1
|
Huang L, Zhang J, Deng Y, Wang H, Zhao P, Zhao G, Zeng W, Wang Y, Chen C, Wagstaff W, Haydon RC, Reid RR, He TC, Shen L, Luu HH, Zhao L. Niclosamide (NA) overcomes cisplatin resistance in human ovarian cancer. Genes Dis 2023; 10:1687-1701. [PMID: 37397523 PMCID: PMC10311098 DOI: 10.1016/j.gendis.2022.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/08/2022] [Accepted: 12/04/2022] [Indexed: 01/03/2023] Open
Abstract
Ovarian cancer (OC) is one of the most lethal malignancies of the female reproductive system. OC patients are usually diagnosed at advanced stages due to the lack of early diagnosis. The standard treatment for OC includes a combination of debulking surgery and platinum-taxane chemotherapy, while several targeted therapies have recently been approved for maintenance treatment. The vast majority of OC patients relapse with chemoresistant tumors after an initial response. Thus, there is an unmet clinical need to develop new therapeutic agents to overcome the chemoresistance of OC. The anti-parasite agent niclosamide (NA) has been repurposed as an anti-cancer agent and exerts potent anti-cancer activities in human cancers including OC. Here, we investigated whether NA could be repurposed as a therapeutic agent to overcome cisplatin-resistant (CR) in human OC cells. To this end, we first established two CR lines SKOV3CR and OVCAR8CR that exhibit the essential biological characteristics of cisplatin resistance in human cancer. We showed that NA inhibited cell proliferation, suppressed cell migration, and induced cell apoptosis in both CR lines at a low micromole range. Mechanistically, NA inhibited multiple cancer-related pathways including AP1, ELK/SRF, HIF1, and TCF/LEF, in SKOV3CR and OVCAR8CR cells. NA was further shown to effectively inhibit xenograft tumor growth of SKOV3CR cells. Collectively, our findings strongly suggest that NA may be repurposed as an efficacious agent to combat cisplatin resistance in chemoresistant human OC, and further clinical trials are highly warranted.
Collapse
Affiliation(s)
- Linjuan Huang
- Departments of Obstetrics and Gynecology, Orthopaedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400046, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jing Zhang
- Departments of Obstetrics and Gynecology, Orthopaedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400046, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Youling Deng
- Departments of Obstetrics and Gynecology, Orthopaedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400046, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hao Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Piao Zhao
- Departments of Obstetrics and Gynecology, Orthopaedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400046, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Guozhi Zhao
- Departments of Obstetrics and Gynecology, Orthopaedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400046, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Wei Zeng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Neurology, The Second Affiliated Hospital of Jianghan University, Wuhan, Hubei 430050, China
| | - Yonghui Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Clinical Laboratory Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200000, China
| | - Connie Chen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Le Shen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Ling Zhao
- Departments of Obstetrics and Gynecology, Orthopaedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400046, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
2
|
Taylor SJ, Arends MJ, Langdon SP. Inhibitors of the Fanconi anaemia pathway as potential antitumour agents for ovarian cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2020; 1:26-52. [PMID: 36046263 PMCID: PMC9400734 DOI: 10.37349/etat.2020.00003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/18/2019] [Indexed: 11/30/2022] Open
Abstract
The Fanconi anaemia (FA) pathway is an important mechanism for cellular DNA damage repair, which functions to remove toxic DNA interstrand crosslinks. This is particularly relevant in the context of ovarian and other cancers which rely extensively on interstrand cross-link generating platinum chemotherapy as standard of care treatment. These cancers often respond well to initial treatment, but reoccur with resistant disease and upregulation of DNA damage repair pathways. The FA pathway is therefore of great interest as a target for therapies that aim to improve the efficacy of platinum chemotherapies, and reverse tumour resistance to these. In this review, we discuss recent advances in understanding the mechanism of interstrand cross-link repair by the FA pathway, and the potential of the component parts as targets for therapeutic agents. We then focus on the current state of play of inhibitor development, covering both the characterisation of broad spectrum inhibitors and high throughput screening approaches to identify novel small molecule inhibitors. We also consider synthetic lethality between the FA pathway and other DNA damage repair pathways as a therapeutic approach.
Collapse
Affiliation(s)
- Sarah J Taylor
- Cancer Research UK Edinburgh Centre and Edinburgh Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, EH4 2XU Edinburgh, UK
| | - Mark J Arends
- Cancer Research UK Edinburgh Centre and Edinburgh Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, EH4 2XU Edinburgh, UK
| | - Simon P Langdon
- Cancer Research UK Edinburgh Centre and Edinburgh Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, EH4 2XU Edinburgh, UK
| |
Collapse
|
3
|
Zafar MN, Masood S, Chaudhry GES, Muhammad TST, Dalebrook AF, Nazar MF, Malik FP, Mughal EU, Wright LJ. Synthesis, characterization and anti-cancer properties of water-soluble bis(PYE) pro-ligands and derived palladium(ii) complexes. Dalton Trans 2019; 48:15408-15418. [PMID: 31393494 DOI: 10.1039/c9dt01923e] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The two cationic palladium(ii) complexes, [Pd(Len)2][OTf]2 (4) and [Pd(Lphen)2][OTf]2 (5), were synthesized by treatment of bis(benzonitrile)dichloropalladium(ii) with [H2Len][OTf]2 (2) or [H2Lphen][OTf]2 (3), respectively, in the presence of a weak base. The pro-ligands 2 and 3 were synthesized by melt reactions between N-methyl-4-chloropyridinium triflate (1) and the amines ethylenediamine or phenylenediamine, respectively. The water-soluble compounds 2-5 were fully characterized, including by single-crystal X-ray crystal structure determinations for 2-4. UV-Vis and fluorescence spectroscopy were used to study the binding interactions of 2-5 with CT-DNA. The spectroscopic data suggested the presence of intercalative and groove binding modes and this was supported by molecular docking studies. The in vitro cytotoxicity studies (IC50 values) showed that the human breast cancer cell lines MCF-7 and T47D were more sensitive towards 3, 4 and 5 than cisplatin. The cytotoxicity of the new compounds decreased in the order 5 > 4 > 3 > 2. Furthermore, the annexin V-FITC staining method strongly suggested the presence of phosphatidylserine (PS) on the outer membrane of the treated cells, which is a hallmark of apoptosis.
Collapse
|
4
|
Yang Z, Liu C, Wu H, Xie Y, Gao H, Zhang X. CSB affected on the sensitivity of lung cancer cells to platinum-based drugs through the global decrease of let-7 and miR-29. BMC Cancer 2019; 19:948. [PMID: 31615563 PMCID: PMC6792260 DOI: 10.1186/s12885-019-6194-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 09/24/2019] [Indexed: 12/16/2022] Open
Abstract
Background Transcription-coupled nucleotide excision repair (TC-NER) plays a prominent role in the removal of DNA adducts induced by platinum-based chemotherapy reagents. Cockayne syndrome protein B (CSB), the master sensor of TCR, is also involved in the platinum resistant. Let-7 and miR-29 binding sites are highly conserved in the proximal 3′UTR of CSB. Methods We conducted immunohistochemisty to examine the expression of CSB in NSCLC. To determine whether let-7 family and miR-29 family directly interact with the putative target sites in the 3′UTR of CSB, we used luciferase reporter gene analysis. To detect the sensitivity of non-small cell lung cancer (NSCLC) cells to platinum-based drugs, CCK analysis and apoptosis analysis were performed. Results We found that let-7 and miR-29 negatively regulate the expression of CSB by directly targeting to the 3′UTR of CSB. The endogenous CSB expression could be suppressed by let-7 and miR-29 in lung cancer cells. The suppression of CSB activity by endogenous let-7 and miR-29 can be robustly reversed by their sponges. Down-regulation of CSB induced apoptosis and increased the sensitivity of NSCLC cells to cisplatin and carboplatin drugs. Let-7 and miR-29 directly effect on cisplatin and carboplatin sensitivity in NSCLC. Conclusions In conclusion, the platinum-based drug resistant of lung cancer cells may involve in the regulation of let-7 and miR-29 to CSB.
Collapse
Affiliation(s)
- Zhenbang Yang
- Institute of Molecular Genetics, College of Life Science, North China University of Science and Technology, Tangshan, China.,Hebei Key Laboratory of Basic Medicine for Chronic Disease, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, China
| | - Chunling Liu
- Department of Pathology, Affiliated Tangshan Renmin Hospital North China University of Science and Technology, Tangshan, China
| | - Hongjiao Wu
- Institute of Molecular Genetics, College of Life Science, North China University of Science and Technology, Tangshan, China
| | - Yuning Xie
- Institute of Molecular Genetics, College of Life Science, North China University of Science and Technology, Tangshan, China.,Institute of Epidemiology, School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Hui Gao
- Institute of Molecular Genetics, College of Life Science, North China University of Science and Technology, Tangshan, China.,Institute of Epidemiology, School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Xuemei Zhang
- Institute of Molecular Genetics, College of Life Science, North China University of Science and Technology, Tangshan, China.
| |
Collapse
|
5
|
Promotion of Cell Death in Cisplatin-Resistant Ovarian Cancer Cells through KDM1B-DCLRE1B Modulation. Int J Mol Sci 2019; 20:ijms20102443. [PMID: 31108893 PMCID: PMC6566920 DOI: 10.3390/ijms20102443] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/08/2019] [Accepted: 05/14/2019] [Indexed: 02/06/2023] Open
Abstract
Ovarian cancer is the gynecological malignancy with the poorest prognosis, in part due to its high incidence of recurrence. Platinum agents are widely used as a first-line treatment against ovarian cancer. Recurrent tumors, however, frequently demonstrate acquired chemo-resistance to platinum agent toxicity. To improve chemo-sensitivity, combination chemotherapy regimens have been investigated. This study examined anti-tumor effects and molecular mechanisms of cytotoxicity of Oldenlandia diffusa (OD) extracts on ovarian cancer cells, in particular, cells resistant to cisplatin. Six ovarian cancer cells including A2780 and cisplatin-resistant A2780 (A2780cis) as representative cell models were used. OD was extracted with water (WOD) or 50% methanol (MOD). MOD significantly induced cell death in both cisplatin-sensitive cells and cisplatin-resistant cells. The combination treatment of MOD with cisplatin reduced viability in A2780cis cells more effectively than treatment with cisplatin alone. MOD in A2780cis cells resulted in downregulation of the epigenetic modulator KDM1B and the DNA repair gene DCLRE1B. Transcriptional suppression of KDM1B and DCLRE1B induced cisplatin sensitivity. Knockdown of KDM1B led to downregulation of DCLRE1B expression, suggesting that DCLRE1B was a KDM1B downstream target. Taken together, OD extract effectively promoted cell death in cisplatin-resistant ovarian cancer cells under cisplatin treatment through modulating KDM1B and DCLRE1B.
Collapse
|
6
|
Yang L, Wei W, Zhou L, Wang J, Hu G. High/positive expression of ERCC1 predicts poor treatment response and survival prognosis in nasopharyngeal carcinoma: A systematic meta-analysis from 21 studies. Medicine (Baltimore) 2019; 98:e15641. [PMID: 31124943 PMCID: PMC6571253 DOI: 10.1097/md.0000000000015641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Excision repair cross-complementation group 1 (ERCC1) protein is a member of the nucleotide excision repair (NER) system, which plays an important role in DNA damage repair. Recently, its predictive and prognostic value in nasopharyngeal carcinoma (NPC) has been investigated by several studies. However, their results remain controversial. OBJECTIVES In an attempt to address this issue, we conducted the present comprehensive meta-analysis. DATA SOURCES Studies published until November 2017 were searched. Finally, total 21 literatures involving 22 cohorts and 2921 NPC patients fulfilled the inclusion criteria. RESULTS The pooled results showed that high/positive expression of ERCC1 predicted poor objective response rate (ORR) [odds ratio (OR) = 2.83; 95% confidence interval (CI) = 2.11-3.80; P <.001], overall survival (OS) [hazard ratio (HR) = 1.77; 95% CI = 1.48-2.12; P <.001], and disease-free survival (DFS) (HR = 1.60; 95% CI = 1.43-1.79; P <.001) in NPC. Low heterogeneity was detected among these studies (ORR: I = 0.0%, P = .776; DFS: I = 38.7%, P = .148; OS: I = 0.0%; P = .530). The results of sensitivity analyses and publication bias verified the reliability of our findings. CONCLUSIONS This study suggested ERCC1 as a potential predictive and prognostic biomarker for the treatment response and survival prognosis of NPC patients.
Collapse
Affiliation(s)
- Lin Yang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | | | | | | | | |
Collapse
|
7
|
Zhao H, Yu X, Ding Y, Zhao J, Wang G, Wu X, Jiang J, Peng C, Guo GZ, Cui S. MiR-770-5p inhibits cisplatin chemoresistance in human ovarian cancer by targeting ERCC2. Oncotarget 2018; 7:53254-53268. [PMID: 27449101 PMCID: PMC5288183 DOI: 10.18632/oncotarget.10736] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 07/06/2016] [Indexed: 11/25/2022] Open
Abstract
In this study, we examined the role of the miRNA miR-770-5p in cisplatin chemotherapy resistance in ovarian cancer (OVC) patients. miR-770-5p expression was reduced in platinum-resistant patients. Using a 6.128-fold in expression as the cutoff value, miR-770-5p expression served as a prognostic biomarker and predicted the response to cisplatin treatment and survival among OVC patients. Overexpression of miR-770-5p in vitro reduced survival in chemoresistant cell lines after cisplatin treatment. ERCC2, a target gene of miR-770-5p that participates in the NER system, was negatively regulated by miR-770-5p. siRNA-mediated silencing of ERCC2 reversed the inhibition of apoptosis resulting from miR-770-5p downreglation in A2780S cells. A comet assay confirmed that this restoration of cisplatin chemosensitivity was due to the inhibition of DNA repair. These findings suggest that endogenous miR-770-5p may function as an anti-oncogene and promote chemosensitivity in OVC, at least in part by downregulating ERCC2. miR-770-5p may therefore be a useful biomarker for predicting chemosensitivity to cisplatin in OVC patients and improve the selection of effective, more personalized, treatment strategies.
Collapse
Affiliation(s)
- Henan Zhao
- Dalian Medical University, Dalian, China
| | | | | | | | - Guang Wang
- Dalian Medical University, Dalian, China
| | - Xian Wu
- Dalian Medical University, Dalian, China
| | - Jiyong Jiang
- Obstetrics and Gynecology Hospital, Dalian, China
| | - Chun Peng
- Department of Biology, York University, Toronto, Canada
| | - Gordon Zhuo Guo
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | |
Collapse
|
8
|
Liu D, Abbosh P, Keliher D, Reardon B, Miao D, Mouw K, Weiner-Taylor A, Wankowicz S, Han G, Teo MY, Cipolla C, Kim J, Iyer G, Al-Ahmadie H, Dulaimi E, Chen DYT, Alpaugh RK, Hoffman-Censits J, Garraway LA, Getz G, Carter SL, Bellmunt J, Plimack ER, Rosenberg JE, Van Allen EM. Mutational patterns in chemotherapy resistant muscle-invasive bladder cancer. Nat Commun 2017; 8:2193. [PMID: 29259186 PMCID: PMC5736752 DOI: 10.1038/s41467-017-02320-7] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 11/21/2017] [Indexed: 12/20/2022] Open
Abstract
Despite continued widespread use, the genomic effects of cisplatin-based chemotherapy and implications for subsequent treatment are incompletely characterized. Here, we analyze whole exome sequencing of matched pre- and post-neoadjuvant cisplatin-based chemotherapy primary bladder tumor samples from 30 muscle-invasive bladder cancer patients. We observe no overall increase in tumor mutational burden post-chemotherapy, though a significant proportion of subclonal mutations are unique to the matched pre- or post-treatment tumor, suggesting chemotherapy-induced and/or spatial heterogeneity. We subsequently identify and validate a novel mutational signature in post-treatment tumors consistent with known characteristics of cisplatin damage and repair. We find that post-treatment tumor heterogeneity predicts worse overall survival, and further observe alterations in cell-cycle and immune checkpoint regulation genes in post-treatment tumors. These results provide insight into the clinical and genomic dynamics of tumor evolution with cisplatin-based chemotherapy, suggest mechanisms of clinical resistance, and inform development of clinically relevant biomarkers and trials of combination therapies. The impact of cisplatin-based chemotherapy on tumor genomes is complex. Here, the authors study matched pre- and post-chemotherapy primary samples in muscle-invasive bladder cancer, finding a cisplatin-based mutational signature, and highlighting the impact of intratumor heterogeneity on survival.
Collapse
Affiliation(s)
- David Liu
- Dana-Farber Cancer Institute, Boston, MA, 02215, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Philip Abbosh
- Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Daniel Keliher
- Dana-Farber Cancer Institute, Boston, MA, 02215, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Brendan Reardon
- Dana-Farber Cancer Institute, Boston, MA, 02215, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Diana Miao
- Dana-Farber Cancer Institute, Boston, MA, 02215, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Kent Mouw
- Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | | | - Stephanie Wankowicz
- Dana-Farber Cancer Institute, Boston, MA, 02215, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Garam Han
- Dana-Farber Cancer Institute, Boston, MA, 02215, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Min Yuen Teo
- Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | | | - Jaegil Kim
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Gopa Iyer
- Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | | | - Essel Dulaimi
- Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | | | | | | | - Levi A Garraway
- Dana-Farber Cancer Institute, Boston, MA, 02215, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Gad Getz
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Scott L Carter
- Dana-Farber Cancer Institute, Boston, MA, 02215, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Joaquim Bellmunt
- Dana-Farber Cancer Institute, Boston, MA, 02215, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | | | | | - Eliezer M Van Allen
- Dana-Farber Cancer Institute, Boston, MA, 02215, USA. .,Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.
| |
Collapse
|
9
|
Eisenberg MC, Jain HV. A confidence building exercise in data and identifiability: Modeling cancer chemotherapy as a case study. J Theor Biol 2017; 431:63-78. [PMID: 28733187 DOI: 10.1016/j.jtbi.2017.07.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 07/09/2017] [Accepted: 07/14/2017] [Indexed: 01/08/2023]
Abstract
Mathematical modeling has a long history in the field of cancer therapeutics, and there is increasing recognition that it can help uncover the mechanisms that underlie tumor response to treatment. However, making quantitative predictions with such models often requires parameter estimation from data, raising questions of parameter identifiability and estimability. Even in the case of structural (theoretical) identifiability, imperfect data and the resulting practical unidentifiability of model parameters can make it difficult to infer the desired information, and in some cases, to yield biologically correct inferences and predictions. Here, we examine parameter identifiability and estimability using a case study of two compartmental, ordinary differential equation models of cancer treatment with drugs that are cell cycle-specific (taxol) as well as non-specific (oxaliplatin). We proceed through model building, structural identifiability analysis, parameter estimation, practical identifiability analysis and its biological implications, as well as alternative data collection protocols and experimental designs that render the model identifiable. We use the differential algebra/input-output relationship approach for structural identifiability, and primarily the profile likelihood approach for practical identifiability. Despite the models being structurally identifiable, we show that without consideration of practical identifiability, incorrect cell cycle distributions can be inferred, that would result in suboptimal therapeutic choices. We illustrate the usefulness of estimating practically identifiable combinations (in addition to the more typically considered structurally identifiable combinations) in generating biologically meaningful insights. We also use simulated data to evaluate how the practical identifiability of the model would change under alternative experimental designs. These results highlight the importance of understanding the underlying mechanisms rather than purely using parsimony or information criteria/goodness-of-fit to decide model selection questions. The overall roadmap for identifiability testing laid out here can be used to help provide mechanistic insight into complex biological phenomena, reduce experimental costs, and optimize model-driven experimentation.
Collapse
Affiliation(s)
| | - Harsh V Jain
- Mathematics, Florida State University, United States.
| |
Collapse
|
10
|
Biological and predictive role of ERCC1 polymorphisms in cancer. Crit Rev Oncol Hematol 2017; 111:133-143. [PMID: 28259288 DOI: 10.1016/j.critrevonc.2017.01.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/14/2017] [Accepted: 01/24/2017] [Indexed: 12/22/2022] Open
Abstract
Excision repair cross-complementation group 1 (ERCC1) is a key component in DNA repair mechanisms and may influence the tumor DNA-targeting effect of the chemotherapeutic agent oxaliplatin. Germline ERCC1 polymorphisms may alter the protein expression and published data on their predictive and prognostic value have so far been contradictory. In the present article we review available evidence on the clinical role and utility of ERCC1 polymorphisms and, in the absence of a 'perfect' trial, what we call the 'sliding doors' trial, we present the data of ERCC1 genotyping in our local patient population. We found a useful predictive value for oxaliplatin-induced risk of anemia.
Collapse
|
11
|
Wang Q, Yang L, Wu J, Wang H, Song J, Tang X. Four mononuclear platinum(II) complexes: synthesis, DNA/BSA binding, DNA cleavage and cytotoxicity. Biometals 2016; 30:17-26. [DOI: 10.1007/s10534-016-9984-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 12/03/2016] [Indexed: 12/19/2022]
|
12
|
Lee SJ, Hur JH, Lee BH. Biological Monitoring of Exposure to Cisplatin in Rats Using SOS Chromotest. Int J Toxicol 2016. [DOI: 10.1080/109158100224999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Cisplatin (CDDP) is a potent antitumor drug used in the treatment of a variety of solid tumors. The purpose of the present study was to establish screening biomarker of exposure to CDDP using SOS chromotest. The ultimate goal of this screen is to facilitate the choice of an effective drug and the prognosis of the therapy. In the current screening protocol, the SOS chromotests were performed on the urine of Sprague-Dawley rats administered intravenously with CDDP. Urine samples were collected individually in the metabolic cage at 6 (U0–6) and 12 hours (U6–12) after treatment and were tested their DNA damaging effects. The urine samples obtained from the rats administered with 1 mg/kg CDDP did not induce SOS response in our experimental conditions. At a dose of 5 mg/kg, two out of five rat showed more than 50% increase in the DNA damaging effect compared to that of the control. The genotoxic effect was observed only in the U0–6, whereas the U6–12 were not genotoxic but cytotoxic to the test strain. Similar results were obtained at a dose of 10 mg/kg: 5 out of 10 rats showed SOS response and the U6–12 were also proven to be cytotoxic. These results suggest that the method presented in this study could be used as a biomarker of exposure to CDDP.
Collapse
Affiliation(s)
- Sang-Jun Lee
- College of Pharmacy and Medicinal Resources Research Center, Wonkwang University, Iksan, Chonbuk, Korea
| | - Jang-Hyun Hur
- Department of Agricultural Chemistry, Kangwon National University, Chunchon, Kangwon-do, Korea
| | - Byung-Hoon Lee
- College of Pharmacy and Medicinal Resources Research Center, Wonkwang University, Iksan, Chonbuk, Korea
| |
Collapse
|
13
|
He Y, Yuan J, Qiao Y, Wang D, Chen W, Liu X, Chen H, Guo Z. The role of carrier ligands of platinum(II) anticancer complexes in the protein recognition of Pt-DNA adducts. Chem Commun (Camb) 2016; 51:14064-7. [PMID: 26248639 DOI: 10.1039/c5cc05257b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In order to systematically investigate the influence of carrier ligands on the interaction of Pt-DNA adducts with damage recognition proteins, a series of DNA probes containing 1,2-GG platinum compound crosslinks using cisplatin, oxaliplatin, (S,S-DACH)PtCl2 and (cis-1,4-DACH)PtCl2 (kiteplatin) has been constructed. These complexes share similar DNA binding properties although they exhibit quite different cytotoxicity. It is revealed that HMGB1 (high-mobility group protein B1) was the most commonly found protein that recognizes all Pt(II)-DNA probes and prefers cisplatin-DNA probes more than the others. Interestingly, an important component of the replication protein A complex, RPA2, was found to bind to kiteplatin much more tightly than other proteins. These results may be important for the interpretation of the roles of carrier ligands in platinum(II)-based anticancer complexes.
Collapse
Affiliation(s)
- Yafeng He
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Chemistry for Life Sciences, Nanjing University, 22 Hankou Road, Nanjing, 210093, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Chowdhury N, Wood TL, Martínez-Vázquez M, García-Contreras R, Wood TK. DNA-crosslinker cisplatin eradicates bacterial persister cells. Biotechnol Bioeng 2016; 113:1984-92. [PMID: 26914280 DOI: 10.1002/bit.25963] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/11/2016] [Accepted: 02/15/2016] [Indexed: 11/05/2022]
Abstract
For all bacteria, nearly every antimicrobial fails since a subpopulation of the bacteria enter a dormant state known as persistence, in which the antimicrobials are rendered ineffective due to the lack of metabolism. This tolerance to antibiotics makes microbial infections the leading cause of death worldwide and makes treating chronic infections, including those of wounds problematic. Here, we show that the FDA-approved anti-cancer drug cisplatin [cis-diamminodichloroplatinum(II)], which mainly forms intra-strand DNA crosslinks, eradicates Escherichia coli K-12 persister cells through a growth-independent mechanism. Additionally, cisplatin is more effective at killing Pseudomonas aeruginosa persister cells than mitomycin C, which forms inter-strand DNA crosslinks, and cisplatin eradicates the persister cells of several pathogens including enterohemorrhagic E. coli, Staphylococcus aureus, and P. aeruginosa. Cisplatin was also highly effective against clinical isolates of S. aureus and P. aeruginosa. Therefore, cisplatin has broad spectrum activity against persister cells. Biotechnol. Bioeng. 2016;113: 1984-1992. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nityananda Chowdhury
- Department of Chemical Engineering, Pennsylvania State University, University Park, 16802-4400, Pennsylvania
| | - Thammajun L Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, 16802-4400, Pennsylvania
| | - Mariano Martínez-Vázquez
- Laboratorio de Productos Naturales, Instituto de Química, Universidad Nacional Autónoma de México, México
| | - Rodolfo García-Contreras
- Faculty of Medicine, Department of Microbiology and Parasitology, Universidad Nacional Autónoma de México, México
| | - Thomas K Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, 16802-4400, Pennsylvania. .,Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania.
| |
Collapse
|
15
|
Lampri ES, Chondrogiannis G, Ioachim E, Varouktsi A, Mitselou A, Galani A, Briassoulis E, Kanavaros P, Galani V. Biomarkers of head and neck cancer, tools or a gordian knot? Int J Clin Exp Med 2015; 8:10340-57. [PMID: 26379825 PMCID: PMC4565208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 06/21/2015] [Indexed: 06/05/2023]
Abstract
Head and neck tumors comprise a wide spectrum of heterogeneous neoplasms for which biomarkers are needed to aid in earlier diagnosis, risk assessment and therapy response. Personalized medicine based on predictive markers linked to drug response, it is hoped, will lead to improvements in outcomes and avoidance of unnecessary treatment in carcinoma of the head and neck. Because of the heterogeneity of head and neck tumors, the integration of multiple selected markers in association with the histopathologic features is advocated for risk assessment. Validation of each biomarker in the context of clinical trials will be required before a specific marker can be incorporated into daily practice. Furthermore, we will give evidence that some proteins implicated in cell-cell interaction, such as CD44 may be involved in the multiple mechanism of the development and progression of laryngeal lesions and may help to predict the risk of transformation of the benign or precancerous lesions to cancer.
Collapse
Affiliation(s)
- Evangeli S Lampri
- Department of Pathology, Faculty of Medicine, University of IoanninaGreece
| | - Georgios Chondrogiannis
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, University of IoanninaGreece
| | - Elli Ioachim
- Department of Pathology, General Hospital “G. Hatzikosta”Ioannina, Greece
| | | | - Antigoni Mitselou
- Department of Forensic Pathology, Faculty of Medicine, University of IoanninaGreece
| | - Aggeliki Galani
- Department of Environmental and Natural Resources Management, School of Engineering, University of PatrasAgrinio, Greece
| | | | - Panagiotis Kanavaros
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, University of IoanninaGreece
| | - Vasiliki Galani
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, University of IoanninaGreece
| |
Collapse
|
16
|
Lee HY, Mohammed KA, Goldberg EP, Kaye F, Nasreen N. Cisplatin loaded albumin mesospheres for lung cancer treatment. Am J Cancer Res 2015; 5:603-615. [PMID: 25973300 PMCID: PMC4396024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/05/2015] [Indexed: 06/04/2023] Open
Abstract
The low solubility of cisplatin in aqueous solution limits the treatment effectiveness and the application of cisplatin in various kinds of drug-eluting devices. Although cisplatin has a high solubility in Dimethyl sulfoxide (DMSO), the toxicity of cisplatin can be greatly reduced while dissolved in DMSO. In this study, the solid powder of cisplatin-loaded albumin mesospheres (CDDP/DMSO-AMS), in a size range of 1 to 10 µm, were post-loaded with cisplatin and showed high cisplatin content (16% w/w) and effective cytotoxicity to lung cancer cells. Cisplatin were efficiently absorbed into the albumin mesospheres (AMS) in DMSO and, most importantly, the toxicity of cisplatin was remained at 100% after the loading process. This CDDP/DMSO-AMS was designed for the intratumoral injection through the bronchoscopic catheter or dry powder inhalation (DPI) due to its high stability in air or in solution. This CDDP/DMSO-AMS showed a fast cisplatin release within 24 hours. In the in vitro study, CDDP/DMSO-AMS showed high effectiveness on killing the lung cancer cells including the non-small cell lung cancer (NCL-H23 and A549), malignant mesothelioma (CRL-2081) and the mouse lung carcinoma (Lewis lung carcinoma) cell lines. The albumin based mesospheres provide an ideal loading matrix for cisplatin and other metal-based drugs due to the high swelling degree and fast uptake rate in the organic solvents with high polarity. In addition, to investigate the effects of polysaccharides, such as chitosan and chondroitin, on enhancing loading efficiency and lasting cytotoxicity of cisplatin, the polysaccharide-modified albumin mesospheres were synthesized and loaded with cisplatin in this study.
Collapse
Affiliation(s)
- Hung-Yen Lee
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, University of FloridaP. O. Box 100225, Gainesville, FL 32611-6400, USA
- Biomaterials Center, Department of Materials Sciences and Engineering, University of FloridaP. O. Box 116400, Gainesville, FL 32611-6400, USA
| | - Kamal A Mohammed
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, University of FloridaP. O. Box 100225, Gainesville, FL 32611-6400, USA
- NF/SGVHS, Malcom Randall VA Medical Center, University of FloridaP. O. Box 100225, Gainesville, FL 32611-6400, USA
| | - Eugene P Goldberg
- Biomaterials Center, Department of Materials Sciences and Engineering, University of FloridaP. O. Box 116400, Gainesville, FL 32611-6400, USA
| | - Frederic Kaye
- Hematology and oncology, University of FloridaP. O. Box 116400, Gainesville, FL 32611-6400, USA
| | - Najmunnisa Nasreen
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, University of FloridaP. O. Box 100225, Gainesville, FL 32611-6400, USA
- NF/SGVHS, Malcom Randall VA Medical Center, University of FloridaP. O. Box 100225, Gainesville, FL 32611-6400, USA
| |
Collapse
|
17
|
Meng E, Mitra A, Tripathi K, Finan MA, Scalici J, McClellan S, da Silva LM, Reed E, Shevde LA, Palle K, Rocconi RP. ALDH1A1 maintains ovarian cancer stem cell-like properties by altered regulation of cell cycle checkpoint and DNA repair network signaling. PLoS One 2014; 9:e107142. [PMID: 25216266 PMCID: PMC4162571 DOI: 10.1371/journal.pone.0107142] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 08/07/2014] [Indexed: 12/17/2022] Open
Abstract
Objective Aldehyde dehydrogenase (ALDH) expressing cells have been characterized as possessing stem cell-like properties. We evaluated ALDH+ ovarian cancer stem cell-like properties and their role in platinum resistance. Methods Isogenic ovarian cancer cell lines for platinum sensitivity (A2780) and platinum resistant (A2780/CP70) as well as ascites from ovarian cancer patients were analyzed for ALDH+ by flow cytometry to determine its association to platinum resistance, recurrence and survival. A stable shRNA knockdown model for ALDH1A1 was utilized to determine its effect on cancer stem cell-like properties, cell cycle checkpoints, and DNA repair mediators. Results ALDH status directly correlated to platinum resistance in primary ovarian cancer samples obtained from ascites. Patients with ALDHHIGH displayed significantly lower progression free survival than the patients with ALDHLOW cells (9 vs. 3 months, respectively p<0.01). ALDH1A1-knockdown significantly attenuated clonogenic potential, PARP-1 protein levels, and reversed inherent platinum resistance. ALDH1A1-knockdown resulted in dramatic decrease of KLF4 and p21 protein levels thereby leading to S and G2 phase accumulation of cells. Increases in S and G2 cells demonstrated increased expression of replication stress associated Fanconi Anemia DNA repair proteins (FANCD2, FANCJ) and replication checkpoint (pS317 Chk1) were affected. ALDH1A1-knockdown induced DNA damage, evidenced by robust induction of γ-H2AX and BAX mediated apoptosis, with significant increases in BRCA1 expression, suggesting ALDH1A1-dependent regulation of cell cycle checkpoints and DNA repair networks in ovarian cancer stem-like cells. Conclusion This data suggests that ovarian cancer cells expressing ALDH1A1 may maintain platinum resistance by altered regulation of cell cycle checkpoint and DNA repair network signaling.
Collapse
Affiliation(s)
- Erhong Meng
- University of South Alabama Mitchell Cancer Institute, Mobile, Alabama, United States of America
| | - Aparna Mitra
- University of South Alabama Mitchell Cancer Institute, Mobile, Alabama, United States of America
| | - Kaushlendra Tripathi
- University of South Alabama Mitchell Cancer Institute, Mobile, Alabama, United States of America
| | - Michael A. Finan
- University of South Alabama Mitchell Cancer Institute, Mobile, Alabama, United States of America
| | - Jennifer Scalici
- University of South Alabama Mitchell Cancer Institute, Mobile, Alabama, United States of America
| | - Steve McClellan
- University of South Alabama Mitchell Cancer Institute, Mobile, Alabama, United States of America
| | - Luciana Madeira da Silva
- University of South Alabama Mitchell Cancer Institute, Mobile, Alabama, United States of America
| | - Eddie Reed
- National Institutes of Health, National Institute on Minority Health and Health Disparities, Bethesda, Maryland, United States of America
| | - Lalita A. Shevde
- University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Komaraiah Palle
- University of South Alabama Mitchell Cancer Institute, Mobile, Alabama, United States of America
- * E-mail: (KP); (RPR)
| | - Rodney P. Rocconi
- University of South Alabama Mitchell Cancer Institute, Mobile, Alabama, United States of America
- * E-mail: (KP); (RPR)
| |
Collapse
|
18
|
Li QQ, Lee RX, Liang H, Wang G, Li JM, Zhong Y, Reed E. β-Elemene enhances susceptibility to cisplatin in resistant ovarian carcinoma cells via downregulation of ERCC-1 and XIAP and inactivation of JNK. Int J Oncol 2013; 43:721-8. [PMID: 23817665 PMCID: PMC3787889 DOI: 10.3892/ijo.2013.1996] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 05/23/2013] [Indexed: 01/05/2023] Open
Abstract
β-Elemene is a promising new plant-derived drug with broad-spectrum anticancer activity. It also increases cisplatin cytotoxicity and enhances cisplatin sensitivity in resistant human carcinoma cells. However, little is known about the mechanism of its action. To explore the potential therapeutic application of β-elemene as a drug-resistance modulator, this study investigated the underlying mechanism of β-elemene activity in cisplatin-resistant ovarian cancer cells. β-Elemene enhanced cisplatin sensitivity to a much greater extent in chemoresistant A2780/CP70 and MCAS human ovarian carcinoma cells compared to the chemosensitive parental cell line A2780. The dose-modifying factors for cisplatin were between 35 and 60 for A2780/CP70 cells and between 1.6 and 2.5 for A2780 cells. In the cisplatin-resistant ovarian carcinoma cells, β-elemene abrogated cisplatin-induced expression of excision repair cross-complementation group-1 (ERCC-1), a marker gene in the nucleotide excision repair pathway that repairs cisplatin-caused DNA damage. In addition, β-elemene not only reduced the level of X-linked inhibitor of apoptosis protein (XIAP), but also downregulated cisplatin-mediated XIAP expression in chemoresistant cells. Furthermore, β-elemene blocked the cisplatin-stimulated increase in the level of phosphorylated c-Jun NH2-terminal kinase (JNK) in these cells. These novel findings suggest that the β-elemene enhancement of cisplatin sensitivity in human chemoresistant ovarian cancer cells is mediated at least in part through the impairment of DNA repair activity and the activation of apoptotic signaling pathways, thereby making resistant ovarian cancer cells susceptible to cisplatin-induced cell death.
Collapse
Affiliation(s)
- Quentin Q Li
- National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Lin YL, Liau JY, Yu SC, Ou DL, Lin LI, Tseng LH, Chang YL, Yeh KH, Cheng AL. KRAS mutation is a predictor of oxaliplatin sensitivity in colon cancer cells. PLoS One 2012; 7:e50701. [PMID: 23209813 PMCID: PMC3508995 DOI: 10.1371/journal.pone.0050701] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 10/25/2012] [Indexed: 01/05/2023] Open
Abstract
Molecular biomarkers to determine the effectiveness of targeted therapies in cancer treatment have been widely adopted in colorectal cancer (CRC), but those to predict chemotherapy sensitivity remain poorly defined. We tested our hypothesis that KRAS mutation may be a predictor of oxaliplatin sensitivity in CRC. KRAS was knocked-down in KRAS-mutant CRC cells (DLD-1G13D and SW480G12V) by small interfering RNAs (siRNA) and overexpressed in KRAS-wild-type CRC cells (COLO320DM) by KRAS-mutant vectors to generate paired CRC cells. These paired CRC cells were tested by oxaliplatin, irinotecan and 5FU to determine the change in drug sensitivity by MTT assay and flow cytometry. Reasons for sensitivity alteration were further determined by western blot and real-time quantitative reverse transcriptase polymerase chain reaction (qRT -PCR). In KRAS-wild-type CRC cells (COLO320DM), KRAS overexpression by mutant vectors caused excision repair cross-complementation group 1 (ERCC1) downregulation in protein and mRNA levels, and enhanced oxaliplatin sensitivity. In contrast, in KRAS-mutant CRC cells (DLD-1G13D and SW480G12V), KRAS knocked-down by KRAS-siRNA led to ERCC1 upregulation and increased oxaliplatin resistance. The sensitivity of irinotecan and 5FU had not changed in the paired CRC cells. To validate ERCC1 as a predictor of sensitivity for oxaliplatin, ERCC1 was knocked-down by siRNA in KRAS-wild-type CRC cells, which restored oxaliplatin sensitivity. In contrast, ERCC1 was overexpressed by ERCC1-expressing vectors in KRAS-mutant CRC cells, and caused oxaliplatin resistance. Overall, our findings suggest that KRAS mutation is a predictor of oxaliplatin sensitivity in colon cancer cells by the mechanism of ERCC1 downregulation.
Collapse
Affiliation(s)
- Yu-Lin Lin
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jau-Yu Liau
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Shan-Chi Yu
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Da-Liang Ou
- National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Liang-In Lin
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Li-Hui Tseng
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Yih-Leong Chang
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
- Department and Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kun-Huei Yeh
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- * E-mail:
| | - Ann-Lii Cheng
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
20
|
Langer CJ. Exploring biomarkers in head and neck cancer. Cancer 2012; 118:3882-92. [PMID: 22281752 DOI: 10.1002/cncr.26718] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 09/09/2011] [Accepted: 10/28/2011] [Indexed: 02/04/2023]
Abstract
Personalized medicine based on predictive markers linked to drug response, it is hoped, will lead to improvements in outcomes and avoidance of unnecessary treatment in squamous cell carcinoma of the head and neck (SCCHN). Recent research has shown that expression of ERCC1 may predict resistance to treatment with platinum agents. Future testing for this marker may help select the optimal type of chemotherapy. Infection with human papillomavirus (HPV) is associated with less aggressive disease and better prognosis in locally advanced SCCHN treated with chemoradiation or radiation alone; HPV-positive patients may ultimately benefit from less intensive, less toxic therapy. K-RAS mutations, occurring in about 40% of colorectal cancers and associated with lack of benefit from epidermal growth factor receptor (EGFR) antibodies in this disease, are found in <5% of SCCHN patients, making routine testing for K-RAS mutations unwarranted at this time. Virtually all head and neck tumors overexpress EGFR, which limits the usefulness of EGFR expression as a marker for treatment selection. Although the incidence of EGFR tyrosine kinase domain mutations is very rare, a better understanding of the role of EGFR mutations, expression, amplification, and downstream effects in SCCHN may help define the role of EGFR in this setting. These observations caution against extrapolating results obtained with biomarkers in other types of cancer to SCCHN. Validation of each biomarker in the context of SCCHN clinical trials will be required before a specific marker can be incorporated into daily practice.
Collapse
Affiliation(s)
- Corey J Langer
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
21
|
Kudo K, Gavin E, Das S, Amable L, Shevde LA, Reed E. Inhibition of Gli1 results in altered c-Jun activation, inhibition of cisplatin-induced upregulation of ERCC1, XPD and XRCC1, and inhibition of platinum-DNA adduct repair. Oncogene 2012; 31:4718-24. [PMID: 22266871 DOI: 10.1038/onc.2011.610] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The transcription of ERCC1 and other nucleotide excision repair (NER) genes is strongly influenced by c-jun. C-jun is transcriptionally regulated by Gli proteins of the Hedgehog pathway. We therefore studied the possible relationships between Gli1, c-jun, and the upregulation of ERCC1, XPD and XRCC1 in cisplatin-resistant human ovarian cancer cells. We studied the paired human ovarian cancer cell lines A2780 and A2780-CP70. We used a shRNA construct that specifically degrades Gli1 message. Genes we assessed for mRNA and/or protein levels included: c-jun, ERCC1, XPD, XRCC1, Gli1, Gli2, SHH, IHH, GAPDH and α-tubulin. Platinum-DNA adduct repair was assessed by atomic absorbance spectrometry with Zeeman background correction. Use of the anti-Gli1 shRNA in cisplatin-resistant cells resulted in a block of the cell's ability to upregulate genes in response to cisplatin treatment, including: c-jun, ERCC1, XPD and XRCC1. This block in upregulation of c-jun was concurrent with a change in the phosphorylation pattern of the c-jun protein, shifting that pattern from a Ser63/73 dominant pattern, to a Thr91/93 dominant pattern. A2780-CP70 cells were treated at their cisplatin IC50, and DNA repair was assessed after pretreatment with anti-Gli1 shRNA or scrambled shRNA control. Control cells repaired 78% of platinum-DNA adducts at 12 h, compared with 33% repair in cells pretreated with anti-Gli1 shRNA resulting in a 2.4-fold difference. Pretreatment of A2780-CP70 cells with anti-Gli1 shRNA resulted in supra-additive cell killing with cisplatin; shifting the cisplatin IC50 (half maximal inhibitory concentration) from 30 μM to 5 μM. Pretreatment of these cells with cyclopamine did not shift the cisplatin IC50. We conclude that the transcriptional protein Gli1 is important in the upregulation of these three DNA repair genes in human ovarian cancer cells, and that Gli1 strongly influences platinum-DNA adduct repair, and cellular sensitivity to cisplatin. This Gli1 role has c-jun as an intermediate in the pathway. In all, inhibition of Gli1 by a specific shRNA inhibits the upregulation of c-jun Ser63/73, and also inhibits the upregulation of three genes essential to NER (ERCC1, XPD) and base excision repair (XRCC1).
Collapse
Affiliation(s)
- K Kudo
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | | | | | | | | | | |
Collapse
|
22
|
Suchánková T, Kubíček K, Kašpárková J, Brabec V, Kozelka J. Platinum-DNA interstrand crosslinks: molecular determinants of bending and unwinding of the double helix. J Inorg Biochem 2011; 108:69-79. [PMID: 22019433 DOI: 10.1016/j.jinorgbio.2011.09.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 09/09/2011] [Accepted: 09/14/2011] [Indexed: 10/17/2022]
Abstract
Platinum diamine complexes are able to crosslink the guanines of d(GC)(2) dinucleotides within double-stranded DNA. The interstrand crosslink thus formed causes a bend of the double helix toward the minor groove and the helical sense changes locally to left-handed, resulting in a considerable unwinding. The bend and unwinding angles have been shown to depend on the platinum ligands. Here, we have used molecular dynamics simulations to investigate the DNA 20-mer d(C(1)T(2)C(3)T(4)C(5)C(6)T(7)T(8)G*(9)C(10)T(11)C(12)T(13)C(14)C(15)T(16)T(17)C(18)T(19)C(20))-d(G(21)A(22)G(23)A(24)A(25)G(26)G(27)A(28)G(29)A(30)G*(31)C(32)A(33)A(34)G(35)G(36)A(37)G(38)A(39)G(40)) with the G* guanines crosslinked by cis-Pt(NH(3))(2)(2+), Pt(R,R-DACH)(2+), or Pt(S,S-DACH)(2+). Previous investigations on cisplatin interstrand adducts indicated that the structure is similar in solid state and in solution; thus, we used the reported X-ray structure of a cisplatin adduct as a starting model. Replacing in the MD-relaxed model for the DNA duplex crosslinked with cis-Pt(NH(3))(2)(2+) the two NH(3) platinum ligands by R,R-DACH or S,S-DACH led to clashes between the DACH residue and the deoxyribose of C(12). Confrontation of MD-derived models with gel shift measurements suggested that these clashes are avoided differently in the adducts of Pt(R,R-DACH)(2+)versus Pt(S,S-DACH)(2+). The R,R-isomer avoids the clash by untwisting the T(11)/A(30)-C(12)/G(29) step, thus increasing the global unwinding. In contrast, the S,S-isomer modifies the shift and slide parameters of this step, which dislocates the helical axis and enhances the bend angle. The clash that leads to the differentiation of the structures as a function of the diamine ligand is related to a hydrogen bond between the platinum complex and the T(11) base and could be characteristic of interstrand crosslinks at d(pyG*Cpy)-d(puG*Cpu) sequences.
Collapse
Affiliation(s)
- Tereza Suchánková
- Department of Biophysics, Faculty of Sciences, Palacky University, Olomouc, Czech Republic
| | | | | | | | | |
Collapse
|
23
|
Galluzzi L, Senovilla L, Vitale I, Michels J, Martins I, Kepp O, Castedo M, Kroemer G. Molecular mechanisms of cisplatin resistance. Oncogene 2011; 31:1869-83. [PMID: 21892204 DOI: 10.1038/onc.2011.384] [Citation(s) in RCA: 1901] [Impact Index Per Article: 146.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Platinum-based drugs, and in particular cis-diamminedichloroplatinum(II) (best known as cisplatin), are employed for the treatment of a wide array of solid malignancies, including testicular, ovarian, head and neck, colorectal, bladder and lung cancers. Cisplatin exerts anticancer effects via multiple mechanisms, yet its most prominent (and best understood) mode of action involves the generation of DNA lesions followed by the activation of the DNA damage response and the induction of mitochondrial apoptosis. Despite a consistent rate of initial responses, cisplatin treatment often results in the development of chemoresistance, leading to therapeutic failure. An intense research has been conducted during the past 30 years and several mechanisms that account for the cisplatin-resistant phenotype of tumor cells have been described. Here, we provide a systematic discussion of these mechanism by classifying them in alterations (1) that involve steps preceding the binding of cisplatin to DNA (pre-target resistance), (2) that directly relate to DNA-cisplatin adducts (on-target resistance), (3) concerning the lethal signaling pathway(s) elicited by cisplatin-mediated DNA damage (post-target resistance) and (4) affecting molecular circuitries that do not present obvious links with cisplatin-elicited signals (off-target resistance). As in some clinical settings cisplatin constitutes the major therapeutic option, the development of chemosensitization strategies constitute a goal with important clinical implications.
Collapse
Affiliation(s)
- L Galluzzi
- INSERM, U848 Apoptosis, Cancer and Immunity, Villejuif, France
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Köberle B, Tomicic MT, Usanova S, Kaina B. Cisplatin resistance: Preclinical findings and clinical implications. Biochim Biophys Acta Rev Cancer 2010; 1806:172-82. [PMID: 20647037 DOI: 10.1016/j.bbcan.2010.07.004] [Citation(s) in RCA: 183] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 07/07/2010] [Accepted: 07/12/2010] [Indexed: 02/03/2023]
Affiliation(s)
- Beate Köberle
- Institute of Toxicology, University Medical Center Mainz, Germany.
| | | | | | | |
Collapse
|
25
|
Lipid replacement therapy: a nutraceutical approach for reducing cancer-associated fatigue and the adverse effects of cancer therapy while restoring mitochondrial function. Cancer Metastasis Rev 2010; 29:543-52. [DOI: 10.1007/s10555-010-9245-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
26
|
Wu W, Wang HD, Guo W, Yang K, Zhao YP, Jiang YG, He P. Up-regulation of Fas reverses cisplatin resistance of human small cell lung cancer cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2010; 29:49. [PMID: 20470393 PMCID: PMC2877011 DOI: 10.1186/1756-9966-29-49] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2010] [Accepted: 05/14/2010] [Indexed: 11/22/2022]
Abstract
Background/Aim Fas/FasL system is a major regulator of apoptosis. The mechanisms by which Fas mediates cisplatin resistance remain unclear. The aim of this study is to explore the effect of Fas over-expression on cisplatin resistance of small cell lung cancer cells and its possible mechanisms. Materials and methods Fas was over-expressed in H446/CDDP cells by infection with the adenoviruses containing Fas. Sensitivity of Fas-overexpressed H446/CDDP cells to cisplatin was evaluated using MTT assay. Expressions of Fas, GST-π and ERCC1 were detected by RT-PCR and Western blot analysis. Apoptosis rate was examined by FACS. Results Over-expression of Fas in H446/CDDP cells significantly decreased the expressions of GST-π and ERCC1 at mRNA and protein levels, and increased the cell apoptosis. Furthermore, up-regulation of Fas significantly decreased the tolerance of H446/CDDP cells to cisplatin. Conclusion Over-expression of Fas reverses drug resistance of H446/CDDP cells, possibly due to the increased cell sensitivity to apoptosis and the decreased expressions of GST-π and ERCC1.
Collapse
Affiliation(s)
- Wei Wu
- Department of Thoracic Surgery, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, PR China
| | | | | | | | | | | | | |
Collapse
|
27
|
Stubbert LJ, Smith JM, McKay BC. Decreased transcription-coupled nucleotide excision repair capacity is associated with increased p53- and MLH1-independent apoptosis in response to cisplatin. BMC Cancer 2010; 10:207. [PMID: 20470425 PMCID: PMC2889890 DOI: 10.1186/1471-2407-10-207] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 05/14/2010] [Indexed: 01/22/2023] Open
Abstract
Background One of the most commonly used classes of anti-cancer drugs presently in clinical practice is the platinum-based drugs, including cisplatin. The efficacy of cisplatin therapy is often limited by the emergence of resistant tumours following treatment. Cisplatin resistance is multi-factorial but can be associated with increased DNA repair capacity, mutations in p53 or loss of DNA mismatch repair capacity. Methods RNA interference (RNAi) was used to reduce the transcription-coupled nucleotide excision repair (TC-NER) capacity of several prostate and colorectal carcinoma cell lines with specific defects in p53 and/or DNA mismatch repair. The effect of small inhibitory RNAs designed to target the CSB (Cockayne syndrome group B) transcript on TC-NER and the sensitivity of cells to cisplatin-induced apoptosis was determined. Results These prostate and colon cancer cell lines were initially TC-NER proficient and RNAi against CSB significantly reduced their DNA repair capacity. Decreased TC-NER capacity was associated with an increase in the sensitivity of tumour cells to cisplatin-induced apoptosis, even in p53 null and DNA mismatch repair-deficient cell lines. Conclusion The present work indicates that CSB and TC-NER play a prominent role in determining the sensitivity of tumour cells to cisplatin even in the absence of p53 and DNA mismatch repair. These results further suggest that CSB represents a potential target for cancer therapy that may be important to overcome resistance to cisplatin in the clinic.
Collapse
Affiliation(s)
- Lawton J Stubbert
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.
| | | | | |
Collapse
|
28
|
Koyama Y, Higashimoto M, Gonda K, Ito J, Yoshimoto N, Momma T, Saito M, Ishii M, Okayama H, Matsumoto Y, Sugeno H, Sassa M, Ishigame T, Fujita S, Sakamoto W, Abe N, Iwadate M, Ohshima T, Urazumi K, Nakayama K, Takebayashi Y, Takenoshita S. Expression of Xeroderma Pigmentosum Group G (XPG) in Sporadic Breast Carcinoma. ACTA ACUST UNITED AC 2010. [DOI: 10.4993/acrt.18.37] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Aggarwal S, He T, Fitzhugh W, Rosenthal K, Feild B, Heidbrink J, Mesmer D, Ruben SM, Moore PA. Immune modulator CD70 as a potential cisplatin resistance predictive marker in ovarian cancer. Gynecol Oncol 2009; 115:430-7. [PMID: 19800108 DOI: 10.1016/j.ygyno.2009.08.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 08/24/2009] [Accepted: 08/29/2009] [Indexed: 12/16/2022]
Abstract
OBJECTIVE We have used mass-spectrometry (MS) based proteomics platform to identify cell surface proteins over-expressed on a cisplatin resistant derivative of an ovarian cancer cell line A2780. METHODS Membrane associated glycoproteins from A2780 and its cisplatin resistant derivative cell line, A2780cis, were processed for liquid chromatography (LC)-MS based analysis. The expression of proteins found at elevated levels in A2780cis cell line was confirmed using flow cytometry and Taqman analysis. The expression of these proteins was further evaluated in unrelated ovarian cancer cell lines using MS analysis and flow cytometry. Immunohistochemical (IHC) analysis was performed using ovarian tumor tissues to evaluate the protein density on the cell surface. Monoclonal antibodies were used in an alamar blue proliferation assay to examine the cytotoxic effects on cell proliferation in resistant cell lines. RESULTS Six proteins were identified by LC-MS as being over-expressed on cell surface of A2780cis cell line. Mass spectrometry and flow cytometry confirmed the over-expression of CD49f, CD70 and Her-2/neu in other cisplatin resistant ovarian cancer cell lines. Immunohistochemical analysis revealed that only CD70 was expressed at moderate levels in ovarian tumors. When cisplatin resistant ovarian cell lines A2780cis and SKOV-3 were treated with antibody against CD70, there was a significant decrease in cell proliferation. CONCLUSION Using a MS based proteomics approach we have shown that expression of CD70 is associated with cisplatin resistance in ovarian cancer cell lines. Follow-up examination of these tumor cell line findings in clinical tumor specimens with available pathology staging and cisplatin treatment history is warranted.
Collapse
|
30
|
Prasad M, Bernardini M, Tsalenko A, Marrano P, Paderova J, Lee CH, Ben-Dor A, Barrett MT, Squire JA. High definition cytogenetics and oligonucleotide aCGH analyses of cisplatin-resistant ovarian cancer cells. Genes Chromosomes Cancer 2008; 47:427-36. [PMID: 18273836 DOI: 10.1002/gcc.20547] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Array comparative genomic hybridization (aCGH) is a key platform to assess cancer genomic profiles. Many structural genomic aberrations cannot be detected by aCGH alone. We have applied molecular cytogenetic analyses including spectral karyotyping, multicolor banding, and fluorescence in situ hybridization with aCGH to comprehensively investigate the genomic aberrations associated with cisplatin resistance in A2780 ovarian cancer cells. A2780 is a well-established model of chemotherapeutic resistance with distinct karyotypic abnormalities in the parental and cisplatin-resistant cells. Cytogenetic analysis revealed that two unbalanced translocations, der(8)t(1;8) and der(X)t(X;1), and loss of chromosome 13 were present only in the resistant line. Our aCGH analyses detected imbalances affecting an additional 10.59% of the genome in the cisplatin-resistant cells compared with the parental. DNA copy number changes included deletions at 1p10-p22.1, 8p23.3, and Xq13.1-pter, and a duplication of 8q11.22-q23. Cryptic genomic aberrations associated with concurrent localized changes of specific gene expression included a homozygous deletion of 0.38 Mb at 1p21.3 adjacent to SNX7, and an insertional transposition of 0.85 Mb from 13q12.12 into chromosome 22. This latter rearrangement led to an overexpression of four contiguous genes that flanked one of the breakpoint regions in chromosome 13. Furthermore, 17 genes showed differential expression correlating with genomic gain or loss between the resistant and parent lines, validated by a second expression array platform. These results highlight the integration of comprehensive profiling to determine relationships of genomic aberrations and genes associated with an in vitro drug resistance model in ovarian cancer. This article contains Supplementary Material available at http://www.interscience.wiley.com/jpages/1045-2257/suppmat.
Collapse
Affiliation(s)
- Mona Prasad
- Division of Applied Molecular Oncology, Ontario Cancer Institute, Princess Margaret Hospital, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Reversing mitochondrial dysfunction, fatigue and the adverse effects of chemotherapy of metastatic disease by molecular replacement therapy. Clin Exp Metastasis 2007; 25:161-9. [DOI: 10.1007/s10585-007-9129-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Accepted: 11/15/2007] [Indexed: 02/08/2023]
|
32
|
Stewart DJ. Mechanisms of resistance to cisplatin and carboplatin. Crit Rev Oncol Hematol 2007; 63:12-31. [PMID: 17336087 DOI: 10.1016/j.critrevonc.2007.02.001] [Citation(s) in RCA: 455] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Revised: 01/25/2007] [Accepted: 02/02/2007] [Indexed: 02/08/2023] Open
Abstract
While cisplatin and carboplatin are active versus most common cancers, epithelial malignancies are incurable when metastatic. Even if an initial response occurs, acquired resistance due to mutations and epigenetic events limits efficacy. Resistance may be due to excess of a resistance factor, to saturation of factors required for tumor cell killing, or to mutation or alteration of a factor required for tumor cell killing. Platinum resistance could arise from decreased tumor blood flow, extracellular conditions, reduced platinum uptake, increased efflux, intracellular detoxification by glutathione, etc., decreased binding (e.g., due to high intracellular pH), DNA repair, decreased mismatch repair, defective apoptosis, antiapoptotic factors, effects of several signaling pathways, or presence of quiescent non-cycling cells. In lung cancer, flattening of dose-response curves at higher doses suggests that efficacy is limited by exhaustion of something required for cell killing, and several clinical observations suggest epigenetic events may play a major role in resistance.
Collapse
Affiliation(s)
- David J Stewart
- Section of Experimental Therapeutics, Department of Thoracic/Head & Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
33
|
Johnson SW, Ferry KV, Hamilton TC. Recent insights into platinum drug resistance in cancer. Drug Resist Updat 2007; 1:243-54. [PMID: 16904407 DOI: 10.1016/s1368-7646(98)80005-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/1998] [Revised: 05/04/1998] [Accepted: 05/06/1998] [Indexed: 10/25/2022]
Abstract
Cisplatin and its analogs have become important components of chemotherapeutic regimens for the treatment of solid tumors, however, their overall effectiveness is limited by the emergence of drug-resistant tumor cells. Resistance to the platinum drugs is multifactorial consisting of mechanisms that prevent the formation of lethal platinum-DNA adducts and mechanisms that operate downstream of the drug/target interaction to promote cell survival. Continued progress in the study of the drug resistance phenotype as well as the development of new platinum analogs may eventually lead to improved therapies and increased survival rates.
Collapse
Affiliation(s)
- S W Johnson
- Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | | |
Collapse
|
34
|
Kovala-Demertzi D, Boccarelli A, Demertzis MA, Coluccia M. In vitro antitumor activity of 2-acetyl pyridine 4n-ethyl thiosemicarbazone and its platinum(II) and palladium(II) complexes. Chemotherapy 2007; 53:148-52. [PMID: 17308381 DOI: 10.1159/000099986] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2005] [Accepted: 01/17/2006] [Indexed: 11/19/2022]
Abstract
The reaction of platinum(II) [Pt(II)] or palladium(II) [Pd(II)] with 2-acetyl pyridine 4N-ethyl thiosemicarbazone, HAc4Et (1) results in the complexes [Pt(Ac4Et)(2)] (2) and [Pd(Ac4Et)(2)] (3). In a panel of human tumor cell lines of different origins (breast, colon, and ovary cancers), and containing also cisplatin-refractory/resistant cell lines, the in vitro growth inhibitory effect of 1-3 was compared to that of cisplatin by using the sulforodamine B assay. After a 96-hour continuous treatment, both the thiosemicarbazone HAc4Et and the metal compounds [Pt(Ac4Et)(2)] and [Pd(Ac4Et)(2)] exhibit very remarkable growth inhibitory activities with mean IC(50) values of 0.9 nM (0.22-2.47 nM), 0.7 nM (0.15-2 nM) and 0.5 nM (0.17-1.02 nM), respectively. In contrast, cisplatin shows a markedly lower growth inhibitory potency, the mean IC(50) in the panel being 2.8 muM (0.2-8 muM). In addition to their major cell growth inhibitory potency, complexes 1-3 are characterized by a growth inhibitory profile different from that of cisplatin, being active towards cisplatin-refractory tumor cell lines. These findings, along with the ability of completely overcoming acquired cisplatin resistance from either multifocal or reduced uptake origin, confirm the antitumor potential of HAc4Et and support the hypothesis that both [Pt(Ac4Et)(2)] and [Pd(Ac4Et)(2)] complexes can be characterized by cellular pharmacological properties distinctly different from those of cisplatin.
Collapse
Affiliation(s)
- D Kovala-Demertzi
- Inorganic and Analytical Chemistry, Department of Chemistry, University of Ioannina, Ioannina, Greece.
| | | | | | | |
Collapse
|
35
|
Lehoczký P, McHugh PJ, Chovanec M. DNA interstrand cross-link repair in Saccharomyces cerevisiae. FEMS Microbiol Rev 2006; 31:109-33. [PMID: 17096663 DOI: 10.1111/j.1574-6976.2006.00046.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
DNA interstrand cross-links (ICL) present a formidable challenge to the cellular DNA repair apparatus. For Escherichia coli, a pathway which combines nucleotide excision repair (NER) and homologous recombination repair (HRR) to eliminate ICL has been characterized in detail, both genetically and biochemically. Mechanisms of ICL repair in eukaryotes have proved more difficult to define, primarily as a result of the fact that several pathways appear compete for ICL repair intermediates, and also because these competing activities are regulated in the cell cycle. The budding yeast Saccharomyces cerevisiae has proven a powerful tool for dissecting ICL repair. Important roles for NER, HRR and postreplication/translesion synthesis pathways have all been identified. Here we review, with reference to similarities and differences in higher eukaryotes, what has been discovered to date concerning ICL repair in this simple eukaryote.
Collapse
Affiliation(s)
- Peter Lehoczký
- Department of Molecular Genetics, Cancer Research Institute, Bratislava, Slovak Republic
| | | | | |
Collapse
|
36
|
Ali MS, Longoria E, Ely TO, Whitmire KH, Khokhar AR. Homopiperazine Pt(II) adducts with DNA bases and nucleosides: Crystal structure of [PtII(homopiperazine)(9-ethylguanine)2](NO3)2. Polyhedron 2006. [DOI: 10.1016/j.poly.2006.01.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Yan QW, Reed E, Zhong XS, Thornton K, Guo Y, Yu JJ. MZF1 possesses a repressively regulatory function in ERCC1 expression. Biochem Pharmacol 2006; 71:761-71. [PMID: 16426580 DOI: 10.1016/j.bcp.2005.12.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Revised: 11/23/2005] [Accepted: 12/09/2005] [Indexed: 10/25/2022]
Abstract
ERCC1 is a critical gene within the nucleotide excision repair pathway. Overexpression of ERCC1 through promoter-mediating transcriptional regulation is associated with repair of cisplatin-induced DNA damage and clinical resistance to platinum-chemotherapy. Several transcriptional repressors and activators within the 5'-flanking region of the ERCC1 gene may be involved in the up-regulation of this gene. Minimal sequence within the promoter region required for ERCC1 transcription was analyzed by CAT assay and demonstrated that the region of -220 to -110 is essential to constitutive expression of ERCC1 gene in ovarian cancer cell line A2780/CP70. A more forward upstream region seems to be responsible for cisplatin-induced expression. Study of the functional cis-element in this region by electrophoretic mobility shift assay indicates that a MZF1-like site as well as an AP1-like site responded in a time-dependent manner to cisplatin stimulation with altered binding activities. EMSA with MZF1 ZN1-4 consensus oligonucleotides suggests that the MZF1 N-terminal domain of zinc finger cluster may bind to the MZF1-like site of the ERCC1 promoter region. MZF1 mRNA in A2780/CP70 cells decreased upon cisplatin exposure as analyzed by quantitative PCR, suggesting that MZF1 may mediate cisplatin-invoked gene expression in these cells. Overexpression of MZF1 repressed the ERCC1 promoter activity as determined in co-transfection assay, suggesting that MZF1 might be a repressor of ERCC1 transcription upon cisplatin exposure. In summary, our studies revealed a core promoter region and adjacent drug-responsible region within the ERCC1 promoter. The drug-responsible region contains cis-elements of activator, AP1 and repressor, MZF1. In response to cisplatin treatment, decreased MZF1 and increased AP1 binding activities appear to be the leading mechanism of up-regulation of ERCC1 expression. Our findings imply potential therapeutic strategies to antagonize drug resistant mechanisms in treatment of human ovarian cancer.
Collapse
Affiliation(s)
- Qing-Wu Yan
- Department of Biochemistry and Molecular Pharmacology, and Mary Babb Randolph Cancer Center, Robert C. Byrd Health Sciences Center, West Virginia University, 1610-C Health Sciences South, Morgantown, WV 26506-9300, USA
| | | | | | | | | | | |
Collapse
|
38
|
|
39
|
Silva MJ, Costa P, Dias A, Valente M, Louro H, Boavida MG. Comparative analysis of the mutagenic activity of oxaliplatin and cisplatin in the Hprt gene of CHO cells. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2005; 46:104-15. [PMID: 15887215 DOI: 10.1002/em.20138] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Oxaliplatin is a platinum-derived antitumor drug that is active against cisplatin-resistant tumors and has lower overall toxicity than does cisplatin. DNA adduct formation is believed to mediate the cytotoxic activity of both compounds; however, the adducts may also be responsible for mutagenic and secondary tumorigenic activities. In this study, we have compared the mutagenicity of oxaliplatin and cisplatin in the Hprt gene of CHO-K1 cells. Both drugs produced dose-related increases in mutant frequency. For 1-hr treatments, oxaliplatin was less mutagenic than cisplatin at equimolar doses, while similar mutant frequencies were induced at equitoxic doses. Sequencing of mutant Hprt genes indicated that the mutation spectra of both oxaliplatin and cisplatin were significantly different from the spontaneous mutation spectrum (P = 0.014 and P = 0.008, respectively). A significant difference was also observed between the spectra of oxaliplatin- and cisplatin-induced mutations (P = 0.033). Although G:C-->T:A transversion was the most common mutation produced by both compounds, oxaliplatin produced higher frequencies of A:T-->T:A transversion than did cisplatin, most commonly at nucleotide 307, and higher frequencies of small deletions/insertions. Also, cisplatin induced tandem base-pair substitutions, mainly at positions 135/136, and a higher frequency of G:C-->A:T transition than did oxaliplatin. These results provide the first evidence that oxaliplatin is mutagenic and that the profiles of cisplatin- and oxaliplatin-induced mutations display not only similarities but also distinctive features relating to the type and sequence-context preference for mutation. Environ.
Collapse
Affiliation(s)
- Maria J Silva
- Centro de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal.
| | | | | | | | | | | |
Collapse
|
40
|
Beer TM, Garzotto M, Katovic NM. High-dose calcitriol and carboplatin in metastatic androgen-independent prostate cancer. Am J Clin Oncol 2005; 27:535-41. [PMID: 15596926 DOI: 10.1097/01.coc.0000136020.27904.9c] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Calcitriol acts synergistically with carboplatin in preclinical models of adenocarcinoma of the prostate. The authors sought to test high-dose oral calcitriol in combination with carboplatin in patients with metastatic androgen-independent prostate cancer. Seventeen patients received oral calcitriol (0.5 microg/kg) on day 1 and intravenous carboplatin (AUC 7 or AUC 6 in patients with prior radiation) on day 2, repeated every 4 weeks. PSA response was the primary end point and was defined as a 50% reduction confirmed 4 weeks later. Palliative response (2-point reduction or normalization of pain on the present pain intensity [PPI] scale without increased analgesic consumption) was also examined. One of 17 patients (6%, 95% CI, 0-28) achieved a confirmed PSA response. Four patients (24%, 95% CI, 7-49) had PSA reductions ranging from 24 to 38%. Of the 15 patients with a PPI > or = 1 point on entry, 3 (18%, 95% CI, 4-48) met criteria for palliative response. Treatment-related toxicity was mild and generally similar to that expected with single-agent carboplatin. Despite encouraging preclinical evidence, the addition of oral calcitriol to carboplatin in this study was not associated with an increase in the response rate when compared with the reported activity of carboplatin alone.
Collapse
Affiliation(s)
- Tomasz M Beer
- Department of Medicine, Oregon Health & Science University, Portland, Oregon 97239, USA.
| | | | | |
Collapse
|
41
|
Scicchitano DA, Olesnicky EC, Dimitri A. Transcription and DNA adducts: what happens when the message gets cut off? DNA Repair (Amst) 2005; 3:1537-48. [PMID: 15474416 DOI: 10.1016/j.dnarep.2004.06.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Indexed: 01/18/2023]
Abstract
DNA damage located within a gene's transcription unit can cause RNA polymerase to stall at the modified site, resulting in a truncated transcript, or progress past, producing full-length RNA. However, it is not immediately apparent why some lesions pose strong barriers to elongation while others do not. Studies using site-specifically damaged DNA templates have demonstrated that a wide range of lesions can impede the progress of elongating transcription complexes. The collected results of this work provide evidence for the idea that subtle structural elements can influence how an RNA polymerase behaves when it encounters a DNA adduct during elongation. These elements include: (1) the ability of the RNA polymerase active site to accommodate the damaged base; (2) the size and shape of the adduct, which includes the specific modified base; (3) the stereochemistry of the adduct; (4) the base incorporated into the growing transcript; and (5) the local DNA sequence.
Collapse
Affiliation(s)
- David A Scicchitano
- Department of Biology, New York University, 1009 Silver Center, 100 Washington Square East, New York, NY 10003, USA.
| | | | | |
Collapse
|
42
|
Conklin KA. Chemotherapy-associated oxidative stress: impact on chemotherapeutic effectiveness. Integr Cancer Ther 2005; 3:294-300. [PMID: 15523100 DOI: 10.1177/1534735404270335] [Citation(s) in RCA: 515] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Antineoplastic agents induce oxidative stress in biological systems. During cancer chemotherapy, oxidative stress-induced lipid peroxidation generates numerous electrophilic aldehydes that can attack many cellular targets. These products of oxidative stress can slow cell cycle progression of cancer cells and cause cell cycle checkpoint arrest, effects that may interfere with the ability of anticancer drugs to kill cancer cells. The aldehydes may also inhibit drug-induced apoptosis (programmed cell death) by inactivating death receptors and inhibiting caspase activity. These effects would also diminish the efficacy of the treatment. The use of anti-oxidants during chemotherapy may enhance therapy by reducing the generation of oxidative stress-induced aldehydes.
Collapse
Affiliation(s)
- Kenneth A Conklin
- Department of Anesthesiology, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles 90095-1778, USA.
| |
Collapse
|
43
|
Kobayashi K, O'Driscoll M, Macpherson P, Mullenders L, Vreeswijk M, Karran P. XPC lymphoblastoid cells defective in the hMutSalpha DNA mismatch repair complex exhibit normal sensitivity to UVC radiation and normal transcription-coupled excision repair of DNA cyclobutane pyrimidine dimers. DNA Repair (Amst) 2004; 3:649-57. [PMID: 15135732 DOI: 10.1016/j.dnarep.2004.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2003] [Revised: 02/05/2004] [Accepted: 02/12/2004] [Indexed: 11/29/2022]
Abstract
Nucleotide excision (NER) is generally considered to comprise two partially distinct subpathways. Global genomic repair (GGR) removes damage from the genome overall and transcription-coupled repair (TCR) selectively excises damage from transcribed DNA. Cells from individuals belonging to xeroderma pigmentosum (XP) complementation group C are defective in GGR but retain a functional TCR pathway. DNA mismatch repair (MMR) corrects replication errors but can also process DNA damage. It has been suggested that the essential hMutSalpha and hMutLalpha MMR protein complexes are also required for effective excision of UV-induced cyclobutane pyrimidine dimers (CPD) by TCR. We have combined an MMR and an XPC defect in a human lymphoblastoid cell line. The MMR-defective XPC cells were defective in the hMutSalpha mismatch recognition complex that comprises hMSH2 and hMSH6. They were not detectably more sensitive to killing by UV than their MMR proficient counterparts and were able to excise CPDs from an actively transcribed DNA strand. We conclude efficient TCR does not depend on a functional hMutSalpha complex.
Collapse
Affiliation(s)
- Katsutoshi Kobayashi
- Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms, Herts EN6 3LD, UK
| | | | | | | | | | | |
Collapse
|
44
|
Jansen BAJ, Wielaard P, Kalayda GV, Ferrari M, Molenaar C, Tanke HJ, Brouwer J, Reedijk J. Dinuclear platinum complexes with N,N′-bis(aminoalkyl)-1,4-diaminoanthraquinones as linking ligands. Part I. Synthesis, cytotoxicity, and cellular studies in A2780 human ovarian carcinoma cells. J Biol Inorg Chem 2004; 9:403-13. [PMID: 15071767 DOI: 10.1007/s00775-004-0539-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2003] [Accepted: 03/11/2004] [Indexed: 10/26/2022]
Abstract
A series of N, N'-bis(aminoalkyl)-1,4-diaminoanthraquinones (aminoalkyl=2-aminoethyl, 3-aminoprop-1-yl and 4-aminobut-1-yl) was functionalized with trans-platinum DNA-binding moieties. Cytotoxicity testing in A2780 human ovarian carcinoma cells revealed high anticancer activity of the formed cationic dinuclear platinum complexes. The cationic dinuclear platinum complexes with the shortest aminoalkyl chain were shown to be the most active, which agrees with the structure-activity relationship found for the corresponding free ligands without platinum. The N, N'-bis(aminoalkyl)-1,4-diaminoanthraquinones partly circumvent cisplatin resistance, whereas their dinuclear platinum complexes were found susceptible to the resistance mechanisms in A2780cisR. The platinum complexes have resistance factors comparable to the control dinuclear complex BBR3005 [(trans-PtCl(NH3)2)2)(micro-(NH2(CH2)6NH2))](NO3)2. The 1,4-diaminoanthraquinone moiety is fluorescent, and thus the cellular processing of the compounds could be monitored by time-lapse digital fluorescence microscopy. The intercalators without platinum were shown to enter the cells within minutes. The platinum complexes enter the cells more slowly. Most likely, the positive charges of the platinum complexes hamper the diffusion through the membrane. Interestingly, the platinum complexes are processed differently than the platinum-free compounds by the cells. After 24 hours the fluorescent platinum complexes are encapsulated in large vesicles in the cytosol. Co-localization of the anthraquinone fluorescence with Lysotracker Green DND-26 shows that these vesicles are acidic compartments, probably lysosomes.
Collapse
Affiliation(s)
- Bart A J Jansen
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Kalayda GV, Jansen BAJ, Molenaar C, Wielaard P, Tanke HJ, Reedijk J. Dinuclear platinum complexes with N,N′-bis(aminoalkyl)-1,4-diaminoanthraquinones as linking ligands. Part II. Cellular processing in A2780 cisplatin-resistant human ovarian carcinoma cells: new insights into the mechanism of resistance. J Biol Inorg Chem 2004; 9:414-22. [PMID: 15071768 DOI: 10.1007/s00775-004-0540-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2003] [Accepted: 03/11/2004] [Indexed: 11/24/2022]
Abstract
The cellular processing of three fluorescent N, N'-bis(aminoalkyl)-1,4-diaminoanthraquinones (aminoalkyl=2-aminoethyl, 3-aminoprop-1-yl or 4-aminobut-1-yl) and their dinuclear platinum complexes in A2780 human ovarian carcinoma cells with acquired resistance to cisplatin has been monitored over time by time-lapse fluorescence microscopy. The results were compared with the previously reported observations in the parent A2780 cell line. The cellular distribution pattern for the free ligands is similar in sensitive and resistant cells, whereas significant differences in cellular distribution were observed in the case of the platinum complexes. In the cisplatin-resistant cell line the platinum complexes were found to be sequestrated in acidic vesicles in the cytosol from the very beginning of the incubation. This sequestration was not observed in the case of sensitive cells. Platinum accumulation in vesicles possibly presents a mechanism of resistance to platinum complexes. This mechanism appears to be unrelated to the mechanism of deactivation of platinum compounds by glutathione. Encapsulation of the dinuclear platinum complexes in lysosomal vesicles provides a plausible explanation for the decreased activity of these compounds in the resistant cell line, as compared to the sensitive cell line.
Collapse
Affiliation(s)
- Ganna V Kalayda
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
46
|
Affiliation(s)
- David Murray
- Department of Oncology, University of Alberta, Department of Experimental Oncology, Cross Cancer Institute, Edmonton, Alberta, Canada
| |
Collapse
|
47
|
Chauhan SS, Liang XJ, Su AW, Pai-Panandiker A, Shen DW, Hanover JA, Gottesman MM. Reduced endocytosis and altered lysosome function in cisplatin-resistant cell lines. Br J Cancer 2003; 88:1327-34. [PMID: 12698203 PMCID: PMC2747565 DOI: 10.1038/sj.bjc.6600861] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
We isolated human KB adenocarcinoma cisplatin-resistant (CP-r) cell lines with multidrug-resistance phenotypes because of reduced accumulation of cisplatin and other cytotoxic compounds such as methotrexate and heavy metals. The uptake of horseradish peroxidase (HRPO) and Texas Red dextran was decreased several-fold in KB-CP-r cells, indicating a general defect in fluid-phase endocytosis. In contrast, although EGF receptors were decreased in amount, the kinetics of EGF uptake, a marker of receptor-mediated endocytosis, was similar in sensitive and resistant cells. However, 40-60% of the (125)I-EGF released into the medium after uptake into lysosomes of KB-CP-r cells was TCA precipitable as compared to only 10% released by sensitive cells. These results indicate inefficient degradation of internalised (125)I-EGF in the lysosomes of KB-CP-r cells, consistent with slower processing of cathepsin L, a lysosomal cysteine protease. Treatment of KB cells by bafilomycin A(1), a known inhibitor of the vacuolar proton pump, mimicked the phenotype seen in KB-CP-r cells with reduced uptake of HRPO, (125)I-EGF, (14)C-carboplatin, and release of TCA precipitable (125)I-EGF. KB-CP-r cells also had less acidic lysosomes. KB-CP-r cells were crossresistant to Pseudomonas exotoxin, and Pseudomonas exotoxin-resistant KB cells were crossresistant to cisplatin. Since cells with endosomal acidification defects are known to be resistant to Pseudomonas exotoxin and blocking of endosomal acidification mimics the CP-r phenotype, we conclude that defective endosomal acidification may contribute to acquired cisplatin resistance.
Collapse
Affiliation(s)
- S S Chauhan
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Dr, Room 1A09, Bethesda, MD 20842-4254, USA
| | - X J Liang
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Dr, Room 1A09, Bethesda, MD 20842-4254, USA
| | - A W Su
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Dr, Room 1A09, Bethesda, MD 20842-4254, USA
| | - A Pai-Panandiker
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Dr, Room 1A09, Bethesda, MD 20842-4254, USA
| | - D W Shen
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Dr, Room 1A09, Bethesda, MD 20842-4254, USA
| | - J A Hanover
- Laboratory of Cell Biochemistry and Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Dr., Room 402, Bethesda, MD 20892-0850, USA
| | - M M Gottesman
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Dr, Room 1A09, Bethesda, MD 20842-4254, USA
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Dr, Room 1A09, Bethesda, MD 20842-4254, USA. E-mail:
| |
Collapse
|
48
|
Moufarij MA, Phillips DR, Cullinane C. Gemcitabine potentiates cisplatin cytotoxicity and inhibits repair of cisplatin-DNA damage in ovarian cancer cell lines. Mol Pharmacol 2003; 63:862-9. [PMID: 12644587 DOI: 10.1124/mol.63.4.862] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Synergistic cytotoxicity between cisplatin and the nucleoside analog gemcitabine was observed in a panel of cisplatin-sensitive (2008, A2780) and -resistant (2008/C13*5.25, A2780/CP70) human ovarian cell lines. Previous studies have suggested a role for DNA repair in the mechanism of synergy between the two drugs. We therefore further investigated the hypothesis that the synergistic cytotoxicity between gemcitabine and cisplatin in these cell lines may be caused by gemcitabine-mediated inhibition of cisplatin intrastrand adduct (IA) and interstand cross-link (ICL) repair. The effect of gemcitabine on the accumulation and repair of cisplatin IA and ICL in each cell line was then measured directly using gene-specific quantitative polymerase chain reaction and denaturation/renaturation techniques, respectively. Pretreatment of 2008 cells with 1 microM gemcitabine for 2 h before exposure to cisplatin for 7 h enhanced the accumulation of cisplatin IA and ICL by 50 and 40%, respectively (P < 0.05), above that induced by cisplatin alone. To investigate the possibility that the increased accumulation of cisplatin lesions was caused by inhibition of removal of cisplatin damage, 2008 cells were incubated with 200 microM cisplatin for 5 h in the presence and absence of gemcitabine and then a further 8 h in the absence of cisplatin. Only 57% IA were removed in the combination treated cells compared with 74% in cisplatin control cells. Similarly, repair of cisplatin ICL was inhibited in the gemcitabine-treated cells compared with the cells treated with cisplatin only (60 versus 72%). These findings demonstrate a direct inhibitory effect of gemcitabine on the repair of cisplatin IA and ICL and suggest a mechanistic basis for the cytotoxic synergy between the two drugs.
Collapse
Affiliation(s)
- Mazin A Moufarij
- Trescowthick Research Laboratories, Peter MacCallum Cancer Institute, Melbourne, Victoria, Australia
| | | | | |
Collapse
|
49
|
Abstract
DNA interstrand cross-links (ICLs) are very toxic to dividing cells, because they induce mutations, chromosomal rearrangements and cell death. Inducers of ICLs are important drugs in cancer treatment. We discuss the main properties of several classes of ICL agents and the types of damage they induce. The current insights in ICL repair in bacteria, yeast and mammalian cells are reviewed. An intriguing aspect of ICLs is that a number of multi-step DNA repair pathways including nucleotide excision repair, homologous recombination and post-replication/translesion repair all impinge on their repair. Furthermore, the breast cancer-associated proteins Brca1 and Brca2, the Fanconi anemia-associated FANC proteins, and cell cycle checkpoint proteins are involved in regulating the cellular response to ICLs. We depict several models that describe possible pathways for the repair or replicational bypass of ICLs.
Collapse
Affiliation(s)
- M L Dronkert
- Department of Cell Biology and Genetics, Erasmus University Rotterdam, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands
| | | |
Collapse
|
50
|
Piccart MJ, Lamb H, Vermorken JB. Current and future potential roles of the platinum drugs in the treatment of ovarian cancer. Ann Oncol 2001; 12:1195-203. [PMID: 11697824 DOI: 10.1023/a:1012259625746] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The discovery of cisplatin more than two decades ago was the most important therapeutic advance in the treatment of ovarian cancer. Today, cisplatin or carboplatin in combination with paclitaxel is the most commonly used first-line treatment for patients with advanced ovarian cancer. Although platinum drugs remain a critical component of chemotherapy in this type of cancer, cumulative toxicities can limit their use. These toxicities include nephrotoxicity, neurotoxicity and ototoxicity with cisplatin and myelosuppression with carboplatin. Although these adverse events can often be managed, the interventions themselves can complicate and add to the costs of treatment. Importantly, acquired resistance to traditional platinum drugs often develops in patients with ovarian cancer and can limit the usefulness of these drugs. Research into new platinum drugs has focused on identifying compounds with improved tolerability profiles and, importantly, those which can circumvent mechanisms of platinum resistance. New platinum drugs currently under development that are showing promise in ovarian cancer include oxaliplatin, nedaplatin, satraplatin, BBR3464 and ZD0473. If the encouraging in vitro activity shown by new compounds, such as ZD0473 and BBR3464, translates into efficacy in the clinic, they may offer an extended spectrum of activity which includes patients with ovarian cancer resistant to the classical platinum drugs.
Collapse
Affiliation(s)
- M J Piccart
- Jules Bordet Institute, Chemotherapy Unit, Brussels, Belgium.
| | | | | |
Collapse
|