1
|
Fernández-Juárez V, Riedinger DJ, Gusmao JB, Delgado-Zambrano LF, Coll-García G, Papazachariou V, Herlemann DPR, Pansch C, Andersson AF, Labrenz M, Riemann L. Temperature, sediment resuspension, and salinity drive the prevalence of Vibrio vulnificus in the coastal Baltic Sea. mBio 2024; 15:e0156924. [PMID: 39297655 PMCID: PMC11481517 DOI: 10.1128/mbio.01569-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/31/2024] [Indexed: 10/19/2024] Open
Abstract
The number of Vibrio-related infections in humans, e.g., by Vibrio vulnificus, has increased along the coasts of the Baltic Sea. Due to climate change, vibriosis risk is expected to increase. It is, therefore, pertinent to design a strategy for mitigation of the vibriosis threat in the Baltic Sea area, but a prerequisite is to identify the environmental conditions promoting the occurrence of pathogenic Vibrio spp., like V. vulnificus. To address this, we sampled three coastal Baltic sites in Finland, Germany, and Denmark with salinities between 6 and 21 from May to October 2022. The absolute and relative abundances of Vibrio spp. and V. vulnificus in water were compared to environmental conditions, including the presence of the eelgrass Zostera marina, which has been suggested to reduce pathogenic Vibrio species abundance. In the water column, V. vulnificus only occurred at the German station between July and August at salinity 8.1-11.2. Temperature and phosphate (PO43-) were identified as the most influencing factors for Vibrio spp. and V. vulnificus. The accumulation of Vibrio spp. in the sediment and the co-occurrence with sediment bacteria in the water column indicate that sediment resuspension contributed to V. vulnificus abundance. Interestingly, V. vulnificus co-occurred with specific cyanobacteria taxa, as well as specific bacteria associated with cyanobacteria. Although we found no reduction in Vibrio spp. or V. vulnificus associated with eelgrass beds, our study underscores the importance of extended heatwaves and sediment resuspension, which may elevate the availability of PO43-, for Vibrio species levels at intermediate salinities in the Baltic Sea. IMPORTANCE Elevated sea surface temperatures are increasing the prevalence of pathogenic Vibrio at higher latitudes. The recent increase in Vibrio-related wound infections and deaths along the Baltic coasts is, therefore, of serious health concern. We used culture-independent data generated from three Baltic coastal sites in Denmark, Germany, and Finland from May to October (2022), with a special focus on Vibrio vulnificus, and combined it with environmental data. Our temporal model shows that temperature, combined with sediment resuspension, drives the prevalence of V. vulnificus at intermediate salinities in the coastal Baltic Sea.
Collapse
Affiliation(s)
- Víctor Fernández-Juárez
- Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - David J. Riedinger
- Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Rostock, Germany
| | - Joao Bosco Gusmao
- Environmental and Marine Biology, Åbo Akademi University, Turku, Finland
| | | | - Guillem Coll-García
- Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Microbiology, Biology Department, University of the Balearic Islands, Palma de Mallorca, Spain
- Environmental Microbiology Group, Mediterranean Institute for Advanced Studies (CSIC-UIB), Esporles, Spain
| | - Vasiliki Papazachariou
- Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Daniel P. R. Herlemann
- Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Rostock, Germany
- Estonian University of Life Sciences, Tartu, Estonia
| | - Christian Pansch
- Environmental and Marine Biology, Åbo Akademi University, Turku, Finland
| | - Anders F. Andersson
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Matthias Labrenz
- Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Rostock, Germany
| | - Lasse Riemann
- Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Geat N, Singh D, Singh D, Saha P, Jatoth R, Babu PL. Assessing the efficacy of phyllospheric growth-promoting and antagonistic bacteria for management of black rot disease of cauliflower incited by Xanthomonas campestris pv. campestris. Folia Microbiol (Praha) 2024; 69:789-804. [PMID: 38060139 DOI: 10.1007/s12223-023-01106-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 11/08/2023] [Indexed: 12/08/2023]
Abstract
The study aimed to assess the potential of phyllospheric bacterial strains isolated from cauliflower plants as biocontrol agents against black rot disease caused by Xanthomonas campestris pv. campestris, through both in vitro and in vivo evaluations. A total of 46 bacterial strains were isolated from healthy and infected cauliflower leaves of both resistant and susceptible plants, and evaluated them for various traits, including plant growth-promoting activities and in vitro antagonistic activity against Xanthomonas campestris pv. campestris. Further, a pot experiment was conducted with the susceptible cauliflower genotype (Pusa Sharad) and 10 selected phyllospheric bacterial isolates to assess their biocontrol efficacy against the disease. The results showed that 82.60% of phyllospheric bacterial isolates were positive for phosphate solubilization, 63.04% for ammonia production, 58.69% for HCN production, 36.95% for siderophore production, and 78.26% had the capacity to produce IAA. Out of the 46 isolates, 23 exhibited in vitro antagonistic activity against X. campestris pv. campestris and 10 isolates were selected for a pot experiment under glasshouse conditions based on their good plant growth-promoting activities and antagonistic assay. The results revealed that bacterial isolate CFLB-27 exhibited the highest biocontrol efficiency (65.41%), followed by CFLB-24 (58.30%), CFLB-31 (47.11%), and CFLB-26 (46.03%). These four isolates were identified as Pseudomonas fluorescens CFLB-27, Bacillus velezensis CFLB-24, Bacillus amyloliquefaciens CFLB-31, and Stenotrophomonas rhizophila CFLB-26. This study provides valuable insights into the potential of phyllospheric bacteria as an effective tool for disease management in sustainable agriculture.
Collapse
Affiliation(s)
- Neelam Geat
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
- Agricultural Research Station, Mandor, Agriculture University, Jodhpur, Rajasthan, 342304, India.
| | - Dinesh Singh
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Devendra Singh
- Division of Plant Improvement and Pest Management, ICAR-Central Arid Zone Research Institute, Jodhpur, 342003, India
| | - Partha Saha
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Rajender Jatoth
- Agriculture College, Sircilla, Professor Jayashanker Telangana State Agricultural University Hyderabad, Telangana, 500030, India
| | - Pedapudi Lokesh Babu
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| |
Collapse
|
3
|
Fang H, Zhen Z, Yang F, Su H, Wei Y. Epiphytic bacterial community composition on four submerged macrophytes in different regions of Taihu Lake. FRONTIERS IN PLANT SCIENCE 2024; 15:1404718. [PMID: 39119501 PMCID: PMC11306141 DOI: 10.3389/fpls.2024.1404718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/03/2024] [Indexed: 08/10/2024]
Abstract
The epiphytic bacteria in aquatic ecosystems, inhabiting a unique ecological niche with significant ecological function, have long been the subject of attention. Habitat characteristics and plant species are believed to be important in controlling the assembly of epiphytic bacteria. However, the underlying principle governing the assembly of the epiphytic bacterial community on macrophytes is far from clear. In this study, we systematically compared the diversity and community composition of epiphytic bacteria both in different habitats and on different species of macrophytes where they were attached. Results suggested that neither the plant species nor the habitat had a significant effect on the diversity and community of epiphytic bacteria independently, indicating that the epiphytic bacterial community composition was correlated to both geographical distance and individual species of macrophytes. Furthermore, almost all of the abundant taxa were shared between different lake regions or macrophyte species, and the most abundant bacteria belonged to Proteobacteria and Firmicutes. Our results demonstrated that the competitive lottery model may explain the pattern of epiphytic bacterial colonization of submerged macrophyte surfaces. This research could provide a new perspective for exploring plant-microbe interaction in aquatic systems and new evidence for the lottery model as the mechanism best explaining the assembly of epiphytic bacteria.
Collapse
Affiliation(s)
- Hongda Fang
- College of Harbour and Coastal Engineering, Jimei University, Xiamen, China
| | - Zhuo Zhen
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Fan Yang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Hailei Su
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Yuan Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| |
Collapse
|
4
|
Zhang C, Zhou DF, Wang MY, Song YZ, Zhang C, Zhang MM, Sun J, Yao L, Mo XH, Ma ZX, Yuan XJ, Shao Y, Wang HR, Dong SH, Bao K, Lu SH, Sadilek M, Kalyuzhnaya MG, Xing XH, Yang S. Phosphoribosylpyrophosphate synthetase as a metabolic valve advances Methylobacterium/Methylorubrum phyllosphere colonization and plant growth. Nat Commun 2024; 15:5969. [PMID: 39013920 PMCID: PMC11252147 DOI: 10.1038/s41467-024-50342-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 07/06/2024] [Indexed: 07/18/2024] Open
Abstract
The proficiency of phyllosphere microbiomes in efficiently utilizing plant-provided nutrients is pivotal for their successful colonization of plants. The methylotrophic capabilities of Methylobacterium/Methylorubrum play a crucial role in this process. However, the precise mechanisms facilitating efficient colonization remain elusive. In the present study, we investigate the significance of methanol assimilation in shaping the success of mutualistic relationships between methylotrophs and plants. A set of strains originating from Methylorubrum extorquens AM1 are subjected to evolutionary pressures to thrive under low methanol conditions. A mutation in the phosphoribosylpyrophosphate synthetase gene is identified, which converts it into a metabolic valve. This valve redirects limited C1-carbon resources towards the synthesis of biomass by up-regulating a non-essential phosphoketolase pathway. These newly acquired bacterial traits demonstrate superior colonization capabilities, even at low abundance, leading to increased growth of inoculated plants. This function is prevalent in Methylobacterium/Methylorubrum strains. In summary, our findings offer insights that could guide the selection of Methylobacterium/Methylorubrum strains for advantageous agricultural applications.
Collapse
Affiliation(s)
- Cong Zhang
- School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong, PR China
| | - Di-Fei Zhou
- School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong, PR China
| | - Meng-Ying Wang
- School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong, PR China
| | - Ya-Zhen Song
- School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong, PR China
| | - Chong Zhang
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, PR China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, PR China
| | - Ming-Ming Zhang
- School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong, PR China
| | - Jing Sun
- School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong, PR China
| | - Lu Yao
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, PR China
| | - Xu-Hua Mo
- School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong, PR China
| | - Zeng-Xin Ma
- School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong, PR China
| | - Xiao-Jie Yuan
- School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong, PR China
| | - Yi Shao
- School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong, PR China
| | - Hao-Ran Wang
- School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong, PR China
| | - Si-Han Dong
- School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, Shandong, PR China
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong, PR China
| | - Kai Bao
- School of Life Sciences, Hubei University, Wuhan, Hubei, PR China
| | - Shu-Huan Lu
- CABIO Biotech (Wuhan) Co. Ltd., Wuhan, Hubei, PR China
| | - Martin Sadilek
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | | | - Xin-Hui Xing
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, PR China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, PR China
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen, PR China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, PR China
| | - Song Yang
- School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, PR China.
- Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, Shandong, PR China.
- Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong, PR China.
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, PR China.
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, PR China.
| |
Collapse
|
5
|
Natsiopoulos D, Topalidou E, Mantzoukas S, Eliopoulos PA. Endophytic Trichoderma: Potential and Prospects for Plant Health Management. Pathogens 2024; 13:548. [PMID: 39057775 PMCID: PMC11279820 DOI: 10.3390/pathogens13070548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/23/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
The fungus Trichoderma is widely regarded as the most common fungal biocontrol agent for plant health management. More than 25 Trichoderma species have been extensively studied and have demonstrated significant potential in inhibiting not only phytopathogen growth but also insect pest infestations. In addition to their use as biopesticides, there is increasing evidence that several Trichoderma species can function as fungal endophytes by colonizing the tissues of specific plants. This colonization enhances a plant's growth and improves its tolerance to abiotic and biotic stresses. In recent decades, there has been a proliferation of literature on the role of Trichoderma endophytes in crop protection. Although the mechanisms underlying plant-fungal endophyte interactions are not yet fully understood, several studies have suggested their potential application in agriculture, particularly in the mitigation of plant pests and diseases. This review focuses on the diversity of Trichoderma endophytic strains and their potential use in controlling specific diseases and pests of crop plants. Trichoderma endophytes are considered a potential solution to reduce production costs and environmental impact by decreasing reliance on agrochemicals.
Collapse
Affiliation(s)
- Dimitrios Natsiopoulos
- Plant Health Management Lab, Department of Agrotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Eleni Topalidou
- Hellenic Agricultural Organization DIMITRA, Forest Research Institute, 57006 Thessaloniki, Greece;
| | | | - Panagiotis A. Eliopoulos
- Plant Health Management Lab, Department of Agrotechnology, University of Thessaly, 41500 Larissa, Greece
| |
Collapse
|
6
|
Monaco P, Baldoni A, Naclerio G, Scippa GS, Bucci A. Impact of Plant-Microbe Interactions with a Focus on Poorly Investigated Urban Ecosystems-A Review. Microorganisms 2024; 12:1276. [PMID: 39065045 PMCID: PMC11279295 DOI: 10.3390/microorganisms12071276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
The urbanization process, which began with the Industrial Revolution, has undergone a considerable increase over the past few decades. Urbanization strongly affects ecological processes, often deleteriously, because it is associated with a decrease in green spaces (areas of land covered by vegetation), loss of natural habitats, increased rates of species extinction, a greater prevalence of invasive and exotic species, and anthropogenic pollutant accumulation. In urban environments, green spaces play a key role by providing many ecological benefits and contributing to human psychophysical well-being. It is known that interactions between plants and microorganisms that occur in the rhizosphere are of paramount importance for plant health, soil fertility, and the correct functioning of plant ecosystems. The growing diffusion of DNA sequencing technologies and "omics" analyses has provided increasing information about the composition, structure, and function of the rhizomicrobiota. However, despite the considerable amount of data on rhizosphere communities and their interactions with plants in natural/rural contexts, current knowledge on microbial communities associated with plant roots in urban soils is still very scarce. The present review discusses both plant-microbe dynamics and factors that drive the composition of the rhizomicrobiota in poorly investigated urban settings and the potential use of beneficial microbes as an innovative biological tool to face the challenges that anthropized environments and climate change impose. Unravelling urban biodiversity will contribute to green space management, preservation, and development and, ultimately, to public health and safety.
Collapse
Affiliation(s)
- Pamela Monaco
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy; (A.B.); (G.N.); (G.S.S.)
| | | | | | | | - Antonio Bucci
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy; (A.B.); (G.N.); (G.S.S.)
| |
Collapse
|
7
|
Xu L, Liu Y, Feng S, Liu C, Zhong X, Ren Y, Liu Y, Huang Y, Yang M. The relationship between atmospheric particulate matter, leaf surface microstructure, and the phyllosphere microbial diversity of Ulmus L. BMC PLANT BIOLOGY 2024; 24:566. [PMID: 38880875 PMCID: PMC11181616 DOI: 10.1186/s12870-024-05232-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/31/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND Plants can retain atmospheric particulate matter (PM) through their unique foliar microstructures, which has a profound impact on the phyllosphere microbial communities. Yet, the underlying mechanisms linking atmospheric particulate matter (PM) retention by foliar microstructures to variations in the phyllosphere microbial communities remain a mystery. In this study, we conducted a field experiment with ten Ulmus lines. A series of analytical techniques, including scanning electron microscopy, atomic force microscopy, and high-throughput amplicon sequencing, were applied to examine the relationship between foliar surface microstructures, PM retention, and phyllosphere microbial diversity of Ulmus L. RESULTS We characterized the leaf microstructures across the ten Ulmus lines. Chun exhibited a highly undulated abaxial surface and dense stomatal distribution. Langya and Xingshan possessed dense abaxial trichomes, while Lieye, Zuiweng, and Daguo had sparsely distributed, short abaxial trichomes. Duomai, Qingyun, and Lang were characterized by sparse stomata and flat abaxial surfaces, whereas Jinye had sparsely distributed but extensive stomata. The mean leaf retention values for total suspended particulate (TSP), PM2.5, PM2.5-10, PM10-100, and PM> 100 were 135.76, 6.60, 20.10, 90.98, and 13.08 µg·cm- 2, respectively. Trichomes substantially contributed to PM2.5 retention, while larger undulations enhanced PM2.5-10 retention, as evidenced by positive correlations between PM2.5 and abaxial trichome density and between PM2.5-10 and the adaxial raw microroughness values. Phyllosphere microbial diversity patterns varied among lines, with bacteria dominated by Sediminibacterium and fungi by Mycosphaerella, Alternaria, and Cladosporium. Redundancy analysis confirmed that dense leaf trichomes facilitated the capture of PM2.5-associated fungi, while bacteria were less impacted by PM and struggled to adhere to leaf microstructures. Long and dense trichomes provided ideal microhabitats for retaining PM-borne microbes, as evidenced by positive feedback loops between PM2.5, trichome characteristics, and the relative abundances of microorganisms like Trichoderma and Aspergillus. CONCLUSIONS Based on our findings, a three-factor network profile was constructed, which provides a foundation for further exploration into how different plants retain PM through foliar microstructures, thereby impacting phyllosphere microbial communities.
Collapse
Grants
- 216Z6301G Science and Technology Development Fund of Central Guidance on Local, China
- 216Z6301G Science and Technology Development Fund of Central Guidance on Local, China
- 216Z6301G Science and Technology Development Fund of Central Guidance on Local, China
- 216Z6301G Science and Technology Development Fund of Central Guidance on Local, China
- 216Z6301G Science and Technology Development Fund of Central Guidance on Local, China
- 216Z6301G Science and Technology Development Fund of Central Guidance on Local, China
- 216Z6301G Science and Technology Development Fund of Central Guidance on Local, China
- 216Z6301G Science and Technology Development Fund of Central Guidance on Local, China
- 216Z6301G Science and Technology Development Fund of Central Guidance on Local, China
- 21326301D Key Research and Development Program of Hebei Province, China
- 21326301D Key Research and Development Program of Hebei Province, China
- 21326301D Key Research and Development Program of Hebei Province, China
- 21326301D Key Research and Development Program of Hebei Province, China
- 21326301D Key Research and Development Program of Hebei Province, China
- 21326301D Key Research and Development Program of Hebei Province, China
- 21326301D Key Research and Development Program of Hebei Province, China
- 21326301D Key Research and Development Program of Hebei Province, China
- 21326301D Key Research and Development Program of Hebei Province, China
Collapse
Affiliation(s)
- Liren Xu
- Hebei Agricultural University, Baoding, 071000, Hebei, China
- Hebei Academy of Forestry and Grassland Science, Shijiazhuang, 050061, Hebei, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yichao Liu
- Hebei Academy of Forestry and Grassland Science, Shijiazhuang, 050061, Hebei, China
| | - Shuxiang Feng
- Hebei Academy of Forestry and Grassland Science, Shijiazhuang, 050061, Hebei, China
| | - Chong Liu
- Hebei Agricultural University, Baoding, 071000, Hebei, China
| | - Xinyu Zhong
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yachao Ren
- Hebei Agricultural University, Baoding, 071000, Hebei, China
| | - Yujun Liu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yinran Huang
- Hebei Agricultural University, Baoding, 071000, Hebei, China.
- Hebei Academy of Forestry and Grassland Science, Shijiazhuang, 050061, Hebei, China.
| | - Minsheng Yang
- Hebei Agricultural University, Baoding, 071000, Hebei, China.
| |
Collapse
|
8
|
Myung H, Joung YS. Contribution of Particulates to Airborne Disease Transmission and Severity: A Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6846-6867. [PMID: 38568611 DOI: 10.1021/acs.est.3c08835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2024]
Abstract
The emergence of coronavirus disease 2019 (COVID-19) has catalyzed great interest in the spread of airborne pathogens. Airborne infectious diseases are classified into viral, bacterial, and fungal infections. Environmental factors can elevate their transmission and lethality. Air pollution has been reported as the leading environmental cause of disease and premature death worldwide. Notably, ambient particulates of various components and sizes are harmful pollutants. There are two prominent health effects of particles in the atmosphere: (1) particulate matter (PM) penetrates the respiratory tract and adversely affects health, such as heart and respiratory diseases; and (2) bioaerosols of particles act as a medium for the spread of pathogens in the air. Particulates contribute to the occurrence of infectious diseases by increasing vulnerability to infection through inhalation and spreading disease through interactions with airborne pathogens. Here, we focus on the synergistic effects of airborne particulates on infectious disease. We outline the concepts and characteristics of bioaerosols, from their generation to transformation and circulation on Earth. Considering that microorganisms coexist with other particulates as bioaerosols, we investigate studies examining respiratory infections associated with airborne PM. Furthermore, we discuss four factors (meteorological, biological, physical, and chemical) that may impact the influence of PM on the survival of contagious pathogens in the atmosphere. Our review highlights the significant role of particulates in supporting the transmission of infectious aerosols and emphasizes the need for further research in this area.
Collapse
Affiliation(s)
- Hyunji Myung
- Department of Mechanical Systems Engineering, Sookmyung Women's University, 100, Cheongpa-ro 47-gil, Yongsan-gu, Seoul 04310, Republic of Korea
| | - Young Soo Joung
- Department of Mechanical Systems Engineering, Sookmyung Women's University, 100, Cheongpa-ro 47-gil, Yongsan-gu, Seoul 04310, Republic of Korea
| |
Collapse
|
9
|
Jasim SA, Mohammadi MJ, Patra I, Jalil AT, Taherian M, Abdullaeva UY, Sharma S, Ekrami HA, Mousavion K, Alborzi M. The effect of microorganisms (bacteria and fungi) in dust storm on human health. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 39:65-75. [PMID: 36169390 DOI: 10.1515/reveh-2022-0162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Dust storms expose people suspended particles, microorganisms and potential allergens that have been absorbed by dust particles during airborne transport. The purpose of this study was investigation effect of microorganisms (bacteria and fungi) in dust storm on human health. Databases used to for searched were the PubMed, Google Scholar, Web of Science, Springer and Science Direct (Scopus). 58 papers based on abstract and article text filtered. In the end after sieve we selected 10 papers. Identify all relevant studies published 1978-2022. The literature showed that green spaces created by city officials in different areas include a set of trees and shrubs in accordance with the effect of microorganisms (bacteria and fungi) in dust storm on human health. Based on the result the many studies are conducted every year on the characteristics and different sources of dust, one of the most important of which is the ability of these storms to carry pathogenic microorganisms. the purpose of this study is the effect of bacteria and fungi in dust storms on human health. The findings of this study showed that the evaluation of various studies showed that with the occurrence of dust storms that originate from different sources, in addition to transporting suspended solids, pathogenic bacteria and fungi are also transmitted by dust storms from near and far places and cause various diseases of these include respiratory and pulmonary problems, upper respiratory tract infections, and cardiovascular disease.
Collapse
Affiliation(s)
| | - Mohammad Javad Mohammadi
- Department of Environmental Health Engineering, School of Public Health and Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Indrajit Patra
- An Independent Researcher, NIT Durgapur, Durgapur, West Bengal, India
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, Iraq
| | - Masoume Taherian
- Student of Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ugiloy Yakubovna Abdullaeva
- Department of Communal Hygiene and Occupational Health, Ferghana Medical Institute of Public Health, Ferghana, Uzbekistan
| | - Sandhir Sharma
- Chitkara Business School, Chitkara University, Punjab, India
| | - Hafez Ajam Ekrami
- Student of Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Kiana Mousavion
- Student of Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Marzie Alborzi
- Student of Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
10
|
Mohaimin AZ, Krishnamoorthy S, Shivanand P. A critical review on bioaerosols-dispersal of crop pathogenic microorganisms and their impact on crop yield. Braz J Microbiol 2024; 55:587-628. [PMID: 38001398 PMCID: PMC10920616 DOI: 10.1007/s42770-023-01179-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Bioaerosols are potential sources of pathogenic microorganisms that can cause devastating outbreaks of global crop diseases. Various microorganisms, insects and viroids are known to cause severe crop diseases impeding global agro-economy. Such losses threaten global food security, as it is estimated that almost 821 million people are underfed due to global crisis in food production. It is estimated that global population would reach 10 billion by 2050. Hence, it is imperative to substantially increase global food production to about 60% more than the existing levels. To meet the increasing demand, it is essential to control crop diseases and increase yield. Better understanding of the dispersive nature of bioaerosols, seasonal variations, regional diversity and load would enable in formulating improved strategies to control disease severity, onset and spread. Further, insights on regional and global bioaerosol composition and dissemination would help in predicting and preventing endemic and epidemic outbreaks of crop diseases. Advanced knowledge of the factors influencing disease onset and progress, mechanism of pathogen attachment and penetration, dispersal of pathogens, life cycle and the mode of infection, aid the development and implementation of species-specific and region-specific preventive strategies to control crop diseases. Intriguingly, development of R gene-mediated resistant varieties has shown promising results in controlling crop diseases. Forthcoming studies on the development of an appropriately stacked R gene with a wide range of resistance to crop diseases would enable proper management and yield. The article reviews various aspects of pathogenic bioaerosols, pathogen invasion and infestation, crop diseases and yield.
Collapse
Affiliation(s)
- Abdul Zul'Adly Mohaimin
- Environmental and Life Sciences Programme, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Bandar Seri Begawan, BE1410, Brunei Darussalam
| | - Sarayu Krishnamoorthy
- Environmental and Life Sciences Programme, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Bandar Seri Begawan, BE1410, Brunei Darussalam
| | - Pooja Shivanand
- Environmental and Life Sciences Programme, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Bandar Seri Begawan, BE1410, Brunei Darussalam.
| |
Collapse
|
11
|
Rangel LI, Leveau JHJ. Applied microbiology of the phyllosphere. Appl Microbiol Biotechnol 2024; 108:211. [PMID: 38358509 PMCID: PMC10869387 DOI: 10.1007/s00253-024-13042-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024]
Abstract
The phyllosphere, or plant leaf surface, represents a microbial ecosystem of considerable size, holding extraordinary biodiversity and enormous potential for the discovery of new products, tools, and applications in biotechnology, agriculture, medicine, and elsewhere. This mini-review highlights the applied microbiology of the phyllosphere as an original field of study concerning itself with the genes, gene products, natural compounds, and traits that underlie phyllosphere-specific adaptations and services that have commercial and economic value for current or future innovation. Examples include plant-growth-promoting and disease-suppressive phyllobacteria, probiotics and fermented foods that support human health, as well as microbials that remedy foliar contamination with airborne pollutants, residual pesticides, or plastics. Phyllosphere microbes promote plant biomass conversion into compost, renewable energy, animal feed, or fiber. They produce foodstuffs such as thickening agents and sugar substitutes, industrial-grade biosurfactants, novel antibiotics and cancer drugs, as well as enzymes used as food additives or freezing agents. Furthermore, new developments in DNA sequence-based profiling of leaf-associated microbial communities allow for surveillance approaches in the context of food safety and security, for example, to detect enteric human pathogens on leafy greens, predict plant disease outbreaks, and intercept plant pathogens and pests on internationally traded goods. KEY POINTS: • Applied phyllosphere microbiology concerns leaf-specific adaptations for economic value • Phyllobioprospecting searches the phyllosphere microbiome for product development • Phyllobiomonitoring tracks phyllosphere microbial profiles for early risk detection.
Collapse
Affiliation(s)
- Lorena I Rangel
- Cell & Molecular Sciences, The James Hutton Institute, Dundee, Scotland, UK.
- Department of Plant Pathology, University of California, Davis, CA, USA.
| | - Johan H J Leveau
- Department of Plant Pathology, University of California, Davis, CA, USA.
| |
Collapse
|
12
|
Sharma V, Mohammed SA, Devi N, Vats G, Tuli HS, Saini AK, Dhir YW, Dhir S, Singh B. Unveiling the dynamic relationship of viruses and/or symbiotic bacteria with plant resilience in abiotic stress. STRESS BIOLOGY 2024; 4:10. [PMID: 38311681 PMCID: PMC10838894 DOI: 10.1007/s44154-023-00126-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/22/2023] [Indexed: 02/06/2024]
Abstract
In the ecosphere, plants interact with environmental biotic and abiotic partners, where unbalanced interactions can induce unfavourable stress conditions. Abiotic factors (temperature, water, and salt) are primarily required for plants healthy survival, and any change in their availability is reflected as a stress signal. In certain cases, the presence of infectious pathogens such as viruses, bacteria, fungi, protozoa, nematodes, and insects can also create stress conditions in plants, leading to the emergence of disease or deficiency symptoms. While these symptoms are often typical of abiotic or biotic stress, however, there are instances where they can intensify under specific conditions. Here, we primarily summarize the viral interactions with plants during abiotic stress to understand how these associations are linked together during viral pathogenesis. Secondly, focus is given to the beneficial effects of root-associated symbiotic bacteria in fulfilling the basic needs of plants during normal as well as abiotic stress conditions. The modulations of plant functional proteins, and their occurrence/cross-talk, with pathogen (virus) and symbiont (bacteria) molecules are also discussed. Furthermore, we have highlighted the biochemical and systematic adaptations that develop in plants due to bacterial symbiosis to encounter stress hallmarks. Lastly, directions are provided towards exploring potential rhizospheric bacteria to maintain plant-microbes ecosystem and manage abiotic stress in plants to achieve better trait health in the horticulture crops.
Collapse
Affiliation(s)
- Vasudha Sharma
- Department of Biosciences & Technology and Central Research Cell, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| | - Shakeel A Mohammed
- Department of Biosciences & Technology and Central Research Cell, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| | - Nisha Devi
- Department of Biosciences & Technology and Central Research Cell, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| | - Gourav Vats
- Department of Biosciences & Technology and Central Research Cell, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| | - Hardeep S Tuli
- Department of Biosciences & Technology and Central Research Cell, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| | - Adesh K Saini
- Department of Biosciences & Technology and Central Research Cell, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| | - Yashika W Dhir
- Department of Biosciences & Technology and Central Research Cell, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India.
| | - Sunny Dhir
- Department of Biosciences & Technology and Central Research Cell, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India.
| | - Bharat Singh
- Department of Biosciences & Technology and Central Research Cell, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India.
| |
Collapse
|
13
|
Hudson JE, Levia DF, Yoshimura KM, Gottel NR, Hudson SA, Biddle JF. Mapping bark bacteria: initial insights of stemflow-induced changes in bark surface phyla. Microbiol Spectr 2023; 11:e0356223. [PMID: 37971233 PMCID: PMC10715197 DOI: 10.1128/spectrum.03562-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 10/12/2023] [Indexed: 11/19/2023] Open
Abstract
IMPORTANCE Compared with the phyllosphere, bacteria inhabiting bark surfaces are inadequately understood. Based on a preliminary pilot study, our work suggests that microbial populations vary across tree bark surfaces and may differ in relation to surrounding land use. Initial results suggest that stemflow, the water that flows along the bark surface, actively moves bacterial communities across a tree. These preliminary findings underscore the need for further study of niche microbial populations to determine whether there are connections between the biodiversity of microbiomes inhabiting corticular surfaces, land use, and hydrology.
Collapse
Affiliation(s)
- J. E. Hudson
- Department of Geography and Spatial Sciences, University of Delaware, Newark, Delaware, USA
| | - D. F. Levia
- Department of Geography and Spatial Sciences, University of Delaware, Newark, Delaware, USA
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware, USA
| | - K. M. Yoshimura
- School of Marine Science and Policy, University of Delaware, Newark, Delaware, USA
| | - N. R. Gottel
- Argonne National Lab, University of Chicago Medicine, Chicago, Illinois, USA
| | - S. A. Hudson
- Department of Geography and Spatial Sciences, University of Delaware, Newark, Delaware, USA
| | - J. F. Biddle
- School of Marine Science and Policy, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
14
|
Shang H, Tan BZ, Dakwa V, D'Agnese E, Stanley RA, Sassi H, Lai YW, Deaker R, Bowman JP. Effect of pre-harvest sanitizer treatments on Listeria survival, sensory quality and bacterial community dynamics on leafy green vegetables grown under commercial conditions. Food Res Int 2023; 173:113341. [PMID: 37803650 DOI: 10.1016/j.foodres.2023.113341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/19/2023] [Accepted: 07/31/2023] [Indexed: 10/08/2023]
Abstract
Leafy green vegetables (LGVs) have large surface areas and can be colonized by various microorganisms including pathogens. In this study, we investigated the effect of pre-harvest sanitizer treatments on the survival of inoculated proxy pathogen Listeria innocua ATCC 33090 and the natural microbial community of mizuna, rocket (arugula), red chard and spinach grown under commercial conditions. Electrolyzed water (e-water), peracetic acid (PAA), and 1-bromo-3-chloro-5-dimethylhydantoin (BCDMH) were tested against water controls. We also observed the subsequent sensorial changes of harvested, bagged LGV leaves over a period of 12 days within chill storage alongside the growth, diversity and structure of bacterial populations determined using 16S rRNA gene amplicon sequencing and total viable counts (TVC). Treatment with PAA resulted in the highest reductions of L. innocua (2.4-5.5 log units) compared to the other treatments (0.25-2.5 log units). On day 0 (24 h after sanitizer application), the TVC on sanitizer treated LGVs were significantly reduced compared to water controls, except for rocket. During storage at 4.5 (±0.5)°C sanitisers only hindered microbial growth on LGVs initially and did not influence final bacterial population levels, growth rates or changes in LGV sample colour, decay, odour and texture compared to water controls. Shelf-life was not extended nor was it reduced. The community structure on LGV types differed though a core set of bacterial amplicon sequence variants (ASV) were present across all samples. No significant differences were observed in bacterial diversity between sanitizer treatments, however sanitizer treated LGV samples had initially reduced diversity compared to water treated samples. The bacterial compositions observed at the end point of storage considerably differed from what was observed at initial point owing to the increase in abundance of specific bacterial taxa, mainly Pseudomonas spp., the abundance and growth responses differing between LGV types studied. This study provides a better understanding on the microbiology and sensory impact of pre-harvest applied sanitiser treatments on different LGVs destined for commercial food use.
Collapse
Affiliation(s)
- Hongshan Shang
- School of Life and Environmental Sciences, F22 - LEES Building, The University of Sydney, NSW 2006, Australia; Centre for Food Safety and Innovation, Tasmanian Institute of Agriculture, University of Tasmania, Sandy Bay, Tasmania 7005, Australia
| | - Bi Zheng Tan
- Centre for Food Safety and Innovation, Tasmanian Institute of Agriculture, University of Tasmania, Sandy Bay, Tasmania 7005, Australia
| | - Vongai Dakwa
- Centre for Food Safety and Innovation, Tasmanian Institute of Agriculture, University of Tasmania, Sandy Bay, Tasmania 7005, Australia
| | - Erin D'Agnese
- Centre for Food Safety and Innovation, Tasmanian Institute of Agriculture, University of Tasmania, Sandy Bay, Tasmania 7005, Australia
| | - Roger A Stanley
- Centre for Food Safety and Innovation, Tasmanian Institute of Agriculture, University of Tasmania, Sandy Bay, Tasmania 7005, Australia
| | - Hannah Sassi
- School of Life and Environmental Sciences, F22 - LEES Building, The University of Sydney, NSW 2006, Australia
| | - Yu-Wen Lai
- School of Life and Environmental Sciences, F22 - LEES Building, The University of Sydney, NSW 2006, Australia
| | - Rosalind Deaker
- School of Life and Environmental Sciences, F22 - LEES Building, The University of Sydney, NSW 2006, Australia
| | - John P Bowman
- Centre for Food Safety and Innovation, Tasmanian Institute of Agriculture, University of Tasmania, Sandy Bay, Tasmania 7005, Australia.
| |
Collapse
|
15
|
Liu X, Wang Y, Han L, Xia Y, Xie J. A virus induces alterations in root morphology while exerting minimal effects on the rhizosphere and endosphere microorganisms in rice. FEMS Microbiol Ecol 2023; 99:fiad113. [PMID: 37742208 DOI: 10.1093/femsec/fiad113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/11/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023] Open
Abstract
The highly destructive southern rice black-streaked dwarf virus (SRBSDV) causes significant losses in rice production. To understand its impact on rice root, we studied fibrous root development and root microbiota variation (rhizosphere and endosphere) after SRBSDV infection. SRBSDV infection reduced the number and length of fibrous roots in rice. Interestingly, the rhizosphere had higher bacterial diversity and abundance at the initial (0 days) and 30-day postinfection stages, while 30-day-old roots showed increased diversity and abundance. However, there were no significant differences in microbiota diversity between infected and noninfected rice plants. The major rhizosphere microbiota included Proteobacteria, Bacteroidota, Acidobacteriota, and Planctomycetota, comprising about 80% of the community. The endosphere was dominated by Proteobacteria and Cyanobacteria, constituting over 90%, with Bacteroidota as the next most prominent group. Further, we identified differentially expressed genes related to plant-pathogen interactions, plant hormone signal, and ABC transporters, potentially affecting root morphology. Notably, specific bacteria (e.g. Inquilinus and Actinoplanes) showed correlations with these pathways. In conclusion, SRBSDV primarily influences root growth through host metabolism, rather than exerting direct effects on the root microbiota. These insights into the interactions among the pathogen, rice plant, and associated microbiota could have implications for managing SRBSDV's detrimental effects on rice production.
Collapse
Affiliation(s)
- Xuewei Liu
- School of Life Sciences, Genetic Engineering Research Center, Chongqing University, Daxuecheng South Road No. 55, Shapingba District 401331, Chongqing, China
- Chongqing Engineering Research Center for Fungal Insecticides, Daxuecheng South Road No. 55, Shapingba District 401331, Chongqing, China
- Key Laboratory of Gene Function and Regulation Technology under Chongqing Municipal Education Commission, Daxuecheng South Road No. 55, Shapingba District 401331, Chongqing, China
| | - Yirong Wang
- School of Life Sciences, Genetic Engineering Research Center, Chongqing University, Daxuecheng South Road No. 55, Shapingba District 401331, Chongqing, China
- Chongqing Engineering Research Center for Fungal Insecticides, Daxuecheng South Road No. 55, Shapingba District 401331, Chongqing, China
- Key Laboratory of Gene Function and Regulation Technology under Chongqing Municipal Education Commission, Daxuecheng South Road No. 55, Shapingba District 401331, Chongqing, China
| | - Lijuan Han
- School of Life Sciences, Genetic Engineering Research Center, Chongqing University, Daxuecheng South Road No. 55, Shapingba District 401331, Chongqing, China
- Chongqing Engineering Research Center for Fungal Insecticides, Daxuecheng South Road No. 55, Shapingba District 401331, Chongqing, China
- Key Laboratory of Gene Function and Regulation Technology under Chongqing Municipal Education Commission, Daxuecheng South Road No. 55, Shapingba District 401331, Chongqing, China
| | - Yuxian Xia
- School of Life Sciences, Genetic Engineering Research Center, Chongqing University, Daxuecheng South Road No. 55, Shapingba District 401331, Chongqing, China
- Chongqing Engineering Research Center for Fungal Insecticides, Daxuecheng South Road No. 55, Shapingba District 401331, Chongqing, China
- Key Laboratory of Gene Function and Regulation Technology under Chongqing Municipal Education Commission, Daxuecheng South Road No. 55, Shapingba District 401331, Chongqing, China
| | - Jiaqin Xie
- School of Life Sciences, Genetic Engineering Research Center, Chongqing University, Daxuecheng South Road No. 55, Shapingba District 401331, Chongqing, China
- Chongqing Engineering Research Center for Fungal Insecticides, Daxuecheng South Road No. 55, Shapingba District 401331, Chongqing, China
- Key Laboratory of Gene Function and Regulation Technology under Chongqing Municipal Education Commission, Daxuecheng South Road No. 55, Shapingba District 401331, Chongqing, China
| |
Collapse
|
16
|
Schmidt H, Gorka S, Seki D, Schintlmeister A, Woebken D. Gold-FISH enables targeted NanoSIMS analysis of plant-associated bacteria. THE NEW PHYTOLOGIST 2023; 240:439-451. [PMID: 37381111 PMCID: PMC10962543 DOI: 10.1111/nph.19112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/14/2023] [Indexed: 06/30/2023]
Abstract
Bacteria colonize plant roots and engage in reciprocal interactions with their hosts. However, the contribution of individual taxa or groups of bacteria to plant nutrition and fitness is not well characterized due to a lack of in situ evidence of bacterial activity. To address this knowledge gap, we developed an analytical approach that combines the identification and localization of individual bacteria on root surfaces via gold-based in situ hybridization with correlative NanoSIMS imaging of incorporated stable isotopes, indicative of metabolic activity. We incubated Kosakonia strain DS-1-associated, gnotobiotically grown rice plants with 15 N-N2 gas to detect in situ N2 fixation activity. Bacterial cells along the rhizoplane showed heterogeneous patterns of 15 N enrichment, ranging from the natural isotope abundance levels up to 12.07 at% 15 N (average and median of 3.36 and 2.85 at% 15 N, respectively, n = 697 cells). The presented correlative optical and chemical imaging analysis is applicable to a broad range of studies investigating plant-microbe interactions. For example, it enables verification of the in situ metabolic activity of host-associated commercialized strains or plant growth-promoting bacteria, thereby disentangling their role in plant nutrition. Such data facilitate the design of plant-microbe combinations for improvement of crop management.
Collapse
Affiliation(s)
- Hannes Schmidt
- Centre for Microbiology and Environmental Systems ScienceUniversity of ViennaVienna1030Austria
| | - Stefan Gorka
- Centre for Microbiology and Environmental Systems ScienceUniversity of ViennaVienna1030Austria
- Doctoral School in Microbiology and Environmental ScienceUniversity of ViennaVienna1030Austria
| | - David Seki
- Centre for Microbiology and Environmental Systems ScienceUniversity of ViennaVienna1030Austria
| | - Arno Schintlmeister
- Centre for Microbiology and Environmental Systems ScienceUniversity of ViennaVienna1030Austria
- Large‐Instrument Facility for Environmental and Isotope Mass Spectrometry, Centre for Microbiology and Environmental Systems ScienceUniversity of ViennaVienna1030Austria
| | - Dagmar Woebken
- Centre for Microbiology and Environmental Systems ScienceUniversity of ViennaVienna1030Austria
| |
Collapse
|
17
|
Gibson E, Zimmerman NB. Urban biogeography of fungal endophytes across San Francisco. PeerJ 2023; 11:e15454. [PMID: 37547726 PMCID: PMC10399560 DOI: 10.7717/peerj.15454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/03/2023] [Indexed: 08/08/2023] Open
Abstract
In natural and agricultural systems, the plant microbiome-the microbial organisms associated with plant tissues and rhizosphere soils-has been shown to have important effects on host physiology and ecology, yet we know little about how these plant-microbe relationships play out in urban environments. Here we characterize the composition of fungal communities associated with living leaves of one of the most common sidewalk trees in the city of San Francisco, California. We focus our efforts on endophytic fungi (asymptomatic microfungi that live inside healthy leaves), which have been shown in other systems to have large ecological effects on the health of their plant hosts. Specifically, we characterized the foliar fungal microbiome of Metrosideros excelsa (Myrtaceae) trees growing in a variety of urban environmental conditions. We used high-throughput culturing, PCR, and Sanger sequencing of the internal transcribed spacer nuclear ribosomal DNA (ITS nrDNA) region to quantify the composition and structure of fungal communities growing within healthy leaves of 30 M. excelsa trees from six distinct sites, which were selected to capture the range of environmental conditions found within city limits. Sequencing resulted in 854 high-quality ITS sequences. These sequences clustered into 85 Operational Taxonomic Units (97% OTUs). We found that these communities encompass relatively high alpha (within) and beta (between-site) diversity. Because the communities are all from the same host tree species, and located in relatively close geographical proximity to one another, these analyses suggest that urban environmental factors such as heat islands or differences in vegetation or traffic density (and associated air quality) may potentially be influencing the composition of these fungal communities. These biogeographic patterns provide evidence that plant microbiomes in urban environments can be as dynamic and complex as their natural counterparts. As human populations continue to transition out of rural areas and into cities, understanding the factors that shape environmental microbial communities in urban ecosystems stands to become increasingly important.
Collapse
Affiliation(s)
- Emma Gibson
- Department of Biology, University of San Francisco, San Francisco, CA, United States of America
| | - Naupaka B. Zimmerman
- Department of Biology, University of San Francisco, San Francisco, CA, United States of America
| |
Collapse
|
18
|
Abdelsattar AM, Elsayed A, El-Esawi MA, Heikal YM. Enhancing Stevia rebaudiana growth and yield through exploring beneficial plant-microbe interactions and their impact on the underlying mechanisms and crop sustainability. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 198:107673. [PMID: 37030249 DOI: 10.1016/j.plaphy.2023.107673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 05/07/2023]
Abstract
Stevia rebaudiana is an important medicinal plant which represents the most important sugar substitute in many countries. Poor seed germination of this plant is a critical problem that affects the final yield and the availability of the products in the market. Continuous cropping without supplying soil nutrients is also a serious issue as it results in declining soil fertility. This review highlights the important use of beneficial bacteria for the enhancement of Stevia rebaudiana growth and its dynamic interactions in the phyllosphere, rhizosphere, and endosphere. Fertilizers can increase crop yield and preserve and improve soil fertility. There is a rising concern that prolonged usage of chemical fertilizers may have negative impacts on the ecosystem of the soil. On the other hand, soil health and fertility are improved by plant growth-promoting bacteria which could eventually increase plant growth and productivity. Accordingly, a biocompatible strategy involving beneficial microorganisms inoculation is applied to boost plant growth and reduce the negative effects of chemical fertilizers. Plants benefit extensively from endophytic bacteria, which promote growth and induce resistance to pathogens and stresses. Additionally, several plant growth-promoting bacteria are able to produce amino acids, polyamines, and hormones that can be used as alternatives to chemicals. Therefore, understanding the dynamic interactions between bacteria and Stevia can help make the favorable bacterial bio-formulations, use them more effectively, and apply them to Stevia to improve yield and quality.
Collapse
Affiliation(s)
- Amal M Abdelsattar
- Botany Department, Faculty of Science, Mansoura University, 35516, Mansoura, Egypt.
| | - Ashraf Elsayed
- Botany Department, Faculty of Science, Mansoura University, 35516, Mansoura, Egypt
| | - Mohamed A El-Esawi
- Botany Department, Faculty of Science, Tanta University, 31527, Tanta, Egypt; Photobiology Research Group, Sorbonne Université CNRS, 75005, Paris, France
| | - Yasmin M Heikal
- Botany Department, Faculty of Science, Mansoura University, 35516, Mansoura, Egypt
| |
Collapse
|
19
|
Gómez-Godínez LJ, Aguirre-Noyola JL, Martínez-Romero E, Arteaga-Garibay RI, Ireta-Moreno J, Ruvalcaba-Gómez JM. A Look at Plant-Growth-Promoting Bacteria. PLANTS (BASEL, SWITZERLAND) 2023; 12:1668. [PMID: 37111891 PMCID: PMC10145503 DOI: 10.3390/plants12081668] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/06/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Bacteria have been used to increase crop yields. For their application on crops, bacteria are provided in inoculant formulations that are continuously changing, with liquid- and solid-based products. Bacteria for inoculants are mainly selected from natural isolates. In nature, microorganisms that favor plants exhibit various strategies to succeed and prevail in the rhizosphere, such as biological nitrogen fixation, phosphorus solubilization, and siderophore production. On the other hand, plants have strategies to maintain beneficial microorganisms, such as the exudation of chemoattractanst for specific microorganisms and signaling pathways that regulate plant-bacteria interactions. Transcriptomic approaches are helpful in attempting to elucidate plant-microorganism interactions. Here, we present a review of these issues.
Collapse
Affiliation(s)
- Lorena Jacqueline Gómez-Godínez
- Centro Nacional de Recursos Genéticos, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Tepatitlán de Morelos 47600, Jalisco, Mexico
| | - José Luis Aguirre-Noyola
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Cuernavaca 62210, Morelos, Mexico
| | - Esperanza Martínez-Romero
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Cuernavaca 62210, Morelos, Mexico
| | - Ramón Ignacio Arteaga-Garibay
- Centro Nacional de Recursos Genéticos, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Tepatitlán de Morelos 47600, Jalisco, Mexico
| | - Javier Ireta-Moreno
- Centro de Investigación Regional Pacífico Centro, Centro Altos Jalisco, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Tepatitlán de Morelos 2470, Jalisco, Mexico
| | - José Martín Ruvalcaba-Gómez
- Centro Nacional de Recursos Genéticos, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Tepatitlán de Morelos 47600, Jalisco, Mexico
| |
Collapse
|
20
|
Sharma A, Gupta AK, Devi B. Current trends in management of bacterial pathogens infecting plants. Antonie Van Leeuwenhoek 2023; 116:303-326. [PMID: 36683073 DOI: 10.1007/s10482-023-01809-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/08/2023] [Indexed: 01/24/2023]
Abstract
Plants are continuously challenged by different pathogenic microbes that reduce the quality and quantity of produce and therefore pose a serious threat to food security. Among them bacterial pathogens are known to cause disease outbreaks with devastating economic losses in temperate, tropical and subtropical regions throughout the world. Bacteria are structurally simple prokaryotic microorganisms and are diverse from a metabolic standpoint. Bacterial infection process mainly involves successful attachment or penetration by using extracellular enzymes, type secretion systems, toxins, growth regulators and by exploiting different molecules that modulate plant defence resulting in successful colonization. Theses bacterial pathogens are extremely difficult to control as they develop resistance to antibiotics. Therefore, attempts are made to search for innovative methods of disease management by the targeting bacterial virulence and manipulating the genes in host plants by exploiting genome editing methods. Here, we review the recent developments in bacterial disease management including the bioactive antimicrobial compounds, bacteriophage therapy, quorum-quenching mediated control, nanoparticles and CRISPR/Cas based genome editing techniques for bacterial disease management. Future research should focus on implementation of smart delivery systems and consumer acceptance of these innovative methods for sustainable disease management.
Collapse
Affiliation(s)
- Aditi Sharma
- College of Horticulture and Forestry, Thunag- Mandi, Dr. Y. S. Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, 173 230, India.
| | - A K Gupta
- Department of Plant Pathology, Dr. Y.S. Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, 173 230, India
| | - Banita Devi
- Department of Plant Pathology, Dr. Y.S. Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, 173 230, India
| |
Collapse
|
21
|
Seasonal activities of the phyllosphere microbiome of perennial crops. Nat Commun 2023; 14:1039. [PMID: 36823152 PMCID: PMC9950430 DOI: 10.1038/s41467-023-36515-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/03/2023] [Indexed: 02/25/2023] Open
Abstract
Understanding the interactions between plants and microorganisms can inform microbiome management to enhance crop productivity and resilience to stress. Here, we apply a genome-centric approach to identify ecologically important leaf microbiome members on replicated plots of field-grown switchgrass and miscanthus, and to quantify their activities over two growing seasons for switchgrass. We use metagenome and metatranscriptome sequencing and curate 40 medium- and high-quality metagenome-assembled-genomes (MAGs). We find that classes represented by these MAGs (Actinomycetia, Alpha- and Gamma- Proteobacteria, and Bacteroidota) are active in the late season, and upregulate transcripts for short-chain dehydrogenase, molybdopterin oxidoreductase, and polyketide cyclase. Stress-associated pathways are expressed for most MAGs, suggesting engagement with the host environment. We also detect seasonally activated biosynthetic pathways for terpenes and various non-ribosomal peptide pathways that are poorly annotated. Our findings support that leaf-associated bacterial populations are seasonally dynamic and responsive to host cues.
Collapse
|
22
|
Ramasamy KP, Mahawar L. Coping with salt stress-interaction of halotolerant bacteria in crop plants: A mini review. Front Microbiol 2023; 14:1077561. [PMID: 36819049 PMCID: PMC9932039 DOI: 10.3389/fmicb.2023.1077561] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 01/05/2023] [Indexed: 02/04/2023] Open
Abstract
Salinity is one of the major environmental abiotic stress factors that limit the growth and yield of crop plants worldwide. It is crucial to understand the importance of several adaptive mechanisms in plants toward salt stress so as to increase agricultural productivity. Plant resilience toward salinity stress is improved by cohabiting with diverse microorganisms, especially bacteria. In the last few decades, increasing attention of researchers has focused on bacterial communities for promoting plant growth and fitness. The biotechnological applications of salt-tolerant plant growth-promoting rhizobacteria (PGPR) gained widespread interest for their numerous metabolites. This review provides novel insights into the importance of halotolerant (HT) bacteria associated with crop plants in enhancing plant tolerance toward salinity stress. Furthermore, the present review highlights several challenges of using HT-PGPR in the agricultural field and possible solutions to overcome those challenges for sustainable agriculture development in the future.
Collapse
Affiliation(s)
- Kesava Priyan Ramasamy
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden,*Correspondence: Kesava Priyan Ramasamy ✉
| | - Lovely Mahawar
- Department of Plant Physiology, Faculty of Agrobiology and Food resources, Slovak University of Agriculture, Nitra, Slovakia
| |
Collapse
|
23
|
Sun M, Wang H, Shi C, Li J, Cai L, Xiang L, Liu T, Goodwin PH, Chen X, Wang L. Effect of azoxystrobin on tobacco leaf microbial composition and diversity. FRONTIERS IN PLANT SCIENCE 2023; 13:1101039. [PMID: 36816485 PMCID: PMC9930646 DOI: 10.3389/fpls.2022.1101039] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/31/2022] [Indexed: 06/18/2023]
Abstract
Azoxystrobin, a quinone outside inhibitor fungicide, reduced tobacco target spot caused by Rhizoctonia solani by 62%, but also affected the composition and diversity of other microbes on the surface and interior of treated tobacco leaves. High-throughput sequencing showed that the dominant bacteria prior to azoxystrobin treatment were Methylobacterium on healthy leaves and Pseudomonas on diseased leaves, and the dominant fungi were Thanatephorous (teleomorph of Rhizoctonia) and Symmetrospora on healthy leaves and Thanatephorous on diseased leaves. Both bacterial and fungal diversity significantly increased 1 to 18 days post treatment (dpt) with azoxystrobin for healthy and diseased leaves. For bacteria on healthy leaves, the relative abundance of Pseudomonas, Sphingomonas, Unidentified-Rhizobiaceae and Massilia declined, while Methylobacterium and Aureimonas increased. On diseased leaves, the relative abundance of Sphingomonas and Unidentified-Rhizobiaceae declined, while Methylobacterium, Pseudomonas and Pantoea increased. For fungi on healthy leaves, the relative abundance of Thanatephorous declined, while Symmetrospora, Sampaiozyma, Plectosphaerella, Cladosporium and Cercospora increased. On diseased leaves, the relative abundance of Thanatephorous declined, while Symmetrospora, Sampaiozyma, Plectosphaerella, Cladosporium, Phoma, Pantospora and Fusarium, increased. Compared to healthy leaves, azoxystrobin treatment of diseased leaves resulted in greater reductions in Thanatephorous, Sphingomonas and Unidentified-Rhizobiaceae, a greater increase in Methylobacterium, and similar changes in Phoma, Fusarium, Plectosphaerella and Cladosporium. Azoxystrobin had a semi-selective effect altering the microbial diversity of the tobacco leaf microbiome, which could be due to factors, such as differences among bacterial and fungal species in sensitivity to quinone outside inhibitors, ability to use nutrients and niches as certain microbes are affected, and metabolic responses to azoxystrobin.
Collapse
Affiliation(s)
- Meili Sun
- College of Agriculture, Yangtze University, Jingzhou, Hubei, China
- Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Hancheng Wang
- Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Caihua Shi
- College of Agriculture, Yangtze University, Jingzhou, Hubei, China
| | - Jianjun Li
- College of Tropical Crops, Hainan University, Haikou, Hainan, China
| | - Liuti Cai
- Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Ligang Xiang
- College of Agriculture, Yangtze University, Jingzhou, Hubei, China
- Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Tingting Liu
- College of Agriculture, Yangtze University, Jingzhou, Hubei, China
- Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Paul H. Goodwin
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Xingjiang Chen
- Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Ling Wang
- Guizhou Bijie Tobacco Company, Bijie, Guizhou, China
| |
Collapse
|
24
|
Epiphitic Microbiome of Alvarinho Wine Grapes from Different Geographic Regions in Portugal. BIOLOGY 2023; 12:biology12020146. [PMID: 36829425 PMCID: PMC9952175 DOI: 10.3390/biology12020146] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
Geographic location and, particularly, soil and climate exert influence on the typicality of a wine from a specific region, which is often justified by the terroir, and these factors also influence the epiphytic flora associated with the surface of the grape berries. In the present study, the microbiome associated with the surface of berries obtained from ten vineyards of the Alvarinho variety located in different geographical locations in mainland Portugal was determined and analyzed. The removal of microbial flora from the surface of the berries was carried out by washing and sonication, after which the extraction and purification of the respective DNA was carried out. High-throughput short amplicon sequencing of the fungal ITS region and the bacterial 16S region was performed, allowing for the determination of the microbial consortium associated with Alvarinho wine grapes. Analysis of α-diversity demonstrated that parcels from the Monção and Melgaço sub-region present a significantly (p < 0.05) lower fungal diversity and species richness when compared to the plots analyzed from other regions/sub-regions. The ubiquitous presence of Metschnikowia spp., a yeast with enologic potential interest in all parcels from Monção and Melgaço, was also observed.
Collapse
|
25
|
Iqbal MM, Nishimura M, Haider MN, Yoshizawa S. Microbial communities on eelgrass ( Zostera marina) thriving in Tokyo Bay and the possible source of leaf-attached microbes. Front Microbiol 2023; 13:1102013. [PMID: 36687565 PMCID: PMC9853538 DOI: 10.3389/fmicb.2022.1102013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/15/2022] [Indexed: 01/07/2023] Open
Abstract
Zostera marina (eelgrass) is classified as one of the marine angiosperms and is widely distributed throughout much of the Northern Hemisphere. The present study investigated the microbial community structure and diversity of Z. marina growing in Futtsu bathing water, Chiba prefecture, Japan. The purpose of this study was to provide new insight into the colonization of eelgrass leaves by microbial communities based on leaf age and to compare these communities to the root-rhizome of Z. marina, and the surrounding microenvironments (suspended particles, seawater, and sediment). The microbial composition of each sample was analyzed using 16S ribosomal gene amplicon sequencing. Each sample type was found to have a unique microbial community structure. Leaf-attached microbes changed in their composition depending on the relative age of the eelgrass leaf. Special attention was given to a potential microbial source of leaf-attached microbes. Microbial communities of marine particles looked more like those of eelgrass leaves than those of water samples. This finding suggests that leaf-attached microbes were derived from suspended particles, which could allow them to go back and forth between eelgrass leaves and the water column.
Collapse
Affiliation(s)
- Md Mehedi Iqbal
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan,Department of Natural Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan,*Correspondence: Md Mehedi Iqbal,
| | - Masahiko Nishimura
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Md. Nurul Haider
- Faculty of Fisheries, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Susumu Yoshizawa
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan,Department of Natural Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan,Susumu Yoshizawa,
| |
Collapse
|
26
|
Pajares‐Murgó M, Garrido JL, Perea AJ, López‐García Á, Alcántara JM. Biotic filters driving the differentiation of decomposer, epiphytic and pathogenic phyllosphere fungi across plant species. OIKOS 2022. [DOI: 10.1111/oik.09624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Mariona Pajares‐Murgó
- Dept of Biología Animal, Biología Vegetal y Ecología, Univ. de Jaén Jaén Spain
- Inst. Interuniversitario de Investigación del Sistema Tierra en Andalucía (IISTA) Granada Spain
| | - José L. Garrido
- Dept of Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (EEZ), CSIC Granada Spain
- Dept of Ecología Evolutiva, Estación Biológica de Doñana (EBD), CSIC Sevilla Spain
| | - Antonio J. Perea
- Dept of Biología Animal, Biología Vegetal y Ecología, Univ. de Jaén Jaén Spain
- Inst. Interuniversitario de Investigación del Sistema Tierra en Andalucía (IISTA) Granada Spain
| | - Álvaro López‐García
- Dept of Biología Animal, Biología Vegetal y Ecología, Univ. de Jaén Jaén Spain
- Dept of Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (EEZ), CSIC Granada Spain
- Inst. Interuniversitario de Investigación del Sistema Tierra en Andalucía (IISTA) Granada Spain
| | - Julio M. Alcántara
- Dept of Biología Animal, Biología Vegetal y Ecología, Univ. de Jaén Jaén Spain
- Inst. Interuniversitario de Investigación del Sistema Tierra en Andalucía (IISTA) Granada Spain
| |
Collapse
|
27
|
Fessia A, Sartori M, García D, Fernández L, Ponzio R, Barros G, Nesci A. In vitro studies of biofilm-forming Bacillus strains, biocontrol agents isolated from the maize phyllosphere. Biofilm 2022; 4:100097. [PMID: 36504526 PMCID: PMC9731887 DOI: 10.1016/j.bioflm.2022.100097] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/08/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
We aimed to assess how biofilm formation by three Bacillus isolates was affected by changes in temperature, water potential, growth media, time, and the combinations between these factors. The strains had been selected as potential biological control agents (BCAs) in earlier studies, and they were identified as B. subtilis and B. velezensis spp. through 16 rRNA sequencing and MALDI-TOF MS. Maize leaves (ML) were used as one of the growth media, since they made it possible to simulate the nutrient content in the maize phyllosphere, from which the bacteria were originally isolated. The strains were able to form biofilm both in ML and biofilm-inducing MSgg after 24, 48, and 72 h. Biofilm development in the form of pellicles and architecturally complex colonies varied morphologically from one strain to another and depended on the conditions mentioned above. In all cases, colonies and pellicles were less complex when both temperature and water potential were lower. Scanning electron microscopy (SEM) revealed that changing levels of complexity in pellicles were correlated with those in colonies. Statistical analyses found that the quantification of biofilm produced by the isolates was influenced by all the conditions tested. In terms of motility (which may contribute to biofilm formation), swimming and swarming were possible for all strains in 0.3 and 0.7% agar, respectively. A more in-depth understanding of how abiotic factors influence biofilm formation can contribute to a more effective use of these biocontrol strains against pathogens in the maize phyllosphere.
Collapse
Affiliation(s)
- Aluminé Fessia
- Laboratorio de Ecología Microbiana, Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36, Km 601, X5804ZAB, Río Cuarto, Córdoba, Argentina,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina,Corresponding author. Laboratorio de Ecología Microbiana, Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36, Km 601, X5804ZAB, Río Cuarto, Córdoba, Argentina.
| | - Melina Sartori
- Laboratorio de Ecología Microbiana, Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36, Km 601, X5804ZAB, Río Cuarto, Córdoba, Argentina,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Daiana García
- Laboratorio de Ecología Microbiana, Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36, Km 601, X5804ZAB, Río Cuarto, Córdoba, Argentina,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Luciana Fernández
- Departamento de Física, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, CONICET, X5804BYA, Río Cuarto, Argentina,Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto, Ruta Nacional 36, Km 601, X5804ZAB, Río Cuarto, Córdoba, Argentina,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Rodrigo Ponzio
- Departamento de Física, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, CONICET, X5804BYA, Río Cuarto, Argentina,Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto, Ruta Nacional 36, Km 601, X5804ZAB, Río Cuarto, Córdoba, Argentina,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Germán Barros
- Laboratorio de Ecología Microbiana, Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36, Km 601, X5804ZAB, Río Cuarto, Córdoba, Argentina,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Andrea Nesci
- Laboratorio de Ecología Microbiana, Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36, Km 601, X5804ZAB, Río Cuarto, Córdoba, Argentina,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| |
Collapse
|
28
|
Wright KM, Wright PJ, Holden NJ. Plant species-dependent transmission of Escherichia coli O157:H7 from the spermosphere to cotyledons and first leaves. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:926-933. [PMID: 35968609 PMCID: PMC9804575 DOI: 10.1111/1758-2229.13115] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
The colonization of six edible plant species: alfalfa, broccoli, coriander, lettuce, parsley and rocket, by the human pathogen Shigatoxigenic Escherichia coli was investigated following two modes of artificial inoculation of seeds, by soaking or watering. The frequency and extent of colonization of cotyledons depended on the mode of inoculation, with three, rapidly germinating species being successfully colonized after overnight soaking, but slower germinating species requiring prolonged exposure to bacteria by watering of the surrounding growth media. Separate analysis of the cotyledons and leaves from individual plants highlighted that successful colonization of the true leaves was also species dependent. For three species, failure of transfer, or lack of nutrients or suitable microhabitat on the leaf surface resulted in infrequent bacterial colonization. Colonization of leaves was lower and generally in proportion to that in cotyledons, if present. The potential risks associated with consumption of leafy produce are discussed.
Collapse
Affiliation(s)
| | | | - Nicola Jean Holden
- The James Hutton InstituteInvergowrie, DundeeUK
- SRUC, Department of Rural Land Use, Craibstone EstateAberdeenUK
| |
Collapse
|
29
|
Bhatt K, Suyal DC, Kumar S, Singh K, Goswami P. New insights into engineered plant-microbe interactions for pesticide removal. CHEMOSPHERE 2022; 309:136635. [PMID: 36183882 DOI: 10.1016/j.chemosphere.2022.136635] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/21/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Over the past decades, rapid industrialization along with the overutilization of organic pollutants/pesticides has altered the environmental circumstances. Moreover, various anthropogenic, xenobiotics and natural activities also affected plants, soil, and human health, in both direct and indirect ways. To counter this, several conventional methods are currently practiced, but are uneconomical, noxious, and is yet inefficient for large-scale application. Plant-microbe interactions are mediated naturally in an ecosystem and are practiced in several areas. Plant growth promoting rhizobacteria (PGPR) possess certain attributes affecting plant and soil consequently performing decontamination activity via a direct and indirect mechanism. PGPR also harbors indispensable genes stimulating the mineralization of several organic and inorganic compounds. This makes microbes potential candidates for contributing to sustainably remediating the harmful pesticide contaminants. There is a limited piece of information about the plant-microbe interaction pertaining predict and understand the overall interaction concerning a sustainable environment. Therefore, this review focuses on the plant-microbe interaction in the rhizosphere and inside the plant's tissues, along with the utilization augmenting the crop productivity, reduction in plant stress along with decontamination of pesticides/organic pollutants in soil for sustainable environmental management.
Collapse
Affiliation(s)
- Kalpana Bhatt
- Department of Food Science, Purdue University, West Lafayette, IN, 47907, USA.
| | - Deep Chandra Suyal
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, India.
| | - Saurabh Kumar
- ICAR-Research Complex for Eastern Region, Patna, 800014, Bihar, India
| | - Kuldeep Singh
- Department of Microbiology, Chaudhary Charan Singh Haryana Agricultural University, Hisar, 125004, India
| | - Priya Goswami
- Department of Biotechnology, Mangalayatan University, Uttar Pradesh, India
| |
Collapse
|
30
|
Sulja A, Pothier JF, Blom J, Moretti C, Buonaurio R, Rezzonico F, Smits THM. Comparative genomics to examine the endophytic potential of Pantoea agglomerans DAPP-PG 734. BMC Genomics 2022; 23:742. [DOI: 10.1186/s12864-022-08966-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractPantoea agglomerans DAPP-PG 734 was isolated as endophyte from knots (tumors) caused by Pseudomonas savastanoi pv. savastanoi DAPP-PG 722 in olive trees. To understand the plant pathogen-endophyte interaction on a genomic level, the whole genome of P. agglomerans DAPP-PG 734 was sequenced and annotated. The complete genome had a total size of 5′396′424 bp, containing one circular chromosome and four large circular plasmids. The aim of this study was to identify genomic features that could play a potential role in the interaction between P. agglomerans DAPP-PG 734 and P. savastanoi pv. savastanoi DAPP-PG 722. For this purpose, a comparative genomic analysis between the genome of P. agglomerans DAPP-PG 734 and those of related Pantoea spp. was carried out. In P. agglomerans DAPP-PG 734, gene clusters for the synthesis of the Hrp-1 type III secretion system (T3SS), type VI secretion systems (T6SS) and autoinducer, which could play an important role in a plant-pathogenic community enhancing knot formation in olive trees, were identified. Additional gene clusters for the biosynthesis of two different antibiotics, namely dapdiamide E and antibiotic B025670, which were found in regions between integrative conjugative elements (ICE), were observed. The in-depth analysis of the whole genome suggested a characterization of the P. agglomerans DAPP-PG 734 isolate as endophytic bacterium with biocontrol activity rather than as a plant pathogen.
Collapse
|
31
|
Zhang M, Peng C, Sun W, Dong R, Hao J. Effects of Variety, Plant Location, and Season on the Phyllosphere Bacterial Community Structure of Alfalfa (Medicago sativa L.). Microorganisms 2022; 10:microorganisms10102023. [PMID: 36296299 PMCID: PMC9610643 DOI: 10.3390/microorganisms10102023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/05/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
Plant phyllosphere bacteria are vital for plant health and productivity and are affected by both abiotic and biotic factors. In this study, we surveyed the structure of the phyllosphere bacterial community associated with alfalfa. For two varieties of alfalfa, forty-eight samples of phyllosphere communities were collected at two locations over four seasons in 2020. Proteobacteria and actinobacteria were associated with the dominating phylum in the bacterial communities of the alfalfa phyllosphere. Sphingomonas was the most abundant genus-level bacteria, followed by Methylobacterium, Burkholderia-Caballeronia-Paraburkholderia, and Pseudomonas. Sampling time had a greater affect than site and variety on alfalfa surface microorganisms. The variation in phyllosphere bacterial community assembly was mostly explained by the season–site interaction (43%), season–variety interaction (35%), and season (28%). Variety, site–variety interaction, and season–site–variety interactions did not have a meaningful effect on phyllosphere bacterial diversity and community structure. The bacterial community in the phyllosphere of alfalfa showed seasonal changes over time. The environmental factors that contributed most to the phyllosphere bacterial community of alfalfa were temperature and sunshine duration, which were significantly positively correlated with most of the dominant bacterial genera in the alfalfa phyllosphere.
Collapse
|
32
|
Agbavor C, Mirza BS, Wait A. The Effects of Phyllosphere Bacteria on Plant Physiology and Growth of Soybean Infected with Pseudomonas syringae. PLANTS (BASEL, SWITZERLAND) 2022; 11:2634. [PMID: 36235499 PMCID: PMC9571934 DOI: 10.3390/plants11192634] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/28/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
Phyllosphere bacteria are an important determinant of plant growth and resistance to pathogens. However, the efficacy of phyllosphere bacteria in regulating infection of Pseudomonas syringae pv. glycinea (Psg) and its influence on soybean growth and physiology is unknown. In a greenhouse study, we assessed the influence of a phyllosphere bacterial consortium (BC) of 13 species isolated from field-grown soybean leaves on uninfected and deliberately Psg infected soybean plants. We measured Psg density on infected leaves with and without the application of the BC. The BC application resulted in a significant reduction in Psg cells. We also measured plant biomass, nodule mass and number, gas exchange, and leaf chlorophyll and nitrogen in four treatment groups: control plants, plants with a BC and no infection (BC), plants with BC and infected with Psg (BC + Psg), and plants infected with Psg alone. For all variables, plants infected with Psg alone showed significant reduction in measured variables compared to both BC treatments. Therefore, the bacterial consortium was effective in controlling the negative effects of Psg on growth and physiology. The BC treatment sometimes resulted in increases in measured variables such as plant biomass, nodule numbers, and leaf chlorophyll as compared to control and BC + Psg treatments. Overall, the positive influence of BC treatment on plant growth and physiology highlights its potential applications to increase crop yield and control bacterial pathogens.
Collapse
Affiliation(s)
| | - Babur S. Mirza
- Correspondence: ; Tel.: +1-417-836-5062; Fax: +1-417-836-4204
| | | |
Collapse
|
33
|
Kang L, Luo W, Dai Q, Zhou H, Wei W, Tang J, Han H, Yuan Y, Long J, Zhang Z, Hong M. Giant pandas' staple food bamboo phyllosphere fungal community and its influencing factors. Front Microbiol 2022; 13:1009588. [PMID: 36246256 PMCID: PMC9561849 DOI: 10.3389/fmicb.2022.1009588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/06/2022] [Indexed: 11/21/2022] Open
Abstract
Giant pandas have developed a series of foraging strategies to adapt to their special bamboo diets. Although bamboo is an important food resource for giant pandas in Liziping National Nature Reserve (Liziping NR), China, there are relatively few studies on their phyllosphere fungal community and its influencing factors. Herein, we used ITS1 amplification and metagenomic sequencing to analyze the phyllosphere fungi diversity and functions (KEGG, CAZyme, and antibiotic resistance gene) and explore the influencing factors for the three giant pandas foraging bamboo species (Arundinaria spanostachya, AS; Yushania lineolate, YL; and Fargesia ferax, FF) over different seasons (spring vs. autumn) in Liziping NR, China. We found that Ascomycota and Basidiomycota were the most dominant phyla in the bamboo phyllosphere. The alpha diversity (e.g., the Sobs index and Shannon index) was relatively higher in autumn samples than in spring samples, and the community structure differed significantly between the three bamboo species in spring and autumn. Some biotic and abiotic variables (e.g., the elevation and mean base diameter of bamboo) significantly influenced the abundance, diversity, and community structure of the bamboo phyllosphere fungal community. Moreover, the functional analysis showed the differences in the glycoside hydrolase community and antibiotic resistance gene (ARG) profile between spring and autumn samples. Co-occurrence network modeling suggested that AS phyllosphere fungal communities in autumn employed a much more complex network than that in spring, and the abundance of multidrug, tetracycline, and glycopeptide resistance genes was high and closely correlated with other ARGs. These results indicate that fungal community's abundance, diversity, and community structure are mainly affected by the season, host species, and elevation. The season and host species are major factors affecting the biological functions (KEGG and CAZyme), ARGs, and interactions between sympatric bacterial and fungal communities in bamboo phyllosphere. This integrated study can provide a reference basis for the seasonal management of bamboo resources foraged by wild giant pandas, and predict the risk of antibiotic resistance in bamboo phyllosphere fungal flora in Liziping NR (Xiaoxiangling mountains), China.
Collapse
Affiliation(s)
- Liwen Kang
- Liziping Giant Panda’s Ecology and Conservation Observation and Research Station of Sichuan Province (Science and Technology Department of Sichuan Province), China West Normal University, Nanchong, China
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China
| | - Wei Luo
- Liziping National Nature Reserve Administration, Ya’an, China
| | - Qinglong Dai
- Liziping National Nature Reserve Administration, Ya’an, China
| | - Hong Zhou
- Liziping Giant Panda’s Ecology and Conservation Observation and Research Station of Sichuan Province (Science and Technology Department of Sichuan Province), China West Normal University, Nanchong, China
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China
| | - Wei Wei
- Liziping Giant Panda’s Ecology and Conservation Observation and Research Station of Sichuan Province (Science and Technology Department of Sichuan Province), China West Normal University, Nanchong, China
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China
| | - Junfeng Tang
- Liziping Giant Panda’s Ecology and Conservation Observation and Research Station of Sichuan Province (Science and Technology Department of Sichuan Province), China West Normal University, Nanchong, China
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China
| | - Han Han
- Liziping Giant Panda’s Ecology and Conservation Observation and Research Station of Sichuan Province (Science and Technology Department of Sichuan Province), China West Normal University, Nanchong, China
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China
| | - Yuan Yuan
- Liziping Giant Panda’s Ecology and Conservation Observation and Research Station of Sichuan Province (Science and Technology Department of Sichuan Province), China West Normal University, Nanchong, China
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China
| | - Juejie Long
- Liziping Giant Panda’s Ecology and Conservation Observation and Research Station of Sichuan Province (Science and Technology Department of Sichuan Province), China West Normal University, Nanchong, China
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China
| | - Zejun Zhang
- Liziping Giant Panda’s Ecology and Conservation Observation and Research Station of Sichuan Province (Science and Technology Department of Sichuan Province), China West Normal University, Nanchong, China
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China
| | - Mingsheng Hong
- Liziping Giant Panda’s Ecology and Conservation Observation and Research Station of Sichuan Province (Science and Technology Department of Sichuan Province), China West Normal University, Nanchong, China
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China
| |
Collapse
|
34
|
Fofana A, Yerbanga RS, Bilgo E, Ouedraogo GA, Gendrin M, Ouedraogo JB. The Strategy of Paratransgenesis for the Control of Malaria Transmission. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.867104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Insect-borne diseases are responsible for important burdens on health worldwide particularly in Africa. Malaria alone causes close to half a million deaths every year, mostly in developing, tropical and subtropical countries, with 94% of the global deaths in 2019 occurring in the WHO African region. With several decades, vector control measures have been fundamental to fight against malaria. Considering the spread of resistance to insecticides in mosquitoes and to drugs in parasites, the need for novel strategies to inhibit the transmission of the disease is pressing. In recent years, several studies have focused on the interaction of malaria parasites, bacteria and their insect vectors. Their findings suggested that the microbiota of mosquitoes could be used to block Plasmodium transmission. A strategy, termed paratransgenesis, aims to interfere with the development of malaria parasites within their vectors through genetically-modified microbes, which produce antimalarial effectors inside the insect host. Here we review the progress of the paratransgenesis approach. We provide a historical perspective and then focus on the choice of microbial strains and on genetic engineering strategies. We finally describe the different steps from laboratory design to field implementation to fight against malaria.
Collapse
|
35
|
Xu N, Zhao Q, Zhang Z, Zhang Q, Wang Y, Qin G, Ke M, Qiu D, Peijnenburg WJGM, Lu T, Qian H. Phyllosphere Microorganisms: Sources, Drivers, and Their Interactions with Plant Hosts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4860-4870. [PMID: 35435673 DOI: 10.1021/acs.jafc.2c01113] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The leaves of plants are colonized by various microorganisms. In comparison to the rhizosphere, less is known about the characteristics and ecological functions of phyllosphere microorganisms. Phyllosphere microorganisms mainly originate from soil, air, and seeds. The composition of phyllosphere microorganisms is mainly affected by ecological and abiotic factors. Phyllosphere microorganisms execute multiple ecological functions by influencing leaf functions and longevity, seed mass, fruit development, and homeostasis of host growth. A plant can respond to phyllosphere microorganisms by secondary metabolite secretion and its immune system. Meanwhile, phyllosphere microorganisms play an important role in ecological stability and environmental safety assessment. However, as a result of the instability of the phyllosphere environment and the poor cultivability of phyllosphere microorganisms in the current research, there are still many limitations, such as the lack of insight into the mechanisms of plant-microorganism interactions, the roles of phyllosphere microorganisms in plant growth processes, the responses of phyllosphere microorganisms to plant metabolites, etc. This review summarizes the latest progress made in the research of the phyllosphere in recent years. This is beneficial for deepening our understanding of phyllosphere microorganisms and promoting the research of plant-atmosphere interactions, plant pathogens, and plant biological control.
Collapse
Affiliation(s)
- Nuohan Xu
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, People's Republic of China
| | - Qianqiu Zhao
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Science, Urumqi, Xinjiang 830011, People's Republic of China
| | - Zhenyan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, People's Republic of China
| | - Qi Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, People's Republic of China
| | - Yan Wang
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, People's Republic of China
| | - Guoyan Qin
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, People's Republic of China
| | - Mingjing Ke
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, People's Republic of China
| | - Danyan Qiu
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, People's Republic of China
| | - W J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, 2300 RA Leiden, Netherlands
- National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, Post Office Box 1, 3720 BA Bilthoven, Netherlands
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, People's Republic of China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, People's Republic of China
| |
Collapse
|
36
|
Fessia A, Barra P, Barros G, Nesci A. Could Bacillus biofilms enhance the effectivity of biocontrol strategies in the phyllosphere? J Appl Microbiol 2022; 133:2148-2166. [PMID: 35476896 DOI: 10.1111/jam.15596] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/13/2022] [Accepted: 04/21/2022] [Indexed: 11/30/2022]
Abstract
Maize (Zea mays L.), a major crop in Argentina and a staple food around the world, is affected by the emergence and re-emergence of foliar diseases. Agrochemicals are the main control strategy nowadays, but they can cause resistance in insects and microbial pathogens and have negative effects on the environment and human health. An emerging alternative is the use of living organisms, i.e. microbial biocontrol agents, to suppress plant pathogen populations. This is a risk-free approach when the organisms acting as biocontrol agents come from the same ecosystem as the foliar pathogens they are meant to antagonize. Some epiphytic microorganisms may form biofilm by becoming aggregated and attached to a surface, as is the case of spore-forming bacteria from the genus Bacillus. Their ability to sporulate and their tolerance to long storage periods make them a frequently used biocontrol agent. Moreover, the biofilm that they create protects them against different abiotic and biotic factors and helps them to acquire nutrients, which ensures their survival on the plants they protect. This review analyzes the interactions that the phyllosphere-inhabiting Bacillus genus establishes with its environment through biofilm, and how this lifestyle could serve to design effective biological control strategies.
Collapse
Affiliation(s)
- Aluminé Fessia
- Laboratorio de Ecología Microbiana, Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ruta Nacional 36, Km 601, X5804ZAB Río Cuarto, Córdoba, Argentina
| | - Paula Barra
- Laboratorio de Ecología Microbiana, Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ruta Nacional 36, Km 601, X5804ZAB Río Cuarto, Córdoba, Argentina
| | - Germán Barros
- Laboratorio de Ecología Microbiana, Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ruta Nacional 36, Km 601, X5804ZAB Río Cuarto, Córdoba, Argentina
| | - Andrea Nesci
- Laboratorio de Ecología Microbiana, Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ruta Nacional 36, Km 601, X5804ZAB Río Cuarto, Córdoba, Argentina
| |
Collapse
|
37
|
Liu B, Ju Y, Xia C, Zhong R, Christensen MJ, Zhang X, Nan Z. The effect of Epichloë endophyte on phyllosphere microbes and leaf metabolites in Achnatherum inebrians. iScience 2022; 25:104144. [PMID: 35402863 PMCID: PMC8991375 DOI: 10.1016/j.isci.2022.104144] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 01/09/2022] [Accepted: 03/21/2022] [Indexed: 11/21/2022] Open
Abstract
Upon exposure to the prevailing environment, leaves become increasingly colonized by fungi and bacteria located on the surface (epiphytic) or within (endophytic) the leaves. Many cool season grasses, including Achnatherum inebrians, host a seed-borne, intercellular, mutualistic Epichloë fungal endophyte, the growth of which is synchronized with the host grass. A study utilizing illumina sequencing was used to examine the epiphytic and endophytic microbial communities in Epichloë endophyte-infected and endophyte-free A. inebrians plants growing under hot dry field conditions. The presence of Epichloë endophyte increased the Shannon and decreased Simpson diversity of bacterial and fungal communities. Sphingomonas and Hymenobacter bacteria and Filobasidium and Mycosphaerella fungi were growing largely epiphytically, whereas Methylobacterium, Escherichia-Shigella, and the fungus Blumeria were mostly found within leaves with the location of colonization influenced by the Epichloë endophyte. In addition, leaf metabolites in Epichloë-infected and Epichloë-free leaves were examined using LC/MS. Epichloë was significantly correlated with 132 metabolites. Epichloë altered the composition and diversity of phyllosphere microbial communities 414 detected metabolites were annotated, of which the 132 differential metabolites There were 229 significant correlations between metabolites and microbial phyla
Collapse
Affiliation(s)
- Bowen Liu
- State Key Laboratory of Grassland Agro-ecosystems, Center for Grassland Microbiome, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, People's Republic of China
| | - Yawen Ju
- State Key Laboratory of Grassland Agro-ecosystems, Center for Grassland Microbiome, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, People's Republic of China
| | - Chao Xia
- State Key Laboratory of Grassland Agro-ecosystems, Center for Grassland Microbiome, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, People's Republic of China
| | - Rui Zhong
- State Key Laboratory of Grassland Agro-ecosystems, Center for Grassland Microbiome, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, People's Republic of China
| | | | - Xingxu Zhang
- State Key Laboratory of Grassland Agro-ecosystems, Center for Grassland Microbiome, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, People's Republic of China
| | - Zhibiao Nan
- State Key Laboratory of Grassland Agro-ecosystems, Center for Grassland Microbiome, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, People's Republic of China
| |
Collapse
|
38
|
Krishna PS, Woodcock SD, Pfeilmeier S, Bornemann S, Zipfel C, Malone JG. Pseudomonas syringae addresses distinct environmental challenges during plant infection through the coordinated deployment of polysaccharides. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2206-2221. [PMID: 34905021 PMCID: PMC8982409 DOI: 10.1093/jxb/erab550] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Prior to infection, phytopathogenic bacteria face a challenging environment on the plant surface, where they are exposed to nutrient starvation and abiotic stresses. Pathways enabling surface adhesion, stress tolerance, and epiphytic survival are important for successful plant pathogenesis. Understanding the roles and regulation of these pathways is therefore crucial to fully understand bacterial plant infections. The phytopathogen Pseudomonas syringae pv. tomato (Pst) encodes multiple polysaccharides that are implicated in biofilm formation, stress survival, and virulence in other microbes. To examine how these polysaccharides impact Pst epiphytic survival and pathogenesis, we analysed mutants in multiple polysaccharide loci to determine their intersecting contributions to epiphytic survival and infection. In parallel, we used qRT-PCR to analyse the regulation of each pathway. Pst polysaccharides are tightly coordinated by multiple environmental signals. Nutrient availability, temperature, and surface association strongly affect the expression of different polysaccharides under the control of the signalling protein genes ladS and cbrB and the second messenger cyclic-di-GMP. Furthermore, functionally redundant, combinatorial phenotypes were observed for several polysaccharides. Exopolysaccharides play a role in mediating leaf adhesion, while α-glucan and alginate together confer desiccation tolerance. Our results suggest that polysaccharides play important roles in overcoming environmental challenges to Pst during plant infection.
Collapse
Affiliation(s)
- Pilla Sankara Krishna
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Stuart Daniel Woodcock
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Sebastian Pfeilmeier
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Stephen Bornemann
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Cyril Zipfel
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Jacob George Malone
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
- University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| |
Collapse
|
39
|
Valentiella maceioensis gen. et sp. nov. (Herpotrichiellaceae, Chaetothyriales), a new black yeast-like fungus isolated from bromeliads in Brazil. Mycol Prog 2022. [DOI: 10.1007/s11557-022-01783-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Shiraishi K, Sakai Y. Autophagy as a Survival Strategy for Eukaryotic Microbes Living in the Phyllosphere. FRONTIERS IN PLANT SCIENCE 2022; 13:867486. [PMID: 35401602 PMCID: PMC8992653 DOI: 10.3389/fpls.2022.867486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Autophagy is an intracellular degradation process that is highly conserved among eukaryotes at the molecular level. The process was originally revealed in the budding yeast, but the physiological role of autophagy in yeast cells had remained unknown as autophagy-deficient yeast mutants did now show a clear growth phenotype in laboratory conditions. In this review, we introduce the role of autophagy in the methylotrophic yeast Candida boidinii grown on the leaf surface of Arabidopsis thaliana. Autophagy is shown to be required for proliferation in the phyllosphere, and selective autophagic pathways such as pexophagy and cytoplasm-to-vacuole targeting (Cvt) pathway are strictly regulated during both the daily cycle and the host plant life cycle. This review describes our current understanding of the role of autophagy as a survival strategy for phyllosphere fungi. Critical functions of autophagy for pathogen invasions are also discussed.
Collapse
|
41
|
Fatemi S, Haelewaters D, Urbina H, Brown S, Houston ML, Aime MC. Sporobolomyces lactucae sp. nov. (Pucciniomycotina, Microbotryomycetes, Sporidiobolales): An Abundant Component of Romaine Lettuce Phylloplanes. J Fungi (Basel) 2022; 8:jof8030302. [PMID: 35330304 PMCID: PMC8951336 DOI: 10.3390/jof8030302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 11/24/2022] Open
Abstract
Shifts in food microbiomes may impact the establishment of human pathogens, such as virulent lineages of Escherichia coli, and thus are important to investigate. Foods that are often consumed raw, such as lettuce, are particularly susceptible to such outbreaks. We have previously found that an undescribed Sporobolomyces yeast is an abundant component of the mycobiome of commercial romaine lettuce (Lactuca sativa). Here, we formally describe this species as Sporobolomyces lactucae sp. nov. (Pucciniomycotina, Microbotryomycetes, and Sporidiobolales). We isolated multiple strains of this yeast from commercial romaine lettuce purchased from supermarkets in Illinois and Indiana; additional isolates were obtained from various plant phylloplanes in California. S. lactucae is a red-pigmented species that is similar in appearance to other members of the genus Sporobolomyces. However, it can be differentiated by its ability to assimilate glucuronate and D-glucosamine. Gene genealogical concordance supports S. lactucae as a new species. The phylogenetic reconstruction of a four-locus dataset, comprising the internal transcribed spacer and large ribosomal subunit D1/D2 domain of the ribosomal RNA gene, translation elongation factor 1-α, and cytochrome B, places S. lactucae as a sister to the S. roseus clade. Sporobolomyces lactucae is one of the most common fungi in the lettuce microbiome.
Collapse
Affiliation(s)
- Samira Fatemi
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA; (S.F.); (D.H.); (H.U.); (S.B.); (M.L.H.)
| | - Danny Haelewaters
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA; (S.F.); (D.H.); (H.U.); (S.B.); (M.L.H.)
- Research Group Mycology, Department of Biology, Ghent University, 9000 Ghent, Belgium
- Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| | - Hector Urbina
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA; (S.F.); (D.H.); (H.U.); (S.B.); (M.L.H.)
- Division of Plant Industry, Florida Department of Agriculture and Consumer Services, Gainesville, FL 32608, USA
| | - Samuel Brown
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA; (S.F.); (D.H.); (H.U.); (S.B.); (M.L.H.)
| | - Makenna L. Houston
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA; (S.F.); (D.H.); (H.U.); (S.B.); (M.L.H.)
| | - M. Catherine Aime
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA; (S.F.); (D.H.); (H.U.); (S.B.); (M.L.H.)
- Correspondence:
| |
Collapse
|
42
|
Klimov PB, Chetverikov PE, Dodueva IE, Vishnyakov AE, Bolton SJ, Paponova SS, Lutova LA, Tolstikov AV. Symbiotic bacteria of the gall-inducing mite Fragariocoptes setiger (Eriophyoidea) and phylogenomic resolution of the eriophyoid position among Acari. Sci Rep 2022; 12:3811. [PMID: 35264574 PMCID: PMC8907322 DOI: 10.1038/s41598-022-07535-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/17/2022] [Indexed: 12/13/2022] Open
Abstract
Eriophyoid mites represent a hyperdiverse, phytophagous lineage with an unclear phylogenetic position. These mites have succeeded in colonizing nearly every seed plant species, and this evolutionary success was in part due to the mites' ability to induce galls in plants. A gall is a unique niche that provides the inducer of this modification with vital resources. The exact mechanism of gall formation is still not understood, even as to whether it is endogenic (mites directly cause galls) or exogenic (symbiotic microorganisms are involved). Here we (i) investigate the phylogenetic affinities of eriophyoids and (ii) use comparative metagenomics to test the hypothesis that the endosymbionts of eriophyoid mites are involved in gall formation. Our phylogenomic analysis robustly inferred eriophyoids as closely related to Nematalycidae, a group of deep-soil mites belonging to Endeostigmata. Our comparative metagenomics, fluorescence in situ hybridization, and electron microscopy experiments identified two candidate endosymbiotic bacteria shared across samples, however, it is unlikely that they are gall inducers (morphotype1: novel Wolbachia, morphotype2: possibly Agrobacterium tumefaciens). We also detected an array of plant pathogens associated with galls that may be vectored by the mites, and we determined a mite pathogenic virus (Betabaculovirus) that could be tested for using in biocontrol of agricultural pest mites.
Collapse
Affiliation(s)
- Pavel B Klimov
- X-BIO Institute, Tyumen State University, Tyumen, Russia, 625003.
| | | | - Irina E Dodueva
- Saint-Petersburg State University, St. Petersburg, Russia, 199034
| | | | - Samuel J Bolton
- Florida Department of Agriculture and Consumer Services, Gainesville, FL, USA
| | | | | | | |
Collapse
|
43
|
Determining effects of temperature abuse timing on shelf life of RTE baby spinach through microbial growth models and its association with sensory quality. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108639] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
44
|
Senanayake IC, Pem D, Rathnayaka AR, Wijesinghe SN, Tibpromma S, Wanasinghe DN, Phookamsak R, Kularathnage ND, Gomdola D, Harishchandra D, Dissanayake LS, Xiang MM, Ekanayaka AH, McKenzie EHC, Hyde KD, Zhang HX, Xie N. Predicting global numbers of teleomorphic ascomycetes. FUNGAL DIVERS 2022. [DOI: 10.1007/s13225-022-00498-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
AbstractSexual reproduction is the basic way to form high genetic diversity and it is beneficial in evolution and speciation of fungi. The global diversity of teleomorphic species in Ascomycota has not been estimated. This paper estimates the species number for sexual ascomycetes based on five different estimation approaches, viz. by numbers of described fungi, by fungus:substrate ratio, by ecological distribution, by meta-DNA barcoding or culture-independent studies and by previous estimates of species in Ascomycota. The assumptions were made with the currently most accepted, “2.2–3.8 million” species estimate and results of previous studies concluding that 90% of the described ascomycetes reproduce sexually. The Catalogue of Life, Species Fungorum and published research were used for data procurement. The average value of teleomorphic species in Ascomycota from all methods is 1.86 million, ranging from 1.37 to 2.56 million. However, only around 83,000 teleomorphic species have been described in Ascomycota and deposited in data repositories. The ratio between described teleomorphic ascomycetes to predicted teleomorphic ascomycetes is 1:22. Therefore, where are the undiscovered teleomorphic ascomycetes? The undescribed species are no doubt to be found in biodiversity hot spots, poorly-studied areas and species complexes. Other poorly studied niches include extremophiles, lichenicolous fungi, human pathogens, marine fungi, and fungicolous fungi. Undescribed species are present in unexamined collections in specimen repositories or incompletely described earlier species. Nomenclatural issues, such as the use of separate names for teleomorph and anamorphs, synonyms, conspecific names, illegitimate and invalid names also affect the number of described species. Interspecies introgression results in new species, while species numbers are reduced by extinctions.
Collapse
|
45
|
Longa CMO, Antonielli L, Bozza E, Sicher C, Pertot I, Perazzolli M. Plant organ and sampling time point determine the taxonomic structure of microbial communities associated to apple plants in the orchard environment. Microbiol Res 2022; 258:126991. [DOI: 10.1016/j.micres.2022.126991] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/07/2022] [Accepted: 02/14/2022] [Indexed: 01/04/2023]
|
46
|
Perreault R, Laforest-Lapointe I. Plant-microbe interactions in the phyllosphere: facing challenges of the anthropocene. THE ISME JOURNAL 2022; 16:339-345. [PMID: 34522008 PMCID: PMC8776876 DOI: 10.1038/s41396-021-01109-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/27/2021] [Accepted: 09/03/2021] [Indexed: 02/08/2023]
Abstract
Global change is a defining feature of the Anthropocene, the current human-dominated epoch, and poses imminent threats to ecosystem dynamics and services such as plant productivity, biodiversity, and environmental regulation. In this era, terrestrial ecosystems are experiencing perturbations linked to direct habitat modifications as well as indirect effects of global change on species distribution and extreme abiotic conditions. Microorganisms represent an important reservoir of biodiversity that can influence macro-organisms as they face habitat loss, rising atmospheric CO2 concentration, pollution, global warming, and increased frequency of drought. Plant-microbe interactions in the phyllosphere have been shown to support plant growth and increase host resistance to biotic and abiotic stresses. Here, we review how plant-microbe interactions in the phyllosphere can influence host survival and fitness in the context of global change. We highlight evidence that plant-microbe interactions (1) improve urban pollution remediation through the degradation of pollutants such as ultrafine particulate matter, black carbon, and atmospheric hydrocarbons, (2) have contrasting impacts on plant species range shifts through the loss of symbionts or pathogens, and (3) drive plant host adaptation to drought and warming. Finally, we discuss how key community ecology processes could drive plant-microbe interactions facing challenges of the Anthropocene.
Collapse
Affiliation(s)
- Rosaëlle Perreault
- grid.86715.3d0000 0000 9064 6198Département de biologie, Université de Sherbrooke, Sherbrooke, QC J1K 2R1 Canada
| | - Isabelle Laforest-Lapointe
- grid.86715.3d0000 0000 9064 6198Département de biologie, Université de Sherbrooke, Sherbrooke, QC J1K 2R1 Canada ,grid.86715.3d0000 0000 9064 6198Centre Sève, Université de Sherbrooke, Sherbrooke, QC J1K 2R1 Canada
| |
Collapse
|
47
|
Wicaksono WA, Erschen S, Krause R, Müller H, Cernava T, Berg G. Enhanced survival of multi-species biofilms under stress is promoted by low-abundant but antimicrobial-resistant keystone species. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126836. [PMID: 34403940 DOI: 10.1016/j.jhazmat.2021.126836] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/11/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Multi-species biofilms are more resistant against stress compared to single-species biofilms. However, the mechanisms underlying this common observation remain elusive. Therefore, we studied biofilm formation of well-known opportunistic pathogens (Acinetobacter baumanii, Enterococcus faecium, Escherichia coli, Staphylococcus haemolyticus and Stenotrophomonas maltophilia) in various approaches. Synergistic effects in their multi-species biofilms were observed. Using metatranscriptomics, changes in the gene expression of the involved members became evident, and provided explanations for the improved survivability under nutrient limitation and exposure to disinfectants. Genes encoding proteins for vitamin B6 synthesis and iron uptake were linked to synergism in the multi-species biofilm under nutrient-limited conditions. Our study indicates that sub-lethal concentrations of an alcohol-based disinfectant enhance biofilm yields in multi-species assemblages. A reduction of the dominant taxa in the multi-species biofilm under disinfectant pressure allowed minor taxa to bloom. The findings underline the importance of minor but antimicrobial-resistant species that serve as "protectors" for the whole assemblage due to upregulation of genes involved in defence mechanisms and biofilm formation. This ultimately results in an increase in the total yield of the multi-species biofilm. We conclude that inter-species interactions may be crucial for the survival of opportunistic pathogens; especially under conditions that are typically found under hospital settings.
Collapse
Affiliation(s)
- Wisnu Adi Wicaksono
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria.
| | - Sabine Erschen
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria.
| | - Robert Krause
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Graz, Austria; BioTechMed Graz, Inter-university Cooperation Platform, Graz, Austria.
| | - Henry Müller
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria.
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria; BioTechMed Graz, Inter-university Cooperation Platform, Graz, Austria.
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria; BioTechMed Graz, Inter-university Cooperation Platform, Graz, Austria; Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany; Institute for Biochemistry and Biology, University of Postdam, Postdam, Germany.
| |
Collapse
|
48
|
Sahu KP, Patel A, Kumar M, Sheoran N, Mehta S, Reddy B, Eke P, Prabhakaran N, Kumar A. Integrated Metabarcoding and Culturomic-Based Microbiome Profiling of Rice Phyllosphere Reveal Diverse and Functional Bacterial Communities for Blast Disease Suppression. Front Microbiol 2021; 12:780458. [PMID: 34917058 PMCID: PMC8669949 DOI: 10.3389/fmicb.2021.780458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 10/20/2021] [Indexed: 11/13/2022] Open
Abstract
Phyllosphere-the harsh foliar plant part exposed to vagaries of environmental and climatic variables is a unique habitat for microbial communities. In the present work, we profiled the phyllosphere microbiome of the rice plants using 16S rRNA gene amplicon sequencing (hereafter termed metabarcoding) and the conventional microbiological methods (culturomics) to decipher the microbiome assemblage, composition, and their functions such as antibiosis and defense induction against rice blast disease. The blast susceptible rice genotype (PRR78) harbored far more diverse bacterial species (294 species) than the resistant genotype (Pusa1602) that showed 193 species. Our metabarcoding of bacterial communities in phyllomicrobiome revealed the predominance of the phylum, Proteobacteria, and its members Pantoea, Enterobacter, Pseudomonas, and Erwinia on the phyllosphere of both rice genotypes. The microbiological culturomic validation of metabarcoding-taxonomic annotation further confirmed the prevalence of 31 bacterial isolates representing 11 genera and 16 species with the maximum abundance of Pantoea. The phyllomicrobiome-associated bacterial members displayed antifungal activity on rice blast fungus, Magnaporthe oryzae, by volatile and non-volatile metabolites. Upon phyllobacterization of rice cultivar PB1, the bacterial species such as Enterobacter sacchari, Microbacterium testaceum, Pantoea ananatis, Pantoea dispersa, Pantoea vagans, Pseudomonas oryzihabitans, Rhizobium sp., and Sphingomonas sp. elicited a defense response and contributed to the suppression of blast disease. qRT-PCR-based gene expression analysis indicated over expression of defense-associated genes such as OsCEBiP, OsCERK1, and phytohormone-associated genes such as OsPAD4, OsEDS1, OsPR1.1, OsNPR1, OsPDF2.2, and OsFMO in phyllobacterized rice seedlings. The phyllosphere bacterial species showing blast suppressive activity on rice were found non-plant pathogenic in tobacco infiltration assay. Our comparative microbiome interrogation of the rice phyllosphere culminated in the isolation and identification of agriculturally significant bacterial communities for blast disease management in rice farming through phyllomicrobiome engineering in the future.
Collapse
Affiliation(s)
- Kuleshwar Prasad Sahu
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Asharani Patel
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Mukesh Kumar
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Neelam Sheoran
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Sahil Mehta
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Bhaskar Reddy
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Pierre Eke
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Aundy Kumar
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
49
|
Chahar M, Kroupitski Y, Gollop R, Belausov E, Melotto M, Sela-Saldinger S. Determination of Salmonella enterica Leaf Internalization Varies Substantially According to the Method and Conditions Used to Assess Bacterial Localization. Front Microbiol 2021; 12:622068. [PMID: 34803936 PMCID: PMC8603913 DOI: 10.3389/fmicb.2021.622068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 08/27/2021] [Indexed: 11/13/2022] Open
Abstract
In a previous study, comparing the internalization of S. enterica serovar Typhimurium in various leaves by confocal microscopy, we have demonstrated that the pathogen failed to internalize tomato leaves. Numerous reasons may account for these findings, yet one such factor might be the methodology employed to quantify leaf internalization. To this end, we have systematically studied leaf localization of a Green-fluorescent protein-labeled Salmonella strain in tomato, lettuce, and Arabidopsis leaves by surface sterilization and enumeration of the surviving bacteria, side by side, with confocal microscopy observations. Leaf sterilization was performed using either sodium hypochlorite, silver nitrate, or ethanol for 1 to 7min. The level of internalization varied according to the type of disinfectant used for surface sterilization and the treatment time. Treatment of tomato leaves with 70% ethanol for up to 7min suggested possible internalization of Salmonella, while confocal microscopy showed no internalization. In the case of in lettuce and Arabidopsis leaves, both the plate-count technique and confocal microscopy demonstrated considerable Salmonella internalization thought different sterilization conditions resulted in variations in the internalization levels. Our findings highlighted the dependency of the internalization results on the specific disinfection protocol used to determine bacterial localization. The results underscore the importance of confocal microscopy in validating a particular surface sterilization protocol whenever a new pair of bacterial strain and plant cultivar is studied.
Collapse
Affiliation(s)
- Madhvi Chahar
- Department of Food Sciences, The Volcani Center, Institute for Postharvest and Food Sciences, Agriculture Research Organization, Rishon-LeZion, Israel
| | - Yulia Kroupitski
- Department of Food Sciences, The Volcani Center, Institute for Postharvest and Food Sciences, Agriculture Research Organization, Rishon-LeZion, Israel
| | - Rachel Gollop
- Department of Food Sciences, The Volcani Center, Institute for Postharvest and Food Sciences, Agriculture Research Organization, Rishon-LeZion, Israel
| | - Eduard Belausov
- Microscopy Unit, Plant Sciences, Ornamental Plants and Agricultural Biotechnology, The Volcani Center, Agriculture Research Organization, Rishon-LeZion, Israel
| | - Maeli Melotto
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Shlomo Sela-Saldinger
- Department of Food Sciences, The Volcani Center, Institute for Postharvest and Food Sciences, Agriculture Research Organization, Rishon-LeZion, Israel
| |
Collapse
|
50
|
Smee M, Hendry TA. Context-dependent benefits of aphids for bacteria in the phyllosphere. Am Nat 2021; 199:380-392. [DOI: 10.1086/718264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|