1
|
González SA, Affranchino JL. The life cycle of feline immunodeficiency virus. Virology 2025; 601:110304. [PMID: 39561619 DOI: 10.1016/j.virol.2024.110304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/10/2024] [Accepted: 11/13/2024] [Indexed: 11/21/2024]
Abstract
Feline immunodeficiency virus (FIV) is a retrovirus of worldwide distribution that can cause an acquired immunodeficiency disease in domestic cats. FIV and the primate lentiviruses, human and simian immunodeficiency viruses (HIV and SIV, respectively) share structural and biological features but also exhibit important differences, which reflect both their evolutionary relationship and divergence. Given that FIV is not only an important cat pathogen but also a useful model for certain aspects of HIV-1 infections in humans, the study of FIV biology is highly relevant. In this review we provide an updated description of the molecular mechanisms involved in each stage of the FIV life cycle.
Collapse
Affiliation(s)
- Silvia A González
- Laboratorio de Virología, Facultad de Ciencias Exactas y Naturales, Universidad de Belgrano (UB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - José L Affranchino
- Centro de Virología Humana y Animal (CEVHAN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Abierta Interamericana (UAI), Buenos Aires, Argentina
| |
Collapse
|
2
|
Miller C, Powers J, Musselman E, Mackie R, Elder J, VandeWoude S. Immunopathologic Effects of Prednisolone and Cyclosporine A on Feline Immunodeficiency Virus Replication and Persistence. Viruses 2019; 11:v11090805. [PMID: 31480322 PMCID: PMC6783960 DOI: 10.3390/v11090805] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/22/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023] Open
Abstract
Feline immunodeficiency virus (FIV) induces opportunistic disease in chronically infected cats, and both prednisolone and cyclosporine A (CsA) are clinically used to treat complications such as lymphoma and stomatitis. However, the impact of these compounds on FIV infection are still unknown and understanding immunomodulatory effects on FIV replication and persistence is critical to guide safe and effective therapies. To determine the immunologic and virologic effects of prednisolone and CsA during FIV infection, FIV-positive cats were administered immunosuppressive doses of prednisolone (2 mg/kg) or CsA (5 mg/kg). Both prednisolone and CsA induced acute and transient increases in FIV DNA and RNA loads as detected by quantitative PCR. Changes in the proportion of lymphocyte immunophenotypes were also observed between FIV-infected and naïve cats treated with CsA and prednisolone, and both treatments caused acute increases in CD4+ lymphocytes that correlated with increased FIV RNA. CsA and prednisolone also produced alterations in cytokine expression that favored a shift toward a Th2 response. Pre-treatment with CsA slightly enhanced the efficacy of antiretroviral therapy but did not enhance clearance of FIV. Results highlight the potential for drug-induced perturbation of FIV infection and underscore the need for more information regarding immunopathologic consequences of therapeutic agents on concurrent viral infections.
Collapse
Affiliation(s)
- Craig Miller
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74078, USA.
| | - Jordan Powers
- Department of Microbiology, Immunology, Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Esther Musselman
- Department of Microbiology, Immunology, Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Ryan Mackie
- Department of Microbiology, Immunology, Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - John Elder
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sue VandeWoude
- Department of Microbiology, Immunology, Pathology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
3
|
Lee HS, Thanh TL, Ly NK, Nguyen-Viet H, Thakur KK, Grace D. Seroprevalence of leptospirosis and Japanese encephalitis in swine in ten provinces of Vietnam. PLoS One 2019; 14:e0214701. [PMID: 31369564 PMCID: PMC6675114 DOI: 10.1371/journal.pone.0214701] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 07/18/2019] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Leptospirosis is an important zoonotic disease with a global distribution, affecting a wide range of mammalian animals and humans. Japanese encephalitis (JE) virus is the major vector-borne zoonotic disease in the Asia-Pacific region. The main objective of this study was to evaluate the seroprevalence of serovar-specific Leptospira and JE in swine from 10 provinces in Vietnam. METHODS Samples were initially collected for swine influenza surveillance from March to April 2017 at large-scale farms (with at least 50 sows and/or 250 fattening pigs) with pigs that tested positive for influenza in the previous surveillance period (2015-16). FINDINGS A total of 2,000 sera samples were analyzed from 10 provinces. Overall, the seroprevalence of leptospirosis was 21.05% (95% CI: 19.28-22.90) using a cut-off titer of ≥ 1:100. The apparent prevalence of JE was 73.45% (95% CI: 71.46-75.37) while the true prevalence was slightly higher (74.46%, 95% credible interval: 73.73-86.41). We found a relatively high presence of leptospirosis and JE in pigs kept on large farms. Prevalence was comparable with other studies suggesting opportunistic testing of samples collected for other surveillance purposes can be a valuable tool to better understand and prevent the potential transmission of these zoonotic diseases from pigs to people in Vietnam. CONCLUSION Our study provides evidence to veterinarians and animal health professionals for evidence-based practice such as diagnosis, vaccination and zoonotic control. Further investigation into the possible role of different domestic animals, wildlife species or environmental factors is needed to identify the potential risk factors and transmission routes in Vietnam.
Collapse
Affiliation(s)
- Hu Suk Lee
- International Livestock Research Institute, Hanoi, Vietnam
| | - To Long Thanh
- National Center for Veterinary Diagnosis, 15/78 Duong Giai Phong-Phuong Mai Dong Da Hanoi, Hanoi, Vietnam
| | - Nguyen Khanh Ly
- National Center for Veterinary Diagnosis, 15/78 Duong Giai Phong-Phuong Mai Dong Da Hanoi, Hanoi, Vietnam
| | | | - Krishna K Thakur
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PEI, Canada
| | - Delia Grace
- International Livestock Research Institute, Nairobi, Kenya
| |
Collapse
|
4
|
Properties and Functions of Feline Immunodeficiency Virus Gag Domains in Virion Assembly and Budding. Viruses 2018; 10:v10050261. [PMID: 29772651 PMCID: PMC5977254 DOI: 10.3390/v10050261] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/13/2018] [Accepted: 05/14/2018] [Indexed: 01/11/2023] Open
Abstract
Feline immunodeficiency virus (FIV) is an important cat pathogen worldwide whose biological and pathophysiological properties resemble those of human immunodeficiency virus type 1 (HIV-1). Therefore, the study of FIV not only benefits its natural host but is also useful for the development of antiviral strategies directed against HIV-1 infections in humans. FIV assembly results from the multimerization of a single but complex viral polypeptide, the Gag precursor. In this review, we will first give an overview of the current knowledge of the proteins encoded by the FIV pol, env, rev, vif, and orf-A genes, and then we will describe and discuss in detail the critical roles that each of the FIV Gag domains plays in virion morphogenesis. Since retroviral assembly is an attractive target for therapeutic interventions, gaining a better understanding of this process is highly desirable.
Collapse
|
5
|
FIV vaccine with receptor epitopes results in neutralizing antibodies but does not confer resistance to challenge. NPJ Vaccines 2018; 3:16. [PMID: 29736270 PMCID: PMC5928050 DOI: 10.1038/s41541-018-0051-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/16/2018] [Accepted: 03/21/2018] [Indexed: 11/09/2022] Open
Abstract
Feline immunodeficiency virus (FIV) is the feline analogue to human immunodeficiency virus (HIV) and utilizes parallel modes of receptor-mediated entry. The FIV surface glycoprotein (SU) is an important target for induction of neutralizing antibodies, and autoantibodies to the FIV binding receptor (CD134) block infection ex vivo; thus highlighting the potential for immunotherapies which utilize anti-receptor antibodies to block viral infection. To determine whether vaccination with CD134-SU complexes could induce protection against FIV infection, cats (n = 5 per group) were immunized with soluble CD134, recombinant FIV-SU protein, and/or CD134+SU complexes. Two trials were performed with different antigen combinations and vaccination schedules. In vivo generation of anti-CD134 and anti-SU IgG antibodies was measured, and in vitro neutralization assays were conducted. Immunization induced production of anti-CD134 and anti-SU antibodies that significantly inhibited FIV infection in vitro. However, no vaccine combination protected cats from FIV infection, and neat serum from vaccinated cats enhanced FIV growth in vitro. CD134+SU vaccinated cats exhibited increased CD4:CD8 ratio immediately prior to challenge, and antibodies were much more efficiently generated against vaccine by-products versus target antigens. Results suggest vaccination against viral and cryptic receptor epitopes yields neutralizing antibodies that synergistically inhibit FIV infection in vitro. Factors contributing to vaccine failure may include: (1) Heat-labile serum factors that enhance viral replication, (2) changes in circulating target cell populations induced by vaccination, and (3) weak immunogenicity of neutralizing epitopes compared to off-target vaccine components. Results reinforce the need to monitor vaccine preparation components and avoid non-specific immune stimulation during vaccination. A vaccine candidate for feline immunodeficiency virus elicits strong immunological reaction in vitro, but no protection to live cats. The feline analog to human immunodeficiency virus, FIV shares a similar infection paradigm and has only one partially effective vaccine. A US team, led by Colorado State University’s Susan VandeWoude, immunized cats using a complex of an FIV surface protein and a feline cell-surface protein known to facilitate FIV’s entry into immune cells. Tissue culture assays yielded promising results; however, this did not translate to live-animal protection. The researchers highlighted multiple factors that could explain the lack of success, including circulatory pro-infection factors, and immune responses generated against vaccine by-products rather than intended targets. While the vaccine candidate failed, the research provides invaluable guidance for future efforts into FIV vaccination with implications for HIV vaccine trials.
Collapse
|
6
|
Applications of the FIV Model to Study HIV Pathogenesis. Viruses 2018; 10:v10040206. [PMID: 29677122 PMCID: PMC5923500 DOI: 10.3390/v10040206] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 04/17/2018] [Accepted: 04/17/2018] [Indexed: 12/15/2022] Open
Abstract
Feline immunodeficiency virus (FIV) is a naturally-occurring retrovirus that infects domestic and non-domestic feline species, producing progressive immune depletion that results in an acquired immunodeficiency syndrome (AIDS). Much has been learned about FIV since it was first described in 1987, particularly in regard to its application as a model to study the closely related lentivirus, human immunodeficiency virus (HIV). In particular, FIV and HIV share remarkable structure and sequence organization, utilize parallel modes of receptor-mediated entry, and result in a similar spectrum of immunodeficiency-related diseases due to analogous modes of immune dysfunction. This review summarizes current knowledge of FIV infection kinetics and the mechanisms of immune dysfunction in relation to opportunistic disease, specifically in regard to studying HIV pathogenesis. Furthermore, we present data that highlight changes in the oral microbiota and oral immune system during FIV infection, and outline the potential for the feline model of oral AIDS manifestations to elucidate pathogenic mechanisms of HIV-induced oral disease. Finally, we discuss advances in molecular biology, vaccine development, neurologic dysfunction, and the ability to apply pharmacologic interventions and sophisticated imaging technologies to study experimental and naturally occurring FIV, which provide an excellent, but often overlooked, resource for advancing therapies and the management of HIV/AIDS.
Collapse
|
7
|
Martins NDS, Rodrigues APDS, da Luz LA, Dos Reis LDL, de Oliveira RM, de Oliveira RA, Abreu-Silva AL, Dos Reis JKP, Melo FA. Feline immudeficiency virus subtypes B and A in cats from São Luis, Maranhão, Brazil. Arch Virol 2017; 163:549-554. [PMID: 29134339 DOI: 10.1007/s00705-017-3636-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 10/19/2017] [Indexed: 10/18/2022]
Abstract
Feline immunodeficiency virus (FIV) is a retrovirus of the genus Lentivirus that is distributed worldwide, with prevalence rates varying between 2.5% and 44%. FIV causes immunosuppression, with depletion of TCD4+ lymphocytes, with the majority of clinical signs caused by secondary and opportunistic infections. Blood samples were collected from nine domestic cats (Felis catus domesticus) from the city of São Luís, Maranhão State, Brazil. All samples were positive in a rapid immunochromatographic test (SNAP® Combo FeLV Ag/FIV Antibody Test) and in a polymerase chain reaction (PCR) assay. Phylogenetic analysis showed that six samples clustered within subtype B, one within subtype A, and two did not cluster with any known subtype. Five unique haplotypes (Hap-1, Hap-2, Hap-3, Hap-5 and Hap-6) and a shared haplotype (Hap-4) were found, this last one being the most frequent. This is the first report on the genetic diversity of FIV in the city of São Luís and the first report of subtype A in Brazil. New variations of the virus are also reported.
Collapse
Affiliation(s)
- Nathálya Dos S Martins
- Departamento de Patologia, Universidade Estadual do Maranhão, Cidade Universitária Paulo VI, Tirirical, Cx. Postal 9, São Luís, MA, 65055-970, Brazil.
| | - Ana Paula de S Rodrigues
- Departamento de Patologia, Universidade Estadual do Maranhão, Cidade Universitária Paulo VI, Tirirical, Cx. Postal 9, São Luís, MA, 65055-970, Brazil
| | - Luciana A da Luz
- Departamento de Patologia, Universidade Estadual do Maranhão, Cidade Universitária Paulo VI, Tirirical, Cx. Postal 9, São Luís, MA, 65055-970, Brazil
| | - Luana da L Dos Reis
- Departamento de Patologia, Universidade Estadual do Maranhão, Cidade Universitária Paulo VI, Tirirical, Cx. Postal 9, São Luís, MA, 65055-970, Brazil
| | - Renata M de Oliveira
- Departamento de Patologia, Universidade Estadual do Maranhão, Cidade Universitária Paulo VI, Tirirical, Cx. Postal 9, São Luís, MA, 65055-970, Brazil
| | - Rudson A de Oliveira
- Departamento das Clínicas Veterinárias, Universidade Estadual do Maranhão, Cidade Universitária Paulo VI, Tirirical, Cx. Postal 9, São Luís, MA, 65055-970, Brazil
| | - Ana Lucia Abreu-Silva
- Departamento de Patologia, Universidade Estadual do Maranhão, Cidade Universitária Paulo VI, Tirirical, Cx. Postal 9, São Luís, MA, 65055-970, Brazil
| | - Jenner Karlisson P Dos Reis
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, UFMG-30 123-970, Belo Horizonte, MG, Brazil
| | - Ferdinan A Melo
- Departamento de Patologia, Universidade Estadual do Maranhão, Cidade Universitária Paulo VI, Tirirical, Cx. Postal 9, São Luís, MA, 65055-970, Brazil
| |
Collapse
|
8
|
Eckstrand CD, Sparger EE, Murphy BG. Central and peripheral reservoirs of feline immunodeficiency virus in cats: a review. J Gen Virol 2017; 98:1985-1996. [DOI: 10.1099/jgv.0.000866] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Chrissy D. Eckstrand
- Veterinary Microbiology and Pathology, College of Veterinary Medicine, 4003 Animal Disease Biotechnology Facility, Washington State University, Pullman, WA 99163, USA
| | - Ellen E. Sparger
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, 3115 Tupper Hall, Davis, CA 95616, USA
| | - Brian G. Murphy
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, 4206 Vet Med 3A, University of California, Davis, CA 95616, USA
| |
Collapse
|
9
|
Differences in Env and Gag protein expression patterns and epitope availability in feline immunodeficiency virus infected PBMC compared to infected and transfected feline model cell lines. Virus Res 2017; 227:249-260. [PMID: 27836726 DOI: 10.1016/j.virusres.2016.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 11/05/2016] [Accepted: 11/05/2016] [Indexed: 11/21/2022]
Abstract
Env and Gag are key components of the FIV virion that are targeted to the plasma membrane for virion assembly. They are both important stimulators and targets of anti-FIV immunity. To investigate and compare the expression pattern and antigenic changes of Gag and Env in various research models, infected PBMC (the natural FIV host cells) and GFox, and transfected CrFK were stained over time with various Env and Gag specific MAbs. In FIV infected GFox and PBMC, Env showed changes in epitope availability for antibody binding during processing and trafficking, which was not seen in transfected CrFK. Interestingly, epitopes exposed on intracellular Env and Env present on the plasma membrane of CrFK and GFox seem to be hidden on plasma membrane expressed Env of FIV infected PBMC. A kinetic follow up of Gag and Env expression showed a polarization of both Gag and Env expression to specific sites at the plasma membrane of PBMC, but not in other cell lines. In conclusion, mature trimeric cell surface expressed Env might be antigenically distinct from intracellular monomeric Env in PBMC and might possibly be unrecognizable by feline humoral immunity. In addition, Env expression is restricted to a small area on the plasma membrane and co-localizes with a large moiety of Gag, which may represent a preferred FIV budding site, or initiation of virological synapses with direct cell-to-cell virus transmission.
Collapse
|
10
|
Meeker R, English R, Tompkins M. Enhanced Excitotoxicity in Primary Feline Neural Cultures Exposed to Feline Immunodeficiency Virus (FIV). ACTA ACUST UNITED AC 2016; 1:1-27. [PMID: 16873168 DOI: 10.1300/j128v01n03_01] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The ability of feline immunodeficiency virus (FIV) to induce neurodegenerative changes in vitro similar to those due to HIV was examined as a potential model to examine the mechanisms underlying AIDS dementia. Primary cultures of feline neural tissue (neurons, astrocytes and microglia) were established from E40-E57 fetal cat cortex and challenged by inoculation with the NCSU<sub>1</sub> strain of FIV. Proviral FIV was detected in the cultures and correlated with the presence of microglia. No direct toxicity of FIV was seen. Stimulation of FIV-inoculated cortical cultures with 20 uM glutamate resulted in a greatly enhanced acute swelling response in approximately 14-24% of the neurons and an increase in the number of dead cells after 24 h relative to control cultures. The enhanced responses were due to an increase in the sensitivity of the cells to glutamate and were dependent on the presence of a soluble factor in the medium. The similarity of the indirect excitoxic effects of FIV to current models of HIV-gp120 neurotoxicity and the versatility of the in vitro cultures, indicate that FIV should provide a valuable model for the investigation of the mechanisms of neurodegeneration in AIDS dementia.
Collapse
|
11
|
Processing, fusogenicity, virion incorporation and CXCR4-binding activity of a feline immunodeficiency virus envelope glycoprotein lacking the two conserved N-glycosylation sites at the C-terminus of the V3 domain. Arch Virol 2016; 161:1761-8. [PMID: 27020572 DOI: 10.1007/s00705-016-2843-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 03/21/2016] [Indexed: 01/07/2023]
Abstract
The process of feline immunodeficiency virus (FIV) entry into its target cells is initiated by the association of the surface (SU) subunit of the viral envelope glycoprotein (Env) with the cellular receptors CD134 and CXCR4. This event is followed by the fusion of the viral and cellular membranes, which is mediated by the transmembrane (TM) subunit of Env. We and others have previously demonstrated that the V3 domain of the SU subunit of Env is essential for CXCR4 binding. Of note, there are two contiguous and highly conserved potential N-glycosylation sites ((418)NST(420) and (422)NLT(424)) located at the C-terminal side of the V3 domain. We therefore decided to study the relevance for Env functions of these N-glycosylation motifs and found that disruption of both of them by introducing the N418Q/N422Q double amino acid substitution drastically impairs Env processing into the SU and TM subunits. Moreover, the simultaneous mutation of these N-glycosylation sites prevents Env incorporation into virions and Env-mediated cell-to-cell fusion. Notably, a recombinant soluble version of the SU glycoprotein carrying the double amino acid replacement N418Q/N422Q at the V3 C-terminal side binds to CXCR4 with an efficiency similar to that of wild-type SU.
Collapse
|
12
|
Eckstrand CD, Hillman C, Smith AL, Sparger EE, Murphy BG. Viral Reservoirs in Lymph Nodes of FIV-Infected Progressor and Long-Term Non-Progressor Cats during the Asymptomatic Phase. PLoS One 2016; 11:e0146285. [PMID: 26741651 PMCID: PMC4704817 DOI: 10.1371/journal.pone.0146285] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/15/2015] [Indexed: 12/20/2022] Open
Abstract
Background Examination of a cohort of cats experimentally infected with feline immunodeficiency virus (FIV) for 5.75 years revealed detectable proviral DNA in peripheral blood mononuclear cells (PBMCs) harvested during the asymptomatic phase, undetectable plasma viral RNA (FIV gag), and rarely detectable cell-associated viral RNA. Despite apparent viral latency in peripheral CD4+ T cells, circulating CD4+ T cell numbers progressively declined in progressor animals. The aim of this study was to explore this dichotomy of peripheral blood viral latency in the face of progressive immunopathology. The viral replication status, cellular immunophenotypes, and histopathologic features were compared between popliteal lymph nodes (PLNs) and peripheral blood. Also, we identified and further characterized one of the FIV-infected cats identified as a long-term non-progressor (LTNP). Results PLN-derived leukocytes from FIV-infected cats during the chronic asymptomatic phase demonstrated active viral gag transcription and FIV protein translation as determined by real-time RT-PCR, Western blot and in situ immunohistochemistry, whereas viral RNA in blood leukocytes was either undetectable or intermittently detectable and viral protein was not detected. Active transcription of viral RNA was detectable in PLN-derived CD4+ and CD21+ leukocytes. Replication competent provirus was reactivated ex vivo from PLN-derived leukocytes from three of four FIV-infected cats. Progressor cats showed a persistent and dramatically decreased proportion and absolute count of CD4+ T cells in blood, and a decreased proportion of CD4+ T cells in PLNs. A single long-term non-progressor (LTNP) cat persistently demonstrated an absolute peripheral blood CD4+ T cell count indistinguishable from uninfected animals, a lower proviral load in unfractionated blood and PLN leukocytes, and very low amounts of viral RNA in the PLN. Conclusion Collectively our data indicates that PLNs harbor important reservoirs of ongoing viral replication during the asymptomatic phase of infection, in spite of undetectable viral activity in peripheral blood. A thorough understanding of tissue-based lentiviral reservoirs is fundamental to medical interventions to eliminate virus or prolong the asymptomatic phase of FIV infection.
Collapse
Affiliation(s)
- C D Eckstrand
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - C Hillman
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - A L Smith
- Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - E E Sparger
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - B G Murphy
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| |
Collapse
|
13
|
Titmarsh HF, Lalor SM, Tasker S, Barker EN, Berry J, Gunn-More D, Mellanby RJ. Vitamin D status in cats with feline immunodeficiency virus. Vet Med Sci 2015; 1:72-78. [PMID: 27398223 PMCID: PMC4937619 DOI: 10.1002/vms3.11] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 10/21/2015] [Accepted: 10/27/2015] [Indexed: 11/27/2022] Open
Abstract
Feline immunodeficiency virus (FIV) is a lentivirus that can lead to a syndrome of acquired immune dysfunction. Infected cats often remain asymptomatic for several years before immune dysfunction leads to an increased risk for the development of systemic diseases, neoplasia and opportunistic infections. FIV is structurally related to human immunodeficiency virus (HIV) and the pathogenesis of FIV‐related disease is similar to that seen in HIV‐infected patients. Observational studies have documented an association between low plasma vitamin D and HIV infection. Vitamin D status has been shown to be associated with HIV‐related disease progression, morbidity and mortality. The objective of this study was to examine the hypothesis that vitamin D status, as assessed by serum 25‐hydroxyvitamin D [25(OH)D] concentrations, are lower in cats with FIV infection compared to healthy control cats. Serum 25(OH)D concentrations were measured in 20 healthy cats, 39 hospitalized ill cats and 59 cats infected with FIV. Cats which were FIV infected had significantly lower 25(OH)D concentrations compared to healthy control cats. Serum 25(OH)D concentrations were not significantly different between FIV‐infected cats and hospitalized ill cats. Further investigations are warranted to determine whether vitamin D status influences the prognosis of cats infected with FIV.
Collapse
Affiliation(s)
- Helen F Titmarsh
- The Royal (Dick) School of Veterinary Studies and the Roslin Institute University of Edinburgh Roslin Edinburgh UK
| | - Stephanie M Lalor
- The Royal (Dick) School of Veterinary Studies and the Roslin Institute University of Edinburgh Roslin Edinburgh UK
| | - Severine Tasker
- School of Veterinary Sciences University of Bristol Langford Bristol UK
| | - Emily N Barker
- School of Veterinary Sciences University of Bristol Langford Bristol UK
| | - Jacqueline Berry
- Vitamin D Research Laboratory Department of Medicine Manchester Royal Infirmary Manchester UK
| | - Danielle Gunn-More
- The Royal (Dick) School of Veterinary Studies and the Roslin Institute University of Edinburgh Roslin Edinburgh UK
| | - Richard J Mellanby
- The Royal (Dick) School of Veterinary Studies and the Roslin Institute University of Edinburgh Roslin Edinburgh UK
| |
Collapse
|
14
|
Teixeira BM, Logan N, Cruz JCM, Reis JKP, Brandão PE, Richtzenhain LJ, Hagiwara MK, Willett BJ, Hosie MJ. Genetic diversity of Brazilian isolates of feline immunodeficiency virus. Arch Virol 2015; 155:379-84. [PMID: 20084530 DOI: 10.1007/s00705-009-0587-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Bruno Marques Teixeira
- Department of Medical Clinics, College of Veterinary Medicine, University of São Paulo, Av. Prof. Dr. Orlando Marques Paiva, 87, São Paulo, SP, 05508-270, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Bęczkowski PM, Techakriengkrai N, Logan N, McMonagle E, Litster A, Willett BJ, Hosie MJ. Emergence of CD134 cysteine-rich domain 2 (CRD2)-independent strains of feline immunodeficiency virus (FIV) is associated with disease progression in naturally infected cats. Retrovirology 2014; 11:95. [PMID: 25430586 PMCID: PMC4275942 DOI: 10.1186/s12977-014-0095-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 10/21/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Feline immunodeficiency virus (FIV) infection is mediated by sequential interactions with CD134 and CXCR4. Field strains of virus vary in their dependence on cysteine-rich domain 2 (CRD2) of CD134 for infection. FINDINGS Here, we analyse the receptor usage of viral variants in the blood of 39 naturally infected cats, revealing that CRD2-dependent viral variants dominate in early infection, evolving towards CRD2-independence with disease progression. CONCLUSIONS These findings are consistent with a shift in CRD2 of CD134 usage with disease progression.
Collapse
|
16
|
Abstract
The use of animal models in the study of HIV and AIDS has advanced our understanding of the underlying pathophysiologic mechanisms of infection. Of the multitude of HIV disease manifestations, peripheral neuropathy remains one of the most common long-term side effects. Several of the most important causes of peripheral neuropathy in AIDS patients include direct association with HIV infection with or without antiretroviral medication and infection with opportunistic agents. Because the pathogeneses of these diseases are difficult to study in human patients, animal models have allowed for significant advancement in the understanding of the role of viral infection and the immune system in disease genesis. This review focuses on rodent, rabbit, feline and rhesus models used to study HIV-associated peripheral neuropathies, focusing specifically on sensory neuropathy and antiretroviral-associated neuropathies.
Collapse
Affiliation(s)
- Tricia H Burdo
- Department of Biology, Boston College, Chestnut Hill, MA, USA
| | - Andrew D Miller
- Department of Biomedical Sciences, Section of Anatomic Pathology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| |
Collapse
|
17
|
González SA, Falcón JI, Affranchino JL. Replacement of the V3 domain in the surface subunit of the feline immunodeficiency virus envelope glycoprotein with the equivalent region of a T cell-tropic human immunodeficiency virus type 1 results in a chimeric surface protein that efficiently binds to CXCR4. AIDS Res Hum Retroviruses 2014; 30:250-9. [PMID: 24148007 DOI: 10.1089/aid.2013.0213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Feline immunodeficiency virus (FIV) and the T cell-tropic strains of human immunodeficiency virus type 1 (HIV-1) share the use of the chemokine receptor CXCR4 for cell entry. To study this process further we developed a cell surface binding assay based on the expression of a soluble version of the FIV SU C-terminally tagged with the influenza virus hemagglutinin epitope (HA). The specificity of the assay was demonstrated by the following evidence: (1) the SU-HA protein bound to HeLa cells that express CXCR4 but not to MDCK cells that lack this chemokine receptor; and (2) binding of the SU-HA to HeLa cells was blocked by incubation with the CXCR4 antagonist AMD3100 as well as with the anti-CXCR4 monoclonal antibody (MAb) 12G5. Deletion of the V3 region from the FIV SU glycoprotein abolished its ability to bind CXCR4-expressing cells. Remarkably, substitution of the V3 domain of the FIV SU by the equivalent region of the HIV-1 NL4-3 isolate resulted in efficient cell surface binding of the chimeric SU protein to CXCR4. Moreover, transfection of MDCK cells with a plasmid encoding human CXCR4 allowed the association of the chimeric SU-HA glycoprotein to the transfected cells. Interestingly, while cell binding of the chimeric FIV-HIV SU was inhibited by an anti-HIV-1 V3 MAb, its association with CXCR4 was found to be resistant to AMD3100. Of note, the chimeric FIV-HIV Env glycoprotein was capable of promoting CXCR4-dependent cell-to-cell fusion.
Collapse
Affiliation(s)
- Silvia A. González
- Laboratorio de Virología, CONICET-Universidad de Belgrano (UB), Buenos Aires, Argentina
| | - Juan I. Falcón
- Laboratorio de Virología, CONICET-Universidad de Belgrano (UB), Buenos Aires, Argentina
| | - José L. Affranchino
- Laboratorio de Virología, CONICET-Universidad de Belgrano (UB), Buenos Aires, Argentina
| |
Collapse
|
18
|
Affranchino JL, González SA. Understanding the process of envelope glycoprotein incorporation into virions in simian and feline immunodeficiency viruses. Viruses 2014; 6:264-83. [PMID: 24441862 PMCID: PMC3917442 DOI: 10.3390/v6010264] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 01/01/2014] [Accepted: 01/06/2014] [Indexed: 12/18/2022] Open
Abstract
The lentiviral envelope glycoproteins (Env) mediate virus entry by interacting with specific receptors present at the cell surface, thereby determining viral tropism and pathogenesis. Therefore, Env incorporation into the virions formed by assembly of the viral Gag polyprotein at the plasma membrane of the infected cells is a key step in the replication cycle of lentiviruses. Besides being useful models of human immunodeficiency virus (HIV) infections in humans and valuable tools for developing AIDS therapies and vaccines, simian and feline immunodeficiency viruses (SIV and FIV, respectively) are relevant animal retroviruses; the study of which provides important information on how lentiviral replication strategies have evolved. In this review, we discuss the molecular mechanisms underlying the incorporation of the SIV and FIV Env glycoproteins into viral particles.
Collapse
Affiliation(s)
- José L Affranchino
- Laboratorio de Virología, CONICET-Universidad de Belgrano (UB), Buenos Aires C1426BMJ, Argentina.
| | - Silvia A González
- Laboratorio de Virología, CONICET-Universidad de Belgrano (UB), Buenos Aires C1426BMJ, Argentina.
| |
Collapse
|
19
|
Stickney AL, Dunowska M, Cave NJ. Sequence variation of the feline immunodeficiency virus genome and its clinical relevance. Vet Rec 2013; 172:607-14. [PMID: 23749359 DOI: 10.1136/vr.f101460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The ongoing evolution of feline immunodeficiency virus (FIV) has resulted in the existence of a diverse continuum of viruses. FIV isolates differ with regards to their mutation and replication rates, plasma viral loads, cell tropism and the ability to induce apoptosis. Clinical disease in FIV-infected cats is also inconsistent. Genomic sequence variation of FIV is likely to be responsible for some of the variation in viral behaviour. The specific genetic sequences that influence these key viral properties remain to be determined. With knowledge of the specific key determinants of pathogenicity, there is the potential for veterinarians in the future to apply this information for prognostic purposes. Genomic sequence variation of FIV also presents an obstacle to effective vaccine development. Most challenge studies demonstrate acceptable efficacy of a dual-subtype FIV vaccine (Fel-O-Vax FIV) against FIV infection under experimental settings; however, vaccine efficacy in the field still remains to be proven. It is important that we discover the key determinants of immunity induced by this vaccine; such data would compliment vaccine field efficacy studies and provide the basis to make informed recommendations on its use.
Collapse
Affiliation(s)
- A L Stickney
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand.
| | | | | |
Collapse
|
20
|
McDonnel SJ, Sparger EE, Murphy BG. Feline immunodeficiency virus latency. Retrovirology 2013; 10:69. [PMID: 23829177 PMCID: PMC3707804 DOI: 10.1186/1742-4690-10-69] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 06/27/2013] [Indexed: 12/18/2022] Open
Abstract
Despite highly effective anti-retroviral therapy, HIV is thought to persist in patients within long-lived cellular reservoirs in the form of a transcriptionally inactive (latent) integrated provirus. Lentiviral latency has therefore come to the forefront of the discussion on the possibility of a cure for HIV infection in humans. Animal models of lentiviral latency provide an essential tool to study mechanisms of latency and therapeutic manipulation. Of the three animal models that have been described, the feline immunodeficiency virus (FIV)-infected cat is the most recent and least characterized. However, several aspects of this model make it attractive for latency research, and it may be complementary to other model systems. This article reviews what is known about FIV latency and chronic FIV infection and how it compares with that of other lentiviruses. It thereby offers a framework for the usefulness of this model in future research aimed at lentiviral eradication.
Collapse
Affiliation(s)
- Samantha J McDonnel
- Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California, Davis, 4206 Vet Med 3A, Davis, CA 95616, USA.
| | | | | |
Collapse
|
21
|
Polyak MJ, Vivithanaporn P, Maingat FG, Walsh JG, Branton W, Cohen EA, Meeker R, Power C. Differential type 1 interferon-regulated gene expression in the brain during AIDS: interactions with viral diversity and neurovirulence. FASEB J 2013; 27:2829-44. [PMID: 23608145 DOI: 10.1096/fj.13-227868] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The lentiviruses, human and feline immunodeficiency viruses (HIV-1 and FIV, respectively), infect the brain and cause neurovirulence, evident as neuronal injury, inflammation, and neurobehavioral abnormalities with diminished survival. Herein, different lentivirus infections in conjunction with neural cell viability were investigated, concentrating on type 1 interferon-regulated pathways. Transcriptomic network analyses showed a preponderance of genes involved in type 1 interferon signaling, which was verified by increased expression of the type 1 interferon-associated genes, Mx1 and CD317, in brains from HIV-infected persons (P<0.05). Leukocytes infected with different strains of FIV or HIV-1 showed differential Mx1 and CD317 expression (P<0.05). In vivo studies of animals infected with the FIV strains, FIV(ch) or FIV(ncsu), revealed that FIV(ch)-infected animals displayed deficits in memory and motor speed compared with the FIV(ncsu)- and mock-infected groups (P<0.05). TNF-α, IL-1β, and CD40 expression was increased in the brains of FIV(ch)-infected animals; conversely, Mx1 and CD317 transcript levels were increased in the brains of FIV(ncsu)-infected animals, principally in microglia (P<0.05). Gliosis and neuronal loss were evident among FIV(ch)-infected animals compared with mock- and FIV(ncsu)-infected animals (P<0.05). Lentiviral infections induce type 1 interferon-regulated gene expression in microglia in a viral diversity-dependent manner, representing a mechanism by which immune responses might be exploited to limit neurovirulence.
Collapse
Affiliation(s)
- Maria J Polyak
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Miller MM, Fogle JE, Ross P, Tompkins MB. Feline glycoprotein A repetitions predominant anchors transforming growth factor beta on the surface of activated CD4(+)CD25(+) regulatory T cells and mediates AIDS lentivirus-induced T cell immunodeficiency. AIDS Res Hum Retroviruses 2013; 29:641-51. [PMID: 23373523 DOI: 10.1089/aid.2012.0322] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Using the feline immunodeficiency virus (FIV) model for AIDS-lentivirus infection, our laboratory has previously demonstrated that T regulatory (Treg) cell-mediated immune T and B cell dysfunction contributes to lentivirus persistence and chronic disease through membrane bound transforming growth factor beta (mTGFb). Studying Treg cells in the context of infection has been problematic as no inducible marker for activated Treg cells had been identified. However, recent reports in human Treg studies have described a novel protein, glycoprotein A repetitions predominant (GARP), as a unique marker of activated human Treg cells that anchors mTGFb. Herein we extend these studies to the feline Treg system, identifying feline GARP and demonstrating that human and feline GARP proteins are homologous in structure, expression pattern, and ability to form a complex with TGFb. We further demonstrate that GARP and TGFb form a complex on the surface of activated Treg cells and that these GARP(+)TGFb(+) Treg cells are highly efficient suppressor cells. Analysis of expression of this Treg activation marker in the FIV-AIDS model reveals an up-regulation of GARP expressing Treg cells during chronic FIV infection. We demonstrate that the GARP(+) Treg cells from FIV-infected cats suppress T helper cells in vivo and that blocking GARP or TGFb eliminates this suppression. These data suggest that GARP is expressed in complex with TGFb on the surface of activated Treg cells and plays an important role in TGFb(+) Treg-mediated T cell immune suppression during lentivirus infection.
Collapse
Affiliation(s)
- Michelle M. Miller
- Immunology Program, North Carolina State University, Raleigh, North Carolina
- Department of Population Health and Pathobiology, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina
| | - Jonathan E. Fogle
- Immunology Program, North Carolina State University, Raleigh, North Carolina
- Department of Population Health and Pathobiology, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina
| | - Peter Ross
- Immunology Program, North Carolina State University, Raleigh, North Carolina
- Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina
| | - Mary B. Tompkins
- Immunology Program, North Carolina State University, Raleigh, North Carolina
- Department of Population Health and Pathobiology, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina
| |
Collapse
|
23
|
Willett BJ, Kraase M, Logan N, McMonagle E, Varela M, Hosie MJ. Selective expansion of viral variants following experimental transmission of a reconstituted feline immunodeficiency virus quasispecies. PLoS One 2013; 8:e54871. [PMID: 23372784 PMCID: PMC3553009 DOI: 10.1371/journal.pone.0054871] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 12/17/2012] [Indexed: 11/29/2022] Open
Abstract
Following long-term infection with virus derived from the pathogenic GL8 molecular clone of feline immunodeficiency virus (FIV), a range of viral variants emerged with distinct modes of interaction with the viral receptors CD134 and CXCR4, and sensitivities to neutralizing antibodies. In order to assess whether this viral diversity would be maintained following subsequent transmission, a synthetic quasispecies was reconstituted comprising molecular clones bearing envs from six viral variants and its replicative capacity compared in vivo with a clonal preparation of the parent virus. Infection with either clonal (Group 1) or diverse (Group 2) challenge viruses, resulted in a reduction in CD4+ lymphocytes and an increase in CD8+ lymphocytes. Proviral loads were similar in both study groups, peaking by 10 weeks post-infection, a higher plateau (set-point) being achieved and maintained in study Group 1. Marked differences in the ability of individual viral variants to replicate were noted in Group 2; those most similar to GL8 achieved higher viral loads while variants such as the chimaeras bearing the B14 and B28 Envs grew less well. The defective replication of these variants was not due to suppression by the humoral immune response as virus neutralising antibodies were not elicited within the study period. Similarly, although potent cellular immune responses were detected against determinants in Env, no qualitative differences were revealed between animals infected with either the clonal or the diverse inocula. However, in vitro studies indicated that the reduced replicative capacity of variants B14 and B28 in vivo was associated with altered interactions between the viruses and the viral receptor and co-receptor. The data suggest that viral variants with GL8-like characteristics have an early, replicative advantage and should provide the focus for future vaccine development.
Collapse
Affiliation(s)
- Brian J Willett
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom.
| | | | | | | | | | | |
Collapse
|
24
|
Feline immunodeficiency virus in South America. Viruses 2012; 4:383-396. [PMID: 22590677 PMCID: PMC3347033 DOI: 10.3390/v4030383] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 02/22/2012] [Accepted: 02/24/2012] [Indexed: 12/16/2022] Open
Abstract
The rapid emergence of AIDS in humans during the period between 1980 and 2000 has led to extensive efforts to understand more fully similar etiologic agents of chronic and progressive acquired immunodeficiency disease in several mammalian species. Lentiviruses that have gene sequence homology with human immunodeficiency virus (HIV) have been found in different species (including sheep, goats, horses, cattle, cats, and several Old World monkey species). Lentiviruses, comprising a genus of the Retroviridae family, cause persistent infection that can lead to varying degrees of morbidity and mortality depending on the virus and the host species involved. Feline immunodeficiency virus (FIV) causes an immune system disease in domestic cats (Felis catus) involving depletion of the CD4+ population of T lymphocytes, increased susceptibility to opportunistic infections, and sometimes death. Viruses related to domestic cat FIV occur also in a variety of nondomestic felids. This is a brief overview of the current state of knowledge of this large and ancient group of viruses (FIVs) in South America.
Collapse
|
25
|
Patel JR, Heldens JGM, Bakonyi T, Rusvai M. Important mammalian veterinary viral immunodiseases and their control. Vaccine 2012; 30:1767-81. [PMID: 22261411 PMCID: PMC7130670 DOI: 10.1016/j.vaccine.2012.01.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 01/03/2012] [Accepted: 01/05/2012] [Indexed: 11/16/2022]
Abstract
This paper offers an overview of important veterinary viral diseases of mammals stemming from aberrant immune response. Diseases reviewed comprise those due to lentiviruses of equine infectious anaemia, visna/maedi and caprine arthritis encephalitis and feline immunodeficiency. Diseases caused by viruses of feline infectious peritonitis, feline leukaemia, canine distemper and aquatic counterparts, Aleutian disease and malignant catarrhal fever. We also consider prospects of immunoprophylaxis for the diseases and briefly other control measures. It should be realised that the outlook for effective vaccines for many of the diseases is remote. This paper describes the current status of vaccine research and the difficulties encountered during their development.
Collapse
Affiliation(s)
- J R Patel
- Jas Biologicals Ltd, 12 Pembroke Avenue, Denny Industrial Estate, Waterbeach, Cambridge CB25 9QR, UK.
| | | | | | | |
Collapse
|
26
|
Murphy B, Vapniarsky N, Hillman C, Castillo D, McDonnel S, Moore P, Luciw PA, Sparger EE. FIV establishes a latent infection in feline peripheral blood CD4+ T lymphocytes in vivo during the asymptomatic phase of infection. Retrovirology 2012; 9:12. [PMID: 22314004 PMCID: PMC3292463 DOI: 10.1186/1742-4690-9-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 02/07/2012] [Indexed: 11/10/2022] Open
Abstract
Background Feline immunodeficiency virus (FIV) is a lentivirus of cats that establishes a lifelong persistent infection with immunologic impairment. Results In an approximately 2 year-long experimental infection study, cats infected with a biological isolate of FIV clade C demonstrated undetectable plasma viral loads from 10 months post-infection onward. Viral DNA was detected in CD4+CD25+ and CD4+CD25- T cells isolated from infected cats whereas viral RNA was not detected at multiple time points during the early chronic phase of infection. Viral transcription could be reactivated in latently infected CD4+ T cells ex vivo as demonstrated by detectable FIV gag RNA and 2-long terminal repeat (LTR) circle junctions. Viral LTR and gag sequences amplified from peripheral blood mononuclear cells during early and chronic stages of infection demonstrated minimal to no viral sequence variation. Conclusions Collectively, these findings are consistent with FIV latency in peripheral blood CD4+ T cells isolated from chronically infected cats. The ability to isolate latently FIV-infected CD4+ T lymphocytes from FIV-infected cats provides a platform for the study of in vivo mechanisms of lentiviral latency.
Collapse
Affiliation(s)
- Brian Murphy
- Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California, Davis, 4206 Vet Med 3A, Davis, CA 95616, USA.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Uterine adenocarcinoma with feline leukemia virus infection. Lab Anim Res 2012; 27:347-51. [PMID: 22232645 PMCID: PMC3251767 DOI: 10.5625/lar.2011.27.4.347] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 11/21/2011] [Accepted: 11/22/2011] [Indexed: 11/21/2022] Open
Abstract
Feline endometrial adenocarcinomas are uncommon malignant neoplasms that have been poorly characterized to date. In this study, we describe a uterine adenocarcinoma in a Persian cat with feline leukemia virus infection. At the time of presentation, the cat, a female Persian chinchilla, was 2 years old. The cat underwent surgical ovariohystectomy. A cross-section of the uterine wall revealed a thickened uterine horn. The cat tested positive for feline leukemia virus as detected by polymerase chain reaction. Histopathological examination revealed uterine adenocarcinoma that had metastasized to the omentum, resulting in thickening and the formation of inflammatory lesions. Based on the histopathological findings, this case was diagnosed as a uterine adenocarcinoma with abdominal metastasis. To the best of our knowledge, this is the first report of a uterine adenocarcinoma with feline leukemia virus infection.
Collapse
|
28
|
Kenyon JC, Lever AML. The molecular biology of feline immunodeficiency virus (FIV). Viruses 2011; 3:2192-213. [PMID: 22163340 PMCID: PMC3230847 DOI: 10.3390/v3112192] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Revised: 10/31/2011] [Accepted: 10/31/2011] [Indexed: 11/29/2022] Open
Abstract
Feline immunodeficiency virus (FIV) is widespread in feline populations and causes an AIDS-like illness in domestic cats. It is highly prevalent in several endangered feline species. In domestic cats FIV infection is a valuable small animal model for HIV infection. In recent years there has been sa significant increase in interest in FIV, in part to exploit this, but also because of the potential it has as a human gene therapy vector. Though much less studied than HIV there are many parallels in the replication of the two viruses, but also important differences and, despite their likely common origin, the viruses have in some cases used alternative strategies to overcome similar problems. Recent advances in understanding the structure and function of FIV RNA and proteins and their interactions has enhanced our knowledge of FIV replication significantly, however, there are still many gaps. This review summarizes our current knowledge of FIV molecular biology and its similarities with, and differences from, other lentiviruses.
Collapse
Affiliation(s)
- Julia C Kenyon
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK.
| | | |
Collapse
|
29
|
Isolation and partial characterization of Brazilian samples of feline immunodeficiency virus. Virus Res 2011; 160:59-65. [PMID: 21619902 DOI: 10.1016/j.virusres.2011.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 05/06/2011] [Accepted: 05/10/2011] [Indexed: 11/21/2022]
Abstract
Feline immunodeficiency virus (FIV) causes a slow progressive degeneration of the immune system which eventually leads to a disease comparable to acquired immune deficiency syndrome (AIDS) in humans. FIV has extensive sequence variation, a typical feature of lentiviruses. Sequence analysis showed that diversity was not evenly distributed throughout the genome, but was greatest in the envelope gene, env. The virus enters host cells via a sequential interaction, initiated by the envelope glycoprotein (env) binding the primary receptor molecule CD134 and followed by a subsequent interaction with chemokine co-receptor CXCR4. The purpose of this study was to isolate and characterize isolates of FIV from an open shelter in São Paulo, Brazil. The separated PBMC from 11 positive cats were co-cultured with MYA-1 cells. Full-length viral env glycoprotein genes were amplified and determined. Chimeric feline × human CD134 receptors were used to investigate the receptor utilization of 17 clones from Brazilian isolates of FIV. Analyses of the sequence present of molecular clones showed that all clones grouped within subtype B. In contrast to the virulent primary isolate FIV-GL8, expression of the first cysteine-rich domain (CRD1) of feline CD134 in the context of human CD134 was sufficient for optimal receptor function for all Brazilian FIV isolates tested.
Collapse
|
30
|
Fogle JE, Tompkins WA, Campbell B, Sumner D, Tompkins MB. Fozivudine tidoxil as single-agent therapy decreases plasma and cell-associated viremia during acute feline immunodeficiency virus infection. J Vet Intern Med 2011; 25:413-8. [PMID: 21457319 DOI: 10.1111/j.1939-1676.2011.0699.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Feline immunodeficiency virus (FIV) is a lentivirus that infects domestic and wild felidae and the course of disease is similar to that of human immunodeficiency virus infection. The thymidine nucleoside analog fozivudine (FZD) tidoxil is a lipid-zidovudine (ZDV) conjugate and member of the family of nucleoside reverse transcriptase (RT) inhibitors (NRTIs). HYPOTHESIS FZD administration to cats during acute FIV infection produces antiviral activity with fewer adverse effects than its parent compound ZDV (AZT). ANIMALS Male, neutered cats approximately 7 months of age (n = 12). METHODS FZD (45 mg/kg q12h, n = 6) or placebo (n = 6) was administered PO in a nonblinded trial for 6 weeks to cats infected with the NCSU(1) isolate of FIV. Peripheral blood was collected preinfection and at 2, 4, and 6 weeks postinfection for CBC, evaluation of CD4(+) and CD8(+) cell counts by flow cytometry, and quantification of plasma and cell-associated viremia by real time RT-PCR. RESULTS Treatment of cats with FZD during the acute stage of FIV infection decreased plasma and cell-associated viremia during the first 2 weeks of infection, but was not protective against FIV, as all cats were infected by 6 weeks. CONCLUSIONS At the dosage used in this study, treatment with FZD results in a short-term decrease in viral load with no adverse effects. Further investigation of FZD is warranted to assess pharmacokinetics, optimal dosage, and to directly compare the antiviral activity of FZD to ZDV in naturally infected cats.
Collapse
Affiliation(s)
- J E Fogle
- Department of Population Health and Pathobiology, North Carolina State University College of Veterinary Medicine, Raleigh, NC 27606, USA.
| | | | | | | | | |
Collapse
|
31
|
Fogle JE, Tompkins WA, Tompkins MB. CD4+CD25+ T regulatory cells from FIV+ cats induce a unique anergic profile in CD8+ lymphocyte targets. Retrovirology 2010; 7:97. [PMID: 21092106 PMCID: PMC2997086 DOI: 10.1186/1742-4690-7-97] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 11/19/2010] [Indexed: 11/23/2022] Open
Abstract
Background Using the FIV model, we reported previously that CD4+CD25+ T regulatory (Treg) cells from FIV+ cats are constitutively activated and suppress CD4+CD25- and CD8+ T cell immune responses. In an effort to further explore Treg-mediated suppression, we asked whether Treg cells induce anergy through the alteration of production of cyclins, cyclin-dependent kinases and their inhibitors. Results Lymphocytes were obtained from control or FIV+ cats and sorted by FACS into CD4+CD25+ and CD8+ populations. Following co-culture with CD4+CD25+ cells, CD8+ targets were examined by Western blot for changes in cyclins D3, E and A, retinoblastoma (Rb) protein, as well as the cyclin dependent kinase inhibitor p21cip1. Following co-culture with CD4+CD25+cells, we observed up-regulation of p21cip1 and cyclin E, with down-regulation of cyclin D3, in CD8+ cells from FIV+ cats. As expected, CD8+ targets from control cats were quiescent with little up-regulation of p21cip1 and cyclin E. There was also a lack of Rb phosphorylation in CD8+ targets consistent with late G1 cell cycle arrest. Further, IL-2 mRNA was down regulated in CD8+ cells after co-culture with CD4+CD25+ Treg cells. Following CD4+CD25+ co-culture, CD8+ targets from FIV+ cats also had increased Foxp3 mRNA expression; however, these CD8+Foxp3+ cells did not exhibit suppressor function. Conclusions Collectively, these data suggest that CD4+CD25+ Treg cells from FIV+ cats induce CD8+ anergy by disruption of normal G1 to S cell cycle progression.
Collapse
Affiliation(s)
- Jonathan E Fogle
- North Carolina State University, College of Veterinary Medicine, Immunology Program, Department of Population Health and Pathobiology, 4700 Hillsborough Street, Raleigh, NC 27606, USA.
| | | | | |
Collapse
|
32
|
Does a feline leukemia virus infection pave the way for Bartonella henselae infection in cats? J Clin Microbiol 2010; 48:3295-300. [PMID: 20610682 DOI: 10.1128/jcm.00750-10] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Domestic cats serve as the reservoir hosts of Bartonella henselae and may develop mild clinical symptoms or none after experimental infection. In humans, B. henselae infection can result in self-limiting cat scratch disease. However, immunocompromised patients may suffer from more-severe courses of infection or may even develop the potentially lethal disease bacillary angiomatosis. It was reasoned that cats with immunocompromising viral infections may react similarly to B. henselae infection. The aim of our study was to investigate the influence of the most important viruses known to cause immunosuppression in cats-Feline leukemia virus (FeLV), Feline immunodeficiency virus (FIV), and Feline panleukopenia virus (FPV)-on natural B. henselae infection in cats. Accordingly, 142 cats from animal shelters were necropsied and tested for B. henselae and concurrent infections with FeLV, FIV, or FPV by PCR and immunohistochemistry. A significant association was found between B. henselae and FeLV infections (P = 0.00028), but not between B. henselae and FIV (P = 1.0) or FPV (P = 0.756) infection, age (P = 0.392), or gender (P = 0.126). The results suggest that susceptibility to B. henselae infection is higher in cats with concurrent FeLV infections, regardless of whether the infection is latent or progressive. Histopathology and immunohistochemistry for B. henselae failed to identify lesions that could be attributed specifically to B. henselae infection. We conclude that the course of natural B. henselae infection in cats does not seem to be influenced by immunosuppressive viral infections in general but that latent FeLV infection may predispose cats to B. henselae infection or persistence.
Collapse
|
33
|
Willett BJ, Kraase M, Logan N, McMonagle EL, Samman A, Hosie MJ. Modulation of the virus-receptor interaction by mutations in the V5 loop of feline immunodeficiency virus (FIV) following in vivo escape from neutralising antibody. Retrovirology 2010; 7:38. [PMID: 20420700 PMCID: PMC2873508 DOI: 10.1186/1742-4690-7-38] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 04/26/2010] [Indexed: 12/27/2022] Open
Abstract
Background In the acute phase of infection with feline immunodeficiency virus (FIV), the virus targets activated CD4+ T cells by utilising CD134 (OX40) as a primary attachment receptor and CXCR4 as a co-receptor. The nature of the virus-receptor interaction varies between isolates; strains such as GL8 and CPGammer recognise a "complex" determinant on CD134 formed by cysteine-rich domains (CRDs) 1 and 2 of the molecule while strains such as PPR and B2542 require a more "simple" determinant comprising CRD1 only for infection. These differences in receptor recognition manifest as variations in sensitivity to receptor antagonists. In this study, we ask whether the nature of the virus-receptor interaction evolves in vivo. Results Following infection with a homogeneous viral population derived from a pathogenic molecular clone, a quasispecies emerged comprising variants with distinct sensitivities to neutralising antibody and displaying evidence of conversion from a "complex" to a "simple" interaction with CD134. Escape from neutralising antibody was mediated primarily by length and sequence polymorphisms in the V5 region of Env, and these alterations in V5 modulated the virus-receptor interaction as indicated by altered sensitivities to antagonism by both anti-CD134 antibody and soluble CD134. Conclusions The FIV-receptor interaction evolves under the selective pressure of the host humoral immune response, and the V5 loop contributes to the virus-receptor interaction. Our data are consistent with a model whereby viruses with distinct biological properties are present in early versus late infection and with a shift from a "complex" to a "simple" interaction with CD134 with time post-infection.
Collapse
Affiliation(s)
- Brian J Willett
- Retrovirus Research Laboratory, Institute of Comparative Medicine, Faculty of Veterinary Medicine, University of Glasgow, Bearsden Road, Glasgow, UK.
| | | | | | | | | | | |
Collapse
|
34
|
Tochikura TS, Motokawa K, Naito Y, Kozutsumi Y, Tanabe-Tochikura A, Hohdatsu T. Differential CXCR4 expression and function in subpopulations of the feline lymphoma cell line 3201 susceptible to feline immunodeficiency virus. J Feline Med Surg 2010; 12:269-77. [PMID: 19896878 PMCID: PMC11135574 DOI: 10.1016/j.jfms.2009.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2009] [Indexed: 10/20/2022]
Abstract
The infection of feline thymic lymphoma 3201 cells with a cell culture-adapted Petaluma strain of feline immunodeficiency virus (FIV) led to the establishment of survivor cells designated as 3201-S after a productive infection associated with extensive cell killing. 3201-S cells were free of FIV DNA, and were found to express CXCR4, a coreceptor for infection but not CD134, a primary receptor. When 3201-S cells were reinfected with FIV, viral DNA was transiently detectable for 5 days postinfection, indicating that 3201-S cells cannot support the FIV replicative cycle. Furthermore, comparative studies found that in contrast to SDF-1alpha-responsive 3201 cells, 3201-S cells did not show a flux of Ca(2+) in response to SDF-1alpha, implying that CXCR4 is not functionally active on 3201-S cells. These results suggest that 3201 cells can be heterogeneous in the phenotype of the CXCR4 expressed, and this heterogeneity may account for the differences in susceptibility to FIV. Determining the mechanism(s) within 3201-S cells that restrict FIV could result in therapeutic strategies against FIV infection.
Collapse
Affiliation(s)
- Tadafumi S Tochikura
- Center for Integrative Education of Pharmacy Frontier, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| | | | | | | | | | | |
Collapse
|
35
|
Fogle JE, Mexas AM, Tompkins WA, Tompkins MB. CD4(+)CD25(+) T regulatory cells inhibit CD8(+) IFN-gamma production during acute and chronic FIV infection utilizing a membrane TGF-beta-dependent mechanism. AIDS Res Hum Retroviruses 2010; 26:201-16. [PMID: 20156102 DOI: 10.1089/aid.2009.0162] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
CD8(+) lymphocytes are critical to the control and elimination of viral pathogens. Impaired CD8(+) responses are well recognized in lentiviral infections; however, the mechanisms underlying CD8(+) impairment remain elusive. Using the feline immunodeficiency virus (FIV) model for human AIDS, we reported previously that CD4(+)CD25(+) Treg cells in both the acute and long-term, asymptomatic phase of infection are constitutively activated and suppress CD4(+)CD25(-) T cell responses. In the current study, we have demonstrated that CD4(+)CD25(+) Treg cells suppress CD8(+) responses to immune stimulation during both the acute and chronic, asymptomatic phase of FIV infection and that the mechanism of suppression may be mediated by membrane-associated TGF-beta (mTGF-beta) on CD4(+)CD25(+) lymphocytes. Depletion of CD4(+)CD25(+) lymphocytes from lymph node suspensions significantly enhanced production of IFN-gamma during the acute phase of infection and coculture of CD8(+) lymphocytes with CD4(+)CD25(+) lymphocytes resulted in suppression of CD8(+) IFN-gamma during both the acute and chronic stages of infection. FACS analysis indicated that there was TGF-betaRII upregulation on CD8(+) cells from FIV(+) cats during the acute and chronic stage of infection. In addition, there was upregulation of mTGF-beta on the CD4(+)CD25(+) subset in chronically infected cats. In support of activation of the TGF-beta signaling pathway, Western blotting showed Smad 2 phosphorylation in CD8(+) targets following CD4(+)CD25(+)/CD8(+) coculture. These results demonstrate the suppressive effect CD4(+)CD25(+) Treg cells have on the CD8(+) immune response during the acute and chronic stages of FIV infection and suggest that the mechanism of suppression may be mediated by mTGF-beta.
Collapse
Affiliation(s)
- Jonathan E. Fogle
- Immunology Program, Department of Population Health and Pathobiology, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina 27606
| | - Angela M. Mexas
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Wayne A. Tompkins
- Immunology Program, Department of Population Health and Pathobiology, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina 27606
| | - Mary B. Tompkins
- Immunology Program, Department of Population Health and Pathobiology, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina 27606
| |
Collapse
|
36
|
Feline immunodeficiency virus env gene evolution in experimentally infected cats. Vet Immunol Immunopathol 2009; 134:96-106. [PMID: 19897254 DOI: 10.1016/j.vetimm.2009.10.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Feline immunodeficiency virus (FIV), an immunosuppressive lentivirus found in cats worldwide, is studied to illuminate mechanisms of lentiviral pathogenesis and to identify key components of protective immunity. During replication, lentiviruses accumulate errors of nucleotide mis-incorporation due to the low-fidelity of reverse transcriptase and recombination between viral variants, resulting in the emergence of a complex viral "quasispecies". In patients infected with HIV-1, env sequences may vary by up to 10% and the detection of quasispecies with greater heterogeneity is associated with higher viral loads and reduced CD4+ T cell numbers [1], indicating that transmission of more complex quasispecies may lead to disease progression. However, little is known about how FIV evolves as disease progresses, or why some cats develop AIDS rapidly while disease progression is slow in others. The aim of this study was to determine whether disease progression may be governed by viral evolution and to examine the diversity of viral variants emerging following infection with an infectious molecular clone. The FIV env gene encoding the envelope glycoprotein (Env) was examined at early (12 weeks) and late (322 weeks) stages of FIV infection in two groups of cats infected experimentally with the FIV-GL8 molecular clone. Viral variants were detected within quasispecies in cats in the late stages of FIV infection that contained differing amino acid compositions in several variable loops of Env, some of which were identified as determinants of receptor usage and resistance to neutralization. Therefore these results indicate that the FIV env gene evolves during the course of infection, giving rise to variants that resist neutralization and likely lead to disease progression.
Collapse
|
37
|
Desport M, Tenaya IM, McLachlan A, McNab TJ, Rachmat J, Hartaningsih N, Wilcox GE. In vivo infection of IgG-containing cells by Jembrana disease virus during acute infection. Virology 2009; 393:221-7. [DOI: 10.1016/j.virol.2009.07.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Revised: 07/14/2009] [Accepted: 07/23/2009] [Indexed: 10/25/2022]
|
38
|
Samman A, Logan N, McMonagle EL, Ishida T, Mochizuki M, Willett BJ, Hosie MJ. Neutralization of feline immunodeficiency virus by antibodies targeting the V5 loop of Env. J Gen Virol 2009; 91:242-9. [PMID: 19776242 DOI: 10.1099/vir.0.015404-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neutralizing antibodies (NAbs) play a vital role in vaccine-induced protection against infection with feline immunodeficiency virus (FIV). However, little is known about the appropriate presentation of neutralization epitopes in order to induce NAbs effectively; the majority of the antibodies that are induced are directed against non-neutralizing epitopes. Here, we demonstrate that a subtype B strain of FIV, designated NG4, escapes autologous NAbs, but may be rendered neutralization-sensitive following the insertion of two amino acids, KT, at positions 556-557 in the fifth hypervariable (V5) loop of the envelope glycoprotein. Consistent with the contribution of this motif to virus neutralization, an additional three subtype B strains retaining both residues at the same position were also neutralized by the NG4 serum, and serum from an unrelated cat (TOT1) targeted the same sequence in V5. Moreover, when the V5 loop of subtype B isolate KNG2, an isolate that was moderately resistant to neutralization by NG4 serum, was mutated to incorporate the KT motif, the virus was rendered sensitive to neutralization. These data suggest that, even in a polyclonal serum derived from FIV-infected cats following natural infection, the primary determinant of virus-neutralizing activity may be represented by a single, dominant epitope in V5.
Collapse
Affiliation(s)
- Ayman Samman
- Retrovirus Research Laboratory, Institute of Comparative Medicine, Faculty of Veterinary Medicine, University of Glasgow, Bearsden, Glasgow G61 1QH, UK
| | | | | | | | | | | | | |
Collapse
|
39
|
Gag-specific immune enhancement of lentiviral infection after vaccination with an adenoviral vector in an animal model of AIDS. Vaccine 2009; 27:928-39. [DOI: 10.1016/j.vaccine.2008.11.086] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 10/27/2008] [Accepted: 11/06/2008] [Indexed: 12/22/2022]
|
40
|
Huisman W, Martina BEE, Rimmelzwaan GF, Gruters RA, Osterhaus ADME. Vaccine-induced enhancement of viral infections. Vaccine 2008; 27:505-12. [PMID: 19022319 PMCID: PMC7131326 DOI: 10.1016/j.vaccine.2008.10.087] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Revised: 10/29/2008] [Accepted: 10/29/2008] [Indexed: 12/19/2022]
Abstract
Examples of vaccine-induced enhancement of susceptibility to virus infection or of aberrant viral pathogenesis have been documented for infections by members of different virus families. Several mechanisms, many of which still are poorly understood, are at the basis of this phenomenon. Vaccine development for lentivirus infections in general, and for HIV/AIDS in particular, has been little successful. Certain experimental lentiviral vaccines even proved to be counterproductive: they rendered vaccinated subjects more susceptible to infection rather than protecting them. For vaccine-induced enhanced susceptibility to infection with certain viruses like feline coronavirus, Dengue virus, and feline immunodeficiency virus, it has been shown that antibody-dependent enhancement (ADE) plays an important role. Other mechanisms may, either in the absence of or in combination with ADE, be involved. Consequently, vaccine-induced enhancement has been a major stumble block in the development of certain flavi-, corona-, paramyxo-, and lentivirus vaccines. Also recent failures in the development of a vaccine against HIV may at least in part be attributed to induction of enhanced susceptibility to infection. There may well be a delicate balance between the induction of protective immunity on the one hand and the induction of enhanced susceptibility on the other. The present paper reviews the currently known mechanisms of vaccine-induced enhancement of susceptibility to virus infection or of aberrant viral pathogenesis.
Collapse
Affiliation(s)
- W Huisman
- Erasmus MC, Institute of Virology, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
41
|
Mexas AM, Fogle JE, Tompkins WA, Tompkins MB. CD4+CD25+ regulatory T cells are infected and activated during acute FIV infection. Vet Immunol Immunopathol 2008; 126:263-72. [PMID: 18799222 DOI: 10.1016/j.vetimm.2008.08.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 07/31/2008] [Accepted: 08/13/2008] [Indexed: 10/21/2022]
Abstract
HIV-induced AIDS may be mediated by the activation of immunosuppressive CD4+CD25+ T regulatory cells (Treg cells). Treg cells have been shown to regulate CD4+ and CD8+ immune responses to HIV and FIV antigens in vitro. We tested the hypothesis that Treg cells become infected and activated during the acute infection with FIV leading to the suppression of CD4+ T helper cell responses. Cats were experimentally infected with FIV-NCSU1 and blood and lymph node cells were collected at weekly intervals following inoculation. Real-time RT-PCR was used to determine plasma viremia and the relative expression of FIV, FoxP3, TGF-beta, and GAPDH mRNA copies in CD4+CD25+ and CD4+CD25- T cell subsets. Flow cytometry was used to assess the absolute numbers of each cell type and the expression of surface TGF-beta and intracellular FoxP3 in CD4+CD25+ and CD4+CD25- T cells at each time-point. Treg suppression of IL-2 production in CD4+ T helper cells was assessed by ELISPOT assays. Our results showed that peak viremia occurred at 2 weeks post infection and correlated with maximal infectivity in CD4+CD25+ T cell populations. FIV-gag-mRNA levels were higher in CD4+CD25+ T cells than CD4+CD25- T cells throughout the acute phase of infection. Induction of FoxP3 and TGF-beta indicated activation of Treg cells during the acute stage infection, which was confirmed by Treg cell suppression of IL-2 production by CD4+ Th cells in an ELISPOT assay. Our findings support the hypothesis that early activation of Treg immunosuppressor function may limit an effective anti-FIV response, contributing to the establishment of chronic infection and the immunodeficiency caused by this virus.
Collapse
Affiliation(s)
- Angela M Mexas
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, 4700 Hillsborough Street, Raleigh, NC 27606, United States
| | | | | | | |
Collapse
|
42
|
Endothelial cell suppression of peripheral blood mononuclear cell trafficking in vitro during acute exposure to feline immunodeficiency virus. Cell Tissue Res 2008; 334:55-65. [PMID: 18665397 DOI: 10.1007/s00441-008-0623-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Accepted: 04/14/2008] [Indexed: 10/21/2022]
Abstract
Trafficking of peripheral blood mononuclear cells (PBMCs) into the brain is a critical step in the initiation of human immunodeficiency virus (HIV)-associated central nervous system disease. To examine potential factors that control trafficking during the earliest stages of infection, PBMC transmigration across a cultured feline brain endothelial cell (BECs) monolayer was measured after selective exposure of various cell types to feline immunodeficiency virus (FIV). Infection of the PBMCs with FIV increased the trafficking of monocytes and CD4 and CD8 T cells. Additional exposure of the BECs to FIV suppressed mean monocyte, CD4 T cell, and CD8 T cell trafficking. B cell trafficking was unaltered by these changing conditions. Subsequent exposure of astrocytes or microglia to FIV altered transmigration of different PBMC subsets in different ways. Treated microglia compared with treated astrocytes decreased monocyte transmigration, whereas B cell transmigration was increased significantly. When both astrocytes and microglia were exposed to FIV, an increase in CD8 T cell transmigration relative to BECs alone, to BECs plus astrocytes, or to BECs plus microglia was demonstrated. Thus, initial exposure of PBMCs to FIV is sufficient to induce a general increase in trafficking, whereas initial exposure of endothelial cells to FIV tends to down-regulate this effect. Selectivity of trafficking of specific PBMC subsets is apparent only after exposure of cells of the central nervous system to FIV in co-culture with the endothelium.
Collapse
|
43
|
Mapping of the CXCR4 binding site within variable region 3 of the feline immunodeficiency virus surface glycoprotein. J Virol 2008; 82:9134-42. [PMID: 18596086 DOI: 10.1128/jvi.00394-08] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Feline immunodeficiency virus (FIV) shares with T-cell tropic strains of human immunodeficiency virus type 1 (HIV-1) the use of the chemokine receptor CXCR4 for cellular entry. In order to map the interaction of the FIV envelope surface unit (SU) with CXCR4, full-length FIV SU-Fc as well as constructs with deletions of extended loop L2, V3, V4, or V5 were produced in stable CHO cell lines. Binding studies were performed using these proteins on 3201 cells (CXCR4(hi) CD134(-)), with or without the CXCR4 inhibitor AMD3100. The findings established that SU binding to CXCR4 specifically requires the V3 region of SU. Synthetic peptides spanning the V3 region as well as a panel of monoclonal antibodies (MAbs) to SU were used to further map the site of CXCR4 interaction. Both the SU V3-specific antibodies and the full-length V3 peptide potently blocked binding of SU to CXCR4 and virus entry. By using a set of nested peptides overlapping a region of SU specifically recognized by CD134-dependent neutralizing V3 MAbs, we showed that the neutralizing epitope and the region required for CXCR4 binding are within the same contiguous nine-amino-acid sequence of V3. Site-directed mutagenesis was used to reveal that serine 393 and tryptophan 394 at the predicted tip of V3 are required to facilitate entry into the target cell via CXCR4. Although the amino acid sequences are not identical between FIV and HIV, the ability of FIV to bind and utilize both feline and human CXCR4 makes the feline model an attractive venue for development of broad-based entry antagonists.
Collapse
|
44
|
Replication properties of clade A/C chimeric feline immunodeficiency viruses and evaluation of infection kinetics in the domestic cat. J Virol 2008; 82:7953-63. [PMID: 18550665 DOI: 10.1128/jvi.00337-08] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Feline immunodeficiency virus (FIV) causes progressive immunodeficiency in domestic cats, with clinical course dependent on virus strain. For example, clade A FIV-PPR is predominantly neurotropic and causes a mild disease in the periphery, whereas clade C FIV-C36 causes fulminant disease with CD4(+) T-cell depletion and neutropenia but no significant pathology in the central nervous system. In order to map pathogenic determinants, chimeric viruses were prepared between FIV-C36 and FIV-PPR, with reciprocal exchanges involving (i) the 3' halves of the viruses, including the Vif, OrfA, and Env genes; (ii) the 5' end extending from the 5' long terminal repeat (LTR) to the beginning of the capsid (CA)-coding region; and (iii) the 3' LTR and Rev2-coding regions. Ex vivo replication rates and in vivo replication and pathologies were then assessed and compared to those of the parental viruses. The results show that FIV-C36 replicates ex vivo and in vivo to levels approximately 20-fold greater than those of FIV-PPR. None of the chimeric FIVs recapitulated the replication rate of FIV-C36, although most replicated to levels similar to those of FIV-PPR. The rates of chloramphenicol acetyltransferase gene transcription driven by the FIV-C36 and FIV-PPR LTRs were identical. Furthermore, the ratios of surface glycoprotein (SU) to capsid protein (CA) in the released particles were essentially the same in the wild-type and chimeric FIVs. Tests were performed in vivo on the wild-type FIVs and chimeras carrying the 3' half of FIV-C36 or the 3' LTR and Rev2 regions of FIV-C36 on the PPR background. Both chimeras were infectious in vivo, although replication levels were lower than for the parental viruses. The chimera carrying the 3' half of FIV-C36 demonstrated an intermediate disease course with a delayed peak viral load but ultimately resulted in significant reductions in neutrophil and CD4(+) T cells, suggesting potential adaptation in vivo. Taken together, the findings suggest that the rapid-growth phenotype and pathogenicity of FIV-C36 are the result of evolutionary fine tuning throughout the viral genome, rather than being properties of any one constituent.
Collapse
|
45
|
Reggeti F, Ackerley C, Bienzle D. CD134 and CXCR4 expression corresponds to feline immunodeficiency virus infection of lymphocytes, macrophages and dendritic cells. J Gen Virol 2008; 89:277-287. [PMID: 18089752 DOI: 10.1099/vir.0.83161-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The lymphotropic lentiviruses feline immunodeficiency virus (FIV) and human immunodeficiency virus (HIV) enter cells by sequential interaction with primary receptors CD134 or CD4, respectively, and subsequently with chemokine receptors. The host-cell range for FIV is broader than that for HIV, but whether this is a function of receptor expression is unknown. Lack of reagents specific to feline molecules has limited detection and analysis of receptors and their interaction with viral components. Here, the expression of CD134 and CXCR4 on feline T and B lymphocytes, dendritic cells (DCs) and macrophages was examined and the kinetics of FIV replication were assessed. Quantification of CD134 mRNA by real-time PCR indicated expression in all leukocytes, with significantly more transcripts in CD4(+) lymphocytes than in other leukocytes. Antibodies against human CD134 bound inconsistently to feline leukocytes. CXCR4 was detected with antibody clone 12G5 on the surface of monocyte-derived cells only, but gene transcripts were present in all cells, with the highest copy number in lymphocytes. CXCR4 expression decreased and CD134 expression increased with cell activation in lymphocytes. A subtype B biological isolate of FIV infected DCs, macrophages and lymphocytes, with the highest replication in CD4(+) lymphocytes, whilst cloned FIV P14 infected all cells, but replicated less efficiently. Although viral replication was lower in DCs and macrophages than in lymphocytes, DCs expressed specific receptors and were infected productively with FIV, as indicated by viral ultrastructure and DNA detection. These results may implicate altered function of DCs in the induction of specific immunity against FIV.
Collapse
Affiliation(s)
- F Reggeti
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - C Ackerley
- The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - D Bienzle
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
46
|
Orton SM, Arasu P, Hammerberg B. A NOVEL GENE FROM BRUGIA SP. THAT ENCODES A CYTOTOXIC FATTY ACID BINDING PROTEIN ALLERGEN RECOGNIZED BY CANINE MONOCLONAL IgE AND SERUM IgE FROM INFECTED DOGS. J Parasitol 2007; 93:1378-87. [DOI: 10.1645/ge-1217.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
47
|
Lecollinet S, Richardson J. Vaccination against the feline immunodeficiency virus: the road not taken. Comp Immunol Microbiol Infect Dis 2007; 31:167-90. [PMID: 17706778 DOI: 10.1016/j.cimid.2007.07.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2007] [Indexed: 11/28/2022]
Abstract
Natural infection of domestic cats by the feline immunodeficiency virus (FIV) causes acquired immunodeficiency syndrome (AIDS). FIV is genetically related to human immunodeficiency virus (HIV), and the clinical and biological features of infections caused by feline and human viruses in their respective hosts are highly analogous. Although the obstacles to vaccinating against FIV and HIV would seem to be of comparable difficulty, a licensed vaccine against feline AIDS is already in widespread use in several countries. While this seemingly major advance in prevention of AIDS would appear to be highly instructive for HIV vaccine development, its message has not been heeded by investigators in the HIV field. This review endeavours to relate what has been learned about vaccination against feline AIDS, and to suggest what this may mean for HIV vaccine development.
Collapse
Affiliation(s)
- Sylvie Lecollinet
- UMR 1161 Virologie INRA-AFSSA-ENVA, Ecole Nationale Vétérinaire d'Alfort, 7 avenue du Général de Gaulle, 94700 Maisons-Alfort, France
| | | |
Collapse
|
48
|
Howard KE, Burkhard MJ. Mucosal challenge with cell-associated or cell-free feline immunodeficiency virus induces rapid and distinctly different patterns of phenotypic change in the mucosal and systemic immune systems. Immunology 2007; 122:571-83. [PMID: 17635613 PMCID: PMC2266040 DOI: 10.1111/j.1365-2567.2007.02673.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The majority of human immunodeficiency virus type 1 (HIV-1) infections occur via mucosal transmission through contact with genital secretions containing cell-associated and cell-free virus. However, few studies have assessed whether exposure to cells, HIV-1 infected or uninfected, plays a role in the sexual transmission of HIV-1. This study examined phenotypic changes in mucosal and systemic lymphoid tissue 24 hr after vaginal exposure to in vitro equilibrated infectious doses of cell-associated or cell-free feline immunodeficiency virus, uninfected heterologous cells, or medium alone. We found that even at this early time-point, mucosal exposure to virus induced substantial alterations in the phenotype and distribution of leucocytes, particularly in the tissues of the mucosal immune system. Second, we found that the type of virus inoculum directly influenced the phenotypic changes seen. Vaginal exposure to cell-free virus tended to induce more generalized phenotypic changes, typically in the peripheral immune system (blood and systemic lymph nodes). In contrast, exposure to cell-associated virus was primarily associated with phenotypic shifts in the mucosal immune system (gut and mucosal/draining lymph nodes). In addition, we found that exposure to uninfected heterologous cells also induced alterations in the mucosal immune system. These data suggest that significant immune changes occur within the first 24 hr of virus exposure, well before substantial replication would be anticipated. As the mucosal immune system, and particularly the gut, is an early and persistent target for lentiviral replication, these findings have substantial implications for HIV-1 pathogenesis and vaccine development.
Collapse
Affiliation(s)
- Kristina E Howard
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA.
| | | |
Collapse
|
49
|
Willett BJ, McMonagle EL, Logan N, Spiller OB, Schneider P, Hosie MJ. Probing the interaction between feline immunodeficiency virus and CD134 by using the novel monoclonal antibody 7D6 and the CD134 (Ox40) ligand. J Virol 2007; 81:9665-79. [PMID: 17609274 PMCID: PMC2045395 DOI: 10.1128/jvi.01020-07] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The feline immunodeficiency virus (FIV) targets activated CD4-positive helper T cells preferentially, inducing an AIDS-like immunodeficiency in its natural host species, the domestic cat. The primary receptor for FIV is CD134, a member of the tumor necrosis factor receptor superfamily, and all primary viral strains tested to date use CD134 for infection. We examined the expression of CD134 in the cat using a novel anti-feline CD134 monoclonal antibody (MAb), 7D6, and showed that as in rats and humans, CD134 expression is restricted tightly to CD4+, and not CD8+, T cells, consistent with the selective targeting of these cells by FIV. However, FIV is also macrophage tropic, and in chronic infection the viral tropism broadens to include B cells and CD8+ T cells. Using 7D6, we revealed CD134 expression on a B220-positive (B-cell) population and on cultured macrophages but not peripheral blood monocytes. Moreover, macrophage CD134 expression and FIV infection were enhanced by activation in response to bacterial lipopolysaccharide. Consistent with CD134 expression on human and murine T cells, feline CD134 was abundant on mitogen-stimulated CD4+ T cells, with weaker expression on CD8+ T cells, concordant with the expansion of FIV into CD8+ T cells with progression of the infection. The interaction between FIV and CD134 was probed using MAb 7D6 and soluble CD134 ligand (CD134L), revealing strain-specific differences in sensitivity to both 7D6 and CD134L. Infection with isolates such as PPR and B2542 was inhibited well by both 7D6 and CD134L, suggesting a lower affinity of interaction. In contrast, GL8, CPG, and NCSU were relatively refractory to inhibition by both 7D6 and CD134L and, accordingly, may have a higher-affinity interaction with CD134, permitting infection of cells where CD134 levels are limiting.
Collapse
Affiliation(s)
- Brian J Willett
- Retrovirus Research Laboratory, Institute of Comparative Medicine, Faculty of Veterinary Medicine, University of Glasgow, Bearsden Road, Glasgow, United Kingdom.
| | | | | | | | | | | |
Collapse
|
50
|
Celma CCP, Paladino MG, González SA, Affranchino JL. Importance of the short cytoplasmic domain of the feline immunodeficiency virus transmembrane glycoprotein for fusion activity and envelope glycoprotein incorporation into virions. Virology 2007; 366:405-14. [PMID: 17559903 DOI: 10.1016/j.virol.2007.05.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2007] [Revised: 04/25/2007] [Accepted: 05/14/2007] [Indexed: 11/28/2022]
Abstract
The mature form of the envelope (Env) glycoprotein of lentiviruses is a heterodimer composed of the surface (SU) and transmembrane (TM) subunits. Feline immunodeficiency virus (FIV) possesses a TM glycoprotein with a cytoplasmic tail of approximately 53 amino acids which is unusually short compared with that of the other lentiviral glycoproteins (more than 100 residues). To investigate the relevance of the FIV TM cytoplasmic domain to Env-mediated viral functions, we characterized the biological properties of a series of Env glycoproteins progressively shortened from the carboxyl terminus. All the mutant Env proteins were efficiently expressed in feline cells and processed into the SU and TM subunits. Deletion of 5 or 11 amino acids from the TM C-terminus did not significantly affect Env surface expression, fusogenic activity or Env incorporation into virions, whereas removal of 17 or 23 residues impaired Env-mediated cell-to-cell fusion. Further truncation of the FIV TM by 29 residues resulted in an Env glycoprotein that was poorly expressed at the cell surface, exhibited only 20% of the wild-type Env fusogenic capacity and was inefficiently incorporated into virions. Remarkably, deletion of the TM C-terminal 35 or 41 amino acids restored or even enhanced Env biological functions. Indeed, these mutant Env glycoproteins bearing cytoplasmic domains of 18 or 12 amino acids were found to be significantly more fusogenic than the wild-type Env and were efficiently incorporated into virions. Interestingly, truncation of the TM cytoplasmic domain to only 6 amino acids did not affect Env incorporation into virions but abrogated Env fusogenicity. Finally, removal of the entire TM cytoplasmic tail or deletion of as many as 6 amino acids into the membrane-spanning domain led to a complete loss of Env functions. Our results demonstrate that despite its relatively short length, the FIV TM cytoplasmic domain plays an important role in modulating Env-mediated viral functions.
Collapse
Affiliation(s)
- Cristina C P Celma
- Laboratorio de Virología, Facultad de Ciencias Exactas y Naturales, Universidad de Belgrano (UB), Villanueva 1324 (C1426BMJ), Buenos Aires, Argentina
| | | | | | | |
Collapse
|