1
|
Dalpati N, Rai SK, Dash SP, Kumar P, Singh D, Sarangi PP. Integrins α5β1 and αvβ3 Differentially Participate in the Recruitment and Reprogramming of Tumor-associated Macrophages in the In Vitro and In Vivo Models of Breast Tumor. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1553-1568. [PMID: 39330703 DOI: 10.4049/jimmunol.2400180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024]
Abstract
Tumor-associated macrophages (TAMs) drive the protumorigenic responses and facilitate tumor progression via matrix remodeling, angiogenesis, and immunosuppression by interacting with extracellular matrix proteins via integrins. However, the expression dynamics of integrin and its correlation with TAM functional programming in the tumors remain unexplored. In this study, we examined surface integrins' role in TAM recruitment and phenotypic programming in a 4T1-induced murine breast tumor model. Our findings show that integrin α5β1 is upregulated in CD11b+Ly6Chi monocytes in the bone marrow and blood by day 10 after tumor induction. Subsequent analysis revealed elevated integrin α5β1 expression on tumor-infiltrating monocytes (Ly6ChiMHC class II [MHCII]low) and M1 TAMs (F4/80+Ly6ClowMHCIIhi), whereas integrin αvβ3 was predominantly expressed on M2 TAMs (F4/80+Ly6ClowMHCIIlow), correlating with higher CD206 and MERTK expression. Gene profiling of cells sorted from murine tumors showed that CD11b+Ly6G-F4/80+α5+ TAMs had elevated inflammatory genes (IL-6, TNF-α, and STAT1/2), whereas CD11b+Ly6G-F4/80+αv+ TAMs exhibited a protumorigenic phenotype (IL-10, Arg1, TGF-β, and STAT3/6). In vitro studies demonstrated that blocking integrin α5 and αv during macrophage differentiation from human peripheral blood monocytes reduced cell spreading and expression of CD206 and CD163 in the presence of specific matrix proteins, fibronectin, and vitronectin. Furthermore, RNA sequencing data analysis (GEO dataset: GSE195857) from bone marrow-derived monocytes and TAMs in 4T1 mammary tumors revealed differential integrin α5 and αv expression and their association with FAK and SRC kinase. In line with this, FAK inhibition during TAM polarization reduced SRC, STAT1, and STAT6 phosphorylation. In conclusion, these findings underscore the crucial role of integrins in TAM recruitment, polarization, and reprogramming in tumors.
Collapse
Affiliation(s)
- Nibedita Dalpati
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Shubham Kumar Rai
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Shiba Prasad Dash
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Puneet Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Divya Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Pranita P Sarangi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| |
Collapse
|
2
|
Hailin L, Yiting C, Yue W, Lijun L, Renlu Z, Yunhan C, Yanyang Z, Qiuyu Z. Ly6E on tumor cells impairs anti-tumor T-cell responses: a novel mechanism of tumor-induced immune exclusion. Cancer Immunol Immunother 2024; 74:4. [PMID: 39487896 PMCID: PMC11531412 DOI: 10.1007/s00262-024-03851-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/28/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND Lymphocyte antigen 6 complex, locus E (Ly6E) has been initially demonstrated to involve in T cell activity and impair viral infectivity. Recently, high expression levels of Ly6E have been reported in tumor microenvironment (TME) of various types of cancers. However, the immunoregulatory mechanism of Ly6E manipulating TME remains unknown. METHODS TCGA database and Kaplan-Meier plotter database were used to evaluate the correlation between Ly6E expression levels and cancer patient survival. After analyzing Ly6E expression levels in human breast cancer tissues and tumor cell lines, we generated Ly6E knockout (KO) and overexpression (OE) mouse cell lines. Cell proliferation ability in vitro and the ability of growth and metastasis in mouse tumor models were compared between KO/OE and wild-type tumor cells. On day 7 after tumor implantation, tumor tissues were separated for flow cytometric assay, bulk RNA sequencing and single-cell RNA sequencing (ScRNA-seq). The role of Ly6E-expressing tumor cell on macrophage was analyzed in vitro. RESULTS Our result surprisingly found that high Ly6E expression levels were associated with CD8+ T cell exclusion in tumor tissues and resistance to immunotherapy. Our data showed that knockout of Ly6E in tumor cells prompts tumor regression and inhibits tumor metastases, and Ly6E-OE tumor cells vice versa. The enhanced anti-tumor effect of Ly6E knockout in tumor cells was dependent on T cell response and formed long-lasting memory. The increase in the CD8+ T-cell infiltration into the tumor islet of Ly6E-KO tumors confirmed the role of Ly6E on T cell exclusion. ScRNA-seq analysis showed that M2 macrophages are particularly abundant in the Ly6E-expressing tumor tissues, especially M2-4 macrophage cluster identified by high levels of Arg-1, indicates that Ly6E-expressing tumor cells might restrict T cell infiltration via M2 macrophages. Moreover, in vitro assay showed that cell culture media derived from Ly6E-positive tumor cells promoted macrophage migration and M2 polarization. CONCLUSION Our study illuminated that Ly6E-expressing tumor cells facilitated the accumulation of M2 macrophages in TME, which contributes to CD8+ T cell exclusion and provides new insights for improving efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Lan Hailin
- Institute of Immunotherapy, Fujian Medical University, Fuzhou, 350122, China
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Chen Yiting
- Institute of Immunotherapy, Fujian Medical University, Fuzhou, 350122, China
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Wu Yue
- Institute of Immunotherapy, Fujian Medical University, Fuzhou, 350122, China
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Li Lijun
- Institute of Immunotherapy, Fujian Medical University, Fuzhou, 350122, China
| | - Zhang Renlu
- Institute of Immunotherapy, Fujian Medical University, Fuzhou, 350122, China
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Chen Yunhan
- Institute of Immunotherapy, Fujian Medical University, Fuzhou, 350122, China
| | - Zhu Yanyang
- Institute of Immunotherapy, Fujian Medical University, Fuzhou, 350122, China
| | - Zhang Qiuyu
- Institute of Immunotherapy, Fujian Medical University, Fuzhou, 350122, China.
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China.
| |
Collapse
|
3
|
Boreel DF, Beerkens AP, Heskamp S, Boswinkel M, Peters JP, Adema GJ, Span PN, Bussink J. Inhibition of OXPHOS induces metabolic rewiring and reduces hypoxia in murine tumor models. Clin Transl Radiat Oncol 2024; 49:100875. [PMID: 39469146 PMCID: PMC11513494 DOI: 10.1016/j.ctro.2024.100875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/30/2024] Open
Abstract
Introduction Tumor hypoxia is a feature of many solid malignancies and is known to cause radio resistance. In recent years it has become clear that hypoxic tumor regions also foster an immunosuppressive phenotype and are involved in immunotherapy resistance. It has been proposed that reducing the tumors' oxygen consumption will result in an increased oxygen concentration in the tissue and improve radio- and immunotherapy efficacy. The aim of this study is to investigate the metabolic rewiring of cancer cells by pharmacological attenuation of oxidative phosphorylation (OXPHOS) and subsequently reduce tumor hypoxia. Material and methods The metabolic effects of three OXPHOS inhibitors IACS-010759, atovaquone and metformin were explored by measuring oxygen consumption rate, extra cellular acidification rate, and [18F]FDG uptake in 2D and 3D cell culture. Tumor cell growth in 2D cell culture and hypoxia in 3D cell culture were analyzed by live cell imaging. Tumor hypoxia and [18F]FDG uptake in vivo following treatment with IACS-010759 was determined by immunohistochemistry and ex vivo biodistribution respectively. Results In vitro experiments show that tumor cell metabolism is heterogeneous between different models. Upon OXPHOS inhibition, metabolism shifts from oxygen consumption through OXPHOS towards glycolysis, indicated by increased acidification and glucose uptake. Inhibition of OXPHOS by IACS-010759 treatment reduced diffusion limited tumor hypoxia in both 3D cell culture and in vivo. Although immune cell presence was lower in hypoxic areas compared with normoxic areas, it is not altered following short term OXPHOS inhibition. Discussion These results show that inhibition of OXPHOS causes a metabolic shift from OXPHOS towards increased glycolysis in 2D and 3D cell culture. Moreover, inhibition of OXPHOS reduces diffusion limited hypoxia in 3D cell culture and murine tumor models. Reduced hypoxia by OXPHOS inhibition might enhance therapy efficacy in future studies. However, caution is warranted as systemic metabolic rewiring can cause adverse effects.
Collapse
Affiliation(s)
- Daan F. Boreel
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboudumc, Nijmegen, the Netherlands
- Department of Medical Imaging, Radboudumc, Nijmegen, the Netherlands
| | - Anne P.M. Beerkens
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboudumc, Nijmegen, the Netherlands
- Department of Medical Imaging, Radboudumc, Nijmegen, the Netherlands
| | - Sandra Heskamp
- Department of Medical Imaging, Radboudumc, Nijmegen, the Netherlands
| | - Milou Boswinkel
- Department of Medical Imaging, Radboudumc, Nijmegen, the Netherlands
| | - Johannes P.W. Peters
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboudumc, Nijmegen, the Netherlands
| | - Gosse J. Adema
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboudumc, Nijmegen, the Netherlands
| | - Paul N. Span
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboudumc, Nijmegen, the Netherlands
| | - Johan Bussink
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboudumc, Nijmegen, the Netherlands
| |
Collapse
|
4
|
Mantovani A, Marchesi F, Di Mitri D, Garlanda C. Macrophage diversity in cancer dissemination and metastasis. Cell Mol Immunol 2024; 21:1201-1214. [PMID: 39402303 PMCID: PMC11528009 DOI: 10.1038/s41423-024-01216-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/06/2024] [Indexed: 11/02/2024] Open
Abstract
Invasion and metastasis are hallmarks of cancer. In addition to the well-recognized hematogenous and lymphatic pathways of metastasis, cancer cell dissemination can occur via the transcoelomic and perineural routes, which are typical of ovarian and pancreatic cancer, respectively. Macrophages are a universal major component of the tumor microenvironment and, in established tumors, promote growth and dissemination to secondary sites. Here, we review the role of tumor-associated macrophages (TAMs) in cancer cell dissemination and metastasis, emphasizing the diversity of myeloid cells in different tissue contexts (lungs, liver, brain, bone, peritoneal cavity, nerves). The generally used models of lung metastasis fail to capture the diversity of pathways and tissue microenvironments. A better understanding of TAM diversity in different tissue contexts may pave the way for tailored diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Alberto Mantovani
- IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy.
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (Milan), Italy.
- William Harvey Research Institute, Queen Mary University, London, UK.
| | - Federica Marchesi
- IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
- Department Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Diletta Di Mitri
- IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (Milan), Italy
| | - Cecilia Garlanda
- IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (Milan), Italy
| |
Collapse
|
5
|
Zhang Y, Bagley J, Park HJ, Cao X, Maganto-Garcia E, Lichtman A, Beasley D, Galper JB. Toll-Like Receptor 2 Attenuates the Formation and Progression of Angiotensin II-Induced Abdominal Aortic Aneurysm in ApoE-/- Mice. J Vasc Res 2024:1-14. [PMID: 39467520 DOI: 10.1159/000541651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/25/2024] [Indexed: 10/30/2024] Open
Abstract
INTRODUCTION We demonstrated Toll-like receptor (TLR) 4 in the pathogenesis of angiotensin II (AngII)-mediated abdominal aortic aneurysm (AAA) formation. Here, we study TLR2 in the AAA formation. METHODS Male ApoE-/- and ApoE-/-TLR2-/- mice were treated with AngII. Mice were injected with the TLR2 agonist Pam3CSK4. The incidence and severity of AAA were determined. MCP-1, MCP-5, RANTES, CXCL10, CCR5, and CXCR3 were analyzed. M1 and M2 macrophages in the aorta were detected by flow cytometry. RESULTS These studies demonstrated an increase in AAA formation in TLR2-/- mice and a decrease by Pam3CSK4. Pam3CSK4 decreased the ratio of M1/M2 and the levels of RANTES, CXCL10, CCR5, and CXCR3. Furthermore, Pam3CSK4 treatment 1 week following AngII retarded the progression of AAA. CONCLUSION These data demonstrated a protective effect of TLR2 signaling on AAA in association with a decrease in the ratio of M1 to M2 macrophages and the expression of chemokines and their receptors. Furthermore, the treatment of Pam3CSK4 after AngII demonstrated a marked retardation of lesion progression. Given the fact that most AAA patients are detected late in the disease process, these findings suggest that TLR2 stimulation may play a therapeutic role in retarding disease progression.
Collapse
Affiliation(s)
- Yali Zhang
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Jessamyn Bagley
- Department of Immunology, Tufts School of Medicine, Boston, Massachusetts, USA
| | - Ho-Jin Park
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Xuehong Cao
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Elena Maganto-Garcia
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrew Lichtman
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Debbie Beasley
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Jonas B Galper
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
- Cardiovascular Division, Department of Medicine, Tufts Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Yu C, Hu L, Yu Q, Ren Y, Zhang M, Gao L, Lyu S, Wang J, Xiao E, Chen Z, Shang Q, Xu P. In vivo self-assembled albumin nanoparticle elicit antitumor immunity of PD-1 inhibitor by imaging and clearing tumor-associated macrophages. Front Chem 2024; 12:1469568. [PMID: 39421608 PMCID: PMC11484263 DOI: 10.3389/fchem.2024.1469568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
Eliciting anti-tumor immune responses and improving the tumor microenvironment crucial for boosting the effectiveness of anti-PD-1 immunotherapy. Tumor-associated macrophages (TAMs), the primary types of immune cells infiltrating tumors, play a critical role in the formation of an immunosuppressive microenvironment. In this study, we constructed a novel Evans Blue (EB)-based in vivo self-assembled nanocarrier system, mUNO-EB-ICG-Fc@Alb nanoparticles (designated as MA NPs), for targeted imaging and clearance of M2-TAMs to elicit antitumor immunotherapy of PD-1 inhibitor. In vitro experiments demonstrated the specific fluorescence imaging and killing effect of MA NPs on M2-TAMs. In vivo experiments shown that MA NPs-induced chemodynamic therapy (CDT) successfully reversed the tumor immunosuppressive microenvironment (ITM), promoted intratumoral infiltration of T lymphocytes, and ultimately enhancing the anti-tumor immunotherapy effect of PD-1 inhibitors. This study might provide good inspiration for improving the therapeutic efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Cheng Yu
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Linan Hu
- Department of Radiology, Zhuzhou Central Hospital, Zhuzhou, Hunan, China
| | - Qilin Yu
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yulu Ren
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Minping Zhang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lujing Gao
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shiyi Lyu
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Junli Wang
- Department of Ultrasound, The Air Force Hospital of Southern Theater Command, Guangzhou, Guangdong, China
| | - Enhua Xiao
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhu Chen
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Quanliang Shang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Pengfei Xu
- Department of Nuclear Medicine, Weifang People’s Hospital, Shandong Second Medical University, Weifang, Shandong, China
| |
Collapse
|
7
|
Chen C, Feng C, Luo Q, Zeng Y, Yuan W, Cui Y, Tang Z, Zhang H, Li T, Peng J, Peng L, Xie X, Guo Y, Peng F, Jiang X, Bai P, Qi Z, Dai H. CD5L up-regulates the TGF-β signaling pathway and promotes renal fibrosis. Life Sci 2024; 354:122945. [PMID: 39127319 DOI: 10.1016/j.lfs.2024.122945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/25/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
Renal fibrosis is the common final pathway of progressive renal diseases, in which the macrophages play an important role. ELISA was used to detect CD5 antigen-like (CD5L) in serum samples from end-stage renal disease (ESRD), as well as in mice serum with unilateral ureteral occlusion (UUO). Recombinant CD5L was injected into UUO mice to assess renal injury, fibrosis, and macrophage infiltration. The expression of CD5L was significantly upregulated in the serum of patients with ESRD and UUO mice. Histological analysis showed that rCD5L-treated UUO mice had more severe renal injury and fibrosis. Furthermore, rCD5L promoted the phenotypic transfer of monocytes from Ly6Chigh to LyC6low. RCD5L promoted TGF-β signaling pathway activation by promoting Smad2/3 phosphorylation. We used Co-IP to identify HSPA5 interact with CD5L on cell membrane could inhibit the formation of the Cripto/HSPA5 complex, and promote the activation of the TGF-β signaling pathway. The CD5L antibody could reduce the degree of renal fibrosis in UUO mice.
Collapse
Affiliation(s)
- Chao Chen
- Medical College, Guangxi University, Nanning 530004, China; Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Chen Feng
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Qiulin Luo
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Yingqi Zeng
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Wenjia Yuan
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Yan Cui
- Medical College, Guangxi University, Nanning 530004, China; Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Zhouqi Tang
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Hedong Zhang
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Tengfang Li
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Jiawei Peng
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Longkai Peng
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Xubiao Xie
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Yong Guo
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Fenghua Peng
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Xin Jiang
- Department of Organ Transplantation, The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People's Hospital), Zhengzhou, Henan 450000, China
| | - Peiming Bai
- Medical College, Guangxi University, Nanning 530004, China; Department of Urology, Zhongshan Hospital Xiamen University, Xiamen 361000, China.
| | - Zhongquan Qi
- Medical College, Guangxi University, Nanning 530004, China; Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian 350001, China.
| | - Helong Dai
- Medical College, Guangxi University, Nanning 530004, China; Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
8
|
Iriondo O, Mecenas D, Li Y, Chin CR, Thomas A, Moriarty A, Marker R, Wang YJ, Hendrick H, Amzaleg Y, Ortiz V, MacKay M, Dickerson A, Lee G, Harotoonian S, Benayoun BA, Smith A, Mason CE, Roussos Torres ET, Klotz R, Yu M. Hypoxic Memory Mediates Prolonged Tumor-Intrinsic Type I Interferon Suppression to Promote Breast Cancer Progression. Cancer Res 2024; 84:3141-3157. [PMID: 38990731 PMCID: PMC11444891 DOI: 10.1158/0008-5472.can-23-2028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 05/03/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024]
Abstract
Hypoxia is a common feature of many solid tumors due to aberrant proliferation and angiogenesis that is associated with tumor progression and metastasis. Most of the well-known hypoxia effects are mediated through hypoxia-inducible factors (HIF). Identification of the long-lasting effects of hypoxia beyond the immediate HIF-induced alterations could provide a better understanding of hypoxia-driven metastasis and potential strategies to circumvent it. Here, we uncovered a hypoxia-induced mechanism that exerts a prolonged effect to promote metastasis. In breast cancer patient-derived circulating tumor cell lines and common breast cancer cell lines, hypoxia downregulated tumor-intrinsic type I IFN signaling and its downstream antigen presentation (AP) machinery in luminal breast cancer cells, via both HIF-dependent and HIF-independent mechanisms. Hypoxia induced durable IFN/AP suppression in certain cell types that was sustained after returning to normoxic conditions, presenting a "hypoxic memory" phenotype. Hypoxic memory of IFN/AP downregulation was established by specific hypoxic priming, and cells with hypoxic memory had an enhanced ability for tumorigenesis and metastasis. Overexpression of IRF3 enhanced IFN signaling and reduced tumor growth in normoxic, but not hypoxic, conditions. The histone deacetylase inhibitor entinostat upregulated IFN targets and erased the hypoxic memory. These results point to a mechanism by which hypoxia facilitates tumor progression through a long-lasting memory that provides advantages for circulating tumor cells during the metastatic cascade. Significance: Long-term cellular memory of hypoxia leads to sustained suppression of tumor-intrinsic type I IFN signaling and the antigen presentation pathway that facilitates tumorigenesis and metastasis. See related commentary by Purdy and Ford, p. 3125.
Collapse
Affiliation(s)
- Oihana Iriondo
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California
- USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, California
- Center for Cooperative Research (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Desirea Mecenas
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California
- USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Yilin Li
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California
- USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, California
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Christopher R Chin
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York
| | - Amal Thomas
- Department of Molecular and Computational Biology, USC Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Aidan Moriarty
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Rebecca Marker
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Yiru J Wang
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Haley Hendrick
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Yonatan Amzaleg
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California
- USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, California
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry of the University of Southern California, Los Angeles, California
| | - Veronica Ortiz
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California
- USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Matthew MacKay
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Amber Dickerson
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California
- USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Grace Lee
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California
- USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Sevana Harotoonian
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Bérénice A Benayoun
- USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, California
- Department of Molecular and Computational Biology, USC Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California
| | - Andrew Smith
- Department of Molecular and Computational Biology, USC Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York
| | - Evanthia T Roussos Torres
- USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, California
- Department of Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Remi Klotz
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California
- USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, California
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Min Yu
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California
- USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, California
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
9
|
Sposito M, Eccher S, Scaglione I, Avancini A, Rossi A, Pilotto S, Belluomini L. The frontier of neoadjuvant therapy in non-small cell lung cancer beyond PD-(L)1 agents. Expert Opin Biol Ther 2024; 24:1025-1037. [PMID: 39311630 DOI: 10.1080/14712598.2024.2408292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
INTRODUCTION While surgical resection is the cornerstone of treatment for resectable lung cancer, neoadjuvant/adjuvant chemotherapy has shown limited improvement in survival rates over the past decades. With the success of immune checkpoint inhibitors (ICIs) in advanced NSCLC, there is growing interest in their application in earlier stages of the disease. Recent approvals for neoadjuvant/adjuvant ICIs in stage II-IIIA NSCLC highlight this shift in treatment paradigms. AREAS COVERED In this review, we aim to explore available data regarding alternative agents beyond the PD-(L)1 inhibitors, such as monoclonal antibodies against CTLA4, LAG3, TIGIT, antiangiogenic drugs, and novel therapies (antibody drug conjugates, bispecific antibodies) in neoadjuvant/perioperative regimens. EXPERT OPINION Novel agents and combinations (with or without ICI or/and chemotherapy), guided by molecular profiling and immune phenotyping, showed promise in improving surgical and survival outcomes. Crucial is, also in early setting, to identifying biomarkers predictive of treatment efficacy in order to personalize neoadjuvant/perioperative treatment strategies.
Collapse
Affiliation(s)
- Marco Sposito
- Section of Innovation Biomedicine - Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona and Verona University Hospital Trust, Verona, Italy
| | - Serena Eccher
- Section of Innovation Biomedicine - Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona and Verona University Hospital Trust, Verona, Italy
| | - Ilaria Scaglione
- Section of Innovation Biomedicine - Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona and Verona University Hospital Trust, Verona, Italy
| | - Alice Avancini
- Section of Innovation Biomedicine - Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona and Verona University Hospital Trust, Verona, Italy
| | - Antonio Rossi
- Oncology Centre of Excellence, Therapeutic Science & Strategy Unit, Milan, Italy
| | - Sara Pilotto
- Section of Innovation Biomedicine - Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona and Verona University Hospital Trust, Verona, Italy
| | - Lorenzo Belluomini
- Section of Innovation Biomedicine - Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona and Verona University Hospital Trust, Verona, Italy
| |
Collapse
|
10
|
Bai H, Feng L, Schmid F. Macrophage-based cancer immunotherapy: Challenges and opportunities. Exp Cell Res 2024; 442:114198. [PMID: 39103071 DOI: 10.1016/j.yexcr.2024.114198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 08/07/2024]
Abstract
Macrophages play crucial roles in the tumor microenvironment (TME), exerting diverse functions ranging from promoting tumor growth and metastasis to orchestrating anti-tumor immune responses. Their plasticity allows them to adopt distinct activation states, often called M1-like (pro-inflammatory) and M2-like (anti-inflammatory or pro-tumoral), significantly influencing tumor progression and response to therapy. Harnessing the potential of macrophages in cancer immunotherapy has emerged as a promising strategy, with increasing interest in targeting these cells directly or modulating their functions within the TME. This review explores the intricate interplay between macrophages, the TME, and immunotherapeutic approaches. We discuss the dynamic phenotypic and functional heterogeneity of tumor-associated macrophages (TAMs), their impact on disease progression, and the mechanisms underlying their response to immunotherapy. Furthermore, we highlight recent advancements in macrophage-based immunotherapeutic strategies, including macrophage-targeting agents, adoptive cell transfer, and engineering approaches. Understanding the complex crosstalk between macrophages and the TME is essential for developing effective immunotherapeutic interventions that exploit the immunomodulatory functions of macrophages to enhance anti-tumor immunity and improve clinical outcomes for cancer patients.
Collapse
Affiliation(s)
- Haotian Bai
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, 215316, China; Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA.
| | - Li Feng
- Emergency Department, People's Hospital Affiliated to Shandong First Medical University, Jinan, 271100, Shandong Province, China.
| | - Felix Schmid
- School of Biomedical Sciences, Carleton University, Ottawa, Canada.
| |
Collapse
|
11
|
Longobardi G, Moore TL, Conte C, Ungaro F, Satchi-Fainaro R, Quaglia F. Polyester nanoparticles delivering chemotherapeutics: Learning from the past and looking to the future to enhance their clinical impact in tumor therapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1990. [PMID: 39217459 DOI: 10.1002/wnan.1990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024]
Abstract
Polymeric nanoparticles (NPs), specifically those comprised of biodegradable and biocompatible polyesters, have been heralded as a game-changing drug delivery platform. In fact, poly(α-hydroxy acids) such as polylactide (PLA), poly(lactide-co-glycolide) (PLGA), and poly(ε-caprolactone) (PCL) have been heavily researched in the past three decades as the material basis of polymeric NPs for drug delivery applications. As materials, these polymers have found success in resorbable sutures, biodegradable implants, and even monolithic, biodegradable platforms for sustained release of therapeutics (e.g., proteins and small molecules) and diagnostics. Few fields have gained more attention in drug delivery through polymeric NPs than cancer therapy. However, the clinical translational of polymeric nanomedicines for treating solid tumors has not been congruent with the fervor or funding in this particular field of research. Here, we attempt to provide a comprehensive snapshot of polyester NPs in the context of chemotherapeutic delivery. This includes a preliminary exploration of the polymeric nanomedicine in the cancer research space. We examine the various processes for producing polyester NPs, including methods for surface-functionalization, and related challenges. After a detailed overview of the multiple factors involved with the delivery of NPs to solid tumors, the crosstalk between particle design and interactions with biological systems is discussed. Finally, we report state-of-the-art approaches toward effective delivery of NPs to tumors, aiming at identifying new research areas and re-evaluating the reasons why some research avenues have underdelivered. We hope our effort will contribute to a better understanding of the gap to fill and delineate the future research work needed to bring polyester-based NPs closer to clinical application. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
| | - Thomas Lee Moore
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Claudia Conte
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Francesca Ungaro
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| | - Fabiana Quaglia
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| |
Collapse
|
12
|
Sadri M, Heidari S, Faridzadeh A, Roozbehani M, Toosi S, Mahmoudian RA, Hoseinzadeh A, Salmani Fard MT, Arab FL, Fard SR, Faraji F. Potential applications of macrophages in cancer immunotherapy. Biomed Pharmacother 2024; 178:117161. [PMID: 39047419 DOI: 10.1016/j.biopha.2024.117161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/02/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024] Open
Abstract
Immunotherapy has improved cancer treatment based on investigations of tumor immune escape. Manipulation of the immune system stimulates antitumor immune responses and blocks tumor immune escape routes. Genetically adoptive cell therapy, such as T cells, has yielded promising results for hematologic malignancies, but their application to solid tumors has been challenging. Macrophages have a wide broad of capabilities in regulating immune responses, homeostasis, and tissue development, as well as the ability to phagocyte, present antigens, and infiltrate the tumor microenvironment (TME). Given the importance of macrophages in cancer development, they could serve as novel tool for tumor treatment. Therefore, macrophages are used in different formats for direct and indirect targeting of tumor cells. This review summarized the available data on the various applications of macrophages in cancer immunotherapy.
Collapse
Affiliation(s)
- Maryam Sadri
- Department of Immunology, Iran University of Medical Sciences, Shahid Hemmat Highway, P.O. Box: 1449614535, Tehran, Iran.
| | - Sahel Heidari
- Department of Immunology, Iran University of Medical Sciences, Shahid Hemmat Highway, P.O. Box: 1449614535, Tehran, Iran.
| | - Arezoo Faridzadeh
- Department of Immunology and Allergy, School of Medicine, Mashhad University of Medical Sciences, Mashhad 1313199137, Iran.
| | - Mona Roozbehani
- Vaccine Research Center, Iran University of Medical Sciences, Shahid Hemmat Highway, P.O. Box: 1449614535, Tehran, Iran.
| | - Shirin Toosi
- Stem Cell and Regenerative Medicine Center, Mashhad University of Medical Science, Mashhad 1313199137, Iran.
| | | | - Akram Hoseinzadeh
- Department of Immunology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan 3513119111, Iran.
| | - Mohammad Taha Salmani Fard
- School of Biology, College of Science, University of Tehran, Faculty of Sciences, Enqelab Square, Tehran 1417614411, Iran.
| | - Fahimeh Lavi Arab
- Immunology Research center, Mashhad University of Medical Sciences, Mashhad 1313199137, Iran.
| | - Soheil Rahmani Fard
- Antimicrobial Resistance Research Center, Institute of Immunology and Infection Diseases Iran University of Medical Sciences, Floor 3, Building no. 3, Hazrat-e Rasool General Hospital, Niyayesh St, Sattar Khan St, P.O. Box: 1445613131, Tehran, Iran.
| | - Fatemeh Faraji
- Antimicrobial Resistance Research Center, Institute of Immunology and Infection Diseases Iran University of Medical Sciences, Floor 3, Building no. 3, Hazrat-e Rasool General Hospital, Niyayesh St, Sattar Khan St, P.O. Box: 1445613131, Tehran, Iran.
| |
Collapse
|
13
|
Hong WF, Zhang F, Wang N, Bi JM, Zhang DW, Wei LS, Song ZT, Mills GB, Chen MM, Li XX, Du SS, Yu M. Dynamic immunoediting by macrophages in homologous recombination deficiency-stratified pancreatic ductal adenocarcinoma. Drug Resist Updat 2024; 76:101115. [PMID: 39002266 DOI: 10.1016/j.drup.2024.101115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/15/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease, notably resistant to existing therapies. Current research indicates that PDAC patients deficient in homologous recombination (HR) benefit from platinum-based treatments and poly-ADP-ribose polymerase inhibitors (PARPi). However, the effectiveness of PARPi in HR-deficient (HRD) PDAC is suboptimal, and significant challenges remain in fully understanding the distinct characteristics and implications of HRD-associated PDAC. We analyzed 16 PDAC patient-derived tissues, categorized by their homologous recombination deficiency (HRD) scores, and performed high-plex immunofluorescence analysis to define 20 cell phenotypes, thereby generating an in-situ PDAC tumor-immune landscape. Spatial phenotypic-transcriptomic profiling guided by regions-of-interest (ROIs) identified a crucial regulatory mechanism through localized tumor-adjacent macrophages, potentially in an HRD-dependent manner. Cellular neighborhood (CN) analysis further demonstrated the existence of macrophage-associated high-ordered cellular functional units in spatial contexts. Using our multi-omics spatial profiling strategy, we uncovered a dynamic macrophage-mediated regulatory axis linking HRD status with SIGLEC10 and CD52. These findings demonstrate the potential of targeting CD52 in combination with PARPi as a therapeutic intervention for PDAC.
Collapse
Affiliation(s)
- Wei-Feng Hong
- Department of Pancreas Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China; Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou 310005, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310005, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou 310005, China
| | - Feng Zhang
- Department of Pancreas Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Nan Wang
- Cosmos Wisdom Biotech, co. ltd, Building 10, No. 617 Jiner Road, Hangzhou, Zhejiang, China
| | - Jun-Ming Bi
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Ding-Wen Zhang
- Department of Pancreas Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Lu-Sheng Wei
- Department of Pancreas Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Zhen-Tao Song
- Mills Institute for Personalized Cancer Care, Fynn Biotechnologies Ltd. Jinan, Shandong, China
| | - Gordon B Mills
- Division of Oncological Sciences, Knight Cancer Institute, Oregon Health & Science University, Portland, USA
| | - Min-Min Chen
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Xue-Xin Li
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna 17165, Sweden.
| | - Shi-Suo Du
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Min Yu
- Department of Pancreas Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
14
|
Liu W, Zhou H, Lai W, Hu C, Xu R, Gu P, Luo M, Zhang R, Li G. The immunosuppressive landscape in tumor microenvironment. Immunol Res 2024; 72:566-582. [PMID: 38691319 DOI: 10.1007/s12026-024-09483-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/16/2024] [Indexed: 05/03/2024]
Abstract
Recent advances in cancer immunotherapy, especially immune checkpoint inhibitors (ICIs), have revolutionized the clinical outcome of many cancer patients. Despite the fact that impressive progress has been made in recent decades, the response rate remains unsatisfactory, and many patients do not benefit from ICIs. Herein, we summarized advanced studies and the latest insights on immune inhibitory factors in the tumor microenvironment. Our in-depth discussion and updated landscape of tumor immunosuppressive microenvironment may provide new strategies for reversing tumor immune evasion, enhancing the efficacy of ICIs therapy, and ultimately achieving a better clinical outcome.
Collapse
Affiliation(s)
- Wuyi Liu
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China
| | - Huyue Zhou
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China
| | - Wenjing Lai
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China
| | - Changpeng Hu
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China
| | - Rufu Xu
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China
| | - Peng Gu
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China
| | - Menglin Luo
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China
| | - Rong Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China.
| | - Guobing Li
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, Shapingba, Chongqing, China.
| |
Collapse
|
15
|
Saw PE, Liu Q, Wong PP, Song E. Cancer stem cell mimicry for immune evasion and therapeutic resistance. Cell Stem Cell 2024; 31:1101-1112. [PMID: 38925125 DOI: 10.1016/j.stem.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 03/11/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
Cancer stem cells (CSCs) are heterogeneous, possess self-renewal attributes, and orchestrate important crosstalk in tumors. We propose that the CSC state represents "mimicry" by cancer cells that leads to phenotypic plasticity. CSC mimicry is suggested as CSCs can impersonate immune cells, vasculo-endothelia, or lymphangiogenic cells to support cancer growth. CSCs facilitate both paracrine and juxtracrine signaling to prime tumor-associated immune and stromal cells to adopt pro-tumoral phenotypes, driving therapeutic resistance. Here, we outline the ingenuity of CSCs' mimicry in their quest to evade immune detection, which leads to immunotherapeutic resistance, and highlight CSC-mimicry-targeted therapeutic strategies for robust immunotherapy.
Collapse
Affiliation(s)
- Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Nanhai Clinical Translational Center, Sun Yat-sen Memorial Hospital, Foshan, China
| | - Qiang Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ping-Pui Wong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Nanhai Clinical Translational Center, Sun Yat-sen Memorial Hospital, Foshan, China
| | - Erwei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Nanhai Clinical Translational Center, Sun Yat-sen Memorial Hospital, Foshan, China; Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Zenith Institute of Medical Sciences, Guangzhou 510120, China.
| |
Collapse
|
16
|
Yi M, Li T, Niu M, Zhang H, Wu Y, Wu K, Dai Z. Targeting cytokine and chemokine signaling pathways for cancer therapy. Signal Transduct Target Ther 2024; 9:176. [PMID: 39034318 PMCID: PMC11275440 DOI: 10.1038/s41392-024-01868-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/30/2024] [Accepted: 05/11/2024] [Indexed: 07/23/2024] Open
Abstract
Cytokines are critical in regulating immune responses and cellular behavior, playing dual roles in both normal physiology and the pathology of diseases such as cancer. These molecules, including interleukins, interferons, tumor necrosis factors, chemokines, and growth factors like TGF-β, VEGF, and EGF, can promote or inhibit tumor growth, influence the tumor microenvironment, and impact the efficacy of cancer treatments. Recent advances in targeting these pathways have shown promising therapeutic potential, offering new strategies to modulate the immune system, inhibit tumor progression, and overcome resistance to conventional therapies. In this review, we summarized the current understanding and therapeutic implications of targeting cytokine and chemokine signaling pathways in cancer. By exploring the roles of these molecules in tumor biology and the immune response, we highlighted the development of novel therapeutic agents aimed at modulating these pathways to combat cancer. The review elaborated on the dual nature of cytokines as both promoters and suppressors of tumorigenesis, depending on the context, and discussed the challenges and opportunities this presents for therapeutic intervention. We also examined the latest advancements in targeted therapies, including monoclonal antibodies, bispecific antibodies, receptor inhibitors, fusion proteins, engineered cytokine variants, and their impact on tumor growth, metastasis, and the tumor microenvironment. Additionally, we evaluated the potential of combining these targeted therapies with other treatment modalities to overcome resistance and improve patient outcomes. Besides, we also focused on the ongoing research and clinical trials that are pivotal in advancing our understanding and application of cytokine- and chemokine-targeted therapies for cancer patients.
Collapse
Affiliation(s)
- Ming Yi
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Tianye Li
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310000, People's Republic of China
| | - Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Haoxiang Zhang
- Department of Hepatopancreatobiliary Surgery, Fujian Provincial Hospital, Fuzhou, 350001, People's Republic of China
| | - Yuze Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Zhijun Dai
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China.
| |
Collapse
|
17
|
Du W, Zhou B, Forjaz A, Shin SM, Wu F, Crawford AJ, Nair PR, Johnston AC, West-Foyle H, Tang A, Kim D, Fan R, Kiemen AL, Wu PH, Phillip JM, Ho WJ, Sanin DE, Wirtz D. High-motility pro-tumorigenic monocytes drive macrophage enrichment in the tumor microenvironment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.16.603739. [PMID: 39071324 PMCID: PMC11275814 DOI: 10.1101/2024.07.16.603739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Enrichment of tumor-associated macrophages (TAMΦs) in the tumor microenvironment correlates with worse clinical outcomes in triple-negative breast cancer (TNBC) patients, prompting the development of therapies to inhibit TAMΦ infiltration. However, the lackluster efficacy of CCL2-based chemotaxis blockade in clinical trials suggests that a new understanding of monocyte/macrophage infiltration may be necessary. Here we demonstrate that random migration, and not only chemotaxis, drives macrophage tumor infiltration. We identified tumor- associated monocytes (TAMos) that display a dramatically enhanced migration capability, induced rapidly by the tumor microenvironment, that drives effective tumor infiltration, in contrast to low-motility differentiated macrophages. TAMo, not TAMΦ, promotes cancer cell proliferation through activation of the MAPK pathway. IL-6 secreted both by cancer cells and TAMo themselves enhances TAMo migration by increasing dendritic protrusion dynamics and myosin- based contractility via the JAK2/STAT3 signaling pathway. Independent from CCL2 mediated chemotaxis, IL-6 driven enhanced migration and pro-proliferative effect of TAMo were validated in a syngeneic TNBC mouse model. Depletion of IL-6 in cancer cells significantly attenuated monocyte infiltration and reversed TAMo-induced cancer cell proliferation. This work reveals the critical role random migration plays in monocyte driven TAMΦ enrichment in a tumor and pinpoints IL-6 as a potential therapeutic target in combination with CCL2 to ameliorate current strategies against TAMΦ infiltration.
Collapse
|
18
|
Liu D, Hu Z, Lu J, Yi C. Redox-Regulated Iron Metabolism and Ferroptosis in Ovarian Cancer: Molecular Insights and Therapeutic Opportunities. Antioxidants (Basel) 2024; 13:791. [PMID: 39061859 PMCID: PMC11274267 DOI: 10.3390/antiox13070791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Ovarian cancer (OC), known for its lethality and resistance to chemotherapy, is closely associated with iron metabolism and ferroptosis-an iron-dependent cell death process, distinct from both autophagy and apoptosis. Emerging evidence suggests that dysregulation of iron metabolism could play a crucial role in OC by inducing an imbalance in the redox system, which leads to ferroptosis, offering a novel therapeutic approach. This review examines how disruptions in iron metabolism, which affect redox balance, impact OC progression, focusing on its essential cellular functions and potential as a therapeutic target. It highlights the molecular interplay, including the role of non-coding RNAs (ncRNAs), between iron metabolism and ferroptosis, and explores their interactions with key immune cells such as macrophages and T cells, as well as inflammation within the tumor microenvironment. The review also discusses how glycolysis-related iron metabolism influences ferroptosis via reactive oxygen species. Targeting these pathways, especially through agents that modulate iron metabolism and ferroptosis, presents promising therapeutic prospects. The review emphasizes the need for deeper insights into iron metabolism and ferroptosis within the redox-regulated system to enhance OC therapy and advocates for continued research into these mechanisms as potential strategies to combat OC.
Collapse
Affiliation(s)
- Dan Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Yangtze University, Jingzhou 434000, China; (D.L.); (Z.H.)
- Hubei Provincial Clinical Research Center for Personalized Diagnosis and Treatment of Cancer, Jingzhou 434000, China
| | - Zewen Hu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Yangtze University, Jingzhou 434000, China; (D.L.); (Z.H.)
- Hubei Provincial Clinical Research Center for Personalized Diagnosis and Treatment of Cancer, Jingzhou 434000, China
| | - Jinzhi Lu
- Hubei Provincial Clinical Research Center for Personalized Diagnosis and Treatment of Cancer, Jingzhou 434000, China
- Department of Laboratory Medicine, The First Affiliated Hospital, Yangtze University, Jingzhou 434000, China
| | - Cunjian Yi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Yangtze University, Jingzhou 434000, China; (D.L.); (Z.H.)
- Hubei Provincial Clinical Research Center for Personalized Diagnosis and Treatment of Cancer, Jingzhou 434000, China
| |
Collapse
|
19
|
Hao X, Wang S, Wang L, Li J, Li Y, Liu J. Exosomes as drug delivery systems in glioma immunotherapy. J Nanobiotechnology 2024; 22:340. [PMID: 38890722 PMCID: PMC11184820 DOI: 10.1186/s12951-024-02611-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/02/2024] [Indexed: 06/20/2024] Open
Abstract
Recently, the significant benefits of cancer immunotherapy for most cancers have been demonstrated in clinical and preclinical studies. However, the efficacy of these immunotherapies for gliomas is limited, owing to restricted drug delivery and insufficient immune activation. As drug carriers, exosomes offer the advantages of low toxicity, good biocompatibility, and intrinsic cell targeting, which could enhance glioma immunotherapy efficacy. However, a review of exosome-based drug delivery systems for glioma immunotherapy has not been presented. This review introduces the current problems in glioma immunotherapy and the role of exosomes in addressing these issues. Meanwhile, preparation and application strategies of exosome-based drug delivery systems for glioma immunotherapy are discussed, especially for enhancing immunogenicity and reversing the immunosuppressive tumor microenvironment. Finally, we briefly describe the challenges of exosome-based drug delivery systems in clinical translation. We anticipate that this review will guide the use of exosomes as drug carriers for glioma immunotherapy.
Collapse
Affiliation(s)
- Xinqing Hao
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193 Lianhe Road, Dalian, Liaoning, 116011, China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57 Xinda Road, Dalian, Liaoning, 116085, China
| | - Shiming Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, No. 193 Lianhe Road, Dalian, Liaoning, 116011, China
| | - Liang Wang
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193 Lianhe Road, Dalian, Liaoning, 116011, China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57 Xinda Road, Dalian, Liaoning, 116085, China
| | - Jiaqi Li
- Reproductive Medicine Center, The First Affiliated Hospital of Dalian Medical University, No. 222 Zhongshan Road, Dalian, 116011, China
| | - Ying Li
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193 Lianhe Road, Dalian, Liaoning, 116011, China.
- Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57 Xinda Road, Dalian, Liaoning, 116085, China.
| | - Jing Liu
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193 Lianhe Road, Dalian, Liaoning, 116011, China.
- Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57 Xinda Road, Dalian, Liaoning, 116085, China.
| |
Collapse
|
20
|
Park SM, Chen CJJ, Verdon DJ, Ooi MPY, Brooks AES, Martin RCW, Mathy JA, Emanuel PO, Dunbar PR. Proliferating macrophages in human tumours show characteristics of monocytes responding to myelopoietic growth factors. Front Immunol 2024; 15:1412076. [PMID: 38903497 PMCID: PMC11188303 DOI: 10.3389/fimmu.2024.1412076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/16/2024] [Indexed: 06/22/2024] Open
Abstract
Macrophages play essential roles in maintaining tissue homeostasis and immune defence. However, their extensive infiltration into tumours has been linked to adverse outcomes in multiple human cancers. Within the tumour microenvironment (TME), tumour-associated macrophages (TAMs) promote tumour growth and metastasis, making them prime targets for cancer immunotherapy. Recent single-cell analysis suggest that proliferating TAMs accumulate in human cancers, yet their origins and differentiation pathways remain uncertain. Here, we show that a subpopulation of CD163+ TAMs proliferates in situ within the TME of melanoma, lung cancer, and breast cancer. Consistent with their potential role in suppressing anti-tumour activities of T cells, CD163+ TAMs express a range of potent immunosuppressive molecules, including PD-L1, PD-L2, IL-10, and TGF-β. Other phenotypic markers strongly suggested that these cells originate from CD14+ CCR2+ monocytes, a cell population believed to have minimal capacity for proliferation. However, we demonstrate in vitro that certain myelopoietic cytokines commonly available within the TME induce robust proliferation of human monocytes, especially the combination of interleukin 3 (IL-3) and Macrophage Colony-Stimulating Factor 1 (M-CSF). Monocytic cells cultured with these cytokines efficiently modulate T cell proliferation, and their molecular phenotype recapitulates that of CD163+ TAMs. IL-3-driven proliferation of monocytic cells can be completely blocked by IL-4, associated with the induction of CDKN1A, alongside the upregulation of transcription factors linked to dendritic cell function, such as BATF3 and IRF4. Taken together, our work suggests several novel therapeutic routes to reducing immunosuppressive TAMs in human tumours, from blocking chemokine-mediated recruitment of monocytes to blocking their proliferation.
Collapse
Affiliation(s)
- Saem Mul Park
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre, Auckland, New Zealand
| | - Chun-Jen J. Chen
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre, Auckland, New Zealand
| | - Daniel J. Verdon
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre, Auckland, New Zealand
| | - Marcus P. Y. Ooi
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Anna E. S. Brooks
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre, Auckland, New Zealand
| | | | - Jon A. Mathy
- Department of Surgery, Faculty of Medical Health Sciences, The University of Auckland, Auckland, New Zealand
- Auckland Regional Plastic, Reconstructive and Hand Surgery Unit, Auckland, New Zealand
| | - Patrick O. Emanuel
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - P. Rod Dunbar
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre, Auckland, New Zealand
| |
Collapse
|
21
|
Chen X, Ma C, Li Y, Liang Y, Chen T, Han D, Luo D, Zhang N, Zhao W, Wang L, Yang Q. COL5A1 promotes triple-negative breast cancer progression by activating tumor cell-macrophage crosstalk. Oncogene 2024; 43:1742-1756. [PMID: 38609499 DOI: 10.1038/s41388-024-03030-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
Triple-negative breast cancer (TNBC) is an exceptionally aggressive subtype of breast cancer. Despite the recognized interplay between tumors and tumor-associated macrophages in fostering drug resistance and disease progression, the precise mechanisms leading these interactions remain elusive. Our study revealed that the upregulation of collagen type V alpha 1 (COL5A1) in TNBC tissues, particularly in chemoresistant samples, was closely linked to an unfavorable prognosis. Functional assays unequivocally demonstrated that COL5A1 played a pivotal role in fueling cancer growth, metastasis, and resistance to doxorubicin, both in vitro and in vivo. Furthermore, we found that the cytokine IL-6, produced by COL5A1-overexpressing TNBC cells actively promoted M2 macrophage polarization. In turn, TGFβ from M2 macrophages drived TNBC doxorubicin resistance through the TGFβ/Smad3/COL5A1 signaling pathway, establishing a feedback loop between TNBC cells and macrophages. Mechanistically, COL5A1 interacted with TGM2, inhibiting its K48-linked ubiquitination-mediated degradation, thereby enhancing chemoresistance and increasing IL-6 secretion. In summary, our findings underscored the significant contribution of COL5A1 upregulation to TNBC progression and chemoresistance, highlighting its potential as a diagnostic and therapeutic biomarker for TNBC.
Collapse
Affiliation(s)
- Xi Chen
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Chenao Ma
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Yaming Li
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Yiran Liang
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Tong Chen
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Dianwen Han
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Dan Luo
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Ning Zhang
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Wenjing Zhao
- Pathology Tissue Bank, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Lijuan Wang
- Pathology Tissue Bank, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Qifeng Yang
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
- Pathology Tissue Bank, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China.
- Research Institute of Breast Cancer, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
22
|
Tang Y, Cui G, Liu H, Han Y, Cai C, Feng Z, Shen H, Zeng S. Converting "cold" to "hot": epigenetics strategies to improve immune therapy effect by regulating tumor-associated immune suppressive cells. Cancer Commun (Lond) 2024; 44:601-636. [PMID: 38715348 PMCID: PMC11194457 DOI: 10.1002/cac2.12546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 06/26/2024] Open
Abstract
Significant developments in cancer treatment have been made since the advent of immune therapies. However, there are still some patients with malignant tumors who do not benefit from immunotherapy. Tumors without immunogenicity are called "cold" tumors which are unresponsive to immunotherapy, and the opposite are "hot" tumors. Immune suppressive cells (ISCs) refer to cells which can inhibit the immune response such as tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), regulatory T (Treg) cells and so on. The more ISCs infiltrated, the weaker the immunogenicity of the tumor, showing the characteristics of "cold" tumor. The dysfunction of ISCs in the tumor microenvironment (TME) may play essential roles in insensitive therapeutic reaction. Previous studies have found that epigenetic mechanisms play an important role in the regulation of ISCs. Regulating ISCs may be a new approach to transforming "cold" tumors into "hot" tumors. Here, we focused on the function of ISCs in the TME and discussed how epigenetics is involved in regulating ISCs. In addition, we summarized the mechanisms by which the epigenetic drugs convert immunotherapy-insensitive tumors into immunotherapy-sensitive tumors which would be an innovative tendency for future immunotherapy in "cold" tumor.
Collapse
Affiliation(s)
- Yijia Tang
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Guangzu Cui
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Haicong Liu
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Ying Han
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Changjing Cai
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Ziyang Feng
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Hong Shen
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
- National Clinical Resaerch Center for Geriatric Disorders, Xiangya Hospital, Central South UniversityChangshaHunanChina
| | - Shan Zeng
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| |
Collapse
|
23
|
Li S, Sheng J, Zhang D, Qin H. Targeting tumor-associated macrophages to reverse antitumor drug resistance. Aging (Albany NY) 2024; 16:10165-10196. [PMID: 38787372 PMCID: PMC11210230 DOI: 10.18632/aging.205858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/22/2024] [Indexed: 05/25/2024]
Abstract
Currently, antitumor drugs show limited clinical outcomes, mainly due to adaptive resistance. Clinical evidence has highlighted the importance of the tumor microenvironment (TME) and tumor-associated macrophages (TAMs) in tumor response to conventional antitumor drugs. Preclinical studies show that TAMs following antitumor agent can be reprogrammed to an immunosuppressive phenotype and proangiogenic activities through different mechanisms, mediating drug resistance and poor prognosis. Potential extrinsic inhibitors targeting TAMs repolarize to an M1-like phenotype or downregulate proangiogenic function, enhancing therapeutic efficacy of anti-tumor therapy. Moreover, pharmacological modulation of macrophages that restore the immune stimulatory characteristics is useful to reshaping the tumor microenvironment, thus further limiting tumor growth. This review aims to introduce macrophage response in tumor therapy and provide a potential therapeutic combination strategy of TAM-targeting immunomodulation with conventional antitumor drugs.
Collapse
Affiliation(s)
- Sheng Li
- The Second Hospital of Jilin University, Changchun, China
| | - Jiyao Sheng
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, China
| | - Dan Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, China
| | - Hanjiao Qin
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
24
|
Musiu C, Lupo F, Agostini A, Lionetto G, Bevere M, Paiella S, Carbone C, Corbo V, Ugel S, De Sanctis F. Cellular collusion: cracking the code of immunosuppression and chemo resistance in PDAC. Front Immunol 2024; 15:1341079. [PMID: 38817612 PMCID: PMC11137177 DOI: 10.3389/fimmu.2024.1341079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 05/02/2024] [Indexed: 06/01/2024] Open
Abstract
Despite the efforts, pancreatic ductal adenocarcinoma (PDAC) is still highly lethal. Therapeutic challenges reside in late diagnosis and establishment of peculiar tumor microenvironment (TME) supporting tumor outgrowth. This stromal landscape is highly heterogeneous between patients and even in the same patient. The organization of functional sub-TME with different cellular compositions provides evolutive advantages and sustains therapeutic resistance. Tumor progressively establishes a TME that can suit its own needs, including proliferation, stemness and invasion. Cancer-associated fibroblasts and immune cells, the main non-neoplastic cellular TME components, follow soluble factors-mediated neoplastic instructions and synergize to promote chemoresistance and immune surveillance destruction. Unveiling heterotypic stromal-neoplastic interactions is thus pivotal to breaking this synergism and promoting the reprogramming of the TME toward an anti-tumor milieu, improving thus the efficacy of conventional and immune-based therapies. We underscore recent advances in the characterization of immune and fibroblast stromal components supporting or dampening pancreatic cancer progression, as well as novel multi-omic technologies improving the current knowledge of PDAC biology. Finally, we put into context how the clinic will translate the acquired knowledge to design new-generation clinical trials with the final aim of improving the outcome of PDAC patients.
Collapse
Affiliation(s)
- Chiara Musiu
- Department of Medicine, University of Verona, Verona, Italy
| | - Francesca Lupo
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Antonio Agostini
- Medical Oncology, Department of Translational Medicine, Catholic University of the Sacred Heart, Rome, Italy
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Gabriella Lionetto
- General and Pancreatic Surgery Unit, Pancreas Institute, University of Verona, Verona, Italy
| | - Michele Bevere
- ARC-Net Research Centre, University of Verona, Verona, Italy
| | - Salvatore Paiella
- General and Pancreatic Surgery Unit, Pancreas Institute, University of Verona, Verona, Italy
| | - Carmine Carbone
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Vincenzo Corbo
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Stefano Ugel
- Department of Medicine, University of Verona, Verona, Italy
| | | |
Collapse
|
25
|
Kundu M, Butti R, Panda VK, Malhotra D, Das S, Mitra T, Kapse P, Gosavi SW, Kundu GC. Modulation of the tumor microenvironment and mechanism of immunotherapy-based drug resistance in breast cancer. Mol Cancer 2024; 23:92. [PMID: 38715072 PMCID: PMC11075356 DOI: 10.1186/s12943-024-01990-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 04/02/2024] [Indexed: 05/12/2024] Open
Abstract
Breast cancer, the most frequent female malignancy, is often curable when detected at an early stage. The treatment of metastatic breast cancer is more challenging and may be unresponsive to conventional therapy. Immunotherapy is crucial for treating metastatic breast cancer, but its resistance is a major limitation. The tumor microenvironment (TME) is vital in modulating the immunotherapy response. Various tumor microenvironmental components, such as cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), and myeloid-derived suppressor cells (MDSCs), are involved in TME modulation to cause immunotherapy resistance. This review highlights the role of stromal cells in modulating the breast tumor microenvironment, including the involvement of CAF-TAM interaction, alteration of tumor metabolism leading to immunotherapy failure, and other latest strategies, including high throughput genomic screening, single-cell and spatial omics techniques for identifying tumor immune genes regulating immunotherapy response. This review emphasizes the therapeutic approach to overcome breast cancer immune resistance through CAF reprogramming, modulation of TAM polarization, tumor metabolism, and genomic alterations.
Collapse
Affiliation(s)
- Moumita Kundu
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, 751024, India
- Department of Pharmaceutical Technology, Brainware University, West Bengal, 700125, India
| | - Ramesh Butti
- Department of Internal Medicine, Division of Hematology and Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Venketesh K Panda
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, 751024, India
| | - Diksha Malhotra
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, 751024, India
| | - Sumit Das
- National Centre for Cell Sciences, Savitribai Phule Pune University Campus, Pune, 411007, India
| | - Tandrima Mitra
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, 751024, India
| | - Prachi Kapse
- School of Basic Medical Sciences, Savitribai Phule Pune University, Pune, 411007, India
| | - Suresh W Gosavi
- School of Basic Medical Sciences, Savitribai Phule Pune University, Pune, 411007, India
| | - Gopal C Kundu
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, 751024, India.
- Kalinga Institute of Medical Sciences (KIMS), KIIT Deemed to be University, Bhubaneswar, 751024, India.
| |
Collapse
|
26
|
Huang R, Kang T, Chen S. The role of tumor-associated macrophages in tumor immune evasion. J Cancer Res Clin Oncol 2024; 150:238. [PMID: 38713256 PMCID: PMC11076352 DOI: 10.1007/s00432-024-05777-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND Tumor growth is closely linked to the activities of various cells in the tumor microenvironment (TME), particularly immune cells. During tumor progression, circulating monocytes and macrophages are recruited, altering the TME and accelerating growth. These macrophages adjust their functions in response to signals from tumor and stromal cells. Tumor-associated macrophages (TAMs), similar to M2 macrophages, are key regulators in the TME. METHODS We review the origins, characteristics, and functions of TAMs within the TME. This analysis includes the mechanisms through which TAMs facilitate immune evasion and promote tumor metastasis. Additionally, we explore potential therapeutic strategies that target TAMs. RESULTS TAMs are instrumental in mediating tumor immune evasion and malignant behaviors. They release cytokines that inhibit effector immune cells and attract additional immunosuppressive cells to the TME. TAMs primarily target effector T cells, inducing exhaustion directly, influencing activity indirectly through cellular interactions, or suppressing through immune checkpoints. Additionally, TAMs are directly involved in tumor proliferation, angiogenesis, invasion, and metastasis. Developing innovative tumor-targeted therapies and immunotherapeutic strategies is currently a promising focus in oncology. Given the pivotal role of TAMs in immune evasion, several therapeutic approaches have been devised to target them. These include leveraging epigenetics, metabolic reprogramming, and cellular engineering to repolarize TAMs, inhibiting their recruitment and activity, and using TAMs as drug delivery vehicles. Although some of these strategies remain distant from clinical application, we believe that future therapies targeting TAMs will offer significant benefits to cancer patients.
Collapse
Affiliation(s)
- Ruizhe Huang
- Department of Oncology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Ting Kang
- Department of Oncology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Siyu Chen
- Department of Oncology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
27
|
Ni J, Yao X, Song W, Zhang H, Zhang H, Wang Y, Zhang Y, Wang G, Wang K, Mao W, Peng B. Prognostic value of preoperative combined neutrophil, monocyte, and lymphocyte scores in patients with renal cell carcinoma undergoing laparoscopic nephrectomy: A retrospective study. Cancer Med 2024; 13:e7214. [PMID: 38686610 PMCID: PMC11058690 DOI: 10.1002/cam4.7214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/05/2024] [Accepted: 04/11/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND In a multi-institutional clinical study, we assessed the prognostic significance of a novel indicator preoperative peripheral blood immune (PBIS) scores that combined ratios of preoperative lymphocyte, monocyte, and neutrophil of renal cell carcinoma (RCC) patients undergoing laparoscopic nephrectomy. METHODS Between January 2014 and December 2019, 438 patients with RCC were retrospectively analyzed in three centers. We used X-tile software to obtain the optimum cut-off values for neutrophils, monocytes, and lymphocytes to classify the patients. To assess the relationship between PBIS score and overall survival (OS), and cancer-specific survival (CSS) in patients with RCC by Kaplan-Meier survival curves and Cox regression analyses. In addition, predictive OS and CSS nomograms were constructed. The discriminative ability of nomogram and predictive performance accuracy were verified with consistency index (C-index), calibration curves, receiver operating curve (ROC) curves, decision curve analysis (DCA) curves, and time-dependent ROC curves. RESULTS The optimum cutoff values for monocytes, lymphocytes, and neutrophils were 0.46, 1.01, and 4.50, respectively. We divided patients into four subgroups according to PBIS scores, which were significantly associated with M-stage (p = 0.008), T-stage (p < 0.001), N-stage (p = 0.006), and AJCC stage (p < 0.001). Multivariate Cox regression analysis revealed that RCC patients with lower PBIS scores showed a worse postoperative prognosis and served as an independent predictor of OS (p = 0.002) and CSS (p < 0.001). Ultimately, the nomograms based on PBIS scores demonstrated excellent predictive performance for OS (C-index: 0.770) and CSS (C-index: 0.828) through the analysis of calibration curves, ROC curves, DCA curves, and time-dependent ROC curves. CONCLUSION PBIS score served as novel and effective predictor to accurately predict OS and CSS in patients with RCC receiving laparoscopic nephrectomy.
Collapse
Affiliation(s)
- Jinliang Ni
- Department of Urology, Shanghai Putuo District People's Hospital, School of MedicineTongji UniversityShanghaiChina
- Department of Urology, Shanghai Tenth People's Hospital, School of MedicineTongji UniversityShanghaiShanghaiChina
| | - Xiaoxiang Yao
- Department of Oncology, Putuo People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Wei Song
- Department of Urology, Shanghai Tenth People's Hospital, School of MedicineTongji UniversityShanghaiShanghaiChina
- Shanghai Clinical CollegeAnhui Medical UniversityShanghaiChina
| | - Heng Zhang
- Department of UrologyGuiqian International General HospitalGuizhouChina
| | - Houliang Zhang
- Department of UrologyAffiliated Zhongda Hospital of Southeast UniversityNanjingChina
| | - Yidi Wang
- Department of UrologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yifan Zhang
- Department of Urology, Shanghai Tenth People's Hospital, School of MedicineTongji UniversityShanghaiShanghaiChina
| | - Guangchun Wang
- Department of Urology, Shanghai Tenth People's Hospital, School of MedicineTongji UniversityShanghaiShanghaiChina
| | - Keyi Wang
- Department of Urology, Shanghai Putuo District People's Hospital, School of MedicineTongji UniversityShanghaiChina
- Department of Urology, Shanghai Tenth People's Hospital, School of MedicineTongji UniversityShanghaiShanghaiChina
| | - Weipu Mao
- Department of UrologyAffiliated Zhongda Hospital of Southeast UniversityNanjingChina
| | - Bo Peng
- Department of Urology, Shanghai Tenth People's Hospital, School of MedicineTongji UniversityShanghaiShanghaiChina
- Shanghai Clinical CollegeAnhui Medical UniversityShanghaiChina
| |
Collapse
|
28
|
Yuan Y, Wu D, Hou Y, Zhang Y, Tan C, Nie X, Zhao Z, Hou J. Wnt signaling: Modulating tumor-associated macrophages and related immunotherapeutic insights. Biochem Pharmacol 2024; 223:116154. [PMID: 38513742 DOI: 10.1016/j.bcp.2024.116154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/11/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Wnt signaling pathways are highly conserved cascades that mediate multiple biological processes through canonical or noncanonical pathways, from embryonic development to tissue maintenance, but they also contribute to the pathogenesis of numerous cancers. Recent studies have revealed that Wnt signaling pathways critically control the interplay between cancer cells and tumor-associated macrophages (TAMs) in the tumor microenvironment (TME) and potentially impact the efficacy of cancer immunotherapy. In this review, we summarize the evidence that Wnt signaling pathways boost the maturation and infiltration of macrophages for immune surveillance in the steady state but also polarize TAMs toward immunosuppressive M2-like phenotypes for immune escape in the TME. Both cancer cells and TAMs utilize Wnt signaling to transmit signals, and this interaction is crucial for the carcinogenesis and progression of common solid cancers, such as colorectal, gastric, hepatocellular, breast, thyroid, prostate, kidney, and lung cancers; osteosarcoma; and glioma. Specifically, compared with those in solid cancers, Wnt signaling pathways play a distinct role in the pathogenesis of leukemia. Efforts to develop Wnt-based drugs for cancer treatment are still ongoing, and some indeed enhance the anticancer immune response. We believe that the combination of Wnt signaling-based therapy with conventional or immune therapies is a promising therapeutic approach and can facilitate personalized treatment for most cancers.
Collapse
Affiliation(s)
- Yimeng Yuan
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences and Department of Urinary Surgery, Huaihe Hospital, Henan University, Kaifeng, China
| | - Dapeng Wu
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences and Department of Urinary Surgery, Huaihe Hospital, Henan University, Kaifeng, China
| | - Yifan Hou
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences and Department of Urinary Surgery, Huaihe Hospital, Henan University, Kaifeng, China
| | - Yi Zhang
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences and Department of Urinary Surgery, Huaihe Hospital, Henan University, Kaifeng, China
| | - Cong Tan
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences and Department of Urinary Surgery, Huaihe Hospital, Henan University, Kaifeng, China
| | - Xiaobo Nie
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences and Department of Urinary Surgery, Huaihe Hospital, Henan University, Kaifeng, China; Henan Provincial Research Center for the Prevention and Diagnosis of Prostate Diseases, Henan University, Kaifeng, China.
| | - Zhenhua Zhao
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences and Department of Urinary Surgery, Huaihe Hospital, Henan University, Kaifeng, China; Henan Provincial Research Center for the Prevention and Diagnosis of Prostate Diseases, Henan University, Kaifeng, China.
| | - Junqing Hou
- Kaifeng 155 Hospital, China RongTong Medical Healthcare Group Co. Ltd., Kaifeng, China; Henan Provincial Research Center for the Prevention and Diagnosis of Prostate Diseases, Henan University, Kaifeng, China.
| |
Collapse
|
29
|
Xu Y, Miller CP, Tykodi SS, Akilesh S, Warren EH. Signaling crosstalk between tumor endothelial cells and immune cells in the microenvironment of solid tumors. Front Cell Dev Biol 2024; 12:1387198. [PMID: 38726320 PMCID: PMC11079179 DOI: 10.3389/fcell.2024.1387198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/11/2024] [Indexed: 05/12/2024] Open
Abstract
Tumor-associated endothelial cells (TECs) are crucial mediators of immune surveillance and immune escape in the tumor microenvironment (TME). TECs driven by angiogenic growth factors form an abnormal vasculature which deploys molecular machinery to selectively promote the function and recruitment of immunosuppressive cells while simultaneously blocking the entry and function of anti-tumor immune cells. TECs also utilize a similar set of signaling regulators to promote the metastasis of tumor cells. Meanwhile, the tumor-infiltrating immune cells further induce the TEC anergy by secreting pro-angiogenic factors and prevents further immune cell penetration into the TME. Understanding the complex interactions between TECs and immune cells will be needed to successfully treat cancer patients with combined therapy to achieve vasculature normalization while augmenting antitumor immunity. In this review, we will discuss what is known about the signaling crosstalk between TECs and tumor-infiltrating immune cells to reveal insights and strategies for therapeutic targeting.
Collapse
Affiliation(s)
- Yuexin Xu
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Chris P. Miller
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Scott S. Tykodi
- Department of Medicine, Division of Hematology and Oncology, University of Washington, Seattle, WA, United States
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Shreeram Akilesh
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
- Kidney Research Institute, University of Washington, Seattle, WA, United States
| | - Edus H. Warren
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
- Department of Medicine, Division of Hematology and Oncology, University of Washington, Seattle, WA, United States
| |
Collapse
|
30
|
Su J, Zhang J, Wu Y, Ni C, Ding Y, Cai Z, Xu M, Lai M, Wang J, Lin S, Lu J. Cabozantinib in combination with immune checkpoint inhibitors for renal cell carcinoma: a systematic review and meta-analysis. Front Pharmacol 2024; 15:1322473. [PMID: 38694912 PMCID: PMC11061414 DOI: 10.3389/fphar.2024.1322473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 04/04/2024] [Indexed: 05/04/2024] Open
Abstract
Context Cabozantinib combined with immune checkpoint inhibitors (ICIs) has brought a new therapeutic effect for the medical treatment of renal cell carcinoma (RCC). Objectives We performed a meta-analysis of randomized controlled trials and single-arm trials to evaluate the efficacy and safety of cabozantinib plus ICIs in RCC. Methods We extracted data from PubMed, Cochrane, Medline and Embase databases, and rated literature quality through Cochrane risk of bias tool and MINORS. RevMan5.3 software was used to analyze the results of randomized controlled trials and single-arm trials. Results A total of 7 studies were included. Treatment with cabozantinib plus ICIs improved PFS [HR 0.75, (95%CI: 0.52, 1.08), p = 0.12] and the OS [HR 0.80, (95%CI: 0.60, 1.07), p = 0.13] in randomized controlled trials. Meanwhile, the result of the ORR in randomized controlled trials was [risk ratio (RR) 1.37, (95%CI: 1.21, 1.54), p < 0.00001] and in single-arm trials was [risk difference (RD) 0.49, (95%CI: 0.26, 0.71), p < 0.0001]. Conclusion Cabozantinib plus ICIs prolonged the PFS and OS, and improved ORR in patients with RCC. Our recommendation is to use cabozantinib plus ICIs to treat advanced RCC, and to continuous monitor and manage the drug-related adverse events. Systematic Review Registration identifier CRD42023455878.
Collapse
Affiliation(s)
- Jingyang Su
- Department of Oncology, Hangzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
- Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Jialin Zhang
- Department of Oncology, Hangzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuqian Wu
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Cui Ni
- Department of Oncology, Hangzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Yueyue Ding
- Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Zelin Cai
- Department of Oncology, Hangzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Ming Xu
- Department of Traditional Chinese Medicine, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Mingyang Lai
- Department of Oncology, Hangzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Jue Wang
- Department of Oncology, Hangzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Shengyou Lin
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jinhua Lu
- Department of Oncology, Hangzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
31
|
Yao X, Zhang L, Sun S, Fu A, Ge Y. Progress of research on the relationship between efferocytosis and tumor. Front Oncol 2024; 14:1361327. [PMID: 38655133 PMCID: PMC11035832 DOI: 10.3389/fonc.2024.1361327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
Tumors are genetic changes that develop in an organism as a result of many internal and external causes. They affect the biological behavior of cells, cause them to grow independently, and give rise to new, perpetually proliferating organisms. Recent research has supported the critical function of tumor-associated macrophages in the development, progression, and metastasis of tumors through efferocytosis. Yet, there is still much to learn about the mechanisms behind their contribution to tumor pathological processes. As a result, it's critical to actively investigate how cytosolic processes contribute to the growth of tumors and to create novel therapeutic approaches.
Collapse
Affiliation(s)
| | | | | | | | - Yanlei Ge
- North China University of Science and Technology Affiliated Hospital, Tangshan, China
| |
Collapse
|
32
|
Fan Y, Zhang W, Huang X, Fan M, Shi C, Zhao L, Pi G, Zhang H, Ni S. Senescent-like macrophages mediate angiogenesis for endplate sclerosis via IL-10 secretion in male mice. Nat Commun 2024; 15:2939. [PMID: 38580630 PMCID: PMC10997778 DOI: 10.1038/s41467-024-47317-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 03/25/2024] [Indexed: 04/07/2024] Open
Abstract
Endplate sclerosis is a notable aspect of spine degeneration or aging, but the mechanisms remain unclear. Here, we report that senescent macrophages accumulate in the sclerotic endplates of lumbar spine instability (LSI) or aging male mouse model. Specifically, knockout of cdkn2a (p16) in macrophages abrogates LSI or aging-induced angiogenesis and sclerosis in the endplates. Furthermore, both in vivo and in vitro studies indicate that IL-10 is the primary elevated cytokine of senescence-related secretory phenotype (SASP). Mechanistically, IL-10 increases pSTAT3 in endothelial cells, leading to pSTAT3 directly binding to the promoters of Vegfa, Mmp2, and Pdgfb to encourage their production, resulting in angiogenesis. This study provides information on understanding the link between immune senescence and endplate sclerosis, which might be useful for therapeutic approaches.
Collapse
Affiliation(s)
- Yonggang Fan
- Department of Orthopaedics, 1st Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, PR China
| | - Weixin Zhang
- Zhejiang Chinese Medicine University, Hangzhou, 310053, PR China
| | - Xiusheng Huang
- Department of Orthopaedics, 1st Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, PR China
| | - Mingzhe Fan
- Department of Orthopaedics, 1st Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, PR China
| | - Chenhao Shi
- Department of Orthopaedics, 1st Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, PR China
| | - Lantian Zhao
- Department of Orthopaedics, 1st Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, PR China
| | - Guofu Pi
- Department of Orthopaedics, 1st Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, PR China
| | - Huafeng Zhang
- Department of Orthopaedics, 1st Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, PR China
| | - Shuangfei Ni
- Department of Orthopaedics, 1st Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, PR China.
| |
Collapse
|
33
|
Sun C, Zhan J, Li Y, Zhou C, Huang S, Zhu X, Huang K. Non-apoptotic regulated cell death mediates reprogramming of the tumour immune microenvironment by macrophages. J Cell Mol Med 2024; 28:e18348. [PMID: 38652105 PMCID: PMC11037416 DOI: 10.1111/jcmm.18348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/23/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024] Open
Abstract
Tumour immune microenvironment (TIME) plays an indispensable role in tumour progression, and tumour-associated macrophages (TAMs) are the most abundant immune cells in TIME. Non-apoptotic regulated cell death (RCD) can avoid the influence of tumour apoptosis resistance on anti-tumour immune response. Specifically, autophagy, ferroptosis, pyroptosis and necroptosis mediate the crosstalk between TAMs and tumour cells in TIME, thus reprogram TIME and affect the progress of tumour. In addition, although some achievements have been made in immune checkpoint inhibitors (ICIs), there is still defect that ICIs are only effective for some people because non-apoptotic RCD can bypass the apoptosis resistance of tumour. As a result, ICIs combined with targeting non-apoptotic RCD may be a promising solution. In this paper, the basic molecular mechanism of non-apoptotic RCD, the way in which non-apoptotic RCD mediates crosstalk between TAMs and tumour cells to reprogram TIME, and the latest research progress in targeting non-apoptotic RCD and ICIs are reviewed.
Collapse
Affiliation(s)
- Chengpeng Sun
- Department of NeurosurgeryThe Second Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiP. R. China
- HuanKui Academy, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
| | - Jianhao Zhan
- HuanKui Academy, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
| | - Yao Li
- The First Clinical Medical College, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
| | - Chulin Zhou
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
| | - Shuo Huang
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
| | - Xingen Zhu
- Department of NeurosurgeryThe Second Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiP. R. China
- Institute of Neuroscience, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiP. R. China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular DiseasesNanchangChina
- JXHC Key Laboratory of Neurological MedicineNanchangJiangxiP. R. China
| | - Kai Huang
- Department of NeurosurgeryThe Second Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiP. R. China
- Institute of Neuroscience, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiP. R. China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular DiseasesNanchangChina
- JXHC Key Laboratory of Neurological MedicineNanchangJiangxiP. R. China
| |
Collapse
|
34
|
Li L, Ma SR, Yu ZL. Targeting the lipid metabolic reprogramming of tumor-associated macrophages: A novel insight into cancer immunotherapy. Cell Oncol (Dordr) 2024; 47:415-428. [PMID: 37776422 DOI: 10.1007/s13402-023-00881-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2023] [Indexed: 10/02/2023] Open
Abstract
BACKGROUND Tumor-associated macrophages, as the major immunocytes in solid tumors, show divided loyalty and remarkable plasticity in tumorigenesis. Once the M2-to-M1 repolarization is achieved, they could be switched from the supporters for tumor development into the guardians for host immunity. Meanwhile, Lipid metabolic reprogramming is demonstrated to be one of the most important hallmarks of tumor-associated macrophages, which plays a decisive role in regulating their phenotypes and functions to promote tumorigenesis and immunotherapy resistance. Therefore, targeting the lipid metabolism of TAMs may provide a new direction for anti-tumor strategies. CONCLUSION In this review, we first summarized the origins, classifications and general lipid metabolic process of TAMs. Then we discussed the currently available drugs and interventions that target lipid metabolic disorders of TAMs, including those targeting lipid uptake, efflux, lipolysis, FAO and lipid peroxidation. Besides, based on the recent research status, we summarized the present challenges for this cancer immunotherapy, including the precise drug delivery system, the lipid metabolic heterogeneity, and the intricate lipid metabolic interactions in the TME, and we also proposed corresponding possible solutions. Collectively, we hope this review will give researchers a better understanding of the lipid metabolism of TAMs and lead to the development of corresponding anti-tumor therapies in the future.
Collapse
Affiliation(s)
- Liang Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, People's Republic of China
| | - Si-Rui Ma
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, People's Republic of China.
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| | - Zi-Li Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, People's Republic of China.
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
35
|
Nie J, Ai J, Hong W, Bai Z, Wang B, Yang J, Zhang Z, Mo F, Yang J, Sun Q, Wei X. Cisplatin-induced oxPAPC release enhances MDSCs infiltration into LL2 tumour tissues through MCP-1/CCL2 and LTB4/LTB4R pathways. Cell Prolif 2024; 57:e13570. [PMID: 37905494 PMCID: PMC10984104 DOI: 10.1111/cpr.13570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/09/2023] [Accepted: 10/15/2023] [Indexed: 11/02/2023] Open
Abstract
Lung cancer is the leading global cause of cancer-related death, however, resistance to chemotherapy drugs remains a huge barrier to effective treatment. The elevated recruitment of myeloid derived suppressor cells (MDSCs) to tumour after chemotherapy has been linked to resistance of chemotherapy drugs. Nevertheless, the specific mechanism remains unclear. oxPAPC is a bioactive principal component of minimally modified low-density lipoproteins and regulates inflammatory response. In this work, we found that cisplatin, oxaliplatin and ADM all increased oxPAPC release in tumour. Treating macrophages with oxPAPC in vitro stimulated the secretion of MCP-1 and LTB4, which strongly induced monocytes and neutrophils chemotaxis, respectively. Injection of oxPAPC in vivo significantly upregulated the percentage of MDSCs in tumour microenvironment (TME) of wild-type LL2 tumour-bearing mice, but not CCL2-/- mice and LTB4R-/- mice. Critically, oxPAPC acted as a pro-tumor factor in LL2 tumour model. Indeed, cisplatin increased oxPAPC level in tumour tissues of WT mice, CCL2-/- and LTB4R-/- mice, but caused increased infiltration of Ly6Chigh monocytes and neutrophils only in WT LL2-bearing mice. Collectively, our work demonstrates cisplatin treatment induces an overproduction of oxPAPC and thus recruits MDSCs infiltration to promote the tumour growth through the MCP-1/CCL2 and LTB4/LTB4R pathways, which may restrict the effect of multiple chemotherapy. This provides evidence for a potential strategy to enhance the efficacy of multiple chemotherapeutic drugs in the treatment of lung cancer by targeting oxPAPC.
Collapse
Affiliation(s)
- Ji Nie
- Department of Biotherapy, Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for GeriatricsWest China Hospital, Sichuan UniversityChengduSichuanChina
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan ProvinceThe Affiliated Hospital of Kunming University of Science and TechnologyKunmingYunnanChina
| | - Jiayuan Ai
- Department of Biotherapy, Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for GeriatricsWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Weiqi Hong
- Department of Biotherapy, Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for GeriatricsWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Ziyi Bai
- Department of Biotherapy, Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for GeriatricsWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Binhan Wang
- Department of Biotherapy, Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for GeriatricsWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Jingyun Yang
- Department of Biotherapy, Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for GeriatricsWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Ziqi Zhang
- Department of Biotherapy, Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for GeriatricsWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Fei Mo
- Department of Biotherapy, Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for GeriatricsWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Jing Yang
- Department of Biotherapy, Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for GeriatricsWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Qiu Sun
- Department of Biotherapy, Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for GeriatricsWest China Hospital, Sichuan UniversityChengduSichuanChina
- West China Medical Publishers, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Xiawei Wei
- Department of Biotherapy, Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for GeriatricsWest China Hospital, Sichuan UniversityChengduSichuanChina
| |
Collapse
|
36
|
Ma S, Tian Z, Liu L, Zhu J, Wang J, Zhao S, Zhu Y, Zhu J, Wang W, Jiang R, Qu Y, Lei J, Zhao J, Jiang T. Cold to Hot: Tumor Immunotherapy by Promoting Vascular Normalization Based on PDGFB Nanocomposites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308638. [PMID: 38018295 DOI: 10.1002/smll.202308638] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/04/2023] [Indexed: 11/30/2023]
Abstract
Immunotherapy is a promising cancer therapeutic strategy. However, the "cold" tumor immune microenvironment (TIME), characterized by insufficient immune cell infiltration and immunosuppressive status, limits the efficacy of immunotherapy. Tumor vascular abnormalities due to defective pericyte coverage are gradually recognized as a profound determinant in "cold" TIME establishment by hindering immune cell trafficking. Recently, several vascular normalization strategies by improving pericyte coverage have been reported, whereas have unsatisfactory efficacy and high rates of resistance. Herein, a combinatorial strategy to induce tumor vasculature-targeted pericyte recruitment and zinc ion-mediated immune activation with a platelet-derived growth factor B (PDGFB)-loaded, cyclo (Arg-Gly-Asp-D-Phe-Lys)-modified zeolitic imidazolate framework 8 (PDGFB@ZIF8-RGD) nanoplatform is proposed. PDGFB@ZIF8-RGD effectively induced tumor vascular normalization, which facilitated trafficking and infiltration of immune effector cells, including natural killer (NK) cells, M1-like macrophages and CD8+ T cells, into tumor microenvironment. Simultaneously, vascular normalization promoted the accumulation of zinc ions inside tumors to trigger effector cell immune activation and effector molecule production. The synergy between these two effects endowed PDGFB@ZIF8-RGD with superior capabilities in reprogramming the "cold" TIME to a "hot" TIME, thereby initiating robust antitumor immunity and suppressing tumor growth. This combinatorial strategy for improving immune effector cell infiltration and activation is a promising paradigm for solid tumor immunotherapy.
Collapse
Affiliation(s)
- Shouzheng Ma
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Zhimin Tian
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Lei Liu
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi Province, 710032, China
| | - Jun Zhu
- The Southern Theater Air Force Hospital, Guangzhou, 510000, China
| | - Jing Wang
- Department of Immunology, Air Force Medical University, Xi'an, 710032, China
| | - Shoujie Zhao
- Department of General Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Yejing Zhu
- Department of General Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Jianfei Zhu
- Department of Thoracic Surgery, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Wenchen Wang
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Runmin Jiang
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Yongquan Qu
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Jie Lei
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Junlong Zhao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Medical Genetics and Development Biology, Air Force Medical University, Xi'an, 710032, China
- Department of Pediatrics, Tangdu Hospital, Air Force Medical University, Xi'an, 710000, China
| | - Tao Jiang
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| |
Collapse
|
37
|
Wang H, Gao C, Li X, Chen F, Li G. Camptothecin enhances the anti-tumor effect of low-dose apatinib combined with PD-1 inhibitor on hepatocellular carcinoma. Sci Rep 2024; 14:7140. [PMID: 38532022 PMCID: PMC10966085 DOI: 10.1038/s41598-024-57874-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/22/2024] [Indexed: 03/28/2024] Open
Abstract
Apatinib has been shown to apply to a variety of solid tumors, including advanced hepatocellular carcinoma. Preclinical and preliminary clinical results confirmed the synergistic antitumor effects of apatinib in combination with anti-programmed death-1 (PD-1) inhibitors. In this study, we investigated camptothecin (CPT) enhances the anti-tumor effect of low-dose apatinib combined with PD-1 inhibitor on hepatocellular carcinoma. CPT combined with a PD-1 inhibitor enhances the anti-tumor effects of low-dose apatinib in hepatocellular carcinoma which was evaluated in making use of the H22 mouse model (n = 32), which was divided into four groups. Immunohistochemical staining and western blotting were used to detect nuclear factor erythroid 2-related factor 2 (Nrf2) as well as sequestosome 1 (p62), vascular endothelial growth factor A (VEGFA), vascular endothelial growth factor receptor 2 (VEGFR2), PD-1, and programmed cell death ligand 1 (PD-L1). The results showed that the average size of the tumor of the combination group (Group D) was significantly less than that of the apatinib + PD-1 inhibitor group (Group C). The expression levels of Nrf2, p62, VEGFA, VEGFR2, PD-1, and PD-L1 in the apatinib + PD-1 inhibitor group(Group C) were lower than those in the control group (Group A) (P < 0.05). The expression levels of these genes in the apatinib + PD-1 inhibitor group (Group C) were significantly lower in the combination group (Group D) (P < 0.05). There was no obvious difference in body weight and liver and kidney functions between the four groups of mice. In conclusion, CPT improves the anti-tumor effect of low-dose apatinib combined with PD-1 inhibitor on hepatocellular carcinoma.
Collapse
Affiliation(s)
- Hankang Wang
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, 250000, People's Republic of China
| | - Congcong Gao
- Jinan Center for Disease Control and Prevention, Jinan, Shandong, 250000, People's Republic of China
| | - Xiaodong Li
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, 250000, People's Republic of China
| | - Feng Chen
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, 250000, People's Republic of China.
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, 16766 Jingshi Road, Lixia, Jinan, Shandong, 250014, People's Republic of China.
| | - Guijie Li
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, 16766 Jingshi Road, Lixia, Jinan, Shandong, 250014, People's Republic of China.
| |
Collapse
|
38
|
Co Soriano JC, Tsutsumi S, Ohara D, Hirota K, Kondoh G, Niwa T, Taguchi H, Kadonosono T, Kizaka-Kondoh S. Identification of Surface Markers and Functional Characterization of Myeloid Derived Suppressor Cell-Like Adherent Cells. Adv Biol (Weinh) 2024; 8:e2300159. [PMID: 37986133 DOI: 10.1002/adbi.202300159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 10/11/2023] [Indexed: 11/22/2023]
Abstract
Myeloid-derived suppressor cell (MDSC)-like adherent cells (MLACs) are a recently identified CD11b+ F4/80- myeloid cell subset that can infiltrate tumors early in development and promote their growth. Because of these functions, MLACs play an important role in establishing an immunosuppressive tumor microenvironment (TME). However, the lack of MLAC-specific markers has hampered further characterization of this cell type. This study identifies the gene signature of MLACs by analyzing RNA-sequencing (RNA-seq) and public single-cell RNA-seq data, revealing that MLACs are an independent cell population that are distinct from other intratumoral myeloid cells. After combining proteome analysis of membrane proteins with RNA-seq data, H2-Ab1 and CD11c are indicated as marker proteins that can support the isolation of MLAC subsets from CD11b+ F4/80- myeloid cells by fluorescence-activated cell sorting. The CD11b+ F4/80- H2-Ab1+ and CD11b+ F4/80- CD11c+ MLAC subsets represent approximately half of the MLAC population that is isolated based on their adhesion properties and possess gene signatures and functional properties similar to those of the MLAC population. Additionally, membrane proteome analysis suggests that MLACs express highly heterogeneous surface proteins. This study facilitates an integrated understanding of heterogeneous intratumoral myeloid cells, as well as the molecular and cellular details of the development of an immunosuppressive TME.
Collapse
Affiliation(s)
- John Clyde Co Soriano
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Shiho Tsutsumi
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Daiya Ohara
- Institute for Frontier Life and Medical Sciences, Kyoto University, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Keiji Hirota
- Institute for Frontier Life and Medical Sciences, Kyoto University, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Gen Kondoh
- Institute for Frontier Life and Medical Sciences, Kyoto University, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Tatsuya Niwa
- Institute for Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8503, Japan
| | - Hideki Taguchi
- Institute for Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8503, Japan
| | - Tetsuya Kadonosono
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Shinae Kizaka-Kondoh
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| |
Collapse
|
39
|
Vilbois S, Xu Y, Ho PC. Metabolic interplay: tumor macrophages and regulatory T cells. Trends Cancer 2024; 10:242-255. [PMID: 38135571 DOI: 10.1016/j.trecan.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/19/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023]
Abstract
The tumor microenvironment (TME) contains a complex cellular ecosystem where cancer, stromal, vascular, and immune cells interact. Macrophages and regulatory T cells (Tregs) are critical not only for maintaining immunological homeostasis and tumor growth but also for monitoring the functional states of other immune cells. Emerging evidence reveals that metabolic changes in macrophages and Tregs significantly influence their pro-/antitumor functions through the regulation of signaling cascades and epigenetic reprogramming. Hence, they are increasingly recognized as therapeutic targets in cancer immunotherapy. Specific metabolites in the TME may also affect their pro-/antitumor functions by intervening with the metabolic machinery. We discuss how metabolites influence the immunosuppressive phenotypes of tumor-associated macrophages (TAMs) and Tregs. We then describe how TAMs and Tregs, independently or collaboratively, utilize metabolic mechanisms to suppress the activity of CD8+ T cells. Finally, we highlight promising metabolic interventions that can improve the outcome of current cancer therapies.
Collapse
Affiliation(s)
- Stefania Vilbois
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| | - Yingxi Xu
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland.
| | - Ping-Chih Ho
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland.
| |
Collapse
|
40
|
Eberly HW, Sciscent BY, Lorenz FJ, Rettig EM, Goyal N. Current and Emerging Diagnostic, Prognostic, and Predictive Biomarkers in Head and Neck Cancer. Biomedicines 2024; 12:415. [PMID: 38398017 PMCID: PMC10886579 DOI: 10.3390/biomedicines12020415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Head and neck cancers (HNC) are a biologically diverse set of cancers that are responsible for over 660,000 new diagnoses each year. Current therapies for HNC require a comprehensive, multimodal approach encompassing resection, radiation therapy, and systemic therapy. With an increased understanding of the mechanisms behind HNC, there has been growing interest in more accurate prognostic indicators of disease, effective post-treatment surveillance, and individualized treatments. This chapter will highlight the commonly used and studied biomarkers in head and neck squamous cell carcinoma.
Collapse
Affiliation(s)
- Hänel W. Eberly
- Department of Otolaryngology Head and Neck Surgery, Penn State Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, PA 17033, USA; (H.W.E.); (F.J.L.)
| | - Bao Y. Sciscent
- Department of Otolaryngology Head and Neck Surgery, Penn State Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, PA 17033, USA; (H.W.E.); (F.J.L.)
| | - F. Jeffrey Lorenz
- Department of Otolaryngology Head and Neck Surgery, Penn State Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, PA 17033, USA; (H.W.E.); (F.J.L.)
| | - Eleni M. Rettig
- Department of Otolaryngology Head and Neck Surgery, Brigham and Women’s Hospital, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02108, USA
| | - Neerav Goyal
- Department of Otolaryngology Head and Neck Surgery, Penn State Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, PA 17033, USA; (H.W.E.); (F.J.L.)
| |
Collapse
|
41
|
Yang J, Qian J, Wu Z, Zhang W, Yin Z, Shen W, He K, He Y, Liu L. Exploring the factors affecting the occurrence of postoperative MVI and the prognosis of hepatocellular carcinoma patients treated with hepatectomy: A multicenter retrospective study. Cancer Med 2024; 13:e6933. [PMID: 38284881 PMCID: PMC10905528 DOI: 10.1002/cam4.6933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 12/27/2023] [Accepted: 01/02/2024] [Indexed: 01/30/2024] Open
Abstract
OBJECTIVE To investigate the influencing factors affecting the occurrence of microvascular invasion (MVI) and the prognosis of hepatocellular carcinoma (HCC) patients treated with hepatectomy, and to explore how MVI affects prognosis in subgroups with different prognostic factors. METHODS Clinical data of a total of 1633 patients treated surgically for HCC in four treatment centers were included, including 754 patients with MVI. By using the Cox risk regression model and the Mann-Whitney U-test, the common independent influences on prognosis and MVI were made clear. The incidence of MVI in various subgroups was then examined, as well as the relationship between MVI in various subgroups and prognosis. RESULTS The Cox risk regression model showed that MVI, Child-Pugh classification, alpha-fetoprotein (AFP), hepatocirrhosis, tumor diameter, lymphocyte-to-monocyte ratio (LMR), and, Barcelona clinic liver cancer (BCLC) grade were independent determinants of overall survival (OS), and MVI, AFP, hepatocirrhosis, tumor diameter, and LMR were influencing determinants for disease-free survival (DFS). The receiver operating characteristic (ROC) curve showed that MVI was most closely associated with patient prognosis compared to other prognostic factors. AFP, hepatocirrhosis, tumor diameter, and LMR were discovered to be common influences on the prognosis of patients with HCC and MVI when combined with the results of the intergroup comparison of MVI. After grouping, it was showed that patients with hepatocirrhosis, positive AFP (AFP ≥ 20 ng/mL), tumor diameter >50 mm, and LMR ≤3.4 had a significantly higher incidence of MVI than patients in other subgroups, and all four subgroups of MVI-positive patients had higher rates of early recurrence and mortality (p < 0.05). CONCLUSIONS MVI was found to be substantially linked with four subgroups of HCC patients with hepatocirrhosis, positive AFP, tumor diameter >50 mm, and LMR ≤3.4, and the prognosis of MVI-positive patients in all four subgroups tended to be worse.
Collapse
Affiliation(s)
- Jilin Yang
- The Second Clinical Medical College, Jinan University, ShenzhenShenzhenChina
| | - Junlin Qian
- Department of Hepatobiliary SurgeryZhongshan People's Hospital (Zhongshan Hospital Affiliated to Sun Yat‐sen University)ZhongshanChina
| | - Zhao Wu
- Department of General SurgeryThe Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Wenjian Zhang
- Division of Hepatobiliary and Pancreas Surgery, Department of General SurgeryThe Second Clinical Medical College, The First Affiliated Hospital, Shenzhen People's Hospital, Jinan University, Southern University of Science and TechnologyShenzhenChina
| | - Zexin Yin
- Division of Hepatobiliary and Pancreas Surgery, Department of General SurgeryThe Second Clinical Medical College, The First Affiliated Hospital, Shenzhen People's Hospital, Jinan University, Southern University of Science and TechnologyShenzhenChina
| | - Wei Shen
- Department of General SurgeryThe Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Kun He
- Department of Hepatobiliary SurgeryZhongshan People's Hospital (Zhongshan Hospital Affiliated to Sun Yat‐sen University)ZhongshanChina
| | - Yongzhu He
- Division of Hepatobiliary and Pancreas Surgery, Department of General SurgeryThe First Clinical Medical College of Nanchang University, The First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Liping Liu
- The Second Clinical Medical College, Jinan University, ShenzhenShenzhenChina
- Division of Hepatobiliary and Pancreas Surgery, Department of General SurgeryThe Second Clinical Medical College, The First Affiliated Hospital, Shenzhen People's Hospital, Jinan University, Southern University of Science and TechnologyShenzhenChina
| |
Collapse
|
42
|
Cao L, Meng X, Zhang Z, Liu Z, He Y. Macrophage heterogeneity and its interactions with stromal cells in tumour microenvironment. Cell Biosci 2024; 14:16. [PMID: 38303024 PMCID: PMC10832170 DOI: 10.1186/s13578-024-01201-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/22/2024] [Indexed: 02/03/2024] Open
Abstract
Macrophages and tumour stroma cells account for the main cellular components in the tumour microenvironment (TME). Current advancements in single-cell analysis have revolutionized our understanding of macrophage diversity and macrophage-stroma interactions. Accordingly, this review describes new insight into tumour-associated macrophage (TAM) heterogeneity in terms of tumour type, phenotype, metabolism, and spatial distribution and presents the association between these factors and TAM functional states. Meanwhile, we focus on the immunomodulatory feature of TAMs and highlight the tumour-promoting effect of macrophage-tumour stroma interactions in the immunosuppressive TME. Finally, we summarize recent studies investigating macrophage-targeted therapy and discuss their therapeutic potential in improving immunotherapy by alleviating immunosuppression.
Collapse
Affiliation(s)
- Liren Cao
- Department of Oral Maxillofacial & Head and Neck Oncology, National Clinical Research Center for Oral Disease, National Center of Stomatology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xiaoyan Meng
- Department of Oral Maxillofacial & Head and Neck Oncology, National Clinical Research Center for Oral Disease, National Center of Stomatology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Zhiyuan Zhang
- Department of Oral Maxillofacial & Head and Neck Oncology, National Clinical Research Center for Oral Disease, National Center of Stomatology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Zhonglong Liu
- Department of Oral Maxillofacial & Head and Neck Oncology, National Clinical Research Center for Oral Disease, National Center of Stomatology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Yue He
- Department of Oral Maxillofacial & Head and Neck Oncology, National Clinical Research Center for Oral Disease, National Center of Stomatology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
43
|
Quail DF, Park M, Welm AL, Ekiz HA. Breast Cancer Immunity: It is TIME for the Next Chapter. Cold Spring Harb Perspect Med 2024; 14:a041324. [PMID: 37188526 PMCID: PMC10835621 DOI: 10.1101/cshperspect.a041324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Our ability to interrogate the tumor immune microenvironment (TIME) at an ever-increasing granularity has uncovered critical determinants of disease progression. Not only do we now have a better understanding of the immune response in breast cancer, but it is becoming possible to leverage key mechanisms to effectively combat this disease. Almost every component of the immune system plays a role in enabling or inhibiting breast tumor growth. Building on early seminal work showing the involvement of T cells and macrophages in controlling breast cancer progression and metastasis, single-cell genomics and spatial proteomics approaches have recently expanded our view of the TIME. In this article, we provide a detailed description of the immune response against breast cancer and examine its heterogeneity in disease subtypes. We discuss preclinical models that enable dissecting the mechanisms responsible for tumor clearance or immune evasion and draw parallels and distinctions between human disease and murine counterparts. Last, as the cancer immunology field is moving toward the analysis of the TIME at the cellular and spatial levels, we highlight key studies that revealed previously unappreciated complexity in breast cancer using these technologies. Taken together, this article summarizes what is known in breast cancer immunology through the lens of translational research and identifies future directions to improve clinical outcomes.
Collapse
Affiliation(s)
- Daniela F Quail
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec H3A 1A3, Canada
- Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Morag Park
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec H3A 1A3, Canada
- Departments of Biochemistry, Oncology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Alana L Welm
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - H Atakan Ekiz
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Gulbahce, 35430 Urla, Izmir, Turkey
| |
Collapse
|
44
|
Wang J, Zhu N, Su X, Gao Y, Yang R. Novel tumor-associated macrophage populations and subpopulations by single cell RNA sequencing. Front Immunol 2024; 14:1264774. [PMID: 38347955 PMCID: PMC10859433 DOI: 10.3389/fimmu.2023.1264774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/30/2023] [Indexed: 02/15/2024] Open
Abstract
Tumor-associated macrophages (TAMs) are present in almost all solid tumor tissues. 16They play critical roles in immune regulation, tumor angiogenesis, tumor stem cell activation, tumor invasion and metastasis, and resistance to therapy. However, it is unclear how TAMs perform these functions. With the application of single-cell RNA sequencing (scRNA-seq), it has become possible to identify TAM subpopulations associated with distinct functions. In this review, we discuss four novel TAM subpopulations in distinct solid tumors based on core gene signatures by scRNA-seq, including FCN1 +, SPP1 +, C1Q + and CCL18 + TAMs. Functional enrichment and gene expression in scRNA-seq data from different solid tumor tissues found that FCN1 + TAMs may induce inflammation; SPP1 + TAMs are potentially involved in metastasis, angiogenesis, and cancer cell stem cell activation, whereas C1Q + TAMs participate in immune regulation and suppression; And CCL18 + cells are terminal immunosuppressive macrophages that not only have a stronger immunosuppressive function but also enhance tumor metastasis. SPP1 + and C1Q + TAM subpopulations can be further divided into distinct populations with different functions. Meanwhile, we will also present emerging evidence highlighting the separating macrophage subpopulations associated with distinct functions. However, there exist the potential disconnects between cell types and subpopulations identified by scRNA-seq and their actual function.
Collapse
Affiliation(s)
- Juanjuan Wang
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Ningning Zhu
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Xiaomin Su
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Yunhuan Gao
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Rongcun Yang
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| |
Collapse
|
45
|
Guo Y, Cui J, Liang X, Chen T, Lu C, Peng T. Pancreatic cancer stem cell-derived exosomal miR-210 mediates macrophage M2 polarization and promotes gemcitabine resistance by targeting FGFRL1. Int Immunopharmacol 2024; 127:111407. [PMID: 38134594 DOI: 10.1016/j.intimp.2023.111407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 11/28/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023]
Abstract
Pancreatic cancer (PC) is a serious threat to human health, with most patients diagnosed at the advanced stages of the disease. Treatment with gemcitabine (GEM) leads to PC GEM resistance. In addition, cancer stem cell (CSC)-derived exosomes play an important role in cancer progression. We aimed to investigate the role and mechanism of action of PC stem cell-derived exosomes in PC drug resistance and progression. CSC-derived exosomes increased the proportion of F4/80+/CD86 + cells and levels of M2 polarization factors. miR-210 is expressed in CSC-derived exosomes. Thus, following co-culture, miR-210 was taken up by macrophages. Transfection or the addition of miR-210 mimics increased the proportion of F4/80+/CD206 + cells and levels of M2 polarization factors. Further, the miR-210 targets inhibited the levels of FGFRL1. The FGFRL1 overexpression plasmid also inhibited miR-210-mediated M2 polarization. After co-culture of THP-M2 cells with PC cells and treatment with GEM, the survival rate, migration rate, and levels of MDR, YB-1, BCRP, p-PI3K, p-AKT, and p-mTOR in PC cells increased. And THP-M2 increased the tumor volume and MDR, YB-1, BCRP, p-PI3K, p-AKT, and p-mTOR levels. Overall, miR-210 from PC stem cell-derived exosome targets and inhibits FGFRL1 to promote macrophage M2 polarization, which activates the p-PI3K/p-AKT/p-mTOR pathway and increases GEM resistance.
Collapse
Affiliation(s)
- Yao Guo
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jing Cui
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xueyi Liang
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Taoyu Chen
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chong Lu
- Department of thyroid and breast surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Tao Peng
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
46
|
Qian Y, Yin Y, Zheng X, Liu Z, Wang X. Metabolic regulation of tumor-associated macrophage heterogeneity: insights into the tumor microenvironment and immunotherapeutic opportunities. Biomark Res 2024; 12:1. [PMID: 38185636 PMCID: PMC10773124 DOI: 10.1186/s40364-023-00549-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/12/2023] [Indexed: 01/09/2024] Open
Abstract
Tumor-associated macrophages (TAMs) are a heterogeneous population that play diverse functions in tumors. Their identity is determined not only by intrinsic factors, such as origins and transcription factors, but also by external signals from the tumor microenvironment (TME), such as inflammatory signals and metabolic reprogramming. Metabolic reprogramming has rendered TAM to exhibit a spectrum of activities ranging from pro-tumorigenic to anti-tumorigenic, closely associated with tumor progression and clinical prognosis. This review implicates the diversity of TAM phenotypes and functions, how this heterogeneity has been re-evaluated with the advent of single-cell technologies, and the impact of TME metabolic reprogramming on TAMs. We also review current therapies targeting TAM metabolism and offer new insights for TAM-dependent anti-tumor immunotherapy by focusing on the critical role of different metabolic programs in TAMs.
Collapse
Affiliation(s)
- Yujing Qian
- Department of Obstetrics and Gynecology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yujia Yin
- Department of Obstetrics and Gynecology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Xiaocui Zheng
- Department of Obstetrics and Gynecology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Zhaoyuan Liu
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Xipeng Wang
- Department of Obstetrics and Gynecology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
47
|
Qi R, Yang L, Zhao X, Huo L, Wang Y, Zhang P, Chen X. Progress in the research of immunotherapy‑related hyperprogression (Review). Mol Clin Oncol 2024; 20:3. [PMID: 38223402 PMCID: PMC10784782 DOI: 10.3892/mco.2023.2701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 11/02/2023] [Indexed: 01/16/2024] Open
Abstract
Immunotherapy has become an effective method for the treatment of a variety of malignant tumors. However, with the development of immunotherapy, the phenomenon of hyperprogression in patients with cancer has gradually attracted attention. Hyperprogression refers to a condition in which the progression of a disease during treatment of a patient with cancer is suddenly accelerated. To date, no reliable marker has been found to predict accelerated tumor growth during immune checkpoint inhibitor (ICI) treatment. The aim the present study was to summarize the definition of hyperprogression and the difference between hyperprogression and pseudocytosis, and investigate the potential mechanisms of hyperprogression including clinical characteristics, potential molecular markers and the immune microenvironment. The effect of macrophage-related different types and factors on tumors in the immune microenvironment was analyzed, and the findings may be used to determine the future directions of research in hyperprogression.
Collapse
Affiliation(s)
- Ruizhe Qi
- Department of Pharmacy, The Second Affiliated Hospital of Xingtai Medical College, Xingtai, Hebei 054000, P.R. China
| | - Lihui Yang
- Department of Nursing, The Second Affiliated Hospital of Xingtai Medical College, Xingtai, Hebei 054000, P.R. China
| | - Xinchao Zhao
- Department of Pharmacy, The Second Affiliated Hospital of Xingtai Medical College, Xingtai, Hebei 054000, P.R. China
| | - Liying Huo
- Department of Pharmacy, The Second Affiliated Hospital of Xingtai Medical College, Xingtai, Hebei 054000, P.R. China
| | - Yaling Wang
- Department of Pharmacy, Zhengzhou Ninth People's Hospital, Zhengzhou, Henan 450000, P.R. China
| | - Peifang Zhang
- Department of Nursing, The Second Affiliated Hospital of Xingtai Medical College, Xingtai, Hebei 054000, P.R. China
| | - Xiaomei Chen
- Department of Pharmacy, Baoan Central Hospital of Shenzhen, Shenzhen, Guangdong 518102, P.R. China
| |
Collapse
|
48
|
Möckel D, Bartneck M, Niemietz P, Wagner M, Ehling J, Rama E, Weiler M, Gremse F, Eulberg D, Pola R, Pechar M, Etrych T, Storm G, Kiessling F, Tacke F, Lammers T. CCL2 chemokine inhibition primes the tumor vasculature for improved nanomedicine delivery and efficacy. J Control Release 2024; 365:358-368. [PMID: 38016488 DOI: 10.1016/j.jconrel.2023.11.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 10/20/2023] [Accepted: 11/22/2023] [Indexed: 11/30/2023]
Abstract
Blood vessel functionality is crucial for efficient tumor-targeted drug delivery. Heterogeneous distribution and perfusion of angiogenic blood vessels contribute to suboptimal accumulation of (nano-) therapeutics in tumors and metastases. To attenuate pathological angiogenesis, an L-RNA aptamer inhibiting the CC motif chemokine ligand 2 (CCL2) was administered to mice bearing orthotopic 4T1 triple-negative breast cancer tumors. The effect of CCL2 inhibition on tumor blood vessel functionality and tumor-targeted drug delivery was evaluated via multimodal and multiscale optical imaging, employing fluorophore-labeled polymeric (10 nm) and liposomal (100 nm) nanocarriers. Anti-CCL2 treatment induced a dose-dependent anti-angiogenic effect, reflected by a decreased relative blood volume, increased blood vessel maturity and functionality, and reduced macrophage infiltration, accompanied by a shift in the polarization of tumor-associated macrophages (TAM) towards a less M2-like and more M1-like phenotype. In line with this, CCL2 inhibitor treatment improved the delivery of polymers and liposomes to tumors, and enhanced the antitumor efficacy of free and liposomal doxorubicin. Together, these findings demonstrate that blocking the CCL2-CCR2 axis modulates TAM infiltration and polarization, resulting in vascular normalization and improved tumor-targeted drug delivery.
Collapse
Affiliation(s)
- Diana Möckel
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany
| | - Matthias Bartneck
- Department of Medicine III, Medical Faculty, RWTH Aachen University Clinic, Aachen, Germany
| | - Patricia Niemietz
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Germany
| | - Maike Wagner
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany
| | - Josef Ehling
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany
| | - Elena Rama
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany
| | - Marek Weiler
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany
| | - Felix Gremse
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany; Gremse-IT GmbH, Aachen, Germany
| | | | - Robert Pola
- Czech Academy of Sciences, Institute of Macromolecular Chemistry, Prague, Czech Republic
| | - Michal Pechar
- Czech Academy of Sciences, Institute of Macromolecular Chemistry, Prague, Czech Republic
| | - Tomas Etrych
- Czech Academy of Sciences, Institute of Macromolecular Chemistry, Prague, Czech Republic
| | - Gert Storm
- Department of Pharmaceutics, Utrecht University, the Netherlands; Department of Biomaterials, Science and Technology, University of Twente, the Netherlands; Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Germany
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany.
| |
Collapse
|
49
|
Tavakoli Pirzaman A, Alishah A, Babajani B, Ebrahimi P, Sheikhi SA, Moosaei F, Salarfar A, Doostmohamadian S, Kazemi S. The Role of microRNAs in Hepatocellular Cancer: A Narrative Review Focused on Tumor Microenvironment and Drug Resistance. Technol Cancer Res Treat 2024; 23:15330338241239188. [PMID: 38634139 PMCID: PMC11025440 DOI: 10.1177/15330338241239188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/26/2024] [Accepted: 02/26/2024] [Indexed: 04/19/2024] Open
Abstract
Globally, hepatic cancer ranks fourth in terms of cancer-related mortality and is the sixth most frequent kind of cancer. Around 80% of liver cancers are hepatocellular carcinomas (HCC), which are the leading cause of cancer death. It is well known that HCC may develop resistance to the available chemotherapy treatments very fast. One of the biggest obstacles in providing cancer patients with appropriate care is drug resistance. According to reports, more than 90% of cancer-specific fatalities are caused by treatment resistance. By binding to the 3'-untranslated region of target messenger RNAs (mRNAs), microRNAs (miRNAs), a group of noncoding RNAs which are around 17 to 25 nucleotides long, regulate target gene expression. Moreover, they play role in the control of signaling pathways, cell proliferation, and cell death. As a result, miRNAs play an important role in the microenvironment of HCC by changing immune phenotypes, hypoxic conditions, and acidification, as well as angiogenesis and extracellular matrix components. Moreover, changes in miRNA levels in HCC can effectively resist cancer cells to chemotherapy by affecting various cellular processes such as autophagy, apoptosis, and membrane transporter activity. In the current work, we narratively reviewed the role of miRNAs in HCC, with a special focus on tumor microenvironment and drug resistance.
Collapse
Affiliation(s)
| | - Ali Alishah
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Bahareh Babajani
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Pouyan Ebrahimi
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Seyyed Ali Sheikhi
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Farhad Moosaei
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | | | | | - Sohrab Kazemi
- Cellular and Molecular Biology Research Center, Health Research Center, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
50
|
Cavazzoni A, Digiacomo G, Volta F, Alfieri R, Giovannetti E, Gnetti L, Bellini L, Galetti M, Fumarola C, Xu G, Bonelli M, La Monica S, Verzè M, Leonetti A, Eltayeb K, D'Agnelli S, Moron Dalla Tor L, Minari R, Petronini PG, Tiseo M. PD-L1 overexpression induces STAT signaling and promotes the secretion of pro-angiogenic cytokines in non-small cell lung cancer (NSCLC). Lung Cancer 2024; 187:107438. [PMID: 38100954 DOI: 10.1016/j.lungcan.2023.107438] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/22/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Monoclonal antibodies (ICI) targeting the immune checkpoint PD-1/PD-L1 alone or in combination with chemotherapy have demonstrated relevant benefits and established new standards of care in first-line treatment for advanced non-oncogene addicted non-small cell lung cancer (NSCLC). However, a relevant percentage of NSCLC patients, even with high PD-L1 expression, did not respond to ICI, highlighting the presence of intracellular resistance mechanisms that could be dependent on high PD-L1 levels. The intracellular signaling induced by PD-L1 in tumor cells and their correlation with angiogenic signaling pathways are not yet fully elucidated. METHODS The intrinsic role of PD-L1 was initially checked in two PD-L1 overexpressing NSCLC cells by transcriptome profile and kinase array. The correlation of PD-L1 with VEGF, PECAM-1, and angiogenesis was evaluated in a cohort of advanced NSCLC patients. The secreted cytokines involved in tumor angiogenesis were assessed by Luminex assay and their effect on Huvec migration by a non-contact co-culture system. RESULTS PD-L1 overexpressing cells modulated pathways involved in tumor inflammation and JAK-STAT signaling. In NSCLC patients, PD-L1 expression was correlated with high tumor intra-vasculature. When challenged with PBMC, PD-L1 overexpressing cells produced higher levels of pro-angiogenic factors compared to parental cells, as a consequence of STAT signaling activation. This increased production of cytokines involved in tumor angiogenesis largely stimulated Huvec migration. Finally, the addition of the anti-antiangiogenic agent nintedanib significantly reduced the spread of Huvec cells when exposed to high levels of pro-angiogenic factors. CONCLUSIONS In this study, we reported that high PD-L1 modulates STAT signaling in the presence of PBMC and induces pro-angiogenic factor secretion. This could enforce the role of PD-L1 as a crucial regulator of the tumor microenvironment stimulating tumor progression, both as an inhibitor of T-cell activity and as a promoter of tumor angiogenesis.
Collapse
Affiliation(s)
- A Cavazzoni
- Department of Medicine and Surgery University of Parma, Parma, Italy.
| | - G Digiacomo
- Department of Medicine and Surgery University of Parma, Parma, Italy
| | - F Volta
- Department of Medicine and Surgery University of Parma, Parma, Italy
| | - R Alfieri
- Department of Medicine and Surgery University of Parma, Parma, Italy
| | - E Giovannetti
- Department of Medical Oncology, Amsterdam University Medical Center, VU University, Amsterdam, the Netherlands; Fondazione Pisana per la Scienza ONLUS, Pisa, Italy
| | - L Gnetti
- Pathology Unit, University Hospital of Parma, Parma, Italy
| | - L Bellini
- Italian Society of Medicine and Scientific Divulgation, SIMED, Parma, Italy
| | - M Galetti
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority-INAIL, 00078 Rome, Italy
| | - C Fumarola
- Department of Medicine and Surgery University of Parma, Parma, Italy
| | - G Xu
- Department of Medical Oncology, Amsterdam University Medical Center, VU University, Amsterdam, the Netherlands
| | - M Bonelli
- Department of Medicine and Surgery University of Parma, Parma, Italy
| | - S La Monica
- Department of Medicine and Surgery University of Parma, Parma, Italy
| | - M Verzè
- Department of Medicine and Surgery University of Parma, Parma, Italy; Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - A Leonetti
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - K Eltayeb
- Department of Medicine and Surgery University of Parma, Parma, Italy
| | - S D'Agnelli
- Department of Medicine and Surgery University of Parma, Parma, Italy; Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | | | - R Minari
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - P G Petronini
- Department of Medicine and Surgery University of Parma, Parma, Italy
| | - M Tiseo
- Department of Medicine and Surgery University of Parma, Parma, Italy; Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| |
Collapse
|