1
|
Masithi P, Bhana AD, Venter GA, Su H, Spicer CD, Petersen WF, Hunter R. Cinchona Organocatalyzed Enantioselective Amination for Quaternized Serines as Tertiary Amides. Org Lett 2024; 26:9162-9167. [PMID: 39414395 PMCID: PMC11519915 DOI: 10.1021/acs.orglett.4c03650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 10/14/2024] [Indexed: 10/18/2024]
Abstract
Herein, we describe a Cinchona-aminocatalyzed enantioselective α-hydrazination of an α-formyl amide for the production of protected quaternized serines as tertiary amides with ee's of generally >98% and ≤99% yields. The proposed TS model supported by density functional theory calculations involves a quinuclidinium ion Brønsted acid-assisted delivery of DtBAD, which occurs from the Re face of an H-bonded enaminone when using a 9S-cinchonamine catalyst, resulting in a hydrazide with the R-configuration as determined by X-ray analysis.
Collapse
Affiliation(s)
- Phathutshedzo Masithi
- Department
of Chemistry, University of Cape Town, Rondebosch, Cape Town 7700, South Africa
| | - Ashlyn D. Bhana
- Department
of Chemistry, University of Cape Town, Rondebosch, Cape Town 7700, South Africa
| | - Gerhard A. Venter
- Department
of Chemistry, University of Cape Town, Rondebosch, Cape Town 7700, South Africa
| | - Hong Su
- Department
of Chemistry, University of Cape Town, Rondebosch, Cape Town 7700, South Africa
| | | | - Wade F. Petersen
- Department
of Chemistry, University of Cape Town, Rondebosch, Cape Town 7700, South Africa
| | - Roger Hunter
- Department
of Chemistry, University of Cape Town, Rondebosch, Cape Town 7700, South Africa
| |
Collapse
|
2
|
Li BT, Ding XX, Dong L. Palladium(II)-Catalyzed Site-Selective C(sp 3)-H Alkenylation of Oligopeptides. Org Lett 2024. [PMID: 39447064 DOI: 10.1021/acs.orglett.4c03365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
An innovative palladium-catalyzed alkenylation of peptides and vinyl iodides has been developed. This method does not require the introduction of a directing group and uses carboxylic acid groups as endogenous directing groups. It is noteworthy that two key building blocks for the ilamycins and CXCR7 modulators were prepared using our methodology. In addition, the free carboxylic acid residue can be linked to a variety of other compounds, providing a novel approach to the synthesis of peptide drugs in the future.
Collapse
Affiliation(s)
- Bing-Tong Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xing-Xing Ding
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Lin Dong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
3
|
Sheng T, Kang G, Zhang T, Meng G, Zhuang Z, Chekshin N, Yu JQ. One-Step Synthesis of Chiral 9,10-Dihydrophenanthrenes via Ligand-Enabled Enantioselective Cascade β,γ-Diarylation of Acids. Angew Chem Int Ed Engl 2024; 63:e202408603. [PMID: 38980976 DOI: 10.1002/anie.202408603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/29/2024] [Accepted: 07/07/2024] [Indexed: 07/11/2024]
Abstract
Pd(II)-catalyzed enantioselective C-H activation has emerged as a versatile platform for constructing point, axial, and planar chirality. Herein, we present an unexpected discovery of a Pd-catalyzed enantioselective cascade β,γ-methylene C(sp3)-H diarylation of free carboxylic acids using bidentate chiral mono-protected amino thioether ligands (MPAThio), enabling one-step synthesis of a complex chiral 9,10-dihydrophenanthrene scaffolds with high enantioselectivity. In this process, two methylene C(sp3)-H bonds and three C(sp2)-H bonds were activated, leading to the formation of four C-C bonds and three chiral centers in one pot. A plausible catalytic pathway starts with enantioselective β,γ-dehydrogenation to form chiral β,γ-cyclohexene. Intriguingly, this olefin serves as a norbornene-type reagent (presumably assisted by the carboxyl directing effect), relaying two successive Catellani arylation reactions and a C-H arylation reaction to furnish chiral 9,10-dihydrophenanthrenes along with meta-selective homocoupling products of iodoarene.
Collapse
Affiliation(s)
- Tao Sheng
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Guowei Kang
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Tao Zhang
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Guangrong Meng
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Zhe Zhuang
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Nikita Chekshin
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
4
|
Zhang ZY, Zhang T, Ouyang Y, Lu P, Qiao JX, Yu JQ. Synthesis of chiral α-amino acids via Pd(ii)-catalyzed enantioselective C-H arylation of α-aminoisobutyric acid. Chem Sci 2024; 15:d4sc05378h. [PMID: 39345777 PMCID: PMC11427991 DOI: 10.1039/d4sc05378h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024] Open
Abstract
Non-natural chiral α,α-disubstituted α-amino acids (α,α-AAs) constitute an attractive α-aminoisobutyric acid (Aib) replacement for improving bioavailability of linear peptides as therapeutics due to the ability of these amino acids to induce the peptides to form helical structures. Enantioselective β-C(sp3)-H arylation of Aib could potentially provide a versatile one-step strategy for accessing diverse α,α-AAs, but the installation and removal of external directing groups was found in our previously reported work to reduce the efficiency of this approach. Herein we report a Pd(ii)-catalyzed enantioselective C-H arylation of N-phthalyl-protected Aib enabled by a N-2,6-difluorobenzoyl aminoethyl phenyl thioether (MPAThio) ligand, affording α,α-AAs with up to 72% yield and 98% ee. Use of this newly developed chiral catalyst has also significantly improved enantioselective C(sp3)-H arylation of cyclopropanecarboxylic acids by expanding the substrate scope to heterocyclic coupling partners and increasing enantioselectivity to 99% ee.
Collapse
Affiliation(s)
- Zi-Yu Zhang
- Department of Chemistry, The Scripps Research Institute 10550 North Torrey Pines Road, La Jolla California 92037 USA
| | - Tao Zhang
- Department of Chemistry, The Scripps Research Institute 10550 North Torrey Pines Road, La Jolla California 92037 USA
| | - Yuxin Ouyang
- Department of Chemistry, The Scripps Research Institute 10550 North Torrey Pines Road, La Jolla California 92037 USA
| | - Peng Lu
- Department of Chemistry, The Scripps Research Institute 10550 North Torrey Pines Road, La Jolla California 92037 USA
| | - Jennifer X Qiao
- Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development Cambridge Massachusetts 02140 USA
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute 10550 North Torrey Pines Road, La Jolla California 92037 USA
| |
Collapse
|
5
|
Zhang Z, Chen M, Zheng G. Vitamin B 12-catalyzed coupling reaction of nitroalkanes and diazo compounds. RSC Adv 2024; 14:29168-29173. [PMID: 39282070 PMCID: PMC11394470 DOI: 10.1039/d4ra05084c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/06/2024] [Indexed: 09/18/2024] Open
Abstract
Vitamin B12 is a natural and environmentally friendly catalyst. When exposed to light or heat, central Co(i) can react with electrophiles to obtain alkyl radicals, which can subsequently be used in complex processes. Herein, the vitamin B12-catalyzed coupling reaction of nitroalkanes and diazo compounds is reported leading to substituted tertiary nitroalkanes in moderate yields. The reaction conditions were optimized, and the scope and limitations of the reaction were also investigated.
Collapse
Affiliation(s)
- Zheng Zhang
- Beijing University of Chemical Technology China
| | - Meiyu Chen
- Qilu Pharmaceutical (Hainan) Co., Ltd. China
| | | |
Collapse
|
6
|
Yuan CH, Wang XX, Huang K, Jiao L. Unveiling the Mechanistic Role of Chiral Palladacycles in Pd(II)-Catalyzed Enantioselective C(sp 3)-H Functionalization. Angew Chem Int Ed Engl 2024; 63:e202405062. [PMID: 38711169 DOI: 10.1002/anie.202405062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/22/2024] [Accepted: 05/06/2024] [Indexed: 05/08/2024]
Abstract
Palladium-catalyzed enantioselective C(sp3)-H functionalization reactions has attracted considerable attention due to its ability for the synthesis of enantiomerically enriched molecules and stimulation of novel retrosynthetic disconnections. Understanding the reaction mechanism, especially the stereochemical process of the reaction, is crucial for the rational design of more efficient catalytic systems. Previously, we developed a Pd(II)/sulfoxide-2-hydroxypridine (SOHP) catalytic system for asymmetric C(sp3)-H functionalization reactions. In this study, we focused on unraveling the chemistry of chiral palladacycles involved in the Pd(II)-catalyzed enantioselective C(sp3)-H functionalization. We have isolated key palladacycle intermediates involved in the enantioselective β-C(sp3)-H arylation of carboxylic acids catalyzed by the Pd(II)/SOHP system. These palladacycles, exhibiting ligand-induced chirality, provided a significant opportunity to investigate the stereochemical process and the ligand effect in this asymmetric C-H functionalization. Our investigation provided direct evidence for the C-H palladation step as the enantioselectivity-determining step, which forms diastereomeric palladacycles that exhibited preservation of chirality in the functionalization step. DFT calculations provided insights into the chiral induction in palladacycle formation. This work highlights the value of chiral palladacycle chemistry in offering mechanistic insights into the Pd(II)-catalyzed asymmetric C(sp3)-H functionalization reactions.
Collapse
Affiliation(s)
- Chen-Hui Yuan
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xiao-Xia Wang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Keyun Huang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Lei Jiao
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
7
|
Guo C, Wang X, Ding Q, Wu J. C-H Bond Sulfonylation from Thianthrenium Salts and DABCO·(SO 2) 2: Synthesis of 2-Sulfonylindoles. J Org Chem 2024; 89:9672-9680. [PMID: 38871666 DOI: 10.1021/acs.joc.4c00827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
A three-component reaction of 1-(1H-indol-1-yl)isoquinolines or 1-(pyridin-2-yl)-1H-indoles, DABCO·(SO2)2, and thianthrenium salts under synergistic photoredox and palladium catalysis is accomplished. This direct C-H bond sulfonylation of indoles with the insertion of sulfur dioxide under mild conditions works efficiently, giving rise to a wide range of 2-sulfonated indoles in moderate to good yields under mild conditions. In this protocol, the generality of aryl/alkyl thianthrenium salts is demonstrated as well. A photoredox radical process combined with palladium catalysis is proposed.
Collapse
Affiliation(s)
- Chen Guo
- College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Xinhua Wang
- College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Qiuping Ding
- College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Jie Wu
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
8
|
González-Fernández E, Marinus N, Dhankhar J, Linden A, Čorić I. Control over Anion Coordination on Pd(II), Cu(I), and Ag(I) with Regioisomeric Phosphine-Carboxylate Ligands. Chemistry 2024; 30:e202401215. [PMID: 38688855 DOI: 10.1002/chem.202401215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
The coordination of anionic donors is involved at various stages of catalytic cycles in transition-metal catalysis, but control over the spatial positioning of anions around a metal center is a challenge in coordination chemistry. Here we show that regioisomeric phosphine-carboxylate ligands provide spatial anion control on palladium(II) centers by favoring either κ2, cis-κ1, or trans-κ1 coordination of the carboxylate donor. Additionally, the palladium(II) carboxylates, which contain a methyl donor, upon protonation, deliver metal-alkyl complexes that feature a coordinated carboxylic acid. Such complexes can be considered as models for the minima that follow the concerted metalation-deprotonation transition state for C-H activation. The predictability of the coordination modes is further demonstrated on silver(I) and copper(I) centers, for which less common structures of mononuclear and dinuclear complexes can be obtained by using spatial anion control. Our results demonstrate the potential for spatial control over carboxylate anions in coordination chemistry.
Collapse
Affiliation(s)
- Elisa González-Fernández
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
| | - Nittert Marinus
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
| | - Jyoti Dhankhar
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
| | - Anthony Linden
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
| | - Ilija Čorić
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
| |
Collapse
|
9
|
Wu LS, Zhou T, Shi BF. Pd(II)-Catalyzed Desymmetrizing gem-Dimethyl C(sp 3)-H Alkenylation/Aza-Wacker Cyclization Directed by PIP Auxiliary. Org Lett 2024; 26:4457-4462. [PMID: 38775281 DOI: 10.1021/acs.orglett.4c01214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Desymmetrization of gem-dimethyl groups has been developed as an efficient pathway to achieve asymmetric C(sp3)-H functionalization. Herein, we described a Pd(II)-catalyzed desymmetrizing gem-dimethyl C(sp3)-H alkenylation/aza-Wacker cyclization directed by a bidentate 2-pyridinylisopropyl auxiliary. Chiral α-methyl γ-lactams were obtained in good yields (up to 82%) and high enantioselectivities (up to 91.5% ee).
Collapse
Affiliation(s)
- Le-Song Wu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Tao Zhou
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang China
| | - Bing-Feng Shi
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang China
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| |
Collapse
|
10
|
Zhang T, Zhang ZY, Kang G, Sheng T, Yan JL, Yang YB, Ouyang Y, Yu JQ. Enantioselective remote methylene C-H (hetero)arylation of cycloalkane carboxylic acids. Science 2024; 384:793-798. [PMID: 38753778 DOI: 10.1126/science.ado1246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/09/2024] [Indexed: 05/18/2024]
Abstract
Stereoselective construction of γ- and δ-stereocenters in carbonyl compounds is a pivotal objective in asymmetric synthesis. Here, we report chiral bifunctional oxazoline-pyridone ligands that enable enantioselective palladium-catalyzed remote γ-C-H (hetero)arylations of free cycloalkane carboxylic acids, which are essential carbocyclic building blocks in organic synthesis. The reaction establishes γ-tertiary and α-quaternary stereocenters simultaneously in up to >99% enantiomeric excess, providing access to a wide range of cyclic chiral synthons and bioactive molecules. The sequential enantioselective editing of two methylene C-H bonds can be achieved by using chiral ligands with opposite configuration to construct carbocycles containing three chiral centers. Enantioselective remote δ-C-H (hetero)arylation is also realized to establish δ-stereocenters that are particularly challenging to access using classical methodologies.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Zi-Yu Zhang
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Guowei Kang
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Tao Sheng
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jie-Lun Yan
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Yuan-Bin Yang
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Yuxin Ouyang
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
11
|
Wu K, Lam N, Strassfeld DA, Fan Z, Qiao JX, Liu T, Stamos D, Yu JQ. Palladium (II)-Catalyzed C-H Activation with Bifunctional Ligands: From Curiosity to Industrialization. Angew Chem Int Ed Engl 2024; 63:e202400509. [PMID: 38419352 PMCID: PMC11216193 DOI: 10.1002/anie.202400509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
In 2001, our curiosity to understand the stereochemistry of C-H metalation with Pd prompted our first studies in Pd(II)-catalyzed asymmetric C-H activation (RSC Research appointment: 020 7451 2545, Grant: RG 36873, Dec. 2002). We identified four central challenges: 1. poor reactivity of simple Pd salts with native substrates; 2. few strategies to control site selectivity for remote C-H bonds; 3. the lack of chiral catalysts to achieve enantioselectivity via asymmetric C-H metalation, and 4. low practicality due to limited coupling partner scope and the use of specialized oxidants. These challenges necessitated new strategies in catalyst and reaction development. For reactivity, we developed approaches to enhance substrate-catalyst affinity together with novel bifunctional ligands which participate in and accelerate the C-H cleavage step. For site-selectivity, we introduced the concept of systematically modulating the distance and geometry between a directing template, catalyst, and substrate to selectively access remote C-H bonds. For enantioselectivity, we devised predictable stereomodels for catalyst-controlled enantioselective C-H activation based on the participation of bifunctional ligands. Finally, for practicality, we have developed varied catalytic manifolds for Pd(II) to accommodate diverse coupling partners while employing practical oxidants such as simple peroxides. These advances have culminated in numerous C-H activation reactions, setting the stage for broad industrial applications.
Collapse
Affiliation(s)
- Kevin Wu
- Department of Chemistry, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Nelson Lam
- Department of Chemistry, Cambridge University, Cambridge, CB2 1EW, UK
| | - Daniel A Strassfeld
- Department of Chemistry, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Zhoulong Fan
- Department of Chemistry, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jennifer X Qiao
- Small Molecule Drug Discovery, Bristol-Myers Squibb Research and Development, 250 Water Street, Cambridge, MA 02141, USA
| | - Tao Liu
- Discovery Chemistry Research & Technology Eli Lilly and Company, Lilly Biotechnology Center, 10290 Campus Point Dr, San Diego, CA 92121, USA
| | - Dean Stamos
- Research & Development, Flagship Pioneering, 55 Cambridge Parkway Suite 800E, Cambridge, MA 02142, USA
| | - Jin-Quan Yu
- Department of Chemistry, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
12
|
Kopp A, Oyama T, Ackermann L. Fluorescent coumarin-alkynes for labeling of amino acids and peptides via manganese(I)-catalyzed C-H alkenylation. Chem Commun (Camb) 2024. [PMID: 38683668 DOI: 10.1039/d4cc00361f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The late-stage fluorescent labeling of structurally complex peptides bears immense potential for molecular imaging. Herein, we report on a manganese(I)-catalyzed peptide C-H alkenylation under exceedingly mild conditions with natural fluorophores as coumarin- and chromone-derivatives. The robustness and efficiency of the manganese(I) catalysis regime was reflected by a broad functional group tolerance and low catalyst loading in a resource- and atom-economical fashion.
Collapse
Affiliation(s)
- Adelina Kopp
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstrasse 2, Göttingen 37077, Germany.
| | - Tsuyoshi Oyama
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstrasse 2, Göttingen 37077, Germany.
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstrasse 2, Göttingen 37077, Germany.
- Wöhler Research Institute for Sustainable Chemistry, Georg-August-Universität Göttingen, Tammannstrasse 2, Göttingen 37077, Germany
| |
Collapse
|
13
|
Staronova L, Yamazaki K, Xu X, Shi H, Bickelhaupt FM, Hamlin TA, Dixon DJ. Cobalt-Catalyzed Enantio- and Regioselective C(sp 3 )-H Alkenylation of Thioamides. Angew Chem Int Ed Engl 2024; 63:e202316021. [PMID: 38143241 DOI: 10.1002/anie.202316021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 12/26/2023]
Abstract
An enantioselective cobalt-catalyzed C(sp3 )-H alkenylation of thioamides with but-2-ynoate ester coupling partners employing thioamide directing groups is presented. The method is operationally simple and requires only mild reaction conditions, while providing alkenylated products as single regioisomers in excellent yields (up to 85 %) and high enantiomeric excess [up to 91 : 9 enantiomeric ratio (er), or up to >99 : 1 er after a single recrystallization]. Diverse downstream derivatizations of the products are demonstrated, delivering a range of enantioenriched constructs. Extensive computational studies using density functional theory provide insight into the detailed reaction mechanism, origin of enantiocontrol, and the unusual regioselectivity of the alkenylation reaction.
Collapse
Affiliation(s)
- Lucia Staronova
- Department of Chemistry, Chemistry Research Laboratory University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Ken Yamazaki
- Department of Chemistry, Chemistry Research Laboratory University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
- Department of Chemistry and Pharmaceutical Sciences, AIMMS, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Xing Xu
- Department of Chemistry, Chemistry Research Laboratory University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Heyao Shi
- Department of Chemistry, Chemistry Research Laboratory University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - F Matthias Bickelhaupt
- Department of Chemistry and Pharmaceutical Sciences, AIMMS, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
- Institute of Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
- Department of Chemical Sciences, University of Johannesburg, Auckland Park, Johannesburg, 2006, South Africa
| | - Trevor A Hamlin
- Department of Chemistry and Pharmaceutical Sciences, AIMMS, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Darren J Dixon
- Department of Chemistry, Chemistry Research Laboratory University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| |
Collapse
|
14
|
Yang Y, Chen J, Shi Y, Liu P, Feng Y, Peng Q, Xu S. Catalytic Enantioselective Primary C-H Borylation for Acyclic All-Carbon Quaternary Stereocenters. J Am Chem Soc 2024; 146:1635-1643. [PMID: 38182551 DOI: 10.1021/jacs.3c12266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
Creating a perfect catalyst to operate enzyme-like chiral recognition has been a long-sought aim. A challenging example in this context is constructing acyclic all-carbon quaternary stereogenic centers by transition metal-catalyzed enantioselective C-H activation. We now report highly enantioselective iridium-catalyzed primary C-H borylation of α-all-carbon substituted 2,2-dimethyl amides enabled by a tailor-made chiral bidentate boryl ligand (CBL). The success of the current transformation is attributed to the CBL/iridium catalyst, which has a confined chiral pocket. This protocol provides a diverse array of acyclic all-carbon quaternary stereocenters with excellent enantiocontrol and distinct structural features. Computational study reveals that steric hindrance of CBL could regulate the type of dominant orbital interaction between the catalyst and substrate, which is crucial to conferring high chiral induction.
Collapse
Affiliation(s)
- Yuhuan Yang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jingyao Chen
- State Key Laboratory of Elemento-Organic Chemistry, and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yongjia Shi
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Peizhi Liu
- State Key Laboratory of Elemento-Organic Chemistry, and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yuxiang Feng
- State Key Laboratory of Elemento-Organic Chemistry, and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Qian Peng
- State Key Laboratory of Elemento-Organic Chemistry, and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Senmiao Xu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
15
|
Li Z, Wang M, Yang Y, Liang Y, Chen X, Zhao Y, Houk KN, Shi Z. Atroposelective hydroarylation of biaryl phosphines directed by phosphorus centres. Nat Commun 2023; 14:8509. [PMID: 38129395 PMCID: PMC10739911 DOI: 10.1038/s41467-023-44202-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Prized for their ability to generate chemical complexity rapidly, catalytic carbon-hydrogen (C-H) activation and functionalization reactions have enabled a paradigm shift in the standard logic of synthetic chemistry. Directing group strategies have been used extensively in C-H activation reactions to control regio- and enantioselectivity with transition metal catalysts. However, current methods rely heavily on coordination with nitrogen and/or oxygen atoms in molecules and have therefore been found to exhibit limited generality in asymmetric syntheses. Here, we report enantioselective C-H activation with unsaturated hydrocarbons directed by phosphorus centres to rapidly construct libraries of axially chiral phosphines through dynamic kinetic resolution. High reactivity and enantioselectivity are derived from modular assembly of an iridium catalyst with an endogenous phosphorus atom and an exogenous chiral phosphorus ligand, as confirmed by detailed experimental and computational studies. This reaction mode significantly expands the pool of enantiomerically enriched functional phosphines, some of which have shown excellent efficiency for asymmetric catalysis.
Collapse
Affiliation(s)
- Zexian Li
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Huaibei, 235000, China
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Youqing Yang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Huaibei, 235000, China
| | - Yong Liang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Xiangyang Chen
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Zhuangzhi Shi
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Huaibei, 235000, China.
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
16
|
Mohite SB, Mane MV, Bera M, Karpoormath R. Palladium-Catalyzed Regiodivergent C-H Olefination of Imidazo[1,2a]pyridine Carboxamide and Unactivated Alkenes. Chemistry 2023:e202302759. [PMID: 37735937 DOI: 10.1002/chem.202302759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 09/23/2023]
Abstract
Despite remarkable successes in linear and branched vinyl (hetero) arene synthesis, regiodivergent C-H olefination with a single catalytic system has remained underdeveloped. Overcoming this limitation, a Pd/MPAA-catalyzed regiodivergent C-H olefination of imidazo[1,2a] pyridine carboxamides with unactivated terminal alkenes to generate branched and linear olefinated products depending upon the electronic nature of alkenes is reported herein. Moreover, this protocol can be applied for C-H deuteriation of the corresponding heteroarenes with D2 O as deuterium source. Preliminary experimental studies combined with computational investigations (DFT studies) suggest that regiodivergent olefination can be controlled by olefin insertion and β-hydride elimination steps.
Collapse
Affiliation(s)
- Sachin Balaso Mohite
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Westville, Durban, 4000, South Africa
| | - Manoj V Mane
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura, Bangalore, Karnataka, 562112, India
| | - Milan Bera
- Photocatalysis & Synthetic Methodology Lab (PSML), Amity Institute of Click Chemistry Research & Studies (AICCRS), Amity University, Noida, 201303, India
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Westville, Durban, 4000, South Africa
| |
Collapse
|
17
|
Wang X, Si XJ, Sun Y, Wei Z, Xu M, Yang D, Shi L, Song MP, Niu JL. C-N Axially Chiral Heterobiaryl Isoquinolinone Skeletons Construction via Cobalt-Catalyzed Atroposelective C-H Activation/Annulation. Org Lett 2023; 25:6240-6245. [PMID: 37595028 DOI: 10.1021/acs.orglett.3c01685] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
Abstract
Herein, the atroposelective construction of isoquinolinones bearing a C-N chiral axis has been successfully developed via a Co-catalyzed C-H bond activation and annulation process. This conversion can be effectively carried out in an environmentally friendly oxygen atmosphere to generate the target C-N axially chiral frameworks with excellent reactivities and enantioselectivities (up to >99% ee) in the absence of any additives. Additionally, the current protocol has proved to be an alternative approach for the C-N axial architectures fabrication under electrochemical conditions for cobalt/Salox catalysis, and this strategy allowed the efficient and atom-economical synthesis of various axially chiral isoquinolinones under mild reaction conditions.
Collapse
Affiliation(s)
- Xinhai Wang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xiao-Ju Si
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yingjie Sun
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Zhisen Wei
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Miao Xu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Dandan Yang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Linlin Shi
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Mao-Ping Song
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Jun-Long Niu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
18
|
Yuan CH, Wang XX, Jiao L. Ligand-Enabled Palladium(II)-Catalyzed Enantioselective β-C(sp 3 )-H Arylation of Aliphatic Tertiary Amides. Angew Chem Int Ed Engl 2023; 62:e202300854. [PMID: 36851818 DOI: 10.1002/anie.202300854] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/01/2023]
Abstract
Amide is one of the most widespread functional groups in organic and bioorganic chemistry, and it would be valuable to achieve stereoselective C(sp3 )-H functionalization in amide molecules. Palladium(II) catalysis has been prevalently used in the C-H activation chemistry in the past decades, however, due to the weakly-coordinating feature of simple amides, it is challenging to achieve their direct C(sp3 )-H functionalization with enantiocontrol by PdII catalysis. Our group has developed sulfoxide-2-hydroxypridine (SOHP) ligands, which exhibited remarkable activity in Pd-catalyzed C(sp2 )-H activation. In this work, we demonstrate that chiral SOHP ligands served as an ideal solution to enantioselective C(sp3 )-H activation in simple amides. Herein, we report an efficient asymmetric PdII /SOHP-catalyzed β-C(sp3 )-H arylation of aliphatic tertiary amides, in which the SOHP ligand plays a key role in the stereoselective C-H deprotonation-metalation step.
Collapse
Affiliation(s)
- Chen-Hui Yuan
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xiao-Xia Wang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Lei Jiao
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
19
|
Kong L, Zou Y, Li XX, Zhang XP, Li X. Rhodium-catalyzed enantioselective C-H alkynylation of sulfoxides in diverse patterns: desymmetrization, kinetic resolution, and parallel kinetic resolution. Chem Sci 2023; 14:317-322. [PMID: 36687346 PMCID: PMC9811495 DOI: 10.1039/d2sc05310a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/01/2022] [Indexed: 12/05/2022] Open
Abstract
Rhodium-catalyzed enantioselective C-H alkynylation of achiral and racemic sulfoxides is disclosed with alkynyl bromide as the alkynylating reagent. A wide range of chiral sulfoxides have been constructed in good yield and excellent enantioselectivity (up to 99% ee, s-factor up to > 500) via desymmetrization, kinetic resolution, and parallel kinetic resolution under mild reaction conditions. The high enantioselectivity was rendered by the chiral cyclopentadienyl rhodium(iii) catalyst paired with a chiral carboxamide additive. The interactions between the chiral catalyst, the sulfoxide, and the chiral carboxylic amide during the C-H bond cleavage offer the asymmetric induction, which is validated by DFT calculations. The chiral carboxamide functions as a base to promote C-H activation and offers an additional chiral environment during the C-H cleavage.
Collapse
Affiliation(s)
- Lingheng Kong
- School of Chemistry and Chemical Engineering, Shaanxi Normal UniversityXi'an 710062China
| | - Yun Zou
- School of Chemistry and Chemical Engineering, Shaanxi Normal UniversityXi'an 710062China
| | - Xiao-Xi Li
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Sciences, Shandong UniversityQingdao 266237China
| | - Xue-Peng Zhang
- School of Chemistry and Chemical Engineering, Shaanxi Normal UniversityXi'an 710062China
| | - Xingwei Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal UniversityXi'an 710062China,Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Sciences, Shandong UniversityQingdao 266237China
| |
Collapse
|
20
|
Dong ZY, Zhao JH, Wang P, Yu JQ. MPAI-Ligand Accelerated Pd-Catalyzed C( sp3)-H Arylation of Free Aliphatic Acids. Org Lett 2022; 24:7732-7736. [PMID: 36259989 DOI: 10.1021/acs.orglett.2c02933] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Here, we report the development of a class of bifunctional monoprotected amino-imidazoline (MPAI) ligands and their applications in Pd-catalyzed C(sp3)-H arylation of free aliphatic acids. The newly developed MPAI ligand allows the use of 1.0 equiv of aliphatic acids containing an alpha hydrogen for the first time.
Collapse
Affiliation(s)
- Zi-Yu Dong
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road, Shanghai 200032, China.,School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jia-Hui Zhao
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road, Shanghai 200032, China.,School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Peng Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road, Shanghai 200032, China.,School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
21
|
Heterogeneous asymmetric β-C-H functionalization of aldehydes under O2 catalyzed by hydroxide-layered Fe(III) sites synergistic with confined interlayer amine. J Catal 2022. [DOI: 10.1016/j.jcat.2022.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Zhuang Z, Liu S, Cheng J, Yeung K, Qiao JX, Meanwell NA, Yu J. Ligand-Enabled β-C(sp 3 )-H Lactamization of Tosyl-Protected Aliphatic Amides Using a Practical Oxidant. Angew Chem Int Ed Engl 2022; 61:e202207354. [PMID: 35790471 PMCID: PMC9439703 DOI: 10.1002/anie.202207354] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Indexed: 11/25/2022]
Abstract
The development of C(sp3 )-H functionalization reactions that use common protecting groups and practical oxidants remains a significant challenge. Herein we report a monoprotected aminoethyl thioether (MPAThio) ligand-enabled β-C(sp3 )-H lactamization of tosyl-protected aliphatic amides using tert-butyl hydrogen peroxide (TBHP) as the sole oxidant. This protocol features exceedingly mild reaction conditions, reliable scalability, and the use of practical oxidants and protecting groups. Further derivatization of the β-lactam products enables the synthesis of a range of biologically important motifs including β-amino acids, γ-amino alcohols, and azetidines.
Collapse
Affiliation(s)
- Zhe Zhuang
- Department of ChemistryThe Scripps Research Institute10550 North Torrey Pines RoadLa JollaCA 92037USA
| | - Shuang Liu
- Department of ChemistryThe Scripps Research Institute10550 North Torrey Pines RoadLa JollaCA 92037USA
| | - Jin‐Tang Cheng
- Department of ChemistryThe Scripps Research Institute10550 North Torrey Pines RoadLa JollaCA 92037USA
| | - Kap‐Sun Yeung
- Small Molecule Drug DiscoveryBristol Myers Squibb Research and Early Development100 Binney StreetCambridgeMA 02142USA
| | - Jennifer X. Qiao
- Small Molecule Drug DiscoveryBristol Myers Squibb Research and Early DevelopmentP.O. Box 4000PrincetonNJ 08543USA
| | - Nicholas A. Meanwell
- Small Molecule Drug DiscoveryBristol Myers Squibb Research and Early DevelopmentP.O. Box 4000PrincetonNJ 08543USA
| | - Jin‐Quan Yu
- Department of ChemistryThe Scripps Research Institute10550 North Torrey Pines RoadLa JollaCA 92037USA
| |
Collapse
|
23
|
Yue Q, Liu B, Liao G, Shi BF. Binaphthyl Scaffold: A Class of Versatile Structure in Asymmetric C–H Functionalization. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Qiang Yue
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang310027, China
| | - Bin Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi330031, China
| | - Gang Liao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543Republic of Singapore
| | - Bing-Feng Shi
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang310027, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan453007, China
| |
Collapse
|
24
|
Zhuang Z, Liu S, Cheng JT, Yeung KS, Qiao JX, Meanwell NA, Yu JQ. Ligand‐Enabled β‐C(sp3)−H Lactamization of Tosyl‐Protected Aliphatic Amides Using a Practical Oxidant. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Zhe Zhuang
- The Scripps Research Institute Department of Chemistry 10550 N Torrey Pines Road 92037 La jolla UNITED STATES
| | - Shuang Liu
- The Scripps Research Institute Department of Chemistry 10550 N Torrey Pines Road 92037 La jolla UNITED STATES
| | - Jin-Tang Cheng
- The Scripps Research Institute Department of Chemistry 10550 N Torrey Pines Road 92037 La jolla UNITED STATES
| | - Kap-Sun Yeung
- Bristol Myers Squibb Research and Early Development UNITED STATES
| | - Jennifer X. Qiao
- Bristol-Myers Squibb Research Research and Early Development UNITED STATES
| | | | - Jin-Quan Yu
- The Scripps Research Institute chemistry 10550 N Torrey Pines Road 92037 La Jolla UNITED STATES
| |
Collapse
|
25
|
Different Chiral Ligands Assisted Enantioselective C-H Functionalization with Transition-Metal Catalysts. Catalysts 2022. [DOI: 10.3390/catal12050537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
C–H bonds are common in organic molecules, and the functionalization of these inactive C–H bonds has become one of the most powerful methods used to assemble complicated bioactive molecules from readily available starting materials. However, a central challenge in these reactions is controlling their stereoselectivity. Recently, significant progress has been made in the development of enantioselective C–H activation enabled by different chiral ligands for the formation of C–C and C–X bonds bearing a chiral center. In this paper, we focus on some archetypal chiral ligands for enantioselective C–H functionalization developed in recent years and analyze the mechanism of these methods, aiming to accelerate related research and to search for more efficient strategies.
Collapse
|
26
|
Lucas EL, Lam NYS, Zhuang Z, Chan HSS, Strassfeld DA, Yu JQ. Palladium-Catalyzed Enantioselective β-C(sp 3)-H Activation Reactions of Aliphatic Acids: A Retrosynthetic Surrogate for Enolate Alkylation and Conjugate Addition. Acc Chem Res 2022; 55:537-550. [PMID: 35076221 PMCID: PMC9129890 DOI: 10.1021/acs.accounts.1c00672] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Enolate alkylation and conjugate addition into an α,β-unsaturated system have served as long-standing strategic disconnections for the installation of α- or β-substituents on carbonyl-containing compounds. At the onset of our efforts to develop C-H activation reactions for organic synthesis, we set our eye toward developing asymmetric β-C-H activation reactions of aliphatic acids with the perspective that this bond-forming event could serve as a more flexible retrosynthetic surrogate for both canonical carbonyl-related asymmetric transformations.In this Account, we describe our early efforts using strongly coordinating chiral oxazolines to probe reaction mechanism and the stereochemical nature of the C-H cleavage transition state. The characterization of key reactive intermediates through X-ray crystallography and computational studies suggested a transition state with C-H and Pd-OAc bonds being approximately coplanar for optimum interaction. We then moved forward to develop more practical, weakly coordinating monodentate amide directing groups, a necessary advance toward achieving the β-C-H activation of weakly coordinating native carboxylic acids. Throughout this journey, gradual deconvolution between a substrate's directing effect and its intimate interplay with ligand properties has culminated in the design of new ligand classes that ultimately allowed the competency of native carboxylic acids in β-C-H activation. These efforts established the importance of ligand acceleration in Pd-catalyzed C-H activation, where the substrate's weak coordination is responsible for positioning the catalyst for C-H cleavage, while the direct participation from the bifunctional ligand is responsible for enthalpically stabilizing the C-H cleavage transition state.Building upon these principles, we developed five classes of chiral ligands (MPAA, MPAQ, MPAO, MPAThio, MPAAM) to enable enantioselective β-C-H activation reactions, including carbon-carbon and carbon-heteroatom bond formation. The accumulated data from our developed enantioselective C-H activation reactions indicate that ligands possessing point chirality are most effective for imparting stereoinduction in the C-H activation step, the application of which enabled the desymmetrization and subsequent C-H functionalization of enantiotopic carbon and protons across a range of weakly coordinating arylamides and, more recently, free carboxylic acids. Progress in ligand design, in conjunction with the enabling nature of alkali metal countercations, led to the realization of a suite of β-methyl and now methylene C(sp3)-H activation reactions. These advancements also enabled the use of economical oxidants, such as peroxides and molecular oxygen, to facilitate catalyst turnover. In the future, continued progress in designing more efficient bifunctional chiral ligands is likely to provide a myriad of enantioselective β-C-H activation reactions of readily available native substrates.
Collapse
Affiliation(s)
- Erika L Lucas
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Nelson Y S Lam
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Zhe Zhuang
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Hau Sun Sam Chan
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Daniel A Strassfeld
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
27
|
|
28
|
Yu X, Zhang ZZ, Niu JL, Shi BF. Coordination-assisted, transition-metal-catalyzed enantioselective desymmetric C–H functionalization. Org Chem Front 2022. [DOI: 10.1039/d1qo01884a] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recent advances in transition-metal-catalyzed enantioselective desymmetric C–H functionalization are summarized.
Collapse
Affiliation(s)
- Xin Yu
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Zhuo-Zhuo Zhang
- School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, 610106, China
| | - Jun-Long Niu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Bing-Feng Shi
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| |
Collapse
|
29
|
Elnagar MM, Jacob T, Kibler LA. Cathodic corrosion of Au in aqueous methanolic alkali metal hydroxide electrolytes: Notable role of water. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
| | - Timo Jacob
- Institute of Electrochemistry Ulm University Ulm Germany
| | | |
Collapse
|
30
|
Liu B, Romine AM, Rubel CZ, Engle KM, Shi BF. Transition-Metal-Catalyzed, Coordination-Assisted Functionalization of Nonactivated C(sp 3)-H Bonds. Chem Rev 2021; 121:14957-15074. [PMID: 34714620 PMCID: PMC8968411 DOI: 10.1021/acs.chemrev.1c00519] [Citation(s) in RCA: 196] [Impact Index Per Article: 65.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Transition-metal-catalyzed, coordination-assisted C(sp3)-H functionalization has revolutionized synthetic planning over the past few decades as the use of these directing groups has allowed for increased access to many strategic positions in organic molecules. Nonetheless, several challenges remain preeminent, such as the requirement for high temperatures, the difficulty in removing or converting directing groups, and, although many metals provide some reactivity, the difficulty in employing metals outside of palladium. This review aims to give a comprehensive overview of coordination-assisted, transition-metal-catalyzed, direct functionalization of nonactivated C(sp3)-H bonds by covering the literature since 2004 in order to demonstrate the current state-of-the-art methods as well as the current limitations. For clarity, this review has been divided into nine sections by the transition metal catalyst with subdivisions by the type of bond formation. Synthetic applications and reaction mechanism are discussed where appropriate.
Collapse
Affiliation(s)
- Bin Liu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, 38 Zheda Rd., Hangzhou 310027, China.,College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Andrew M. Romine
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, California 92037, United States
| | - Camille Z. Rubel
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, California 92037, United States
| | - Keary M. Engle
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, California 92037, United States.,Corresponding Author- (K. M. E.); (B.-F. S.)
| | - Bing-Feng Shi
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, 38 Zheda Rd., Hangzhou 310027, China.,College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China,Corresponding Author- (K. M. E.); (B.-F. S.)
| |
Collapse
|
31
|
Liu L, Guo K, Tian Y, Yang C, Gu Q, Li Z, Ye L, Liu X. Copper‐Catalyzed Intermolecular Enantioselective Radical Oxidative C(sp
3
)−H/C(sp)−H Cross‐Coupling with Rationally Designed Oxazoline‐Derived N,N,P(O)‐Ligands. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Lin Liu
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Kai‐Xin Guo
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Yu Tian
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Chang‐Jiang Yang
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Qiang‐Shuai Gu
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry Southern University of Science and Technology Shenzhen 518055 China
| | - Zhong‐Liang Li
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry Southern University of Science and Technology Shenzhen 518055 China
| | - Liu Ye
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry Southern University of Science and Technology Shenzhen 518055 China
| | - Xin‐Yuan Liu
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| |
Collapse
|
32
|
Liu L, Guo KX, Tian Y, Yang CJ, Gu QS, Li ZL, Ye L, Liu XY. Copper-Catalyzed Intermolecular Enantioselective Radical Oxidative C(sp 3 )-H/C(sp)-H Cross-Coupling with Rationally Designed Oxazoline-Derived N,N,P(O)-Ligands. Angew Chem Int Ed Engl 2021; 60:26710-26717. [PMID: 34606167 DOI: 10.1002/anie.202110233] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/20/2021] [Indexed: 12/14/2022]
Abstract
The intermolecular asymmetric radical oxidative C(sp3 )-C(sp) cross-coupling of C(sp3 )-H bonds with readily available terminal alkynes is a promising method to forge chiral C(sp3 )-C(sp) bonds because of the high atom and step economy, but remains underexplored. Here, we report a copper-catalyzed asymmetric C(sp3 )-C(sp) cross-coupling of (hetero)benzylic and (cyclic)allylic C-H bonds with terminal alkynes that occurs with high to excellent enantioselectivity. Critical to the success is the rational design of chiral oxazoline-derived N,N,P(O)-ligands that not only tolerate the strong oxidative conditions which are requisite for intermolecular hydrogen atom abstraction (HAA) processes but also induce the challenging enantiocontrol. Direct access to a range of synthetically useful chiral benzylic alkynes and 1,4-enynes, high site-selectivity among similar C(sp3 )-H bonds, and facile synthesis of enantioenriched medicinally relevant compounds make this approach very attractive.
Collapse
Affiliation(s)
- Lin Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Kai-Xin Guo
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yu Tian
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chang-Jiang Yang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Qiang-Shuai Gu
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhong-Liang Li
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Liu Ye
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xin-Yuan Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
33
|
Zhang Q, Wu LS, Shi BF. Forging C−heteroatom bonds by transition metal-catalyzed enantioselective C–H functionalization. Chem 2021. [DOI: 10.1016/j.chempr.2021.11.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
34
|
Suseelan Sarala A, Bhowmick S, Carvalho RL, Al‐Thabaiti SA, Mokhtar M, Silva Júnior EN, Maiti D. Transition‐Metal‐Catalyzed Selective Alkynylation of C−H Bonds. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100992] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Anjana Suseelan Sarala
- Department of Chemistry Indian Institute of Technology Bombay Powai 400076 Mumbai India
- Department of Chemistry Saarland University 66123 Saarbrucken Germany
| | - Suman Bhowmick
- Department of Chemistry Indian Institute of Technology Bombay Powai 400076 Mumbai India
| | - Renato L. Carvalho
- Department of Chemistry Federal University of Minas Gerais 31270-901 Belo Horizonte MG Brazil
| | | | - Mohamed Mokhtar
- Chemistry Department Faculty of Science King Abdulaziz University 21589 Jeddah Saudi Arabia
| | | | - Debabrata Maiti
- Department of Chemistry Indian Institute of Technology Bombay Powai 400076 Mumbai India
| |
Collapse
|
35
|
Hao W, Bay KL, Harris CF, King DS, Guzei IA, Aristov MM, Zhuang Z, Plata RE, Hill DE, Houk KN, Berry JF, Yu JQ, Blackmond DG. Probing Catalyst Speciation in Pd-MPAAM-Catalyzed Enantioselective C(sp 3)–H Arylation: Catalyst Improvement via Destabilization of Off-Cycle Species. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02805] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Wei Hao
- Department of Chemistry, Scripps Research, La Jolla, California 92037 United States
| | - Katherine L. Bay
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Caleb F. Harris
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Daniel S. King
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Ilia A. Guzei
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Michael M. Aristov
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Zhe Zhuang
- Department of Chemistry, Scripps Research, La Jolla, California 92037 United States
| | - R. Erik Plata
- Department of Chemistry, Scripps Research, La Jolla, California 92037 United States
| | - David E. Hill
- Department of Chemistry, Scripps Research, La Jolla, California 92037 United States
| | - K. N. Houk
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
| | - John F. Berry
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Jin-Quan Yu
- Department of Chemistry, Scripps Research, La Jolla, California 92037 United States
| | - Donna G. Blackmond
- Department of Chemistry, Scripps Research, La Jolla, California 92037 United States
| |
Collapse
|
36
|
Saint-Denis TG, Lam NYS, Chekshin N, Richardson PF, Chen JS, Elleraas J, Hesp KD, Schmitt DC, Lian Y, Huh CW, Yu JQ. Mechanistic study of enantioselective Pd-catalyzed C(sp 3)-H activation of thioethers involving two distinct stereomodels. ACS Catal 2021; 11:9738-9753. [PMID: 35572380 DOI: 10.1021/acscatal.1c02808] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Enantioselective C(sp3)-H activation has gained considerable attention from the synthetic chemistry community. Despite the intense interest in these reactions, the mechanisms responsible for enantioselection are still vague. In the course of the development of aryl thioether-directed C(sp3)-H arylation, we noticed extreme variation in sensitivity of two substrate classes to substituent effects of ligands and directing groups: whereas 3-pentyl sulfides (prochiral α-center) responded positively to substitution on ligands and directing groups, isobutyl sulfides (prochiral β-center) were entirely insensitive. Quantitative structure selectivity relationship (QSSR) analyses of directing group and ligand substitution and the development of a new class of mono-N-acetyl protected amino anilamide (MPAAn) ligands led to high enantiomeric ratios (up to 99:1) for thioether-directed C(sp3)-H arylation. Key to the realization of this method was the exploitation of transient chirality at sulfur, which relays stereochemical information from the ligand backbone to enantiotopic carbons of the substrate in a rate- and enantio-determining cyclometallation deprotonation. The absolute stereochemistry of the products for these two substrates were revealed to be opposite. DFT evaluation of all possible diastereomeric transition states confirmed initial premises that guided rational ligand and directing group design. The implications of this study will assist in the further development of enantioselective C(sp3)-H activation, namely by highlighting the non-innocence of directing groups, distal steric influences, and the delicate interplay between steric Pauli repulsion and London dispersion in enantioinduction.
Collapse
Affiliation(s)
| | - Nelson Y S Lam
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037
| | - Nikita Chekshin
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037
| | - Paul F Richardson
- Oncology Medicinal Chemistry, Pfizer Global Research and Development, San Diego, CA 92121
| | - Jason S Chen
- Automated Synthesis Facility, The Scripps Research Institute, La Jolla, CA 92037
| | - Jeff Elleraas
- Oncology Medicinal Chemistry, Pfizer Global Research and Development, San Diego, CA 92121
| | - Kevin D Hesp
- Medicine Design, Pfizer Global Research and Development, Groton, CT 06340
| | - Daniel C Schmitt
- Medicine Design, Pfizer Global Research and Development, Groton, CT 06340
| | - Yajing Lian
- Medicine Design, Pfizer Global Research and Development, Groton, CT 06340
| | - Chan Woo Huh
- Medicine Design, Pfizer Global Research and Development, Groton, CT 06340
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
37
|
Zhuang Z, Herron AN, Yu J. Synthesis of Cyclic Anhydrides via Ligand‐Enabled C–H Carbonylation of Simple Aliphatic Acids. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104645] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhe Zhuang
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Alastair N. Herron
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Jin‐Quan Yu
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| |
Collapse
|
38
|
Lam NYS, Wu K, Yu JQ. Advancing the Logic of Chemical Synthesis: C-H Activation as Strategic and Tactical Disconnections for C-C Bond Construction. Angew Chem Int Ed Engl 2021; 60:15767-15790. [PMID: 33073459 PMCID: PMC8177825 DOI: 10.1002/anie.202011901] [Citation(s) in RCA: 164] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/28/2020] [Indexed: 12/13/2022]
Abstract
The design of synthetic routes by retrosynthetic logic is decisively influenced by the transformations available. Transition-metal-catalyzed C-H activation has emerged as a powerful strategy for C-C bond formation, with myriad methods developed for diverse substrates and coupling partners. However, its uptake in total synthesis has been tepid, partially due to their apparent synthetic intractability, as well as a lack of comprehensive guidelines for implementation. This Review addresses these issues and offers a guide to identify retrosynthetic opportunities to generate C-C bonds by C-H activation processes. By comparing total syntheses accomplished using traditional approaches and recent C-H activation methods, this Review demonstrates how C-H activation enabled C-C bond construction has led to more efficient retrosynthetic strategies, as well as the execution of previously unattainable tactical maneuvers. Finally, shortcomings of existing processes are highlighted; this Review illustrates how some highlighted total syntheses can be further economized by adopting next-generation ligand-enabled approaches.
Collapse
Affiliation(s)
- Nelson Y S Lam
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Kevin Wu
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
39
|
Zhuang Z, Herron AN, Yu JQ. Synthesis of Cyclic Anhydrides via Ligand-Enabled C-H Carbonylation of Simple Aliphatic Acids. Angew Chem Int Ed Engl 2021; 60:16382-16387. [PMID: 33977635 DOI: 10.1002/anie.202104645] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Indexed: 11/08/2022]
Abstract
The development of C(sp3 )-H functionalizations of free carboxylic acids has provided a wide range of versatile C-C and C-Y (Y=heteroatom) bond-forming reactions. Additionally, C-H functionalizations have lent themselves to the one-step preparation of a number of valuable synthetic motifs that are often difficult to prepare through conventional methods. Herein, we report a β- or γ-C(sp3 )-H carbonylation of free carboxylic acids using Mo(CO)6 as a convenient solid CO source and enabled by a bidentate ligand, leading to convenient syntheses of cyclic anhydrides. Among these, the succinic anhydride products are versatile stepping stones for the mono-selective introduction of various functional groups at the β position of the parent acids by decarboxylative functionalizations, thus providing a divergent strategy to synthesize a myriad of carboxylic acids inaccessible by previous β-C-H activation reactions. The enantioselective carbonylation of free cyclopropanecarboxylic acids has also been achieved using a chiral bidentate thioether ligand.
Collapse
Affiliation(s)
- Zhe Zhuang
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Alastair N Herron
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
40
|
Annamalai P, Liu KC, Singh Badsara S, Lee CF. Carbon-Sulfur Bond Constructions: From Transition-Metal Catalysis to Sustainable Catalysis. CHEM REC 2021; 21:3674-3688. [PMID: 34101980 DOI: 10.1002/tcr.202100133] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/19/2021] [Indexed: 01/12/2023]
Abstract
The recent decade evidenced a significant development in the construction of the C-S bond. The journey began with transitional-metal catalysis and reached sustainable catalysis via oxidant, photo, and electro catalyzed methods. A variety of catalytic systems have been explored for the C-S bond formation using a variety of sulfur precursors. This personal account provides an inclusive discussion of these developed methods in terms of reactivity, sustainability and productivity.
Collapse
Affiliation(s)
| | - Ke-Chien Liu
- Department of Chemistry, National Chung Hsing University, 402 R.O.C., Taichung, Taiwan
| | - Satpal Singh Badsara
- MFOS Laboratory, Department of Chemistry, University of Rajasthan, 302004, Jaipur, Rajasthan, India
| | - Chin-Fa Lee
- Department of Chemistry, National Chung Hsing University, 402 R.O.C., Taichung, Taiwan.,i-Center for Advanced Science and Technology (iCAST) National Chung Hsing University, 402 R.O.C., Taichung, Taiwan.,Innovation and Development Center of Sustainable Agriculture (IDCSA) National Chung Hsing University, 402 R.O.C., Taichung, Taiwan
| |
Collapse
|
41
|
Yang X, Jiang MX, Zhou T, Han YQ, Xu XT, Zhang K, Shi BF. Pd(II)-Catalyzed enantioselective arylation of unbiased methylene C(sp 3)-H bonds enabled by a 3,3'-F 2-BINOL ligand. Chem Commun (Camb) 2021; 57:5562-5565. [PMID: 33969855 DOI: 10.1039/d1cc01690c] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Palladium-catalyzed asymmetric functionalization of unbiased methylene C(sp3)-H bonds is a long-standing challenge. Here, we report a Pd(ii)-catalyzed highly enantioselective arylation of unbiased methylene C(sp3)-H bonds enabled by a strongly coordinating bidentate 2-pyridinylisopropyl (PIP) directing group and an easily accessible 3,3'-F2-BINOL chiral ligand. The use of aryl iodides with the combination of 3,3'-F2-BINOL was beneficial for high enantiocontrol. A range of aliphatic amides and aryl iodides were tolerated, providing the desired arylated products in high enantioselectivities (up to 96% ee). The PIP directing group could be removed under mild conditions without erosion of enantiopurity.
Collapse
Affiliation(s)
- Xu Yang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| | - Meng-Xue Jiang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| | - Tao Zhou
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China.
| | - Ye-Qiang Han
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China.
| | - Xue-Tao Xu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| | - Kun Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| | - Bing-Feng Shi
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China. and College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
42
|
Tian Y. Chiral correlation effect in asymmetric induction. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
43
|
Liu B, Xie P, Zhao J, Wang J, Wang M, Jiang Y, Chang J, Li X. Rhodium‐Catalyzed Enantioselective Synthesis of β‐Amino Alcohols via Desymmetrization of
gem
‐Dimethyl Groups. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014080] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Bingxian Liu
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
| | - Pengfei Xie
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
| | - Jie Zhao
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
| | - Juanjuan Wang
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
| | - Manman Wang
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
| | - Yuqin Jiang
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
| | - Junbiao Chang
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
| | - Xingwei Li
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
- School of Chemistry and Chemical Engineering Shaanxi Normal University (SNNU) Xi'an 710062 China
| |
Collapse
|
44
|
Liu B, Xie P, Zhao J, Wang J, Wang M, Jiang Y, Chang J, Li X. Rhodium‐Catalyzed Enantioselective Synthesis of β‐Amino Alcohols via Desymmetrization of
gem
‐Dimethyl Groups. Angew Chem Int Ed Engl 2021; 60:8396-8400. [DOI: 10.1002/anie.202014080] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Bingxian Liu
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
| | - Pengfei Xie
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
| | - Jie Zhao
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
| | - Juanjuan Wang
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
| | - Manman Wang
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
| | - Yuqin Jiang
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
| | - Junbiao Chang
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
| | - Xingwei Li
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
- School of Chemistry and Chemical Engineering Shaanxi Normal University (SNNU) Xi'an 710062 China
| |
Collapse
|
45
|
Suseelan AS, Dutta A, Lahiri GK, Maiti D. Organopalladium Intermediates in Coordination-Directed C(sp3)-H Functionalizations. TRENDS IN CHEMISTRY 2021. [DOI: 10.1016/j.trechm.2020.11.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
46
|
Vicens L, Bietti M, Costas M. General Access to Modified α-Amino Acids by Bioinspired Stereoselective γ-C-H Bond Lactonization. Angew Chem Int Ed Engl 2021; 60:4740-4746. [PMID: 33210804 DOI: 10.1002/anie.202007899] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 11/02/2020] [Indexed: 01/06/2023]
Abstract
α-Amino acids represent a valuable class of natural products employed as building blocks in biological and chemical synthesis. Because of the limited number of natural amino acids available, and of their widespread application in proteomics, diagnosis, drug delivery and catalysis, there is an increasing demand for the development of procedures for the preparation of modified analogues. Herein, we show that the use of bioinspired manganese catalysts and H2 O2 under mild conditions, provides access to modified α-amino acids via γ-C-H bond lactonization. The system can efficiently target 1°, 2° and 3° γ-C-H bonds of α-substituted and achiral α,α-disubstituted α-amino acids with outstanding site-selectivity, good to excellent diastereoselectivity and (where applicable) enantioselectivity. This methodology may be considered alternative to well-established organometallic procedures.
Collapse
Affiliation(s)
- Laia Vicens
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, 17071, Girona, Catalonia, Spain
| | - Massimo Bietti
- Dipartimento di Scienze e Tecnologie Chimiche, Università "Tor Vergata", Via della Ricerca Scientifica, 1, 00133, Rome, Italy
| | - Miquel Costas
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, 17071, Girona, Catalonia, Spain
| |
Collapse
|
47
|
Radhoff N, Studer A. Functionalization of α-C(sp 3 )-H Bonds in Amides Using Radical Translocating Arylating Groups. Angew Chem Int Ed Engl 2021; 60:3561-3565. [PMID: 33215815 PMCID: PMC7898318 DOI: 10.1002/anie.202013275] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/19/2020] [Indexed: 01/09/2023]
Abstract
α-C-H arylation of N-alkylamides using 2-iodoarylsulfonyl radical translocating arylating (RTA) groups is reported. The method allows the construction of α-quaternary carbon centers in amides. Various mono- and disubstituted RTA-groups are applied to the arylation of primary, secondary, and tertiary α-C(sp3 )-H-bonds. These radical transformations proceed in good to excellent yields and the cascades comprise a 1,6-hydrogen atom transfer, followed by a 1,4-aryl migration with subsequent SO2 extrusion.
Collapse
Affiliation(s)
- Niklas Radhoff
- Organisch-Chemisches InstitutWestfälische Wilhelms-UniversitätCorrensstrasse 4048149MünsterGermany
| | - Armido Studer
- Organisch-Chemisches InstitutWestfälische Wilhelms-UniversitätCorrensstrasse 4048149MünsterGermany
| |
Collapse
|
48
|
Lam NYS, Wu K, Yu J. Advancing the Logic of Chemical Synthesis: C−H Activation as Strategic and Tactical Disconnections for C−C Bond Construction. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202011901] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Nelson Y. S. Lam
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Kevin Wu
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Jin‐Quan Yu
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| |
Collapse
|
49
|
Ali W, Prakash G, Maiti D. Recent development in transition metal-catalysed C-H olefination. Chem Sci 2021; 12:2735-2759. [PMID: 34164039 PMCID: PMC8179420 DOI: 10.1039/d0sc05555g] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/28/2020] [Indexed: 01/10/2023] Open
Abstract
Transition metal-catalysed functionalizations of inert C-H bonds to construct C-C bonds represent an ideal route in the synthesis of valuable organic molecules. Fine tuning of directing groups, catalysts and ligands has played a crucial role in selective C-H bond (sp2 or sp3) activation. Recent developments in these areas have assured a high level of regioselectivity in C-H olefination reactions. In this review, we have summarized the recent progress in the oxidative olefination of sp2 and sp3 C-H bonds with special emphasis on distal, atroposelective, non-directed sp2 and directed sp3 C-H olefination. The scope, limitation, and mechanism of various transition metal-catalysed olefination reactions have been described briefly.
Collapse
Affiliation(s)
- Wajid Ali
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai Maharashtra-400076 India
| | - Gaurav Prakash
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai Maharashtra-400076 India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai Maharashtra-400076 India
- Tokyo Tech World Research Hub Initiative (WRHI), Laboratory for Chemistry and Life Science, Tokyo Institute of Technology Tokyo 152-8550 Japan
| |
Collapse
|
50
|
Huang A, Han Y, Wu P, Gao Y, Huo Y, Chen Q, Li X. Ligand-accelerated site-selective Csp 2–H and Csp 3–H alkynylations of alcohols via Pd( ii) catalysis. Org Chem Front 2021. [DOI: 10.1039/d1qo01095f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A ligand accelerated site-selective C–H alkynylation, including secondary and tertiary Csp3–H alkynylation of weakly coordinated yet synthetically promising alcohols, via putative 6, 7 and 8-membered palladacycle intermediates, was developed.
Collapse
Affiliation(s)
- Aidong Huang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Yishen Han
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Peiqing Wu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Yang Gao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Yanping Huo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Qian Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Xianwei Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| |
Collapse
|