1
|
Wang XR, Zhong H, Ma SS, Huang YH, Xu WH, Wang Y. Discovery of petroselinic acid with in vitro and in vivo antifungal activity by targeting fructose-1,6-bisphosphate aldolase. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155948. [PMID: 39153276 DOI: 10.1016/j.phymed.2024.155948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/29/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND The incidence of invasive fungal diseases (IFDs), represented by Candida albicans infection, is increasing year by year. However, clinically available antifungal drugs are very limited and encounter challenges such as limited efficacy, drug resistance, high toxicity, and exorbitant cost. Therefore, there is an urgent need for new antifungal drugs. PURPOSE This study aims to find new antifungal compounds from plants, preferably those with good activity and low toxicity, and reveal their antifungal targets. METHODS In vitro antifungal activities of compounds were investigated using broth microdilution method, spot assay, hyphal growth assay and biofilm formation assay. Synergistic effects were assessed using broth microdilution checkerboard technique. In vivo antifungal activities were evaluated using Galleria mellonella and murine candidiasis models. Cytotoxicity of compounds was investigated using Cell Counting Kit-8 (CCK-8). Discovery and validation of antifungal targets of compounds were conducted by using monoallelic knockout library of C. albicans, haploinsufficiency profiling (HIP), thermal shift assay (TSA), enzyme inhibitory effect assay, molecular docking, and in vitro and in vivo antifungal studies. RESULTS 814 plant products were screened, among which petroselinic acid (PeAc) was found as an antifungal molecule. As a rare fatty acid isolated from coriander (Coriandrum sativum), carrot (Daucus carota) and other plants of the Apiaceae family, PeAc had not previously been found to have antifungal effects. In this study, PeAc was revealed to inhibit the growth of various pathogenic fungi, exhibited synergistic effects with fluconazole (FLC), inhibited the formation of C. albicans hyphae and biofilms, and showed antifungal effects in vivo. PeAc was less toxic to mammalian cells. Fructose-1,6-bisphosphate aldolase (Fba1p) was identified as a target of PeAc by using HIP, TSA, enzyme inhibitory effect assay and molecular docking methods. PeAc exerted antifungal effects more effectively on fba1Δ/FBA1 than wild-type (WT) strain both in vitro and in vivo. CONCLUSIONS PeAc is an effective and low toxic antifungal compound. The target of PeAc is Fba1p. Fba1p is a promising target for antifungal drug development.
Collapse
Affiliation(s)
- Xin-Rong Wang
- School of Pharmacy, Second Military Medical University (Naval Medical University), Shanghai 200433, China
| | - Hua Zhong
- School of Pharmacy, Second Military Medical University (Naval Medical University), Shanghai 200433, China
| | - Shan-Shan Ma
- School of Pharmacy, Second Military Medical University (Naval Medical University), Shanghai 200433, China
| | - Ya-Hui Huang
- School of Pharmacy, Second Military Medical University (Naval Medical University), Shanghai 200433, China
| | - Wei-Heng Xu
- School of Pharmacy, Second Military Medical University (Naval Medical University), Shanghai 200433, China
| | - Yan Wang
- School of Pharmacy, Second Military Medical University (Naval Medical University), Shanghai 200433, China.
| |
Collapse
|
2
|
Jędrzejczak P, Saramowicz K, Kuś J, Barczuk J, Rozpędek-Kamińska W, Siwecka N, Galita G, Wiese W, Majsterek I. SEPT9_i1 and Septin Dynamics in Oncogenesis and Cancer Treatment. Biomolecules 2024; 14:1194. [PMID: 39334960 PMCID: PMC11430720 DOI: 10.3390/biom14091194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/12/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Despite significant advancements in the field of oncology, cancers still pose one of the greatest challenges of modern healthcare. Given the cytoskeleton's pivotal role in regulating mechanisms critical to cancer development, further studies of the cytoskeletal elements could yield new practical applications. Septins represent a group of relatively well-conserved GTP-binding proteins that constitute the fourth component of the cytoskeleton. Septin 9 (SEPT9) has been linked to a diverse spectrum of malignancies and appears to be the most notable septin member in that category. SEPT9 constitutes a biomarker of colorectal cancer (CRC) and has been positively correlated with a high clinical stage in breast cancer, cervical cancer, and head and neck squamous cell carcinoma. SEPT9_i1 represents the most extensively studied isoform of SEPT9, which substantially contributes to carcinogenesis, metastasis, and treatment resistance. Nevertheless, the mechanistic basis of SEPT9_i1 oncogenicity remains to be fully elucidated. In this review, we highlight SEPT9's and SEPT9_i1's structures and interactions with Hypoxia Inducible Factor α (HIF-1 α) and C-Jun N-Terminal Kinase (JNK), as well as discuss SEPT9_i1's contribution to aneuploidy, cell invasiveness, and taxane resistance-key phenomena in the progression of malignancies. Finally, we emphasize forchlorfenuron and other septin inhibitors as potential chemotherapeutics and migrastatics.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland; (P.J.); (K.S.); (J.K.); (J.B.); (W.R.-K.); (N.S.); (G.G.); (W.W.)
| |
Collapse
|
3
|
Sutjita P, Musalgaonkar S, Recchia-Rife J, Huang L, Xhemalce B, Johnson AW. The Ribosome Assembly Factor LSG1 Interacts with Vesicle-Associated Membrane Protein-Associated Proteins (VAPs). Mol Cell Biol 2024; 44:345-357. [PMID: 39133101 PMCID: PMC11376406 DOI: 10.1080/10985549.2024.2384600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/13/2024] Open
Abstract
LSG1 is a conserved GTPase involved in ribosome assembly. It is required for the eviction of the nuclear export adapter NMD3 from the pre-60S subunit in the cytoplasm. In human cells, LSG1 has also been shown to interact with vesicle-associated membrane protein-associated proteins (VAPs) that are found primarily on the endoplasmic reticulum. VAPs interact with a large host of proteins which contain FFAT motifs (two phenylalanines (FF) in an acidic tract) and are involved in many cellular functions including membrane traffic and regulation of lipid transport. Here, we show that human LSG1 binds to VAPs via a noncanonical FFAT-like motif. Deletion of this motif specifically disrupts the localization of LSG1 to the ER, without perturbing LSG1-dependent recycling of NMD3 in cells or modulation of LSG1 GTPase activity in vitro.
Collapse
Affiliation(s)
- Putri Sutjita
- Interdisciplinary Life Sciences Graduate Program, The University of Texas at Austin, Austin, Texas, USA
| | | | - Jeffrey Recchia-Rife
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Lisa Huang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Blerta Xhemalce
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Arlen W Johnson
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
4
|
Mokhtari M, Amiri P, Miller D, Gresham D, Bloor SJ, Munkacsi AB. Chemical genomic analysis reveals the interplay between iron chelation, zinc homeostasis, and retromer function in the bioactivity of an ethanol adduct of the feijoa fruit-derived ellagitannin vescalagin. G3 (BETHESDA, MD.) 2024; 14:jkae098. [PMID: 38805688 PMCID: PMC11228861 DOI: 10.1093/g3journal/jkae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 05/30/2024]
Abstract
Nature has been a rich source of pharmaceutical compounds, producing 80% of our currently prescribed drugs. The feijoa plant, Acca sellowiana, is classified in the family Myrtaceae, native to South America, and currently grown worldwide to produce feijoa fruit. Feijoa is a rich source of bioactive compounds with anticancer, anti-inflammatory, antibacterial, and antifungal activities; however, the mechanism of action of these compounds is largely not known. Here, we used chemical genetic analyses in the model organism Saccharomyces cerevisiae to investigate the mechanism of action of a feijoa-derived ethanol adduct of vescalagin (EtOH-vescalagin). Genome-wide barcode sequencing analysis revealed yeast strains lacking genes in iron metabolism, zinc metabolism, retromer function, or mitochondrial function were hypersensitive to 0.3 µM EtOH-vescalagin. This treatment increased expression of iron uptake proteins at the plasma membrane, which was a compensatory response to reduced intracellular iron. Likewise, EtOH-vescalagin increased expression of the Cot1 protein in the vacuolar membrane that transports zinc into the vacuole to prevent cytoplasmic accumulation of zinc. Each individual subunit in the retromer complex was required for the iron homeostatic mechanism of EtOH-vescalagin, while only the cargo recognition component in the retromer complex was required for the zinc homeostatic mechanism. Overexpression of either retromer subunits or high-affinity iron transporters suppressed EtOH-vescalagin bioactivity in a zinc-replete condition, while overexpression of only retromer subunits increased EtOH-vescalagin bioactivity in a zinc-deficient condition. Together, these results indicate that EtOH-vescalagin bioactivity begins with extracellular iron chelation and proceeds with intracellular transport of zinc via the retromer complex. More broadly, this is the first report of a bioactive compound to further characterize the poorly understood interaction between zinc metabolism and retromer function.
Collapse
Affiliation(s)
- Mona Mokhtari
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Pegah Amiri
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Darach Miller
- Department of Genetics, Stanford University Medical School, Stanford, CA 94305, USA
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - David Gresham
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | | | - Andrew B Munkacsi
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| |
Collapse
|
5
|
Chen P, Zhang J. The loci of environmental adaptation in a model eukaryote. Nat Commun 2024; 15:5672. [PMID: 38971805 PMCID: PMC11227561 DOI: 10.1038/s41467-024-50002-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/25/2024] [Indexed: 07/08/2024] Open
Abstract
While the underlying genetic changes have been uncovered in some cases of adaptive evolution, the lack of a systematic study prevents a general understanding of the genomic basis of adaptation. For example, it is unclear whether protein-coding or noncoding mutations are more important to adaptive evolution and whether adaptations to different environments are brought by genetic changes distributed in diverse genes and biological processes or concentrated in a core set. We here perform laboratory evolution of 3360 Saccharomyces cerevisiae populations in 252 environments of varying levels of stress. We find the yeast adaptations to be primarily fueled by large-effect coding mutations overrepresented in a relatively small gene set, despite prevalent antagonistic pleiotropy across environments. Populations generally adapt faster in more stressful environments, partly because of greater benefits of the same mutations in more stressful environments. These and other findings from this model eukaryote help unravel the genomic principles of environmental adaptation.
Collapse
Affiliation(s)
- Piaopiao Chen
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, 48109, USA
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jianzhi Zhang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, 48109, USA.
| |
Collapse
|
6
|
Hammond J, Das IM, Paenga R, Caddie M, Skinner D, Sheridan JP, Miller MR, Munkacsi AB. Multi-omic analysis reveals genes and proteins integral to bioactivity of Echinochrome A isolated from the waste stream of the sea urchin industry in Aotearoa New Zealand. Food Sci Nutr 2024; 12:4927-4943. [PMID: 39055184 PMCID: PMC11266889 DOI: 10.1002/fsn3.4140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 03/07/2024] [Accepted: 03/16/2024] [Indexed: 07/27/2024] Open
Abstract
Evechinus chloroticus (commonly known as kina) is a sea urchin species endemic to New Zealand. Its roe is a culinary delicacy to the indigenous Māori and a globally exported food product. Echinochrome A (Ech A) is a bioactive compound isolated from the waste product of kina shells and spines; however, the molecular mechanisms of Ech A bioactivity are not well understood, partly due to Ech A never being studied using unbiased genome-wide analysis. To explore the high-value pharmaceutical potential of kina food waste, we obtained unbiased functional genomic and proteomic profiles of yeast cells treated with Echinochrome A. Abundance was measured for 4100 proteins every 30 min for four hours using fluorescent microscopy, resulting in the identification of 92 proteins with significant alterations in protein abundance caused by Ech A treatment that were over-represented with specific changes in DNA replication, repair and RNA binding after 30 min, followed by specific changes in the metabolism of metal ions (specifically iron and copper) from 60-240 min. Further analysis indicated that Ech A chelated iron, and that iron supplementation negated the growth inhibition caused by Ech A. Via a growth-based genome-wide analysis of 4800 gene deletion strains, 20 gene deletion strains were sensitive to Ech A in an iron-dependent manner. These genes were over-represented in the cellular response to oxidative stress, suggesting that Ech A suppressed growth inhibition caused by oxidative stress. Unexpectedly, genes integral to cardiolipin and inositol phosphate biosynthesis were required for Ech A bioactivity. Overall, these results identify genes, proteins, and cellular processes mediating the bioactivity of Ech A. Moreover, we demonstrate unbiased genomic and proteomic methodology that will be useful for characterizing bioactive compounds in food and food waste.
Collapse
Affiliation(s)
- Joseph Hammond
- School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand
| | | | - Ruihana Paenga
- Hikurangi Bioactives Limited PartnershipRuatōriaNew Zealand
| | - Manu Caddie
- Hikurangi Bioactives Limited PartnershipRuatōriaNew Zealand
| | - Damian Skinner
- Hikurangi Bioactives Limited PartnershipRuatōriaNew Zealand
| | - Jeffrey P. Sheridan
- School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand
| | | | - Andrew B. Munkacsi
- School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand
- Centre for BiodiscoveryVictoria University of WellingtonWellingtonNew Zealand
| |
Collapse
|
7
|
Puumala E, Sychantha D, Lach E, Reeves S, Nabeela S, Fogal M, Nigam A, Johnson JW, Aspuru-Guzik A, Shapiro RS, Uppuluri P, Kalyaanamoorthy S, Magolan J, Whitesell L, Robbins N, Wright GD, Cowen LE. Allosteric inhibition of tRNA synthetase Gln4 by N-pyrimidinyl-β-thiophenylacrylamides exerts highly selective antifungal activity. Cell Chem Biol 2024; 31:760-775.e17. [PMID: 38402621 PMCID: PMC11031294 DOI: 10.1016/j.chembiol.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/19/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024]
Abstract
Candida species are among the most prevalent causes of systemic fungal infections, which account for ∼1.5 million annual fatalities. Here, we build on a compound screen that identified the molecule N-pyrimidinyl-β-thiophenylacrylamide (NP-BTA), which strongly inhibits Candida albicans growth. NP-BTA was hypothesized to target C. albicans glutaminyl-tRNA synthetase, Gln4. Here, we confirmed through in vitro amino-acylation assays NP-BTA is a potent inhibitor of Gln4, and we defined how NP-BTA arrests Gln4's transferase activity using co-crystallography. This analysis also uncovered Met496 as a critical residue for the compound's species-selective target engagement and potency. Structure-activity relationship (SAR) studies demonstrated the NP-BTA scaffold is subject to oxidative and non-oxidative metabolism, making it unsuitable for systemic administration. In a mouse dermatomycosis model, however, topical application of the compound provided significant therapeutic benefit. This work expands the repertoire of antifungal protein synthesis target mechanisms and provides a path to develop Gln4 inhibitors.
Collapse
Affiliation(s)
- Emily Puumala
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - David Sychantha
- M.G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Elizabeth Lach
- M.G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Shawn Reeves
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Sunna Nabeela
- Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation at Harbor-University of California Los Angeles Medical Center, Torrance, CA 90502, USA
| | - Meea Fogal
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - AkshatKumar Nigam
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Jarrod W Johnson
- M.G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Alán Aspuru-Guzik
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto Toronto, ON M5S 3H6, Canada; Department of Computer Science, University of Toronto, Toronto, ON M5S 2E4, Canada; Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada; Department of Materials Science & Engineering, University of Toronto, Toronto, ON M5S 3E4, Canada; Vector Institute for Artificial Intelligence, Toronto, ON M5G 1M1, Canada; Lebovic Fellow, Canadian Institute for Advanced Research (CIFAR), Toronto, ON M5G 1M1, Canada; Acceleration Consortium, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Rebecca S Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Priya Uppuluri
- Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation at Harbor-University of California Los Angeles Medical Center, Torrance, CA 90502, USA; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90024, USA
| | | | - Jakob Magolan
- M.G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Luke Whitesell
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Gerard D Wright
- M.G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
8
|
Qiu C, Arora P, Malik I, Laperuta AJ, Pavlovic EM, Ugochukwu S, Naik M, Kaplan CD. Thiolutin has complex effects in vivo but is a direct inhibitor of RNA polymerase II in vitro. Nucleic Acids Res 2024; 52:2546-2564. [PMID: 38214235 PMCID: PMC10954460 DOI: 10.1093/nar/gkad1258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 12/18/2023] [Accepted: 12/29/2023] [Indexed: 01/13/2024] Open
Abstract
Thiolutin is a natural product transcription inhibitor with an unresolved mode of action. Thiolutin and the related dithiolopyrrolone holomycin chelate Zn2+ and previous studies have concluded that RNA Polymerase II (Pol II) inhibition in vivo is indirect. Here, we present chemicogenetic and biochemical approaches to investigate thiolutin's mode of action in Saccharomyces cerevisiae. We identify mutants that alter sensitivity to thiolutin. We provide genetic evidence that thiolutin causes oxidation of thioredoxins in vivo and that thiolutin both induces oxidative stress and interacts functionally with multiple metals including Mn2+ and Cu2+, and not just Zn2+. Finally, we show direct inhibition of RNA polymerase II (Pol II) transcription initiation by thiolutin in vitro in support of classical studies that thiolutin can directly inhibit transcription in vitro. Inhibition requires both Mn2+ and appropriate reduction of thiolutin as excess DTT abrogates its effects. Pause prone, defective elongation can be observed in vitro if inhibition is bypassed. Thiolutin effects on Pol II occupancy in vivo are widespread but major effects are consistent with prior observations for Tor pathway inhibition and stress induction, suggesting that thiolutin use in vivo should be restricted to studies on its modes of action and not as an experimental tool.
Collapse
Affiliation(s)
- Chenxi Qiu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Payal Arora
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Indranil Malik
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | - Mandar Naik
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Craig D Kaplan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
9
|
Gaikani HK, Stolar M, Kriti D, Nislow C, Giaever G. From beer to breadboards: yeast as a force for biological innovation. Genome Biol 2024; 25:10. [PMID: 38178179 PMCID: PMC10768129 DOI: 10.1186/s13059-023-03156-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024] Open
Abstract
The history of yeast Saccharomyces cerevisiae, aka brewer's or baker's yeast, is intertwined with our own. Initially domesticated 8,000 years ago to provide sustenance to our ancestors, for the past 150 years, yeast has served as a model research subject and a platform for technology. In this review, we highlight many ways in which yeast has served to catalyze the fields of functional genomics, genome editing, gene-environment interaction investigation, proteomics, and bioinformatics-emphasizing how yeast has served as a catalyst for innovation. Several possible futures for this model organism in synthetic biology, drug personalization, and multi-omics research are also presented.
Collapse
Affiliation(s)
- Hamid Kian Gaikani
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | - Monika Stolar
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Divya Kriti
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Corey Nislow
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada.
| | - Guri Giaever
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
10
|
Tai J, Guerra RM, Rogers SW, Fang Z, Muehlbauer LK, Shishkova E, Overmyer KA, Coon JJ, Pagliarini DJ. Hem25p is required for mitochondrial IPP transport in fungi. Nat Cell Biol 2023; 25:1616-1624. [PMID: 37813972 PMCID: PMC10759932 DOI: 10.1038/s41556-023-01250-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/05/2023] [Indexed: 10/11/2023]
Abstract
Coenzyme Q (CoQ, ubiquinone) is an essential cellular cofactor composed of a redox-active quinone head group and a long hydrophobic polyisoprene tail. How mitochondria access cytosolic isoprenoids for CoQ biosynthesis is a longstanding mystery. Here, via a combination of genetic screening, metabolic tracing and targeted uptake assays, we reveal that Hem25p-a mitochondrial glycine transporter required for haem biosynthesis-doubles as an isopentenyl pyrophosphate (IPP) transporter in Saccharomyces cerevisiae. Mitochondria lacking Hem25p failed to efficiently incorporate IPP into early CoQ precursors, leading to loss of CoQ and turnover of CoQ biosynthetic proteins. Expression of Hem25p in Escherichia coli enabled robust IPP uptake and incorporation into the CoQ biosynthetic pathway. HEM25 orthologues from diverse fungi, but not from metazoans, were able to rescue hem25∆ CoQ deficiency. Collectively, our work reveals that Hem25p drives the bulk of mitochondrial isoprenoid transport for CoQ biosynthesis in fungi.
Collapse
Affiliation(s)
- Jonathan Tai
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- Morgridge Institute for Research, Madison, WI, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO, USA
| | - Rachel M Guerra
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO, USA
| | - Sean W Rogers
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO, USA
| | - Zixiang Fang
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO, USA
| | - Laura K Muehlbauer
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Evgenia Shishkova
- National Center for Quantitative Biology of Complex Systems, Madison, WI, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Katherine A Overmyer
- Morgridge Institute for Research, Madison, WI, USA
- National Center for Quantitative Biology of Complex Systems, Madison, WI, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Joshua J Coon
- Morgridge Institute for Research, Madison, WI, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- National Center for Quantitative Biology of Complex Systems, Madison, WI, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - David J Pagliarini
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA.
- Morgridge Institute for Research, Madison, WI, USA.
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO, USA.
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA.
- Department of Genetics, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
11
|
Manzer KM, Fromme JC. The Arf-GAP Age2 localizes to the late-Golgi via a conserved amphipathic helix. Mol Biol Cell 2023; 34:ar119. [PMID: 37672345 PMCID: PMC10846627 DOI: 10.1091/mbc.e23-07-0283] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023] Open
Abstract
Arf GTPases are central regulators of the Golgi complex, which serves as the nexus of membrane-trafficking pathways in eukaryotic cells. Arf proteins recruit dozens of effectors to modify membranes, sort cargos, and create and tether transport vesicles, and are therefore essential for orchestrating Golgi trafficking. The regulation of Arf activity is controlled by the action of Arf-GEFs which activate via nucleotide exchange, and Arf-GAPs which inactivate via nucleotide hydrolysis. The localization dynamics of Arf GTPases and their Arf-GAPs during Golgi maturation have not been reported. Here we use the budding yeast model to examine the temporal localization of the Golgi Arf-GAPs. We also determine the mechanisms used by the Arf-GAP Age2 to localize to the Golgi. We find that the catalytic activity of Age2 and a conserved sequence in the unstructured C-terminal domain of Age2 are both required for Golgi localization. This sequence is predicted to form an amphipathic helix and mediates direct binding of Age2 to membranes in vitro. We also report the development of a probe for sensing active Arf1 in living cells and use this probe to characterize the temporal dynamics of Arf1 during Golgi maturation.
Collapse
Affiliation(s)
- Kaitlyn M. Manzer
- Department of Molecular Biology & Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14850
| | - J. Christopher Fromme
- Department of Molecular Biology & Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14850
| |
Collapse
|
12
|
Nakano K, Okamoto M, Takahashi-Nakaguchi A, Sasamoto K, Yamaguchi M, Chibana H. Evaluation of Antifungal Selective Toxicity Using Candida glabrata ERG25 and Human SC4MOL Knock-In Strains. J Fungi (Basel) 2023; 9:1035. [PMID: 37888291 PMCID: PMC10607794 DOI: 10.3390/jof9101035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023] Open
Abstract
With only four classes of antifungal drugs available for the treatment of invasive systemic fungal infections, the number of resistant fungi is increasing, highlighting the urgent need for novel antifungal drugs. Ergosterol, an essential component of cell membranes, and its synthetic pathway have been targeted for antifungal drug development. Sterol-C4-methyl monooxygenase (Erg25p), which is a greater essential target than that of existing drugs, represents a promising drug target. However, the development of antifungal drugs must consider potential side effects, emphasizing the importance of evaluating their selective toxicity against fungi. In this study, we knocked in ERG25 of Candida glabrata and its human ortholog, SC4MOL, in ERG25-deleted Saccharomyces cerevisiae. Utilizing these strains, we evaluated 1181-0519, an Erg25p inhibitor, that exhibited selective toxicity against the C. glabrata ERG25 knock-in strain. Furthermore, 1181-0519 demonstrated broad-spectrum antifungal activity against pathogenic Candida species, including Candida auris. The approach of utilizing a gene that is functionally conserved between yeast and humans and subsequently screening for molecular target drugs enables the identification of selective inhibitors for both species.
Collapse
Affiliation(s)
- Keiko Nakano
- Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
| | - Michiyo Okamoto
- Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
| | | | - Kaname Sasamoto
- Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
| | - Masashi Yamaguchi
- Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
| | - Hiroji Chibana
- Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
- School of Medicine, Niigata University, Niigata 951-8510, Japan
- Faculty of Medicine, University of the Ryukyus, Okinawa 903-0125, Japan
| |
Collapse
|
13
|
Manzer KM, Fromme JC. The Arf-GAP Age2 localizes to the late-Golgi via a conserved amphipathic helix. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.23.550229. [PMID: 37546741 PMCID: PMC10402032 DOI: 10.1101/2023.07.23.550229] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Arf GTPases are central regulators of the Golgi complex, which serves as the nexus of membrane trafficking pathways in eukaryotic cells. Arf proteins recruit dozens of effectors to modify membranes, sort cargos, and create and tether transport vesicles, and are therefore essential for orchestrating Golgi trafficking. The regulation of Arf activity is controlled by the action of Arf-GEFs, which activate via nucleotide exchange, and Arf-GAPs, which inactivate via nucleotide hydrolysis. The localization dynamics of Arf GTPases and their Arf-GAPs during Golgi maturation have not been reported. Here we use the budding yeast model to examine the temporal localization of the Golgi Arf-GAPs. We also determine the mechanisms used by the Arf-GAP Age2 to localize to the Golgi. We find that the catalytic activity of Age2 and a conserved sequence in the unstructured C-terminal domain of Age2 are both required for Golgi localization. This sequence is predicted to form an amphipathic helix and mediates direct binding of Age2 to membranes in vitro . We also report the development of a probe for sensing active Arf1 in living cells and use this probe to characterize the temporal dynamics of Arf1 during Golgi maturation.
Collapse
Affiliation(s)
- Kaitlyn M Manzer
- Department of Molecular Biology & Genetics and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14850 USA
| | - J Christopher Fromme
- Department of Molecular Biology & Genetics and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14850 USA
| |
Collapse
|
14
|
Turco G, Chang C, Wang RY, Kim G, Stoops EH, Richardson B, Sochat V, Rust J, Oughtred R, Thayer N, Kang F, Livstone MS, Heinicke S, Schroeder M, Dolinski KJ, Botstein D, Baryshnikova A. Global analysis of the yeast knockout phenome. SCIENCE ADVANCES 2023; 9:eadg5702. [PMID: 37235661 PMCID: PMC11326039 DOI: 10.1126/sciadv.adg5702] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023]
Abstract
Genome-wide phenotypic screens in the budding yeast Saccharomyces cerevisiae, enabled by its knockout collection, have produced the largest, richest, and most systematic phenotypic description of any organism. However, integrative analyses of this rich data source have been virtually impossible because of the lack of a central data repository and consistent metadata annotations. Here, we describe the aggregation, harmonization, and analysis of ~14,500 yeast knockout screens, which we call Yeast Phenome. Using this unique dataset, we characterized two unknown genes (YHR045W and YGL117W) and showed that tryptophan starvation is a by-product of many chemical treatments. Furthermore, we uncovered an exponential relationship between phenotypic similarity and intergenic distance, which suggests that gene positions in both yeast and human genomes are optimized for function.
Collapse
Affiliation(s)
- Gina Turco
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | - Christie Chang
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | | | - Griffin Kim
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | | | - Brianna Richardson
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Vanessa Sochat
- Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Jennifer Rust
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Rose Oughtred
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | | | - Fan Kang
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Michael S Livstone
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Sven Heinicke
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Mark Schroeder
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Kara J Dolinski
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | | | | |
Collapse
|
15
|
Guan M, Wang X, Pan Y, Xu Y, Cao Y, Yan L, Ma L, Ma F, Zhang X. Delving into the molecular initiating event of cadmium toxification via the dose-dependent functional genomics approach in Saccharomyces cerevisiae. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121287. [PMID: 36791950 DOI: 10.1016/j.envpol.2023.121287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/03/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Determining dose-response relationship is essential for comprehensively revealing chemical-caused effects on organisms. However, uncertainty and complexity of gene/protein interactions cause the inability of traditional toxicogenomic methods (e.g., transcriptomics, proteomics and metabolomics) to effectively establish the direct relationship between chemical exposure and genes. In this work, we built an effective dose-dependent yeast functional genomics approach, which can clearly identify the direct gene-chemical link in the process of cadmium (Cd) toxification from a genome-wide scale with wide range concentrations (0.83, 2.49, 7.48, 22.45, 67.34, 202.03 and 606.1 μM). Firstly, we identified 220 responsive strains, and found that 142, 110, 91, 34, 8, 0 and 0 responsive strains can be respectively modulated by seven different Cd exposure concentrations ranging from high to low. Secondly, our results demonstrated that these genes induced by the high Cd exposure were mainly enriched in the process of cell autophagy, but ones caused by the low Cd exposure were primarily involved in oxidative stress. Thirdly, we found that the top-ranked GO biological processes with the lowest point of departure (POD) were transmembrane transporter complex and mitochondrial respiratory chain complex III, suggesting that mitochondrion might be the toxicity target of Cd. Similarly, nucleotide excision repair was ranked first in KEGG pathway with the least POD, indicating that this dose-dependent functional genomics approach can effectively detect the molecular initiating event (MIE) of cadmium toxification. Fourthly, we identified four key mutant strains (RIP1, QCR8, CYT1 and QCR2) as biomarkers for Cd exposure. Finally, the dose-dependent functional genomics approach also performed well in identifying MIE for additional genotoxicity chemical 4-nitroquinoline-1-oxide (4-NQO) data. Overall, our study developed a dose-dependent functional genomics approach, which is powerful to delve into the MIE of chemical toxification and is beneficial for guiding further chemical risk assessment.
Collapse
Affiliation(s)
- Miao Guan
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu, 210023, China
| | - Xiaoyang Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu, 210023, China
| | - Yi Pan
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu, 210023, China
| | - Yue Xu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu, 210023, China
| | - Yuqi Cao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu, 210023, China
| | - Lu Yan
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Ave., Nanjing, Jiangsu, 210023, China
| | - Lili Ma
- Jiangsu Engineering Lab of Water and Soil Eco-remediation, School of the Environment, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu, 210023, China.
| | - Fei Ma
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu, 210023, China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Ave., Nanjing, Jiangsu, 210023, China
| |
Collapse
|
16
|
Bresson S, Shchepachev V, Tollervey D. A posttranscriptional pathway regulates cell wall mRNA expression in budding yeast. Cell Rep 2023; 42:112184. [PMID: 36862555 DOI: 10.1016/j.celrep.2023.112184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/05/2023] [Accepted: 02/14/2023] [Indexed: 03/03/2023] Open
Abstract
The fungal cell wall provides protection and structure and is an important target for antifungal compounds. A mitogen-activated protein (MAP) kinase cascade termed the cell wall integrity (CWI) pathway regulates transcriptional responses to cell wall damage. Here, we describe a posttranscriptional pathway that plays an important complementary role. We report that the RNA-binding proteins (RBPs) Mrn1 and Nab6 specifically target the 3' UTRs of a largely overlapping set of cell wall-related mRNAs. These mRNAs are downregulated in the absence of Nab6, indicating a function in target mRNA stabilization. Nab6 acts in parallel to CWI signaling to maintain appropriate expression of cell wall genes during stress. Cells lacking both pathways are hypersensitive to antifungal compounds targeting the cell wall. Deletion of MRN1 partially alleviates growth defects associated with Δnab6, and Mrn1 has an opposing function in mRNA destabilization. Our results uncover a posttranscriptional pathway that mediates cellular resistance to antifungal compounds.
Collapse
Affiliation(s)
- Stefan Bresson
- Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK.
| | - Vadim Shchepachev
- Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK
| | - David Tollervey
- Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK.
| |
Collapse
|
17
|
Tai J, Guerra RM, Rogers SW, Fang Z, Muehlbauer LK, Shishkova E, Overmyer KA, Coon JJ, Pagliarini DJ. Hem25p is a mitochondrial IPP transporter. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532620. [PMID: 36993473 PMCID: PMC10055127 DOI: 10.1101/2023.03.14.532620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Coenzyme Q (CoQ, ubiquinone) is an essential cellular cofactor comprised of a redox-active quinone head group and a long hydrophobic polyisoprene tail. How mitochondria access cytosolic isoprenoids for CoQ biosynthesis is a longstanding mystery. Here, via a combination of genetic screening, metabolic tracing, and targeted uptake assays, we reveal that Hem25p-a mitochondrial glycine transporter required for heme biosynthesis-doubles as an isopentenyl pyrophosphate (IPP) transporter in Saccharomyces cerevisiae. Mitochondria lacking Hem25p fail to efficiently incorporate IPP into early CoQ precursors, leading to loss of CoQ and turnover of CoQ biosynthetic proteins. Expression of Hem25p in Escherichia coli enables robust IPP uptake demonstrating that Hem25p is sufficient for IPP transport. Collectively, our work reveals that Hem25p drives the bulk of mitochondrial isoprenoid transport for CoQ biosynthesis in yeast.
Collapse
Affiliation(s)
- Jonathan Tai
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
- Morgridge Institute for Research, Madison, WI 53715, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rachel M. Guerra
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sean W. Rogers
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Zixiang Fang
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Laura K. Muehlbauer
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Evgenia Shishkova
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53706, USA
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Katherine A. Overmyer
- Morgridge Institute for Research, Madison, WI 53715, USA
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53706, USA
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Joshua J. Coon
- Morgridge Institute for Research, Madison, WI 53715, USA
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53706, USA
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - David J. Pagliarini
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
- Morgridge Institute for Research, Madison, WI 53715, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
18
|
Chen XR, Poudel L, Hong Z, Johnen P, Katti S, Tripathi A, Nile AH, Green SM, Khan D, Schaaf G, Bono F, Bankaitis VA, Igumenova TI. Mechanisms by which small molecules of diverse chemotypes arrest Sec14 lipid transfer activity. J Biol Chem 2023; 299:102861. [PMID: 36603766 PMCID: PMC9898755 DOI: 10.1016/j.jbc.2022.102861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Phosphatidylinositol (PtdIns) transfer proteins (PITPs) enhance the activities of PtdIns 4-OH kinases that generate signaling pools of PtdIns-4-phosphate. In that capacity, PITPs serve as key regulators of lipid signaling in eukaryotic cells. Although the PITP phospholipid exchange cycle is the engine that stimulates PtdIns 4-OH kinase activities, the underlying mechanism is not understood. Herein, we apply an integrative structural biology approach to investigate interactions of the yeast PITP Sec14 with small-molecule inhibitors (SMIs) of its phospholipid exchange cycle. Using a combination of X-ray crystallography, solution NMR spectroscopy, and atomistic MD simulations, we dissect how SMIs compete with native Sec14 phospholipid ligands and arrest phospholipid exchange. Moreover, as Sec14 PITPs represent new targets for the development of next-generation antifungal drugs, the structures of Sec14 bound to SMIs of diverse chemotypes reported in this study will provide critical information required for future structure-based design of next-generation lead compounds directed against Sec14 PITPs of virulent fungi.
Collapse
Affiliation(s)
- Xiao-Ru Chen
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas USA
| | - Lokendra Poudel
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas USA
| | - Zebin Hong
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Philipp Johnen
- Institute for Crop Science and Resource Conservation, Universität Bonn, Bonn, Germany
| | - Sachin Katti
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas USA
| | - Ashutosh Tripathi
- Department of Cell Biology & Genetics, Texas A&M University, College Station, Texas, USA
| | - Aaron H Nile
- Department of Cell Biology & Genetics, Texas A&M University, College Station, Texas, USA
| | - Savana M Green
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas USA; Department of Cell Biology & Genetics, Texas A&M University, College Station, Texas, USA
| | - Danish Khan
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas USA
| | - Gabriel Schaaf
- Institute for Crop Science and Resource Conservation, Universität Bonn, Bonn, Germany
| | - Fulvia Bono
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Vytas A Bankaitis
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas USA; Department of Cell Biology & Genetics, Texas A&M University, College Station, Texas, USA.
| | - Tatyana I Igumenova
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas USA.
| |
Collapse
|
19
|
Qian S, Han Y, Zhang Y, Du Y, Li J, Yang X, Kang J. Discovery of AHCY as an Off-Target of Doxorubicin by Integrative Analysis of Photoaffinity Labeling Chemoproteomics and Untargeted Metabolomics. Anal Chem 2022; 94:17121-17130. [PMID: 36445716 DOI: 10.1021/acs.analchem.2c03377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Target identification is critically important for understanding the mechanism of action of drugs. Here, we reported a new strategy for deconvolution of drug targets (or off-targets) with photoaffinity labeling chemoproteomics in combination with untargeted metabolomics by using doxorubicin (DOX) as a model. The DOX-derived photoaffinity probes were prepared and applied to capture DOX-interacting proteins in living cells. The captured DOX-interacting proteins were then identified by label-free quantitative proteomics. Totally, 151 significant proteins were identified with high confidence (fold change >4, p-value < 0.005). The gene ontology enrichment analysis suggested that the proteins were mainly involved in carbon metabolism, citrate cycle, fatty acid metabolism, and metabolic pathways. Therefore, untargeted metabolomics was applied to quantify the significantly altered metabolites in cells upon drug treatment. The pathway enrichment analysis suggested that DOX mainly interrupted with the processes of pyrimidine and purine metabolism, carbon metabolism, methionine metabolism, and phosphatidylcholine biosynthesis. Integrative analysis of chemoproteomics and metabolomics indicated that adenosylhomocysteinase (AHCY) is a new target (off-target) of DOX leading to the accumulation of S-adenosyl homocysteine. This deduced DOX target was confirmed by the cellular thermal shift assay, affinity competitive pull-down assay, biochemical assay, and siRNA knock down experiments. Our result suggested that AHCY is the uncovered off-target of DOX.
Collapse
Affiliation(s)
- Shanshan Qian
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai200032, China.,University of Chinese Academy of Sciences, Yuquan Road 19, Beijing100049, China
| | - Ying Han
- School of Life Science and Technology, ShanghaiTech University, Haike Road 100, Shanghai200120, China
| | - Yue Zhang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai200032, China.,University of Chinese Academy of Sciences, Yuquan Road 19, Beijing100049, China
| | - Yanan Du
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai200032, China.,School of Physical Science and Technology, ShanghaiTech University, Haike Road 100, Shanghai200120, China
| | - Jing Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai200032, China.,School of Physical Science and Technology, ShanghaiTech University, Haike Road 100, Shanghai200120, China
| | - Xin Yang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai200032, China.,School of Physical Science and Technology, ShanghaiTech University, Haike Road 100, Shanghai200120, China
| | - Jingwu Kang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai200032, China.,School of Physical Science and Technology, ShanghaiTech University, Haike Road 100, Shanghai200120, China
| |
Collapse
|
20
|
Guan M, Ji W, Xu Y, Yan L, Chen D, Li S, Zhang X. Molecular fingerprints of polar narcotic chemicals based on heterozygous essential gene knockout library in Saccharomyces cerevisiae. CHEMOSPHERE 2022; 308:136343. [PMID: 36087727 DOI: 10.1016/j.chemosphere.2022.136343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 08/02/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Cytotoxicity of non-polar narcotic chemicals can be predicted by quantitative structure activity relationship (QSAR) models, but the polar narcotic chemicals' actual cytotoxicity exceeds the predicted values by their chemical structures. This discrepancy indicates that the molecular mechanism by which polar narcotic chemicals exert their toxicity is unclear. Taking advantage of Saccharomyces cerevisiae (yeast) functional genome-wide heterozygous essential gene knockout mutants, we here have identified the specific molecular fingerprints of two main chemical structure groups (phenols and anilines) of polar narcotic chemicals (dichlorophen (DCP), 4-chlorophenol (4-CP), 2, 4, 6-trichlorophenol (TCP), 3, 4-dichloroaniline (DCA) and N-methylaniline (NMA)) and one non-polar narcotic chemical 2, 2, 2-trichloroethanol (TCE). Especially, we identify 33, 57, 54, 46, 59 and 53 responsive strains through exposure to TCE, DCP, 4-CP, TCP, DCA and NMA with three test concentrations, respectively, revealing that these polar narcotic chemicals have more responsive strains than the non-polar narcotic chemical. Remarkably, we find that the molecular fingerprints of polar narcotic chemicals in different chemical structure groups are obviously varied, particularly phenols and anilines have their own specific molecular fingerprints. Interestingly, our results demonstrate that the molecular toxicity mechanisms of anilines are associated with DNA replication, but phenols are related with pathway of RNA degradation. Additionally, we find that the two knockout strains (SME1 and DIS3) and the three knockout strains (TSC11, RSP5 and HSF1) can specifically respond to exposure to phenols and anilines, respectively. Thus, they may be served as potential biomarkers to distinguish phenols from anilines. Collectively, our works demonstrate that the functional genomic platform of yeast essential gene mutants can not only act as an effective tool to identify key specific molecular fingerprints for polar narcotic chemicals, but also help to understand the molecular mechanisms of polar narcotic chemicals.
Collapse
Affiliation(s)
- Miao Guan
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu, 210023, China.
| | - Wenya Ji
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu, 210023, China
| | - Yue Xu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu, 210023, China
| | - Lu Yan
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Ave., Nanjing, Jiangsu, 210023, China
| | - Dong Chen
- Jiangsu Provincial Academy of Environmental Science, 176 North Jiangdong Rd., Nanjing, Jiangsu, 210036, China
| | - Shengjie Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu, 210023, China; School of Food Science, Nanjing Xiaozhuang University, Jiangsu, Nanjing, 211171, China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Ave., Nanjing, Jiangsu, 210023, China.
| |
Collapse
|
21
|
Sun F, Zhang R, Li T, Zhang L, Chen X, Liang Y, Chen L, Zou S, Dong H. Fusarium graminearum GGA protein is critical for fungal development, virulence and ascospore discharge through its involvement in vesicular trafficking. Environ Microbiol 2022; 24:6290-6306. [PMID: 36335568 DOI: 10.1111/1462-2920.16279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/03/2022] [Indexed: 11/08/2022]
Abstract
Vesicular trafficking is a conserved material transport process in eukaryotic cells. The GGA family proteins are clathrin adaptors that are involved in eukaryotic vesicle transport, but their functions in phytopathogenic filamentous fungi remain unexplored. Here, we examined the only GGA family protein in Fusarium graminearum, FgGga1, which localizes to both the late Golgi and endosomes. In the absence of FgGga1, the fungal mutant exhibited defects in vegetative growth, DON biosynthesis, ascospore discharge and virulence. Fluorescence microscopy analysis revealed that FgGga1 is associated with trans-Golgi network (TGN)-to-plasma membrane, endosome-to-TGN and endosome-to-vacuole transport. Mutational analysis on the five domains of FgGga1 showed that the VHS domain was required for endosome-to-TGN transport while the GAT167-248 and the hinge domains were required for both endosome-to-TGN and endosome-to-vacuole transport. Importantly, the deletion of the FgGga1 domains that are required in vesicular trafficking also inhibited vegetative growth and virulence of F. graminearum. In addition, FgGga1 interacted with the ascospore discharge regulator Ca2+ ATPase FgNeo1, whose transport to the vacuole is dependent on FgGga1-mediated endosome-to-vacuole transport. Our results suggest that FgGga1 is required for fungal development and virulence via FgGga1-mediated vesicular trafficking, and FgGga1-mediated endosome-to-vacuole transport facilitates ascospore discharge in F. graminearum.
Collapse
Affiliation(s)
- Fengjiang Sun
- Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Ruotong Zhang
- Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Tiantian Li
- Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Liyuan Zhang
- Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, China.,State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, China
| | - Xiaochen Chen
- Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, China.,State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, China
| | - Yuancun Liang
- Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Lei Chen
- Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, China.,State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, China
| | - Shenshen Zou
- Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Hansong Dong
- Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, China.,State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
22
|
Robbins N, Cowen LE. Antifungal discovery. Curr Opin Microbiol 2022; 69:102198. [PMID: 36037637 PMCID: PMC10726697 DOI: 10.1016/j.mib.2022.102198] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 11/30/2022]
Abstract
Fungi have a profound impact on human health, leading to billions of infections and millions of deaths worldwide each year. Exacerbating the public health burden is the continued emergence of drug-resistant fungal pathogens coupled with a dearth of treatment options to combat serious infections. Despite this health threat, scientific advances in chemistry, genetics, and biochemistry methodologies have enabled novel antifungal compounds to be discovered. Here, we describe current approaches for the discovery and characterization of novel antifungals, focusing on the identification of novel chemical matter and elucidation of the cellular target of bioactive compounds, followed by a review of the most promising emerging therapies in the antifungal-development pipeline.
Collapse
Affiliation(s)
- Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
23
|
Robbins N, Cowen LE. Genomic Approaches to Antifungal Drug Target Identification and Validation. Annu Rev Microbiol 2022; 76:369-388. [PMID: 35650665 PMCID: PMC10727914 DOI: 10.1146/annurev-micro-041020-094524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The last several decades have witnessed a surge in drug-resistant fungal infections that pose a serious threat to human health. While there is a limited arsenal of drugs that can be used to treat systemic infections, scientific advances have provided renewed optimism for the discovery of novel antifungals. The development of chemical-genomic assays using Saccharomyces cerevisiae has provided powerful methods to identify the mechanism of action of molecules in a living cell. Advances in molecular biology techniques have enabled complementary assays to be developed in fungal pathogens, including Candida albicans and Cryptococcus neoformans. These approaches enable the identification of target genes for drug candidates, as well as genes involved in buffering drug target pathways. Here, we examine yeast chemical-genomic assays and highlight how such resources can be utilized to predict the mechanisms of action of compounds, to study virulence attributes of diverse fungal pathogens, and to bolster the antifungal pipeline.
Collapse
Affiliation(s)
- Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada;
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada;
| |
Collapse
|
24
|
Bosch-Guiteras N, van Leeuwen J. Exploring conditional gene essentiality through systems genetics approaches in yeast. Curr Opin Genet Dev 2022; 76:101963. [PMID: 35939967 DOI: 10.1016/j.gde.2022.101963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/25/2022] [Accepted: 07/04/2022] [Indexed: 11/25/2022]
Abstract
An essential gene encodes for a cellular function that is required for viability. Although viability is a straightforward phenotype to analyze in yeast, defining a gene as essential is not always trivial. Gene essentiality has generally been studied in specific laboratory strains and under standard growth conditions, however, essentiality can vary across species, strains, and environments. Recent systematic studies of gene essentiality revealed that two sets of essential genes exist: core essential genes that are always required for viability and conditional essential genes that vary in essentiality in different genetic and environmental contexts. Here, we review recent advances made in the systematic analysis of gene essentiality in yeast and discuss the properties that distinguish core from context-dependent essential genes.
Collapse
Affiliation(s)
| | - Jolanda van Leeuwen
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
25
|
Vanacloig-Pedros E, Fisher KJ, Liu L, Debrauske DJ, Young MKM, Place M, Hittinger CT, Sato TK, Gasch AP. Comparative chemical genomic profiling across plant-based hydrolysate toxins reveals widespread antagonism in fitness contributions. FEMS Yeast Res 2022; 21:6650360. [PMID: 35883225 PMCID: PMC9508847 DOI: 10.1093/femsyr/foac036] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/06/2022] [Accepted: 07/21/2022] [Indexed: 11/15/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae has been used extensively in fermentative industrial processes, including biofuel production from sustainable plant-based hydrolysates. Myriad toxins and stressors found in hydrolysates inhibit microbial metabolism and product formation. Overcoming these stresses requires mitigation strategies that include strain engineering. To identify shared and divergent mechanisms of toxicity and to implicate gene targets for genetic engineering, we used a chemical genomic approach to study fitness effects across a library of S. cerevisiae deletion mutants cultured anaerobically in dozens of individual compounds found in different types of hydrolysates. Relationships in chemical genomic profiles identified classes of toxins that provoked similar cellular responses, spanning inhibitor relationships that were not expected from chemical classification. Our results also revealed widespread antagonistic effects across inhibitors, such that the same gene deletions were beneficial for surviving some toxins but detrimental for others. This work presents a rich dataset relating gene function to chemical compounds, which both expands our understanding of plant-based hydrolysates and provides a useful resource to identify engineering targets.
Collapse
Affiliation(s)
- Elena Vanacloig-Pedros
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 53726, Madison, WI, United States
| | - Kaitlin J Fisher
- Laboratory of Genetics, University of Wisconsin-Madison, 53706, Madison, WI, United States
- Center for Genomic Science Innovation, University of Wisconsin-Madison, 53706, Madison, WI, United States
- J.F. Crow Institute for the Study of Evolution, 53706, Madison, WI, United States
| | - Lisa Liu
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 53726, Madison, WI, United States
| | - Derek J Debrauske
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 53726, Madison, WI, United States
| | - Megan K M Young
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 53726, Madison, WI, United States
| | - Michael Place
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 53726, Madison, WI, United States
| | - Chris Todd Hittinger
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 53726, Madison, WI, United States
- Laboratory of Genetics, University of Wisconsin-Madison, 53706, Madison, WI, United States
- Center for Genomic Science Innovation, University of Wisconsin-Madison, 53706, Madison, WI, United States
- J.F. Crow Institute for the Study of Evolution, 53706, Madison, WI, United States
| | - Trey K Sato
- Corresponding author: Trey K. Sato, Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 4117 Wisconsin Energy Institute, 1552 University Ave, Madison, WI 53726. Tel: (608) 890-2546; E-mail:
| | - Audrey P Gasch
- Corresponding author: Audrey P. Gasch, Center for Genomic Science Innovation, University of Wisconsin-Madison, 3422 Genetics-Biotechnology Center, 425 Henry Mall, Madison, WI 53704, United States. Tel: (608)265-0859; E-mail:
| |
Collapse
|
26
|
Bankaitis VA, Tripathi A, Chen XR, Igumenova TI. New strategies for combating fungal infections: Inhibiting inositol lipid signaling by targeting Sec14 phosphatidylinositol transfer proteins. Adv Biol Regul 2022; 84:100891. [PMID: 35240534 PMCID: PMC9149032 DOI: 10.1016/j.jbior.2022.100891] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 02/22/2022] [Indexed: 12/13/2022]
Abstract
Virulent fungi represent a particularly difficult problem in the infectious disease arena as these organisms are eukaryotes that share many orthologous activities with their human hosts. The fact that these activities are often catalyzed by conserved proteins places additional demands on development of pharmacological strategies for specifically inhibiting target fungal activities without imposing undesirable secondary effects on the host. While deployment of a limited set of anti-mycotics has to date satisfied the clinical needs for treatment of fungal infections, the recent emergence of multi-drug resistant fungal 'superbugs' now poses a serious global health threat with rapidly diminishing options for treatment. This escalating infectious disease problem emphasizes the urgent need for development of new classes of anti-mycotics. In that regard, Sec14 phosphatidylinositol transfer proteins offer interesting possibilities for interfering with fungal phosphoinositide signaling with exquisite specificity and without targeting the highly conserved lipid kinases responsible for phosphoinositide production. Herein, we review the establishment of proof-of-principle that demonstrates the feasibility of such an approach. We also describe the lead compounds of four chemotypes that directly target fungal Sec14 proteins. The rules that pertain to the mechanism(s) of Sec14 inhibition by validated small molecule inhibitors, and the open questions that remain, are discussed - as are the challenges that face development of next generation Sec14-directed inhibitors.
Collapse
Affiliation(s)
- Vytas A Bankaitis
- Department of Molecular & Cellular Medicine, Texas A&M University, College Station, TX, 77843-0014, USA; Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, 77843-0014, USA.
| | - Ashutosh Tripathi
- Department of Molecular & Cellular Medicine, Texas A&M University, College Station, TX, 77843-0014, USA
| | - Xiao-Ru Chen
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, 77843-0014, USA
| | - Tatyana I Igumenova
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, 77843-0014, USA
| |
Collapse
|
27
|
Barazandeh M, Kriti D, Nislow C, Giaever G. The cellular response to drug perturbation is limited: comparison of large-scale chemogenomic fitness signatures. BMC Genomics 2022; 23:197. [PMID: 35277135 PMCID: PMC8915488 DOI: 10.1186/s12864-022-08395-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 02/17/2022] [Indexed: 11/25/2022] Open
Abstract
Background Chemogenomic profiling is a powerful approach for understanding the genome-wide cellular response to small molecules. First developed in Saccharomyces cerevisiae, chemogenomic screens provide direct, unbiased identification of drug target candidates as well as genes required for drug resistance. While many laboratories have performed chemogenomic fitness assays, few have been assessed for reproducibility and accuracy. Here we analyze the two largest independent yeast chemogenomic datasets comprising over 35 million gene-drug interactions and more than 6000 unique chemogenomic profiles; the first from our own academic laboratory (HIPLAB) and the second from the Novartis Institute of Biomedical Research (NIBR). Results Despite substantial differences in experimental and analytical pipelines, the combined datasets revealed robust chemogenomic response signatures, characterized by gene signatures, enrichment for biological processes and mechanisms of drug action. We previously reported that the cellular response to small molecules is limited and can be described by a network of 45 chemogenomic signatures. In the present study, we show that the majority of these signatures (66%) are also found in the companion dataset, providing further support for their biological relevance as conserved systems-level, small molecule response systems. Conclusions Our results demonstrate the robustness of chemogenomic fitness profiling in yeast, while offering guidelines for performing other high-dimensional comparisons including parallel CRISPR screens in mammalian cells. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08395-x.
Collapse
|
28
|
Ottilie S, Luth MR, Hellemann E, Goldgof GM, Vigil E, Kumar P, Cheung AL, Song M, Godinez-Macias KP, Carolino K, Yang J, Lopez G, Abraham M, Tarsio M, LeBlanc E, Whitesell L, Schenken J, Gunawan F, Patel R, Smith J, Love MS, Williams RM, McNamara CW, Gerwick WH, Ideker T, Suzuki Y, Wirth DF, Lukens AK, Kane PM, Cowen LE, Durrant JD, Winzeler EA. Adaptive laboratory evolution in S. cerevisiae highlights role of transcription factors in fungal xenobiotic resistance. Commun Biol 2022; 5:128. [PMID: 35149760 PMCID: PMC8837787 DOI: 10.1038/s42003-022-03076-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 01/21/2022] [Indexed: 12/24/2022] Open
Abstract
In vitro evolution and whole genome analysis were used to comprehensively identify the genetic determinants of chemical resistance in Saccharomyces cerevisiae. Sequence analysis identified many genes contributing to the resistance phenotype as well as numerous amino acids in potential targets that may play a role in compound binding. Our work shows that compound-target pairs can be conserved across multiple species. The set of 25 most frequently mutated genes was enriched for transcription factors, and for almost 25 percent of the compounds, resistance was mediated by one of 100 independently derived, gain-of-function SNVs found in a 170 amino acid domain in the two Zn2C6 transcription factors YRR1 and YRM1 (p < 1 × 10−100). This remarkable enrichment for transcription factors as drug resistance genes highlights their important role in the evolution of antifungal xenobiotic resistance and underscores the challenge to develop antifungal treatments that maintain potency. Ottilie et al. employ an experimental evolution approach to investigate the role of transcription factors in yeast chemical resistance. Most emergent mutations in resistant strains were enriched in transcription factor coding genes, highlighting their importance in drug resistance.
Collapse
Affiliation(s)
- Sabine Ottilie
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA
| | - Madeline R Luth
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA
| | - Erich Hellemann
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA, 15260, USA
| | - Gregory M Goldgof
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA
| | - Eddy Vigil
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA
| | - Prianka Kumar
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA
| | - Andrea L Cheung
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA
| | - Miranda Song
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA
| | - Karla P Godinez-Macias
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA
| | - Krypton Carolino
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA
| | - Jennifer Yang
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA
| | - Gisel Lopez
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA
| | - Matthew Abraham
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA
| | - Maureen Tarsio
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, NY, 13210, USA
| | - Emmanuelle LeBlanc
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5G 1M1, Canada
| | - Luke Whitesell
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5G 1M1, Canada
| | - Jake Schenken
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA
| | - Felicia Gunawan
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA
| | - Reysha Patel
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA
| | - Joshua Smith
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA
| | - Melissa S Love
- Calibr, a division of The Scripps Research Institutes, La Jolla, CA, 92037, USA
| | - Roy M Williams
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA.,Aspen Neuroscience, San Diego, CA, 92121, USA
| | - Case W McNamara
- Calibr, a division of The Scripps Research Institutes, La Jolla, CA, 92037, USA
| | - William H Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, La Jolla, CA, 92037, USA
| | - Trey Ideker
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Yo Suzuki
- Department of Synthetic Biology and Bioenergy, J. Craig Venter Institute, La Jolla, CA, 92037, USA
| | - Dyann F Wirth
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA, 02142, USA
| | - Amanda K Lukens
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA, 02142, USA
| | - Patricia M Kane
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, NY, 13210, USA
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5G 1M1, Canada
| | - Jacob D Durrant
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA, 15260, USA
| | - Elizabeth A Winzeler
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA.
| |
Collapse
|
29
|
Maitra N, Hammer S, Kjerfve C, Bankaitis VA, Polymenis M. Translational control of lipogenesis links protein synthesis and phosphoinositide signaling with nuclear division in Saccharomyces cerevisiae. Genetics 2022; 220:iyab171. [PMID: 34849864 PMCID: PMC8733439 DOI: 10.1093/genetics/iyab171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/23/2021] [Indexed: 12/21/2022] Open
Abstract
Continuously dividing cells coordinate their growth and division. How fast cells grow in mass determines how fast they will multiply. Yet, there are few, if any, examples of a metabolic pathway that actively drives a cell cycle event instead of just being required for it. Here, we show that translational upregulation of lipogenic enzymes in Saccharomyces cerevisiae increased the abundance of lipids and promoted nuclear elongation and division. Derepressing translation of acetyl-CoA carboxylase and fatty acid synthase also suppressed cell cycle-related phenotypes, including delayed nuclear division, associated with Sec14p phosphatidylinositol transfer protein deficiencies, and the irregular nuclear morphologies of mutants defective in phosphatidylinositol 4-OH kinase activities. Our results show that increased lipogenesis drives a critical cell cycle landmark and report a phosphoinositide signaling axis in control of nuclear division. The broad conservation of these lipid metabolic and signaling pathways raises the possibility these activities similarly govern nuclear division in other eukaryotes.
Collapse
Affiliation(s)
- Nairita Maitra
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Staci Hammer
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Clara Kjerfve
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Vytas A Bankaitis
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
- Department of Molecular & Cellular Medicine, Texas A&M Health Sciences Center, College Station, TX 77843, USA
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Michael Polymenis
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
30
|
Yeast Double Transporter Gene Deletion Library for Identification of Xenobiotic Carriers in Low or High Throughput. mBio 2021; 12:e0322121. [PMID: 34903049 PMCID: PMC8669479 DOI: 10.1128/mbio.03221-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The routes of uptake and efflux should be considered when developing new drugs so that they can effectively address their intracellular targets. As a general rule, drugs appear to enter cells via protein carriers that normally carry nutrients or metabolites. A previously developed pipeline that searched for drug transporters using Saccharomyces cerevisiae mutants carrying single-gene deletions identified import routes for most compounds tested. However, due to the redundancy of transporter functions, we propose that this methodology can be improved by utilizing double mutant strains in both low- and high-throughput screens. We constructed a library of over 14,000 strains harboring double deletions of genes encoding 122 nonessential plasma membrane transporters and performed low- and high-throughput screens identifying possible drug import routes for 23 compounds. In addition, the high-throughput assay enabled the identification of putative efflux routes for 21 compounds. Focusing on azole antifungals, we were able to identify the involvement of the myo-inositol transporter, Itr1p, in the uptake of these molecules and to confirm the role of Pdr5p in their export.
Collapse
|
31
|
Assessment of genotoxic chemicals using chemogenomic profiling based on gene-knockout library in Saccharomyces cerevisiae. Toxicol In Vitro 2021; 79:105278. [PMID: 34843885 DOI: 10.1016/j.tiv.2021.105278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/19/2021] [Accepted: 11/23/2021] [Indexed: 02/07/2023]
Abstract
Understanding the adverse effects of genotoxic chemicals and identifying them effectively from non-genotoxic chemicals are of great worldwide concerns. Here, Saccharomyces cerevisiae (yeast) genome-wide single-gene knockout screening approach was conducted to assess two genotoxic chemicals (4-nitroquinoline-1-oxide (4-NQO) and formaldehyde (FA)) and environmental pollutant dichloroacetic acid (DCA, genotoxicity is controversial). DNA repair was significant enriched in the gene ontology (GO) biology process (BP) terms and KEGG pathways when exposed to low concentrations of 4-NQO and FA. Higher concentrations of 4-NQO and FA influenced some RNA metabolic and biosynthesis pathways. Moreover, replication and repair associated pathways were top ranked KEGG pathways with high fold-change for low concentrations of 4-NQO and FA. The similar gene profiles perturbed by DCA with three test concentrations identified, the common GO BP terms associated with aromatic amino acid family biosynthetic process and ubiquitin-dependent protein catabolic process via the multivesicular body sorting pathway. DCA has no obvious genotoxicity as there was no enriched DNA damage and repair pathways and fold-change of replication and repair KEGG pathways were very low. Five genes (RAD18, RAD59, MUS81, MMS4, and BEM4) could serve as candidate genes for genotoxic chemicals. Overall, the yeast functional genomic profiling showed great performance for assessing the signatures and potential molecular mechanisms of genotoxic chemicals.
Collapse
|
32
|
Matsumoto K, Yoshida M. Mammalian Chemical Genomics towards Identifying Targets and Elucidating Modes-of-Action of Bioactive Compounds. Chembiochem 2021; 23:e202100561. [PMID: 34813140 DOI: 10.1002/cbic.202100561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/22/2021] [Indexed: 11/08/2022]
Abstract
The step of identifying target molecules and elucidating the mode of action of bioactive compounds is a major bottleneck for drug discovery from phenotypic screening. Genetic screening for genes that affect drug sensitivity or phenotypes of mammalian cultured cells is a powerful tool to obtain clues to their modes of action. Chemical genomic screening systems for comprehensively identifying such genes or genetic pathways have been established using shRNA libraries for RNA interference-mediated mRNA knockdown or sgRNA libraries for CRISPR/Cas9-mediated gene knockout. The combination of chemical genomic screening in mammalian cells with other approaches such as biochemical searches for target molecules, phenotypic profiling, and yeast genetics provides a systematic way to elucidate the mode of action by converging various pieces of information regarding target molecules, target pathways, and synthetic lethal pathways.
Collapse
Affiliation(s)
- Ken Matsumoto
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Saitama, 351-0198, Japan.,Seed Compounds Exploratory Unit for Drug Discovery Platform, Drug Discovery Platforms Cooperation Division, RIKEN Center for Sustainable Resource Science, Saitama, 351-0198, Japan
| | - Minoru Yoshida
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Saitama, 351-0198, Japan.,Seed Compounds Exploratory Unit for Drug Discovery Platform, Drug Discovery Platforms Cooperation Division, RIKEN Center for Sustainable Resource Science, Saitama, 351-0198, Japan.,Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Tokyo, 113-8657, Japan
| |
Collapse
|
33
|
Fu C, Zhang X, Veri AO, Iyer KR, Lash E, Xue A, Yan H, Revie NM, Wong C, Lin ZY, Polvi EJ, Liston SD, VanderSluis B, Hou J, Yashiroda Y, Gingras AC, Boone C, O’Meara TR, O’Meara MJ, Noble S, Robbins N, Myers CL, Cowen LE. Leveraging machine learning essentiality predictions and chemogenomic interactions to identify antifungal targets. Nat Commun 2021; 12:6497. [PMID: 34764269 PMCID: PMC8586148 DOI: 10.1038/s41467-021-26850-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/22/2021] [Indexed: 02/08/2023] Open
Abstract
Fungal pathogens pose a global threat to human health, with Candida albicans among the leading killers. Systematic analysis of essential genes provides a powerful strategy to discover potential antifungal targets. Here, we build a machine learning model to generate genome-wide gene essentiality predictions for C. albicans and expand the largest functional genomics resource in this pathogen (the GRACE collection) by 866 genes. Using this model and chemogenomic analyses, we define the function of three uncharacterized essential genes with roles in kinetochore function, mitochondrial integrity, and translation, and identify the glutaminyl-tRNA synthetase Gln4 as the target of N-pyrimidinyl-β-thiophenylacrylamide (NP-BTA), an antifungal compound.
Collapse
Affiliation(s)
- Ci Fu
- grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1 Canada
| | - Xiang Zhang
- grid.17635.360000000419368657Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455 USA
| | - Amanda O. Veri
- grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1 Canada
| | - Kali R. Iyer
- grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1 Canada
| | - Emma Lash
- grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1 Canada
| | - Alice Xue
- grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1 Canada
| | - Huijuan Yan
- grid.266102.10000 0001 2297 6811Department of Microbiology and Immunology, UCSF School of Medicine, San Francisco, CA 94143 USA
| | - Nicole M. Revie
- grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1 Canada
| | - Cassandra Wong
- grid.250674.20000 0004 0626 6184Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Zhen-Yuan Lin
- grid.250674.20000 0004 0626 6184Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Elizabeth J. Polvi
- grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1 Canada
| | - Sean D. Liston
- grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1 Canada
| | - Benjamin VanderSluis
- grid.17635.360000000419368657Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455 USA
| | - Jing Hou
- grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1 Canada ,grid.17063.330000 0001 2157 2938Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1 Canada
| | - Yoko Yashiroda
- grid.509461.fRIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198 Japan
| | - Anne-Claude Gingras
- grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1 Canada ,grid.250674.20000 0004 0626 6184Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Charles Boone
- grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1 Canada ,grid.17063.330000 0001 2157 2938Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1 Canada ,grid.509461.fRIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198 Japan
| | - Teresa R. O’Meara
- grid.214458.e0000000086837370Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109 USA
| | - Matthew J. O’Meara
- grid.214458.e0000000086837370Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109 USA
| | - Suzanne Noble
- grid.266102.10000 0001 2297 6811Department of Microbiology and Immunology, UCSF School of Medicine, San Francisco, CA 94143 USA
| | - Nicole Robbins
- grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1 Canada
| | - Chad L. Myers
- grid.17635.360000000419368657Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455 USA
| | - Leah E. Cowen
- grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1 Canada
| |
Collapse
|
34
|
Molimau-Samasoni S, Woolner VH, Foliga ST, Robichon K, Patel V, Andreassend SK, Sheridan JP, Te Kawa T, Gresham D, Miller D, Sinclair DJ, La Flamme AC, Melnik AV, Aron A, Dorrestein PC, Atkinson PH, Keyzers RA, Munkacsi AB. Functional genomics and metabolomics advance the ethnobotany of the Samoan traditional medicine "matalafi". Proc Natl Acad Sci U S A 2021; 118:e2100880118. [PMID: 34725148 PMCID: PMC8609454 DOI: 10.1073/pnas.2100880118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 08/30/2021] [Indexed: 11/18/2022] Open
Abstract
The leaf homogenate of Psychotria insularum is widely used in Samoan traditional medicine to treat inflammation associated with fever, body aches, swellings, wounds, elephantiasis, incontinence, skin infections, vomiting, respiratory infections, and abdominal distress. However, the bioactive components and underlying mechanisms of action are unknown. We used chemical genomic analyses in the model organism Saccharomyces cerevisiae (baker's yeast) to identify and characterize an iron homeostasis mechanism of action in the traditional medicine as an unfractionated entity to emulate its traditional use. Bioactivity-guided fractionation of the homogenate identified two flavonol glycosides, rutin and nicotiflorin, each binding iron in an ion-dependent molecular networking metabolomics analysis. Translating results to mammalian immune cells and traditional application, the iron chelator activity of the P. insularum homogenate or rutin decreased proinflammatory and enhanced anti-inflammatory cytokine responses in immune cells. Together, the synergistic power of combining traditional knowledge with chemical genomics, metabolomics, and bioassay-guided fractionation provided molecular insight into a relatively understudied Samoan traditional medicine and developed methodology to advance ethnobotany.
Collapse
Affiliation(s)
- Seeseei Molimau-Samasoni
- Plant and Postharvest Technologies, Scientific Research Organization of Samoa, Apia, Samoa;
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Victoria Helen Woolner
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Su'emalo Talie Foliga
- Division of Environment and Conservation, Ministry of Natural Resources and Environment, Apia, Samoa
| | - Katharina Robichon
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Vimal Patel
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Sarah K Andreassend
- Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Jeffrey P Sheridan
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Tama Te Kawa
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | - David Gresham
- Centre of Genomic and Systems Biology, New York University, New York, NY 10003
| | - Darach Miller
- Department of Genetics, Stanford University Palo Alto, CA 94305
| | - Daniel J Sinclair
- School of Geography, Environmental and Earth Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Anne C La Flamme
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Alexey V Melnik
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093
| | - Allegra Aron
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093
| | - Pieter C Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093
| | - Paul H Atkinson
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Robert A Keyzers
- Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Andrew B Munkacsi
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand;
- Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| |
Collapse
|
35
|
Clionamines stimulate autophagy, inhibit Mycobacterium tuberculosis survival in macrophages, and target Pik1. Cell Chem Biol 2021; 29:870-882.e11. [PMID: 34520745 DOI: 10.1016/j.chembiol.2021.07.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/16/2021] [Accepted: 07/21/2021] [Indexed: 12/25/2022]
Abstract
The pathogen Mycobacterium tuberculosis (Mtb) evades the innate immune system by interfering with autophagy and phagosomal maturation in macrophages, and, as a result, small molecule stimulation of autophagy represents a host-directed therapeutics (HDTs) approach for treatment of tuberculosis (TB). Here we show the marine natural product clionamines activate autophagy and inhibit Mtb survival in macrophages. A yeast chemical-genetics approach identified Pik1 as target protein of the clionamines. Biotinylated clionamine B pulled down Pik1 from yeast cell lysates and a clionamine analog inhibited phosphatidyl 4-phosphate (PI4P) production in yeast Golgi membranes. Chemical-genetic profiles of clionamines and cationic amphiphilic drugs (CADs) are closely related, linking the clionamine mode of action to co-localization with PI4P in a vesicular compartment. Small interfering RNA (siRNA) knockdown of PI4KB, a human homolog of Pik1, inhibited the survival of Mtb in macrophages, identifying PI4KB as an unexploited molecular target for efforts to develop HDT drugs for treatment of TB.
Collapse
|
36
|
A CRISPR Interference Screen of Essential Genes Reveals that Proteasome Regulation Dictates Acetic Acid Tolerance in Saccharomyces cerevisiae. mSystems 2021; 6:e0041821. [PMID: 34313457 PMCID: PMC8407339 DOI: 10.1128/msystems.00418-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
CRISPR interference (CRISPRi) is a powerful tool to study cellular physiology under different growth conditions, and this technology provides a means for screening changed expression of essential genes. In this study, a Saccharomyces cerevisiae CRISPRi library was screened for growth in medium supplemented with acetic acid. Acetic acid is a growth inhibitor challenging the use of yeast for the industrial conversion of lignocellulosic biomasses. Tolerance to acetic acid that is released during biomass hydrolysis is crucial for cell factories to be used in biorefineries. The CRISPRi library screened consists of >9,000 strains, where >98% of all essential and respiratory growth-essential genes were targeted with multiple guide RNAs (gRNAs). The screen was performed using the high-throughput, high-resolution Scan-o-matic platform, where each strain is analyzed separately. Our study identified that CRISPRi targeting of genes involved in vesicle formation or organelle transport processes led to severe growth inhibition during acetic acid stress, emphasizing the importance of these intracellular membrane structures in maintaining cell vitality. In contrast, strains in which genes encoding subunits of the 19S regulatory particle of the 26S proteasome were downregulated had increased tolerance to acetic acid, which we hypothesize is due to ATP salvage through an increased abundance of the 20S core particle that performs ATP-independent protein degradation. This is the first study where high-resolution CRISPRi library screening paves the way to understanding and bioengineering the robustness of yeast against acetic acid stress. IMPORTANCE Acetic acid is inhibitory to the growth of the yeast Saccharomyces cerevisiae, causing ATP starvation and oxidative stress, which leads to the suboptimal production of fuels and chemicals from lignocellulosic biomass. In this study, where each strain of a CRISPRi library was characterized individually, many essential and respiratory growth-essential genes that regulate tolerance to acetic acid were identified, providing a new understanding of the stress response of yeast and new targets for the bioengineering of industrial yeast. Our findings on the fine-tuning of the expression of proteasomal genes leading to increased tolerance to acetic acid suggest that this could be a novel strategy for increasing stress tolerance, leading to improved strains for the production of biobased chemicals.
Collapse
|
37
|
Gaikani H, Smith AM, Lee AY, Giaever G, Nislow C. Systematic Prediction of Antifungal Drug Synergy by Chemogenomic Screening in Saccharomyces cerevisiae. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:683414. [PMID: 37744101 PMCID: PMC10512392 DOI: 10.3389/ffunb.2021.683414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 06/01/2021] [Indexed: 09/26/2023]
Abstract
Since the earliest days of using natural remedies, combining therapies for disease treatment has been standard practice. Combination treatments exhibit synergistic effects, broadly defined as a greater-than-additive effect of two or more therapeutic agents. Clinicians often use their experience and expertise to tailor such combinations to maximize the therapeutic effect. Although understanding and predicting biophysical underpinnings of synergy have benefitted from high-throughput screening and computational studies, one challenge is how to best design and analyze the results of synergy studies, especially because the number of possible combinations to test quickly becomes unmanageable. Nevertheless, the benefits of such studies are clear-by combining multiple drugs in the treatment of infectious disease and cancer, for instance, one can lessen host toxicity and simultaneously reduce the likelihood of resistance to treatment. This study introduces a new approach to characterize drug synergy, in which we extend the widely validated chemogenomic HIP-HOP assay to drug combinations; this assay involves parallel screening of comprehensive collections of barcoded deletion mutants. We identify a class of "combination-specific sensitive strains" that introduces mechanisms for the synergies we observe and further suggest focused follow-up studies.
Collapse
Affiliation(s)
- Hamid Gaikani
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | - Andrew M. Smith
- Donnelly Centre for Cellular and Biomedical Research, University of Toronto, Toronto, ON, Canada
| | - Anna Y. Lee
- Donnelly Centre for Cellular and Biomedical Research, University of Toronto, Toronto, ON, Canada
| | - Guri Giaever
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Corey Nislow
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
38
|
Emerging Prospects for Combating Fungal Infections by Targeting Phosphatidylinositol Transfer Proteins. Int J Mol Sci 2021; 22:ijms22136754. [PMID: 34201733 PMCID: PMC8269425 DOI: 10.3390/ijms22136754] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 12/27/2022] Open
Abstract
The emergence of fungal “superbugs” resistant to the limited cohort of anti-fungal agents available to clinicians is eroding our ability to effectively treat infections by these virulent pathogens. As the threat of fungal infection is escalating worldwide, this dwindling response capacity is fueling concerns of impending global health emergencies. These developments underscore the urgent need for new classes of anti-fungal drugs and, therefore, the identification of new targets. Phosphoinositide signaling does not immediately appear to offer attractive targets due to its evolutionary conservation across the Eukaryota. However, recent evidence argues otherwise. Herein, we discuss the evidence identifying Sec14-like phosphatidylinositol transfer proteins (PITPs) as unexplored portals through which phosphoinositide signaling in virulent fungi can be chemically disrupted with exquisite selectivity. Recent identification of lead compounds that target fungal Sec14 proteins, derived from several distinct chemical scaffolds, reveals exciting inroads into the rational design of next generation Sec14 inhibitors. Development of appropriately refined next generation Sec14-directed inhibitors promises to expand the chemical weaponry available for deployment in the shifting field of engagement between fungal pathogens and their human hosts.
Collapse
|
39
|
Ogbede JU, Giaever G, Nislow C. A genome-wide portrait of pervasive drug contaminants. Sci Rep 2021; 11:12487. [PMID: 34127714 PMCID: PMC8203678 DOI: 10.1038/s41598-021-91792-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/25/2021] [Indexed: 11/08/2022] Open
Abstract
Using a validated yeast chemogenomic platform, we characterized the genome-wide effects of several pharmaceutical contaminants, including three N-nitrosamines (NDMA, NDEA and NMBA), two related compounds (DMF and 4NQO) and several of their metabolites. A collection of 4800 non-essential homozygous diploid yeast deletion strains were screened in parallel and the strain abundance was quantified by barcode sequencing. These data were used to rank deletion strains representing genes required for resistance to the compounds to delineate affected cellular pathways and to visualize the global cellular effects of these toxins in an easy-to-use searchable database. Our analysis of the N-nitrosamine screens uncovered genes (via their corresponding homozygous deletion mutants) involved in several evolutionarily conserved pathways, including: arginine biosynthesis, mitochondrial genome integrity, vacuolar protein sorting and DNA damage repair. To investigate why NDMA, NDEA and DMF caused fitness defects in strains lacking genes of the arginine pathway, we tested several N-nitrosamine metabolites (methylamine, ethylamine and formamide), and found they also affected arginine pathway mutants. Notably, each of these metabolites has the potential to produce ammonium ions during their biotransformation. We directly tested the role of ammonium ions in N-nitrosamine toxicity by treatment with ammonium sulfate and we found that ammonium sulfate also caused a growth defect in arginine pathway deletion strains. Formaldehyde, a metabolite produced from NDMA, methylamine and formamide, and which is known to cross-link free amines, perturbed deletion strains involved in chromatin remodeling and DNA repair pathways. Finally, co-administration of N-nitrosamines with ascorbic or ferulic acid did not relieve N-nitrosamine toxicity. In conclusion, we used parallel deletion mutant analysis to characterize the genes and pathways affected by exposure to N-nitrosamines and related compounds, and provide the data in an accessible, queryable database.
Collapse
Affiliation(s)
- Joseph Uche Ogbede
- Genome Science & Technology Graduate Program, University of British Columbia, Vancouver, Canada
| | - Guri Giaever
- Faculty of Pharmaceutical Science, University of British Columbia, Vancouver, Canada
| | - Corey Nislow
- Genome Science & Technology Graduate Program, University of British Columbia, Vancouver, Canada.
- Faculty of Pharmaceutical Science, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
40
|
Holič R, Šťastný D, Griač P. Sec14 family of lipid transfer proteins in yeasts. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158990. [PMID: 34118432 DOI: 10.1016/j.bbalip.2021.158990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 11/25/2022]
Abstract
The hydrophobicity of lipids prevents their free movement across the cytoplasm. To achieve highly heterogeneous and precisely regulated lipid distribution in different cellular membranes, lipids are transported by lipid transfer proteins (LTPs) in addition to their transport by vesicles. Sec14 family is one of the most extensively studied groups of LTPs. Here we provide an overview of Sec14 family of LTPs in the most studied yeast Saccharomyces cerevisiae as well as in other selected non-Saccharomyces yeasts-Schizosaccharomyces pombe, Kluyveromyces lactis, Candida albicans, Candida glabrata, Cryptococcus neoformans, and Yarrowia lipolytica. Discussed are specificities of Sec14-domain LTPs in various yeasts, their mode of action, subcellular localization, and physiological function. In addition, quite few Sec14 family LTPs are target of antifungal drugs, serve as modifiers of drug resistance or influence virulence of pathologic yeasts. Thus, they represent an important object of study from the perspective of human health.
Collapse
Affiliation(s)
- Roman Holič
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Dominik Šťastný
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Peter Griač
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia.
| |
Collapse
|
41
|
Costanzo M, Hou J, Messier V, Nelson J, Rahman M, VanderSluis B, Wang W, Pons C, Ross C, Ušaj M, San Luis BJ, Shuteriqi E, Koch EN, Aloy P, Myers CL, Boone C, Andrews B. Environmental robustness of the global yeast genetic interaction network. Science 2021; 372:372/6542/eabf8424. [PMID: 33958448 DOI: 10.1126/science.abf8424] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/30/2021] [Indexed: 12/18/2022]
Abstract
Phenotypes associated with genetic variants can be altered by interactions with other genetic variants (GxG), with the environment (GxE), or both (GxGxE). Yeast genetic interactions have been mapped on a global scale, but the environmental influence on the plasticity of genetic networks has not been examined systematically. To assess environmental rewiring of genetic networks, we examined 14 diverse conditions and scored 30,000 functionally representative yeast gene pairs for dynamic, differential interactions. Different conditions revealed novel differential interactions, which often uncovered functional connections between distantly related gene pairs. However, the majority of observed genetic interactions remained unchanged in different conditions, suggesting that the global yeast genetic interaction network is robust to environmental perturbation and captures the fundamental functional architecture of a eukaryotic cell.
Collapse
Affiliation(s)
- Michael Costanzo
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Jing Hou
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Vincent Messier
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Justin Nelson
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, 200 Union Street, Minneapolis, MN 55455, USA.,Program in Biomedical Informatics and Computational Biology, University of Minnesota-Twin Cities, 200 Union Street, Minneapolis, MN 55455, USA
| | - Mahfuzur Rahman
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, 200 Union Street, Minneapolis, MN 55455, USA.,Program in Biomedical Informatics and Computational Biology, University of Minnesota-Twin Cities, 200 Union Street, Minneapolis, MN 55455, USA
| | - Benjamin VanderSluis
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, 200 Union Street, Minneapolis, MN 55455, USA
| | - Wen Wang
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, 200 Union Street, Minneapolis, MN 55455, USA
| | - Carles Pons
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Catherine Ross
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Matej Ušaj
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Bryan-Joseph San Luis
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Emira Shuteriqi
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Elizabeth N Koch
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, 200 Union Street, Minneapolis, MN 55455, USA
| | - Patrick Aloy
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute for Science and Technology, Barcelona, Spain.,Institució Catalana de Recerca I Estudis Avaçats (ICREA), Barcelona, Spain
| | - Chad L Myers
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, 200 Union Street, Minneapolis, MN 55455, USA. .,Program in Biomedical Informatics and Computational Biology, University of Minnesota-Twin Cities, 200 Union Street, Minneapolis, MN 55455, USA
| | - Charles Boone
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada. .,Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada.,RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Brenda Andrews
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada. .,Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| |
Collapse
|
42
|
Simmons RH, Rogers CM, Bochman ML. A deep dive into the RecQ interactome: something old and something new. Curr Genet 2021; 67:761-767. [PMID: 33961099 DOI: 10.1007/s00294-021-01190-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 11/26/2022]
Abstract
RecQ family helicases are found in all domains of life and play roles in multiple processes that underpin genomic integrity. As such, they are often referred to as guardians or caretakers of the genome. Despite their importance, however, there is still much we do not know about their basic functions in vivo, nor do we fully understand how they interact in organisms that encode more than one RecQ family member. We recently took a multi-omics approach to better understand the Saccharomyces cerevisiae Hrq1 helicase and its interaction with Sgs1, with these enzymes being the functional homologs of the disease-linked RECQL4 and BLM helicases, respectively. Using synthetic genetic array analyses, immuno-precipitation coupled to mass spectrometry, and RNA-seq, we found that Hrq1 and Sgs1 likely participate in many pathways outside of the canonical DNA recombination and repair functions for which they are already known. For instance, connections to transcription, ribosome biogenesis, and chromatin/chromosome organization were uncovered. These recent results are briefly detailed with respect to current knowledge in the field, and possible follow-up experiments are suggested. In this way, we hope to gain a wholistic understanding of these RecQ helicases and how their mutation leads to genomic instability.
Collapse
Affiliation(s)
- Robert H Simmons
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN, USA
| | - Cody M Rogers
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN, USA
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Matthew L Bochman
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
43
|
Highland CM, Fromme JC. Arf1 directly recruits the Pik1-Frq1 PI4K complex to regulate the final stages of Golgi maturation. Mol Biol Cell 2021; 32:1064-1080. [PMID: 33788598 PMCID: PMC8101487 DOI: 10.1091/mbc.e21-02-0069] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/21/2022] Open
Abstract
Proper Golgi complex function depends on the activity of Arf1, a GTPase whose effectors assemble and transport outgoing vesicles. Phosphatidylinositol 4-phosphate (PI4P) generated at the Golgi by the conserved PI 4-kinase Pik1 (PI4KIIIβ) is also essential for Golgi function, although its precise roles in vesicle formation are less clear. Arf1 has been reported to regulate PI4P production, but whether Pik1 is a direct Arf1 effector is not established. Using a combination of live-cell time-lapse imaging analyses, acute PI4P depletion experiments, and in vitro protein-protein interaction assays on Golgi-mimetic membranes, we present evidence for a model in which Arf1 initiates the final stages of Golgi maturation by tightly controlling PI4P production through direct recruitment of the Pik1-Frq1 PI4-kinase complex. This PI4P serves as a critical signal for AP-1 and secretory vesicle formation, the final events at maturing Golgi compartments. This work therefore establishes the regulatory and temporal context surrounding Golgi PI4P production and its precise roles in Golgi maturation.
Collapse
Affiliation(s)
- Carolyn M. Highland
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - J. Christopher Fromme
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
44
|
Chen YR, Ziv I, Swaminathan K, Elias JE, Jarosz DF. Protein aggregation and the evolution of stress resistance in clinical yeast. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200127. [PMID: 33866806 DOI: 10.1098/rstb.2020.0127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Protein aggregation, particularly in its prion-like form, has long been thought to be detrimental. However, recent studies have identified multiple instances where protein aggregation is important for normal physiological functions. Combining mass spectrometry and cell biological approaches, we developed a strategy for the identification of protein aggregates in cell lysates. We used this approach to characterize prion-based traits in pathogenic strains of the yeast Saccharomyces cerevisiae isolated from immunocompromised human patients. The proteins that we found, including the metabolic enzyme Cdc19, the translation elongation factor Yef3 and the fibrillarin homologue Nop1, are known to assemble under certain physiological conditions. Yet, such assemblies have not been reported to be stable or heritable. Our data suggest that some proteins which aggregate in response to stress have the capacity to acquire diverse assembled states, certain ones of which can be propagated across generations in a form of protein-based epigenetics. This article is part of the theme issue 'How does epigenetics influence the course of evolution?'
Collapse
Affiliation(s)
- Yiwen R Chen
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Inbal Ziv
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Kavya Swaminathan
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Joshua E Elias
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Daniel F Jarosz
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA.,Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
45
|
Hesketh A, Bucca G, Smith CP, Hong HJ. Chemotranscriptomic Profiling Defines Drug-Specific Signatures of the Glycopeptide Antibiotics Dalbavancin, Vancomycin and Chlorobiphenyl-Vancomycin in a VanB-Type-Resistant Streptomycete. Front Microbiol 2021; 12:641756. [PMID: 33717038 PMCID: PMC7947799 DOI: 10.3389/fmicb.2021.641756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/05/2021] [Indexed: 11/25/2022] Open
Abstract
Dalbavancin, vancomycin and chlorobiphenyl-vancomycin share a high degree of structural similarity and the same primary mode of drug action. All inhibit bacterial cell wall biosynthesis through complexation with intermediates in peptidoglycan biosynthesis mediated via interaction with peptidyl-d-alanyl-d-alanine (d-Ala-d-Ala) residues present at the termini of the intermediates. VanB-type glycopeptide resistance in bacteria encodes an inducible reprogramming of bacterial cell wall biosynthesis that generates precursors terminating with d-alanyl-d-lactate (d-Ala-d-Lac). This system in Streptomyces coelicolor confers protection against the natural product vancomycin but not dalbavancin or chlorobiphenyl-vancomycin, which are semi-synthetic derivatives and fail to sufficiently activate the inducible VanB-type sensory response. We used transcriptome profiling by RNAseq to identify the gene expression signatures elucidated in S. coelicolor in response to the three different glycopeptide compounds. An integrated comparison of the results defines both the contribution of the VanB resistance system to the control of changes in gene transcription and the impact at the transcriptional level of the structural diversity present in the glycopeptide antibiotics used. Dalbavancin induces markedly more extensive changes in the expression of genes required for transport processes, RNA methylation, haem biosynthesis and the biosynthesis of the amino acids arginine and glutamine. Chlorobiphenyl-vancomycin exhibits specific effects on tryptophan and calcium-dependent antibiotic biosynthesis and has a stronger repressive effect on translation. Vancomycin predictably has a uniquely strong effect on the genes controlled by the VanB resistance system and also impacts metal ion homeostasis and leucine biosynthesis. Leaderless gene transcription is disfavoured in the core transcriptional up- and down-regulation taking place in response to all the glycopeptide antibiotics, while HrdB-dependent transcripts are favoured in the down-regulated group. This study illustrates the biological impact of peripheral changes to glycopeptide antibiotic structure and could inform the design of future semi-synthetic glycopeptide derivatives.
Collapse
Affiliation(s)
- Andy Hesketh
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom
| | - Giselda Bucca
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom
| | - Colin P. Smith
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom
| | - Hee-Jeon Hong
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| |
Collapse
|
46
|
Parikh SB, Castilho Coelho N, Carvunis AR. LI Detector: a framework for sensitive colony-based screens regardless of the distribution of fitness effects. G3-GENES GENOMES GENETICS 2021; 11:6161305. [PMID: 33693606 PMCID: PMC8022918 DOI: 10.1093/g3journal/jkaa068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/15/2020] [Indexed: 11/13/2022]
Abstract
Microbial growth characteristics have long been used to investigate fundamental questions of biology. Colony-based high-throughput screens enable parallel fitness estimation of thousands of individual strains using colony growth as a proxy for fitness. However, fitness estimation is complicated by spatial biases affecting colony growth, including uneven nutrient distribution, agar surface irregularities, and batch effects. Analytical methods that have been developed to correct for these spatial biases rely on the following assumptions: (1) that fitness effects are normally distributed, and (2) that most genetic perturbations lead to minor changes in fitness. Although reasonable for many applications, these assumptions are not always warranted and can limit the ability to detect small fitness effects. Beneficial fitness effects, in particular, are notoriously difficult to detect under these assumptions. Here, we developed the linear interpolation-based detector (LI Detector) framework to enable sensitive colony-based screening without making prior assumptions about the underlying distribution of fitness effects. The LI Detector uses a grid of reference colonies to assign a relative fitness value to every colony on the plate. We show that the LI Detector is effective in correcting for spatial biases and equally sensitive toward increase and decrease in fitness. LI Detector offers a tunable system that allows the user to identify small fitness effects with unprecedented sensitivity and specificity. LI Detector can be utilized to develop and refine gene-gene and gene-environment interaction networks of colony-forming organisms, including yeast, by increasing the range of fitness effects that can be reliably detected.
Collapse
Affiliation(s)
- Saurin Bipin Parikh
- Department of Computational and Systems Biology, Pittsburgh Center for Evolutionary Biology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Nelson Castilho Coelho
- Department of Computational and Systems Biology, Pittsburgh Center for Evolutionary Biology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Anne-Ruxandra Carvunis
- Department of Computational and Systems Biology, Pittsburgh Center for Evolutionary Biology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
47
|
Protein-membrane interactions in small GTPase signalling and pharmacology: perspectives from Arf GTPases studies. Biochem Soc Trans 2020; 48:2721-2728. [PMID: 33336699 DOI: 10.1042/bst20200482] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 11/17/2022]
Abstract
Small GTPases, in association with their GEFs, GAPs and effectors, control major intracellular processes such as signal transduction, cytoskeletal dynamics and membrane trafficking. Accordingly, dysfunctions in their biochemical properties are associated with many diseases, including cancers, diabetes, infections, mental disorders and cardiac diseases, which makes them attractive targets for therapies. However, small GTPases signalling modules are not well-suited for classical inhibition strategies due to their mode of action that combines protein-protein and protein-membrane interactions. As a consequence, there is still no validated drug available on the market that target small GTPases, whether directly or through their regulators. Alternative inhibitory strategies are thus highly needed. Here we review recent studies that highlight the unique modalities of the interaction of small GTPases and their GEFs at the periphery of membranes, and discuss how they can be harnessed in drug discovery.
Collapse
|
48
|
Schirle M, Jenkins JL. Contemporary Techniques for Target Deconvolution and Mode of Action Elucidation. PHENOTYPIC DRUG DISCOVERY 2020. [DOI: 10.1039/9781839160721-00083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The elucidation of the cellular efficacy target and mechanism of action of a screening hit remain key steps in phenotypic drug discovery. A large number of experimental and in silico approaches have been introduced to address these questions and are being discussed in this chapter with a focus on recent developments. In addition to practical considerations such as throughput and technological requirements, these approaches differ conceptually in the specific compound characteristic that they are focusing on, including physical and functional interactions, cellular response patterns as well as structural features. As a result, different approaches often provide complementary information and we describe a multipronged strategy that is frequently key to successful identification of the efficacy target but also other epistatic nodes and off-targets that together shape the overall cellular effect of a bioactive compound.
Collapse
Affiliation(s)
- Markus Schirle
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research Cambridge MA 02139 USA
| | - Jeremy L. Jenkins
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research Cambridge MA 02139 USA
| |
Collapse
|
49
|
Schmidt GW, Cuny AP, Rudolf F. Preventing Photomorbidity in Long-Term Multi-color Fluorescence Imaging of Saccharomyces cerevisiae and S. pombe. G3 (BETHESDA, MD.) 2020; 10:4373-4385. [PMID: 33023973 PMCID: PMC7718758 DOI: 10.1534/g3.120.401465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/06/2020] [Indexed: 12/16/2022]
Abstract
Time-lapse imaging of live cells using multiple fluorescent reporters is an essential tool to study molecular processes in single cells. However, exposure to even moderate doses of visible excitation light can disturb cellular physiology and alter the quantitative behavior of the cells under study. Here, we set out to develop guidelines to avoid the confounding effects of excitation light in multi-color long-term imaging. We use widefield fluorescence microscopy to measure the effect of the administered excitation light on growth rate (here called photomorbidity) in yeast. We find that photomorbidity is determined by the cumulative light dose at each wavelength, but independent of the way excitation light is applied. Importantly, photomorbidity possesses a threshold light dose below which no effect is detectable (NOEL). We found, that the suitability of fluorescent proteins for live-cell imaging at the respective excitation light NOEL is equally determined by the cellular autofluorescence and the fluorescent protein brightness. Last, we show that photomorbidity of multiple wavelengths is additive and imaging conditions absent of photomorbidity can be predicted. Our findings enable researchers to find imaging conditions with minimal impact on physiology and can provide framework for how to approach photomorbidity in other organisms.
Collapse
Affiliation(s)
- Gregor W Schmidt
- ETH Zurich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058 Basel, Switzerland and
| | - Andreas P Cuny
- ETH Zurich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058 Basel, Switzerland and
- SIB Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | - Fabian Rudolf
- ETH Zurich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058 Basel, Switzerland and
- SIB Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| |
Collapse
|
50
|
|