistasis with a magnitude on the order of thermal fluctuations. We observed many forms of epistasis: magnitude, sign, and reciprocal sign epistasis. The same mutation pair could even exhibit different forms of epistasis under different environmental conditions. The ubiquity of thermodynamic ensembles in biology and the pervasiveness of ensemble epistasis in our dataset suggests that it may be a common mechanism of epistasis in proteins and other macromolecules.
Collapse
Affiliation(s)
- Anneliese J Morrison
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
- Department of Chemistry and Biochemistry, University of Oregon, Eugene OR 97403, USA
| | - Daria R Wonderlick
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
- Department of Chemistry and Biochemistry, University of Oregon, Eugene OR 97403, USA
| | - Michael J Harms
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
- Department of Chemistry and Biochemistry, University of Oregon, Eugene OR 97403, USA
| |
Collapse
|
47
|
Toda Y, Ko MC, Liang Q, Miller ET, Rico-Guevara A, Nakagita T, Sakakibara A, Uemura K, Sackton T, Hayakawa T, Sin SYW, Ishimaru Y, Misaka T, Oteiza P, Crall J, Edwards SV, Buttemer W, Matsumura S, Baldwin MW. Early origin of sweet perception in the songbird radiation. Science 2021; 373:226-231. [PMID: 34244416 DOI: 10.1126/science.abf6505] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 05/19/2021] [Indexed: 12/24/2022]
Abstract
Early events in the evolutionary history of a clade can shape the sensory systems of descendant lineages. Although the avian ancestor may not have had a sweet receptor, the widespread incidence of nectar-feeding birds suggests multiple acquisitions of sugar detection. In this study, we identify a single early sensory shift of the umami receptor (the T1R1-T1R3 heterodimer) that conferred sweet-sensing abilities in songbirds, a large evolutionary radiation containing nearly half of all living birds. We demonstrate sugar responses across species with diverse diets, uncover critical sites underlying carbohydrate detection, and identify the molecular basis of sensory convergence between songbirds and nectar-specialist hummingbirds. This early shift shaped the sensory biology of an entire radiation, emphasizing the role of contingency and providing an example of the genetic basis of convergence in avian evolution.
Collapse
Affiliation(s)
- Yasuka Toda
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan.,Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan.,Japan Society for the Promotion of Science, Tokyo 102-0083, Japan
| | - Meng-Ching Ko
- Evolution of Sensory Systems Research Group, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Qiaoyi Liang
- Evolution of Sensory Systems Research Group, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Eliot T Miller
- Macaulay Library, Cornell Lab of Ornithology, Ithaca, NY, USA
| | - Alejandro Rico-Guevara
- Department of Biology, University of Washington, Seattle, WA 98105, USA.,Burke Museum of Natural History and Culture, University of Washington, Seattle, WA 98105, USA
| | - Tomoya Nakagita
- Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Ayano Sakakibara
- Faculty of Applied Biological Sciences, Gifu University, Gifu, 501-1193, Japan
| | - Kana Uemura
- Faculty of Applied Biological Sciences, Gifu University, Gifu, 501-1193, Japan
| | | | - Takashi Hayakawa
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan.,Japan Monkey Centre, Inuyama, Aichi 484-0081, Japan
| | - Simon Yung Wa Sin
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong.,Department of Organismic and Evolutionary Biology and the Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA, USA
| | - Yoshiro Ishimaru
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| | - Takumi Misaka
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Pablo Oteiza
- Flow Sensing Research Group, Max Planck Institute for Ornithology, Seewiesen Germany
| | - James Crall
- Department of Organismic and Evolutionary Biology and the Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA, USA.,Department of Entomology, University of Wisconsin-Madison, WI, USA
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology and the Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA, USA
| | - William Buttemer
- Centre for Integrative Ecology, Deakin University, Geelong, Victoria, Australia.,School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - Shuichi Matsumura
- Faculty of Applied Biological Sciences, Gifu University, Gifu, 501-1193, Japan
| | - Maude W Baldwin
- Evolution of Sensory Systems Research Group, Max Planck Institute for Ornithology, Seewiesen, Germany. .,Department of Organismic and Evolutionary Biology and the Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA, USA
| |
Collapse
|
48
|
Liu X, Weikum ER, Tilo D, Vinson C, Ortlund EA. Structural basis for glucocorticoid receptor recognition of both unmodified and methylated binding sites, precursors of a modern recognition element. Nucleic Acids Res 2021; 49:8923-8933. [PMID: 34289059 PMCID: PMC8421226 DOI: 10.1093/nar/gkab605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/24/2021] [Accepted: 07/20/2021] [Indexed: 11/20/2022] Open
Abstract
The most common form of DNA methylation involves the addition of a methyl group to a cytosine base in the context of a cytosine–phosphate–guanine (CpG) dinucleotide. Genomes from more primitive organisms are more abundant in CpG sites that, through the process of methylation, deamination and subsequent mutation to thymine–phosphate–guanine (TpG) sites, can produce new transcription factor binding sites. Here, we examined the evolutionary history of the over 36 000 glucocorticoid receptor (GR) consensus binding motifs in the human genome and identified a subset of them in regulatory regions that arose via a deamination and subsequent mutation event. GR can bind to both unmodified and methylated pre-GR binding sequences (GBSs) that contain a CpG site. Our structural analyses show that CpG methylation in a pre-GBS generates a favorable interaction with Arg447 mimicking that made with a TpG in a GBS. This methyl-specific recognition arose 420 million years ago and was conserved during the evolution of GR and likely helps fix the methylation on the relevant cytosines. Our study provides the first genetic, biochemical and structural evidence of high-affinity binding for the likely evolutionary precursor of extant TpG-containing GBS.
Collapse
Affiliation(s)
- Xu Liu
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Emily R Weikum
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Desiree Tilo
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Charles Vinson
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eric A Ortlund
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
49
|
Bahr G, González LJ, Vila AJ. Metallo-β-lactamases in the Age of Multidrug Resistance: From Structure and Mechanism to Evolution, Dissemination, and Inhibitor Design. Chem Rev 2021; 121:7957-8094. [PMID: 34129337 PMCID: PMC9062786 DOI: 10.1021/acs.chemrev.1c00138] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antimicrobial resistance is one of the major problems in current practical medicine. The spread of genes coding for resistance determinants among bacteria challenges the use of approved antibiotics, narrowing the options for treatment. Resistance to carbapenems, last resort antibiotics, is a major concern. Metallo-β-lactamases (MBLs) hydrolyze carbapenems, penicillins, and cephalosporins, becoming central to this problem. These enzymes diverge with respect to serine-β-lactamases by exhibiting a different fold, active site, and catalytic features. Elucidating their catalytic mechanism has been a big challenge in the field that has limited the development of useful inhibitors. This review covers exhaustively the details of the active-site chemistries, the diversity of MBL alleles, the catalytic mechanism against different substrates, and how this information has helped developing inhibitors. We also discuss here different aspects critical to understand the success of MBLs in conferring resistance: the molecular determinants of their dissemination, their cell physiology, from the biogenesis to the processing involved in the transit to the periplasm, and the uptake of the Zn(II) ions upon metal starvation conditions, such as those encountered during an infection. In this regard, the chemical, biochemical and microbiological aspects provide an integrative view of the current knowledge of MBLs.
Collapse
Affiliation(s)
- Guillermo Bahr
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Lisandro J. González
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Alejandro J. Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| |
Collapse
|
50
|
Romero-Romero S, Costas M, Silva Manzano DA, Kordes S, Rojas-Ortega E, Tapia C, Guerra Y, Shanmugaratnam S, Rodríguez-Romero A, Baker D, Höcker B, Fernández-Velasco DA. The Stability Landscape of de novo TIM Barrels Explored by a Modular Design Approach. J Mol Biol 2021; 433:167153. [PMID: 34271011 PMCID: PMC8404036 DOI: 10.1016/j.jmb.2021.167153] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/18/2021] [Accepted: 07/06/2021] [Indexed: 11/25/2022]
Abstract
The TIM barrel is a versatile fold to understand structure-stability relationships. A collection of de novo TIM barrels with improved hydrophobic cores was designed. DeNovoTIMs are reversible in chemical and thermal unfolding, which is uncommon in TIM barrels. Epistatic effects play a central role in DeNovoTIMs stabilization. DeNovoTIMs navigate a previously uncharted region of the stability landscape.
The ability to design stable proteins with custom-made functions is a major goal in biochemistry with practical relevance for our environment and society. Understanding and manipulating protein stability provide crucial information on the molecular determinants that modulate structure and stability, and expand the applications of de novo proteins. Since the (β/⍺)8-barrel or TIM-barrel fold is one of the most common functional scaffolds, in this work we designed a collection of stable de novo TIM barrels (DeNovoTIMs), using a computational fixed-backbone and modular approach based on improved hydrophobic packing of sTIM11, the first validated de novo TIM barrel, and subjected them to a thorough folding analysis. DeNovoTIMs navigate a region of the stability landscape previously uncharted by natural TIM barrels, with variations spanning 60 degrees in melting temperature and 22 kcal per mol in conformational stability throughout the designs. Significant non-additive or epistatic effects were observed when stabilizing mutations from different regions of the barrel were combined. The molecular basis of epistasis in DeNovoTIMs appears to be related to the extension of the hydrophobic cores. This study is an important step towards the fine-tuned modulation of protein stability by design.
Collapse
Affiliation(s)
- Sergio Romero-Romero
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico; Department of Biochemistry, University of Bayreuth, 95447 Bayreuth, Germany
| | - Miguel Costas
- Laboratorio de Biofisicoquímica, Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
| | - Daniel-Adriano Silva Manzano
- Department of Biochemistry, University of Washington, 98195 Seattle, USA; Institute for Protein Design, University of Washington, 98195 Seattle, USA
| | - Sina Kordes
- Department of Biochemistry, University of Bayreuth, 95447 Bayreuth, Germany
| | - Erendira Rojas-Ortega
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
| | - Cinthya Tapia
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
| | - Yasel Guerra
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
| | | | - Adela Rodríguez-Romero
- Instituto de Química, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
| | - David Baker
- Department of Biochemistry, University of Washington, 98195 Seattle, USA; Institute for Protein Design, University of Washington, 98195 Seattle, USA.
| | - Birte Höcker
- Department of Biochemistry, University of Bayreuth, 95447 Bayreuth, Germany.
| | - D Alejandro Fernández-Velasco
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico.
| |
Collapse
|