1
|
Olivera I, Etxeberria I, Luri-Rey C, Molero-Glez P, Melero I. Regional and intratumoral adoptive T-cell therapy. IMMUNO-ONCOLOGY TECHNOLOGY 2024; 24:100715. [PMID: 39055165 PMCID: PMC11269935 DOI: 10.1016/j.iotech.2024.100715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Adoptive T-cell therapies (ACTs) including tumor-infiltrating lymphocytes and engineered T cells (transgenic T-cell receptor and chimeric antigen receptor T cells), have made an important impact in the field of cancer treatment over the past years. Most of these therapies are typically administered systemically in approaches that facilitate the elimination of hematologic malignancies. Therapeutical efficacy against solid tumors, however, with the exception of tumor-infiltrating lymphocytes against melanoma, remains limited due to several barriers preventing lymphocyte access to the tumor bed. Building upon the experience of regional administration in other immunotherapies, the regional administration of adoptive cell therapies is being assessed to overcome this challenge, granting a first round of access of the transferred T cells to the tumor niche and thereby ensuring their activation and expansion. Intralesional and intracavitary routes of delivery have been tested with promising antitumor objective responses in preclinical and clinical studies. Additionally, several strategies are being developed to further improve T-cell activity after reinfusing them back to the patient such as combinations with other immunotherapy agents or direct engineering of the transferred T cells, achieving long-term immune memory. Clinical trials testing different regional adoptive T-cell therapies are ongoing but some issues related to methodology of administration and correct selection of the target antigen to avoid on-target/off-tumor side-effects need to be further evaluated and improved. Herein, we discuss the current preclinical and clinical landscape of intratumoral and locoregional delivery of adoptive T-cell therapies.
Collapse
Affiliation(s)
- I. Olivera
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - I. Etxeberria
- Human Oncology and Pathogenesis Program (HOPP), Immuno-Oncology Service, Memorial Sloan Kettering Cancer Center, New York
- Parker Institute for Cancer Immunotherapy, New York, USA
| | - C. Luri-Rey
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - P. Molero-Glez
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - I. Melero
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid
- Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, Pamplona
- Department of Oncology, Clínica Universidad de Navarra, Madrid
- Centro del Cancer de la Universidad de Navarra (CCUN), Pamplona, Spain
- Nuffield Department of Medicine (NDM), University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Chang Y, Chang M, Bao X, Dong C. Advancements in adoptive CAR immune cell immunotherapy synergistically combined with multimodal approaches for tumor treatment. Bioact Mater 2024; 42:379-403. [PMID: 39308543 PMCID: PMC11415837 DOI: 10.1016/j.bioactmat.2024.08.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/26/2024] [Accepted: 08/31/2024] [Indexed: 09/25/2024] Open
Abstract
Adoptive immunotherapy, notably involving chimeric antigen receptor (CAR)-T cells, has obtained Food and Drug Administration (FDA) approval as a treatment for various hematological malignancies, demonstrating promising preclinical efficacy against cancers. However, the intricate and resource-intensive autologous cell processing, encompassing collection, expansion, engineering, isolation, and administration, hamper the efficacy of this therapeutic modality. Furthermore, conventional CAR T therapy is presently confined to addressing solid tumors due to impediments posed by physical barriers, the potential for cytokine release syndrome, and cellular exhaustion induced by the immunosuppressive and heterogeneous tumor microenvironment. Consequently, a strategic integration of adoptive immunotherapy with synergistic multimodal treatments, such as chemotherapy, radiotherapy, and vaccine therapy etc., emerges as a pivotal approach to surmount these inherent challenges. This collaborative strategy holds the key to addressing the limitations delineated above, thereby facilitating the realization of more precise personalized therapies characterized by heightened therapeutic efficacy. Such synergistic strategy not only serves to mitigate the constraints associated with adoptive immunotherapy but also fosters enhanced clinical applicability, thereby advancing the frontiers of therapeutic precision and effectiveness.
Collapse
Affiliation(s)
- Yun Chang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, China
| | - Mingyang Chang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, China
| | - Xiaoping Bao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Purdue University Institute for Cancer Research, West Lafayette, IN, 47907, USA
| | - Cheng Dong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, China
| |
Collapse
|
3
|
Bai YR, Yang X, Chen KT, Cuan XD, Zhang YD, Zhou L, Yang L, Liu HM, Yuan S. A comprehensive review of new small molecule drugs approved by the FDA in 2022: Advance and prospect. Eur J Med Chem 2024; 277:116759. [PMID: 39137454 DOI: 10.1016/j.ejmech.2024.116759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
In 2022, the U.S. Food and Drug Administration approved a total of 16 marketing applications for small molecule drugs, which not only provided dominant scaffolds but also introduced novel mechanisms of action and clinical indications. The successful cases provide valuable information for optimizing efficacy and enhancing pharmacokinetic properties through strategies like macrocyclization, bioequivalent group utilization, prodrug synthesis, and conformation restriction. Therefore, gaining an in-depth understanding of the design principles and strategies underlying these drugs will greatly facilitate the development of new therapeutic agents. This review focuses on the research and development process of these newly approved small molecule drugs including drug design, structural modification, and improvement of pharmacokinetic properties to inspire future research in this field.
Collapse
Affiliation(s)
- Yi-Ru Bai
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China; School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Zhengzhou, 450001, China
| | - Xin Yang
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Ke-Tong Chen
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Xiao-Dan Cuan
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Yao-Dong Zhang
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Li Zhou
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Li Yang
- Department of Obstetrics and Gynecology, Zhengzhou Key Laboratory of Endometrial Disease Prevention and Treatment Zhengzhou China, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Hong-Min Liu
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Zhengzhou, 450001, China.
| | - Shuo Yuan
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China; School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
4
|
Galvagno F, Leuci V, Massa A, Donini C, Rotolo R, Capellero S, Proment A, Vitali L, Lombardi AM, Tuninetti V, D'Ambrosio L, Merlini A, Vigna E, Valabrega G, Primo L, Puliafito A, Sangiolo D. Three-dimensional dynamics of mesothelin-targeted CAR.CIK lymphocytes against ovarian cancer peritoneal carcinomatosis. Cancer Immunol Immunother 2024; 74:6. [PMID: 39487859 PMCID: PMC11531451 DOI: 10.1007/s00262-024-03860-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/09/2024] [Indexed: 11/04/2024]
Abstract
Intraperitoneal cellular immunotherapy with CAR-redirected lymphocytes is an intriguing approach to target peritoneal carcinomatosis (PC) from ovarian cancer (OC), which is currently evaluated in clinical trials. PC displays a composite structure with floating tumor cells within ascites and solid-like masses invading the peritoneum. Therefore, a comprehensive experimental model is crucial to optimize CAR-cell therapies in such a peculiar environment. Here, we explored the activity of cytokine-induced killer lymphocytes (CIK), redirected by CAR against mesothelin (MSLN-CAR.CIK), within reductionistic 3D models resembling the structural complexity of both liquid and solid components of PC. MSLN-CAR.CIK effectively killed and were functionally efficient against OC targets. In a "floating-like" 3D context with floating OC spheroids, both tumor localization and killing by MSLN-CAR.CIK were significantly boosted by fluid flow. In a "solid-like" context, MSLN-CAR.CIK were recruited through the extracellular matrix on embedded tumor aggregates, with variable kinetics depending on the effector-target distance. Furthermore, MSLN-CAR.CIK penetrated the inner levels of OC spheroids exerting effective tumor killing. Our findings provide currently unknown therapeutically relevant information on intraperitoneal approaches with CAR.CIK, supporting further developments and improvements for clinical studies in the context of locoregional cell therapy approaches for patients with PC from OC.
Collapse
Grants
- 2023-2024 Italian Ministry of Health, Ricerca Corrente
- 2023-2024 Italian Ministry of Health, Ricerca Corrente
- 2023-2024 Italian Ministry of Health, Ricerca Corrente
- 2023-2024 Italian Ministry of Health, Ricerca Corrente
- 2023-2024 Italian Ministry of Health, Ricerca Corrente
- 2023-2024 Italian Ministry of Health, Ricerca Corrente
- 2023-2024 Italian Ministry of Health, Ricerca Corrente
- 23211 Fondazione AIRC per la ricerca sul cancro ETS
- 25040 Fondazione AIRC per la ricerca sul cancro ETS
- 20259 Fondazione AIRC per la ricerca sul cancro ETS
- 2019 Ricerca Locale, Università degli Studi di Torino
- 2022 Ricerca Locale, Università degli Studi di Torino
- 2022 Fondazione CRT
- RCR-2019-23669115 CAR-T Grant
- PON 2014-2020, DM 1062/2021 PNR 2021-2027
Collapse
Affiliation(s)
- Federica Galvagno
- Department of Oncology, University of Torino, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, TO, Italy
| | - Valeria Leuci
- Department of Oncology, University of Torino, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, TO, Italy
| | - Annamaria Massa
- Department of Oncology, University of Torino, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, TO, Italy
| | - Chiara Donini
- Department of Oncology, University of Torino, Turin, Italy
| | - Ramona Rotolo
- Department of Oncology, University of Torino, Turin, Italy
| | | | | | - Letizia Vitali
- Department of Oncology, University of Torino, Turin, Italy
| | | | - Valentina Tuninetti
- Department of Oncology, University of Torino, Turin, Italy
- Medical Oncology, Ordine Mauriziano Hospital, Turin, Italy
| | - Lorenzo D'Ambrosio
- Department of Oncology, University of Torino, Turin, Italy
- Medical Oncology, AOU San Luigi Gonzaga, Orbassano, TO, Italy
| | - Alessandra Merlini
- Department of Oncology, University of Torino, Turin, Italy
- Medical Oncology, AOU San Luigi Gonzaga, Orbassano, TO, Italy
| | - Elisa Vigna
- Department of Oncology, University of Torino, Turin, Italy
| | - Giorgio Valabrega
- Department of Oncology, University of Torino, Turin, Italy
- Medical Oncology, Ordine Mauriziano Hospital, Turin, Italy
| | - Luca Primo
- Department of Oncology, University of Torino, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, TO, Italy
| | - Alberto Puliafito
- Department of Oncology, University of Torino, Turin, Italy.
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, TO, Italy.
| | - Dario Sangiolo
- Department of Oncology, University of Torino, Turin, Italy.
| |
Collapse
|
5
|
Ghisoni E, Morotti M, Sarivalasis A, Grimm AJ, Kandalaft L, Laniti DD, Coukos G. Immunotherapy for ovarian cancer: towards a tailored immunophenotype-based approach. Nat Rev Clin Oncol 2024; 21:801-817. [PMID: 39232212 DOI: 10.1038/s41571-024-00937-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2024] [Indexed: 09/06/2024]
Abstract
Despite documented evidence that ovarian cancer cells express immune-checkpoint molecules, such as PD-1 and PD-L1, and of a positive correlation between the presence of tumour-infiltrating lymphocytes and favourable overall survival outcomes in patients with this tumour type, the results of trials testing immune-checkpoint inhibitors (ICIs) in these patients thus far have been disappointing. The lack of response to ICIs can be attributed to tumour heterogeneity as well as inherent or acquired resistance associated with the tumour microenvironment (TME). Understanding tumour immunobiology, discovering biomarkers for patient selection and establishing optimal treatment combinations remains the hope but also a key challenge for the future application of immunotherapy in ovarian cancer. In this Review, we summarize results from trials testing ICIs in patients with ovarian cancer. We propose the implementation of a systematic CD8+ T cell-based immunophenotypic classification of this malignancy, followed by discussions of the preclinical data providing the basis to treat such immunophenotypes with combination immunotherapies. We posit that the integration of an accurate TME immunophenotype characterization with genetic data can enable the design of tailored therapeutic approaches and improve patient recruitment in clinical trials. Lastly, we propose a roadmap incorporating tissue-based profiling to guide future trials testing adoptive cell therapy approaches and assess novel immunotherapy combinations while promoting collaborative research.
Collapse
Affiliation(s)
- Eleonora Ghisoni
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - Matteo Morotti
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - Apostolos Sarivalasis
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Alizée J Grimm
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - Lana Kandalaft
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Center of Experimental Therapeutics, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Denarda Dangaj Laniti
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - George Coukos
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland.
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland.
- Agora Cancer Research Center, Lausanne, Switzerland.
| |
Collapse
|
6
|
Meng S, Hara T, Miura Y, Ishii H. Fibroblast activation protein constitutes a novel target of chimeric antigen receptor T-cell therapy in solid tumors. Cancer Sci 2024; 115:3532-3542. [PMID: 39169645 PMCID: PMC11531970 DOI: 10.1111/cas.16285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/14/2024] [Accepted: 07/04/2024] [Indexed: 08/23/2024] Open
Abstract
With recent advances in tumor immunotherapy, chimeric antigen receptor T (CAR-T) cell therapy has achieved unprecedented success in several hematologic tumors, significantly improving patient prognosis. However, in solid tumors, the efficacy of CAR-T cell therapy is limited because of high antigen uncertainty and the extremely restrictive tumor microenvironment (TME). This challenge has led to the exploration of new targets, among which fibroblast activation protein (FAP) has gained attention for its relatively stable and specific expression in the TME of various solid tumors, making it a potential new target for CAR-T cell therapy. This study comprehensively analyzed the biological characteristics of FAP and discussed its potential application in CAR-T cell therapy, including the theoretical basis, and preclinical and clinical research progress of targeting FAP with CAR-T cell therapy for solid tumor treatment. The challenges and future optimization directions of this treatment strategy were also explored, providing new perspectives and strategies for CAR-T cell therapy in solid tumors.
Collapse
Grants
- 2024 Princess Takamatsu Cancer Research Fund
- JP23ym0126809 Ministry of Education, Culture, Sports, Science and Technology
- JP24ym0126809 Ministry of Education, Culture, Sports, Science and Technology
- A20H0054100 Ministry of Education, Culture, Sports, Science and Technology
- T23KK01530 Ministry of Education, Culture, Sports, Science and Technology
- T22K195590 Ministry of Education, Culture, Sports, Science and Technology
- A22H031460 Ministry of Education, Culture, Sports, Science and Technology
- T23K183130 Ministry of Education, Culture, Sports, Science and Technology
- T23K195050 Ministry of Education, Culture, Sports, Science and Technology
- T24K199920 Ministry of Education, Culture, Sports, Science and Technology
- IFO Research Communications (2024)
- Oceanic Wellness Foundation (2024)
- Princess Takamatsu Cancer Research Fund
- Ministry of Education, Culture, Sports, Science and Technology
Collapse
Affiliation(s)
- Sikun Meng
- Department of Medical Data Science, Center of Medical Innovation and Translational ResearchOsaka University Graduate School of MedicineOsakaJapan
| | - Tomoaki Hara
- Department of Medical Data Science, Center of Medical Innovation and Translational ResearchOsaka University Graduate School of MedicineOsakaJapan
| | - Yutaka Miura
- Laboratory for Chemistry and Life ScienceInstitute of Innovative Research, Tokyo Institute of TechnologyYokohamaKanagawaJapan
- Department of Life Science and Technology, School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaKanagawaJapan
| | - Hideshi Ishii
- Department of Medical Data Science, Center of Medical Innovation and Translational ResearchOsaka University Graduate School of MedicineOsakaJapan
| |
Collapse
|
7
|
Mobark N, Hull CM, Maher J. Optimising CAR T therapy for the treatment of solid tumors. Expert Rev Anticancer Ther 2024:1-17. [PMID: 39466110 DOI: 10.1080/14737140.2024.2421194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/22/2024] [Indexed: 10/29/2024]
Abstract
INTRODUCTION Adoptive immunotherapy using chimeric antigen receptor (CAR)-engineered T cells has proven transformative in the management of B cell and plasma cel derived malignancies. However, solid tumors have largely proven to be resistant to this therapeutic modality. Challenges include the paucity of safe target antigens, heterogeneity of target expression within the tumor, difficulty in delivery of CAR T cells to the site of disease, poor penetration within solid tumor deposits and inability to circumvent the array of immunosuppressive and biophysical barriers imposed by the solid tumor microenvironment. AREAS COVERED Literature was reviewed on the PubMed database, excluding occasional papers which were not available as open access publications or through other means. EXPERT OPINION Here, we have surveyed the large body of technological advances that have been made in the quest to bridge the gap toward successful deployment of CAR T cells for the treatment of solid tumors. These encompass the development of more sophisticated targeting strategies to engage solid tumor cells safely and comprehensively, improved drug delivery solutions, design of novel CAR architectures that achieve improved functional persistence and which resist physical, chemical and biological hurdles present in tumor deposits. Prospects for combination therapies that incorporate CAR T cells are also considered.
Collapse
Affiliation(s)
- Norhan Mobark
- King's College London, School of Cancer and Pharmaceutical Sciences, Guy's Hospital, London, UK
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | | | - John Maher
- King's College London, School of Cancer and Pharmaceutical Sciences, Guy's Hospital, London, UK
- Leucid Bio Ltd., Guy's Hospital, London, UK
- Department of Immunology, Eastbourne Hospital, Eastbourne, East Sussex, UK
| |
Collapse
|
8
|
Sui S, Zhong M, Zhong S, Peng X, Mao L, Chen C, Zeng C, Luo OJ, Li Y. BRD4 inhibitor reduces exhaustion and blocks terminal differentiation in CAR-T cells by modulating BATF and EGR1. Biomark Res 2024; 12:124. [PMID: 39407311 PMCID: PMC11476310 DOI: 10.1186/s40364-024-00667-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Exhaustion is a key factor that influences the efficacy of chimeric antigen receptor T (CAR-T) cells. Our previous study demonstrated that a bromodomain protein 4 (BRD4) inhibitor can revise the phenotype and function of exhausted T cells from leukemia patients. This study aims to elucidate the mechanism by which a BRD4 inhibitor reduces CAR-T cell exhaustion using single-cell RNA sequencing (scRNA-Seq). METHODS Exhausted CD123-specific CAR-T cells were prepared by co-culture with CD123 antigen-positive MV411 cells. After elimination of MV411 cells and upregulation of inhibitory receptors on the surface, exhausted CAR-T cells were treated with a BRD4 inhibitor (JQ1) for 72 h. The CAR-T cells were subsequently isolated, and scRNA-Seq was conducted to characterize phenotypic and functional changes in JQ1-treated cells. RESULTS Both the proportion of exhausted CD8+ CAR-T cells and the exhausted score of CAR-T cells decreased in JQ1-treated compared with control-treated cells. Moreover, JQ1 treatment led to a higher proportion of naïve, memory, and progenitor exhausted CD8+ CAR-T cells as opposed to terminal exhausted CD8+ CAR-T cells accompanied by enhanced proliferation, differentiation, and activation capacities. Additionally, with JQ1 treatment, BATF activity and expression in naïve, memory, and progenitor exhausted CD8+ CAR-T cells decreased, whereas EGR1 activity and expression increased. Interestingly, AML patients with higher EGR1 and EGR1 target gene ssGSEA scores, coupled with lower BATF and BATF target gene ssGSEA scores, had the best prognosis. CONCLUSIONS Our study reveals that a BRD4 inhibitor can reduce CAR-T cell exhaustion and block exhausted T cell terminal differentiation by downregulating BATF activity and expression together with upregulating EGR1 activity and expression, presenting an approach for improving the effectiveness of CAR-T cell therapy.
Collapse
Affiliation(s)
- Songnan Sui
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, China
- Central People's Hospital of Zhanjiang, Zhanjiang, China
- Zhanjiang Key Laboratory of Leukemia Pathogenesis and Targeted Therapy Research, Zhanjiang, China
| | - Mengjun Zhong
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
- Department of Hematology, Guangzhou First People's Hospital, Institute of Blood Transfusion and Hematology, Guangzhou Medical University, Guangzhou, China
| | - Shuxin Zhong
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Xueting Peng
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Lipeng Mao
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, China
| | - Cunte Chen
- Department of Hematology, Guangzhou First People's Hospital, Institute of Blood Transfusion and Hematology, Guangzhou Medical University, Guangzhou, China
| | - Chengwu Zeng
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Oscar Junhong Luo
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, China.
| | - Yangqiu Li
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China.
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China.
| |
Collapse
|
9
|
Chiec L, Bruno DS. Immunotherapy for Treatment of Pleural Mesothelioma: Current and Emerging Therapeutic Strategies. Int J Mol Sci 2024; 25:10861. [PMID: 39409190 PMCID: PMC11477297 DOI: 10.3390/ijms251910861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/05/2024] [Accepted: 10/06/2024] [Indexed: 10/20/2024] Open
Abstract
Pleural mesothelioma is a rare malignancy associated with asbestos exposure and very poor prognosis, with a 5-year overall survival of 12%. Outcomes may vary according to stage at time of diagnosis and histologic subtype. Most recently, clinical trials utilizing dual checkpoint inhibitor regimens and chemotherapy in combination with immune oncologic agents have demonstrated impactful changes in outcomes. In this article, we review studies that have led to the successful implementation of immunotherapy in clinical practice for the treatment of this disease and highlight ongoing clinical trials exploring the use of different immunotherapy strategies for the treatment of pleural mesothelioma. We also discuss the challenges of immunotherapy-based approaches in the context of mesothelioma and future strategies currently being investigated to overcome them.
Collapse
Affiliation(s)
- Lauren Chiec
- University Hospitals Seidman Cancer Center, Cleveland, OH 44106, USA
- School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Debora S. Bruno
- University Hospitals Seidman Cancer Center, Cleveland, OH 44106, USA
- School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
10
|
Chada NC, Wilson JT. Jump-starting chimeric antigen receptor-T cells to go the extra mile with nanotechnology. Curr Opin Biotechnol 2024; 89:103179. [PMID: 39168033 DOI: 10.1016/j.copbio.2024.103179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 11/16/2023] [Accepted: 07/22/2024] [Indexed: 08/23/2024]
Abstract
Despite success in treating hematologic malignancies, chimeric antigen receptor-T cell (CAR-T) therapy still faces multiple challenges that have halted progress, especially against solid tumors. Recent advances in nanoscale engineeirng provide several avenues for overcoming these challenges, including more efficienct programming of CAR-Ts ex vivo, promoting immune responsiveness in the tumor microenvironment (TME) in vivo, and boosting CAR-T function in situ. Here, we summarize recent innovations that leverage nanotechnology to directly address the major obstacles that impede CAR-T therapy from reaching its full potential across various cancer types. We conclude with a commentary on the state of the field and how nanotechnology can shape the future of CAR-T and adoptive cell therapy in immuno-oncology.
Collapse
Affiliation(s)
- Neil C Chada
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA; Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - John T Wilson
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA; Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
11
|
Owens K, Rahman A, Bozic I. Spatiotemporal dynamics of tumor - CAR T-cell interaction following local administration in solid cancers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.29.610392. [PMID: 39257746 PMCID: PMC11384001 DOI: 10.1101/2024.08.29.610392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The success of chimeric antigen receptor (CAR) T-cell therapy in treating hematologic malignancies has generated widespread interest in translating this technology to solid cancers. However, issues like tumor infiltration, the immunosuppressive tumor microenvironment, and tumor heterogeneity limit its efficacy in the solid tumor setting. Recent experimental and clinical studies propose local administration directly into the tumor or at the tumor site to increase CAR T-cell infiltration and improve treatment outcomes. Characteristics of the types of solid tumors that may be the most receptive to this treatment approach remain unclear. In this work, we develop a spatiotemporal model for CAR T-cell treatment of solid tumors, and use numerical simulations to compare the effect of introducing CAR T cells via intratumoral injection versus intracavitary administration in diverse cancer types. We demonstrate that the model can recapitulate tumor and CAR T-cell data from imaging studies of local administration of CAR T cells in mouse models. Our results suggest that locally administered CAR T cells will be most successful against slowly proliferating, highly diffusive tumors, which have the lowest average tumor cell density. These findings affirm the clinical observation that CAR T cells will not perform equally across different types of solid tumors, and suggest that measuring tumor density may be helpful when considering the feasibility of CAR T-cell therapy and planning dosages for a particular patient. We additionally find that local delivery of CAR T cells can result in deep tumor responses, provided that the initial CAR T-cell dose does not contain a significant fraction of exhausted cells.
Collapse
Affiliation(s)
- Katherine Owens
- Department of Applied Mathematics, University of Washington, Seattle WA
- Fred Hutchinson Cancer Center, Seattle WA
| | - Aminur Rahman
- Fred Hutchinson Cancer Center, Seattle WA
- Artificial Intelligence Institute in Dynamic Systems, University of Washington, Seattle WA
| | - Ivana Bozic
- Department of Applied Mathematics, University of Washington, Seattle WA
- Fred Hutchinson Cancer Center, Seattle WA
| |
Collapse
|
12
|
Peng L, Sferruzza G, Yang L, Zhou L, Chen S. CAR-T and CAR-NK as cellular cancer immunotherapy for solid tumors. Cell Mol Immunol 2024; 21:1089-1108. [PMID: 39134804 PMCID: PMC11442786 DOI: 10.1038/s41423-024-01207-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/22/2024] [Indexed: 10/02/2024] Open
Abstract
In the past decade, chimeric antigen receptor (CAR)-T cell therapy has emerged as a promising immunotherapeutic approach for combating cancers, demonstrating remarkable efficacy in relapsed/refractory hematological malignancies in both pediatric and adult patients. CAR-natural killer (CAR-NK) cell complements CAR-T cell therapy by offering several distinct advantages. CAR-NK cells do not require HLA compatibility and exhibit low safety concerns. Moreover, CAR-NK cells are conducive to "off-the-shelf" therapeutics, providing significant logistic advantages over CAR-T cells. Both CAR-T and CAR-NK cells have shown consistent and promising results in hematological malignancies. However, their efficacy against solid tumors remains limited due to various obstacles including limited tumor trafficking and infiltration, as well as an immuno-suppressive tumor microenvironment. In this review, we discuss the recent advances and current challenges of CAR-T and CAR-NK cell immunotherapies, with a specific focus on the obstacles to their application in solid tumors. We also analyze in depth the advantages and drawbacks of CAR-NK cells compared to CAR-T cells and highlight CAR-NK CAR optimization. Finally, we explore future perspectives of these adoptive immunotherapies, highlighting the increasing contribution of cutting-edge biotechnological tools in shaping the next generation of cellular immunotherapy.
Collapse
Affiliation(s)
- Lei Peng
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
- System Biology Institute, Yale University, West Haven, CT, USA.
| | - Giacomo Sferruzza
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
| | - Luojia Yang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Combined Program in the Biological and Biomedical Sciences, Yale University, New Haven, CT, USA
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA
| | - Liqun Zhou
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Combined Program in the Biological and Biomedical Sciences, Yale University, New Haven, CT, USA
- Immunobiology Program, Yale University, New Haven, CT, USA
| | - Sidi Chen
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
- System Biology Institute, Yale University, West Haven, CT, USA.
- Combined Program in the Biological and Biomedical Sciences, Yale University, New Haven, CT, USA.
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA.
- Immunobiology Program, Yale University, New Haven, CT, USA.
- Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA.
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA.
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA.
- Yale Liver Center, Yale University School of Medicine, New Haven, CT, USA.
- Yale Center for Biomedical Data Science, Yale University School of Medicine, New Haven, CT, USA.
- Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
13
|
Barzegari A, Salemi F, Kamyab A, Aratikatla A, Nejati N, Valizade M, Eltouny E, Ebrahimi A. The efficacy and applicability of chimeric antigen receptor (CAR) T cell-based regimens for primary bone tumors: A comprehensive review of current evidence. J Bone Oncol 2024; 48:100635. [PMID: 39381633 PMCID: PMC11460493 DOI: 10.1016/j.jbo.2024.100635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024] Open
Abstract
Primary bone tumors (PBT), although rare, could pose significant mortality and morbidity risks due to their high incidence of lung metastasis. Survival rates of patients with PBTs may vary based on the tumor type, therapeutic interventions, and the time of diagnosis. Despite advances in the management of patients with these tumors over the past four decades, the survival rates seem not to have improved significantly, implicating the need for novel therapeutic interventions. Surgical resection with wide margins, radiotherapy, and systemic chemotherapy are the main lines of treatment for PBTs. Neoadjuvant and adjuvant chemotherapy, along with emerging immunotherapeutic approaches such as chimeric antigen receptor (CAR)-T cell therapy, have the potential to improve the treatment outcomes for patients with PBTs. CAR-T cell therapy has been introduced as an option in hematologic malignancies, with FDA approval for several CD19-targeting CAR-T cell products. This review aims to highlight the potential of immunotherapeutic strategies, specifically CAR T cell therapy, in managing PBTs.
Collapse
Affiliation(s)
| | - Fateme Salemi
- Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Adarsh Aratikatla
- School of Medicine, Royal College of Surgeons in Ireland, Dublin, County Dublin, Ireland
| | - Negar Nejati
- Pediatric Cell and Gene Therapy Research Centre, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Iran
| | - Mojgan Valizade
- School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ehab Eltouny
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Alireza Ebrahimi
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
14
|
Xu F, Ni Q, Gong N, Xia B, Zhang J, Guo W, Hu Z, Li J, Liang XJ. Delivery Systems Developed for Treatment Combinations to Improve Adoptive Cell Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407525. [PMID: 39165065 DOI: 10.1002/adma.202407525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/26/2024] [Indexed: 08/22/2024]
Abstract
Adoptive cell therapy (ACT) has shown great success in the clinic for treating hematologic malignancies. However, solid tumor treatment with ACT monotherapy is still challenging, owing to insufficient expansion and rapid exhaustion of adoptive cells, tumor antigen downregulation/loss, and dense tumor extracellular matrix. Delivery strategies for combination cell therapy have great potential to overcome these hurdles. The delivery of vaccines, immune checkpoint inhibitors, cytokines, chemotherapeutics, and photothermal reagents in combination with adoptive cells, have been shown to improve the expansion/activation, decrease exhaustion, and promote the penetration of adoptive cells in solid tumors. Moreover, the delivery of nucleic acids to engineer immune cells directly in vivo holds promise to overcome many of the hurdles associated with the complex ex vivo cell engineering strategies. Here, these research advance, as well as the opportunities and challenges for integrating delivery technologies into cell therapy s are discussed, and the outlook for these emerging areas are criticlly analyzed.
Collapse
Affiliation(s)
- Fengfei Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qiankun Ni
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, New Cornerstone Science Institute, Tsinghua University, Beijing, China
| | - Ningqiang Gong
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Bozhang Xia
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jinchao Zhang
- College of Chemistry & Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002, China
| | - Weisheng Guo
- College of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 510260, China
| | - Zhongbo Hu
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jinghong Li
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, New Cornerstone Science Institute, Tsinghua University, Beijing, China
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
15
|
Sirini C, De Rossi L, Moresco MA, Casucci M. CAR T cells in solid tumors and metastasis: paving the way forward. Cancer Metastasis Rev 2024:10.1007/s10555-024-10213-7. [PMID: 39316265 DOI: 10.1007/s10555-024-10213-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024]
Abstract
CAR T cell therapy, hailed as a breakthrough in cancer treatment due to its remarkable outcomes in hematological malignancies, encounters significant hurdles when applied to solid tumors. While notable responses to CAR T cells remain sporadic in these patients, challenges persist due to issues such as on-target off-tumor toxicity, difficulties in their trafficking and infiltration into the tumor, and the presence of a hostile and immunosuppressive microenvironment. This review aims to explore recent endeavors aimed at overcoming these obstacles in CAR T cell therapy for solid tumors. Specifically, we will delve into promising strategies for enhancing tumor specificity through antigen targeting, addressing tumor heterogeneity, overcoming physical barriers, and counteracting the immune-suppressive microenvironment.
Collapse
Affiliation(s)
- Camilla Sirini
- Innovative Immunotherapies Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Laura De Rossi
- Innovative Immunotherapies Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Marta Angiola Moresco
- Innovative Immunotherapies Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Monica Casucci
- Innovative Immunotherapies Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy.
| |
Collapse
|
16
|
Sriramulu S, Thoidingjam S, Speers C, Nyati S. Present and Future of Immunotherapy for Triple-Negative Breast Cancer. Cancers (Basel) 2024; 16:3250. [PMID: 39409871 PMCID: PMC11475478 DOI: 10.3390/cancers16193250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Triple-negative breast cancer (TNBC) lacks the expression of estrogen receptors (ERs), human epidermal growth factor receptor 2 (HER2), and progesterone receptors (PRs). TNBC has the poorest prognosis among breast cancer subtypes and is more likely to respond to immunotherapy due to its higher expression of PD-L1 and a greater percentage of tumor-infiltrating lymphocytes. Immunotherapy has revolutionized TNBC treatment, especially with the FDA's approval of pembrolizumab (Keytruda) combined with chemotherapy for advanced cases, opening new avenues for treating this deadly disease. Although immunotherapy can significantly improve patient outcomes in a subset of patients, achieving the desired response rate for all remains an unmet clinical goal. Strategies that enhance responses to immune checkpoint blockade, including combining immunotherapy with chemotherapy, molecularly targeted therapy, or radiotherapy, may improve response rates and clinical outcomes. In this review, we provide a short background on TNBC and immunotherapy and explore the different types of immunotherapy strategies that are currently being evaluated in TNBC. Additionally, we review why combination strategies may be beneficial, provide an overview of the combination strategies, and discuss the novel immunotherapeutic opportunities that may be approved in the near future for TNBC.
Collapse
Affiliation(s)
- Sushmitha Sriramulu
- Department of Radiation Oncology, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI 48202, USA
| | - Shivani Thoidingjam
- Department of Radiation Oncology, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI 48202, USA
| | - Corey Speers
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Radiation Oncology, UH Seidman Cancer Center, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Shyam Nyati
- Department of Radiation Oncology, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI 48202, USA
- Henry Ford Health + Michigan State University Health Sciences, Detroit, MI 48202, USA
- Department of Radiology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
17
|
Trautmann T, Yakobian N, Nguyen R. CAR T-cells for pediatric solid tumors: where to go from here? Cancer Metastasis Rev 2024:10.1007/s10555-024-10214-6. [PMID: 39317919 DOI: 10.1007/s10555-024-10214-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024]
Abstract
Despite the great success that chimeric antigen receptor (CAR) T-cells have had in patients with B-cell malignancies and multiple myeloma, they continue to have limited efficacy against most solid tumors. Especially in the pediatric population, pre- and post-treatment biopsies are rarely performed due to ethical reasons, and thus, our understanding is still very limited regarding the mechanisms in the tumor microenvironment by which tumor cells exclude effectors and attract immune-suppressive cells. Nevertheless, based on the principles that are known, current T-cell engineering has leveraged some of these processes and created more potent CAR T-cells. The recent discovery of new oncofetal antigens and progress made in CAR design have expanded the potential pool of candidate antigens for therapeutic development. The most promising approaches to enhance CAR T-cells are novel CAR gating strategies, creative ways of cytokine delivery to the TME without enhancing systemic toxicity, and hijacking the chemokine axis of tumors for migratory purposes. With these new modifications, the next step in the era of CAR T-cell development will be the clinical validation of these promising preclinical findings.
Collapse
Affiliation(s)
- Tina Trautmann
- Pediatric Oncology Branch, NCI, NIH, NCI, 10 Center Drive, 1W-5832, Bethesda, MD, 20892, USA
| | - Natalia Yakobian
- Pediatric Oncology Branch, NCI, NIH, NCI, 10 Center Drive, 1W-5832, Bethesda, MD, 20892, USA
| | - Rosa Nguyen
- Pediatric Oncology Branch, NCI, NIH, NCI, 10 Center Drive, 1W-5832, Bethesda, MD, 20892, USA.
| |
Collapse
|
18
|
Yoshimoto S, Kudo A, Rotolo A, Foos K, Olenick L, Takagi S, Mason NJ. Validation of a PD-1/CD28 chimeric switch receptor to augment CAR-T function in dogs with spontaneous B cell lymphoma. iScience 2024; 27:110863. [PMID: 39314237 PMCID: PMC11418608 DOI: 10.1016/j.isci.2024.110863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/07/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has achieved unprecedented clinical outcomes in patients with relapsed/refractory B cell leukemias; however, response rates in patients with large B cell lymphoma (LBCL) are less impressive. Expression of PD-1 on activated T cells and PD-L1 on malignant, stromal, and immune cells within the tumor microenvironment (TME) contribute to CAR-T exhaustion, hypofunction, and treatment failures. Here, a comparative approach is taken to develop a chimeric switch receptor (CSR) with potential to augment CAR-T persistence, function, and clinical efficacy in immune competent, pet dogs with spontaneous B cell lymphoma (BCL). We show that similar to human CAR-T cells, expression of a PD-1/CD28 CSR in canine CAR-T cells results in enhanced function against PD-L1+ targets and preserves central memory phenotype. We also demonstrate that these effects depend upon active CSR signaling. This work paves the way for in vivo studies in canine BCL patients to inform human trial design.
Collapse
Affiliation(s)
- Sho Yoshimoto
- Laboratory of Small Animal Surgery, Department of Veterinary Medicine, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| | - Ayano Kudo
- Laboratory of Small Animal Surgery, Department of Veterinary Medicine, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| | - Antonia Rotolo
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kay Foos
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lauren Olenick
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Satoshi Takagi
- Laboratory of Small Animal Surgery, Department of Veterinary Medicine, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| | - Nicola J. Mason
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
19
|
Ali A, DiPersio JF. ReCARving the future: bridging CAR T-cell therapy gaps with synthetic biology, engineering, and economic insights. Front Immunol 2024; 15:1432799. [PMID: 39301026 PMCID: PMC11410633 DOI: 10.3389/fimmu.2024.1432799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/12/2024] [Indexed: 09/22/2024] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has revolutionized the treatment of hematologic malignancies, offering remarkable remission rates in otherwise refractory conditions. However, its expansion into broader oncological applications faces significant hurdles, including limited efficacy in solid tumors, safety concerns related to toxicity, and logistical challenges in manufacturing and scalability. This review critically examines the latest advancements aimed at overcoming these obstacles, highlighting innovations in CAR T-cell engineering, novel antigen targeting strategies, and improvements in delivery and persistence within the tumor microenvironment. We also discuss the development of allogeneic CAR T cells as off-the-shelf therapies, strategies to mitigate adverse effects, and the integration of CAR T cells with other therapeutic modalities. This comprehensive analysis underscores the synergistic potential of these strategies to enhance the safety, efficacy, and accessibility of CAR T-cell therapies, providing a forward-looking perspective on their evolutionary trajectory in cancer treatment.
Collapse
Affiliation(s)
- Alaa Ali
- Stem Cell Transplant and Cellular Immunotherapy Program, Georgetown Lombardi Comprehensive Cancer Center, Washington, DC, United States
| | - John F DiPersio
- Center for Gene and Cellular Immunotherapy, Washington University in Saint Louis, Saint Louis, MO, United States
| |
Collapse
|
20
|
Taibi T, Cheon S, Perna F, Vu LP. mRNA-based therapeutic strategies for cancer treatment. Mol Ther 2024; 32:2819-2834. [PMID: 38702886 PMCID: PMC11403232 DOI: 10.1016/j.ymthe.2024.04.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/20/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024] Open
Abstract
In the rapidly evolving landscape of medical research, the emergence of RNA-based therapeutics is paradigm shifting. It is mainly driven by the molecular adaptability and capacity to provide precision in targeting. The coronavirus disease 2019 pandemic crisis underscored the effectiveness of the mRNA therapeutic development platform and brought it to the forefront of RNA-based interventions. These RNA-based therapeutic approaches can reshape gene expression, manipulate cellular functions, and correct the aberrant molecular processes underlying various diseases. The new technologies hold the potential to engineer and deliver tailored therapeutic agents to tackle genetic disorders, cancers, and infectious diseases in a highly personalized and precisely tuned manner. The review discusses the most recent advancements in the field of mRNA therapeutics for cancer treatment, with a focus on the features of the most utilized RNA-based therapeutic interventions, current pre-clinical and clinical developments, and the remaining challenges in delivery strategies, effectiveness, and safety considerations.
Collapse
Affiliation(s)
- Thilelli Taibi
- Terry Fox Laboratory, British Columbia Cancer Research Institute, University of British Columbia, Vancouver, BC, Canada; Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada
| | - Sehyun Cheon
- Terry Fox Laboratory, British Columbia Cancer Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Fabiana Perna
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL, USA
| | - Ly P Vu
- Terry Fox Laboratory, British Columbia Cancer Research Institute, University of British Columbia, Vancouver, BC, Canada; Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
21
|
Hungria V, Sureda A, Campelo GR, Salvino MA, Ramasamy K. Proceedings from the First Onco Summit: LATAM Chapter, 19-20 May 2023, Rio de Janeiro, Brazil. Cancers (Basel) 2024; 16:3063. [PMID: 39272921 PMCID: PMC11394439 DOI: 10.3390/cancers16173063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
The Onco Summit 2023: The Latin American (LATAM) Chapter took place over two days, from 19-20 May 2023, in Brazil. The event aimed to share the latest updates across various oncology disciplines, address critical clinical challenges, and exchange best practices to ensure optimal patient treatment. More than 30 international and regional speakers and more than 300 oncology specialists participated in the Summit. The Summit discussions centered on common challenges and therapeutic advances in cancer care, with a specific focus on the unique obstacles faced in LATAM and examples of adaptable strategies to address these challenges. The Summit also facilitated the establishment of a network of oncologists, hematologists, and scientists in LATAM, enabling collaboration to improve cancer care, both in this region and globally, through drug development and clinical research. This report summarizes the key discussions from the Summit for the global and LATAM oncology community.
Collapse
Affiliation(s)
- Vania Hungria
- Hematology, Faculty of Medical Sciences of Santa Casa de São Paulo, São Paulo 01224-001, Brazil
| | - Anna Sureda
- Clinical Hematology Department, Catalan Institut Català d'Oncologia-L'Hospitalet, Instituto de Investigación Biomédica de Bellvitge (IDIBELL), University of Barcelona (UB), 08908 Barcelona, Spain
| | - Garcia Rosario Campelo
- Thoracic Tumors Unit, Medical Oncology Department, University Hospital A Coruña Biomedical Research Institute (INIBIC), 15006 A Coruña, Spain
| | - Marco Aurélio Salvino
- Cell Therapy, D'OR Institute Research & Education (IDOR)/PPGMS-Federal University of Bahia (UFBA), Salvador 40110-100, Brazil
| | - Karthik Ramasamy
- Oxford Translational Myeloma Centre, NDORMS, University of Oxford, Oxford OX3 7LD, UK
| |
Collapse
|
22
|
Ma P, Jiang Y, Zhao G, Wang W, Xing S, Tang Q, Miao H, Fang H, Sun C, Fang Y, Jiang N, Huang H, Wang S, Xie X, Li N. Toward a comprehensive solution for treating solid tumors using T-cell receptor therapy: A review. Eur J Cancer 2024; 209:114224. [PMID: 39067370 DOI: 10.1016/j.ejca.2024.114224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024]
Abstract
T-cell receptor therapy (TCR-T) has demonstrated efficacy, durability, and safety advantages in certain solid tumors (such as human papillomavirus-related tumors, synovial sarcoma, and melanoma). This study aimed to provide careful considerations for developing TCR-T for solid tumors. Therefore, in this review, we have summarized the current clinical application, advantage of TCR-T modalities and explored efficacy/safety-related parameters, particularly avidity, pharmacokinetics/pharmacodynamics, and indications, for solid tumors. Furthermore, we have investigated critical factors related to avidity, including antigen selection, T-cell receptor acquisition, optimization, and co-receptor engagement. Moreover, we have re-examined the expression of tumor antigens for a potentially higher coverage rate of solid tumors based on the current RNA-seq datasets. Finally, we have discussed the current limitations and future directions of TCR-Ts.
Collapse
Affiliation(s)
- Peiwen Ma
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yale Jiang
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Guo Zhao
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Wenbo Wang
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Shujun Xing
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Qiyu Tang
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Huilei Miao
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Hong Fang
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Chao Sun
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yuan Fang
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ning Jiang
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Huiyao Huang
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shuhang Wang
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Xingwang Xie
- Building 1, Bohui innovation building, yard 9, Sheng Life Garden Road, Changping District, Beijing, China.
| | - Ning Li
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
23
|
Holtermann A, Gislon M, Angele M, Subklewe M, von Bergwelt-Baildon M, Lauber K, Kobold S. Prospects of Synergy: Local Interventions and CAR T Cell Therapy in Solid Tumors. BioDrugs 2024; 38:611-637. [PMID: 39080180 PMCID: PMC11358237 DOI: 10.1007/s40259-024-00669-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2024] [Indexed: 08/30/2024]
Abstract
Chimeric antigen receptor T cell therapy has been established in the treatment of various B cell malignancies. However, translating this therapeutic effect to treat solid tumors has been challenging because of their inter-tumoral as well as intratumoral heterogeneity and immunosuppressive microenvironment. Local interventions, such as surgery, radiotherapy, local ablation, and locoregional drug delivery, can enhance chimeric antigen receptor T cell therapy in solid tumors by improving tumor infiltration and reducing systemic toxicities. Additionally, ablation and radiotherapy have proven to (re-)activate systemic immune responses via abscopal effects and reprogram the tumor microenvironment on a physical, cellular, and chemical level. This review highlights the potential synergy of the combined approaches to overcome barriers of chimeric antigen receptor T cell therapy and summarizes recent studies that may pave the way for new treatment regimens.
Collapse
Affiliation(s)
- Anne Holtermann
- Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig Maximilian University (LMU) of Munich, Lindwurmstrasse 2a, 80336, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, a partnership between the DKFZ Heidelberg and the University Hospital of the LMU, Munich, Germany
| | - Mila Gislon
- Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig Maximilian University (LMU) of Munich, Lindwurmstrasse 2a, 80336, Munich, Germany
| | - Martin Angele
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Marion Subklewe
- Department of Medicine III, University Hospital, Ludwig Maximilian University (LMU) of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, a partnership between the DKFZ Heidelberg and the University Hospital of the LMU, Munich, Germany
| | - Michael von Bergwelt-Baildon
- Department of Medicine III, University Hospital, Ludwig Maximilian University (LMU) of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, a partnership between the DKFZ Heidelberg and the University Hospital of the LMU, Munich, Germany
| | - Kirsten Lauber
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Sebastian Kobold
- Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig Maximilian University (LMU) of Munich, Lindwurmstrasse 2a, 80336, Munich, Germany.
- German Cancer Consortium (DKTK), Partner Site Munich, a partnership between the DKFZ Heidelberg and the University Hospital of the LMU, Munich, Germany.
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München-German Research Center for Environmental Health Neuherberg, Munich, Germany.
| |
Collapse
|
24
|
Wachholz GE, Akbari P, Huijbers EJM, Jalan P, van Beijnum JR, Griffioen AW. Targeting endothelial cell anergy to improve CAR T cell therapy for solid tumors. Biochim Biophys Acta Rev Cancer 2024; 1879:189155. [PMID: 39019408 DOI: 10.1016/j.bbcan.2024.189155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024]
Abstract
Chimeric antigen receptor (CAR) T cell therapy presents significant results, especially for the treatment of hematologic malignancies. However, there are limitations and challenges to be overcome to achieve similar success for the treatment of solid tumors. These challenges involve selection of the target, infiltration into the tumor microenvironment and maintenance of functionality. The tumor vasculature is a major barrier for leukocytes to enter the tumor parenchyma. Due to the exposure of the vasculature to angiogenic growth factors during tumor progression, the endothelial cells become anergic to inflammatory cytokines, resulting in reduced leukocyte adhesion molecule expression. As such adhesion molecules are a prerequisite for leukocyte extravasation, endothelial cell anergy allows tumors to escape from endogenous immunity, as well as from cellular immunotherapies such as CAR T cells. Hence, overcoming endothelial cell anergy, e.g. through the administration of angiogenesis inhibitors, is believed to restore anti-tumor immunity. Concomitantly, both endogenous immune cells as well as cellular therapeutics such as CAR T cells can permeate into the tumor parenchyma. Here, we discuss how prior or concomitant treatment with an antiangiogenic drug can improve CAR T cell therapy, to become an attractive strategy for the treatment of solid tumors.
Collapse
Affiliation(s)
- Gabriela E Wachholz
- Angiogenesis Laboratory, Department of Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Parvin Akbari
- Angiogenesis Laboratory, Department of Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Elisabeth J M Huijbers
- Angiogenesis Laboratory, Department of Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Prachi Jalan
- Angiogenesis Laboratory, Department of Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Judy R van Beijnum
- Angiogenesis Laboratory, Department of Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
25
|
Luo Z, Jiang M, Cheng N, Zhao X, Liu H, Wang S, Lin Q, Huang J, Guo X, Liu X, Shan X, Lu Y, Shi Y, Luo L, You J. Remodeling the hepatic immune microenvironment and demolishing T cell traps to enhance immunotherapy efficacy in liver metastasis. J Control Release 2024; 373:890-904. [PMID: 39067794 DOI: 10.1016/j.jconrel.2024.07.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Immune checkpoint inhibitors (ICIs) exhibit compromised therapeutic efficacy in many patients with advanced cancers, particularly those with liver metastases. Much of this incapability can be ascribed as an irresponsiveness resulting from the "cold" hepatic tumor microenvironment that acts as T cell "traps" for which there currently lack countermeasures. We report a novel nanomedicine that converts the hepatic immune microenvironment to a "hot" phenotype by targeting hepatic macrophage-centric T cell elimination. Using the nanomedicine, composed of KIRA6 (an endothelium reticulum stress inhibitor), α-Tocopherol nanoemulsions, and anti-PD1 antibodies, we found its potency in murine models of orthotopic colorectal tumors and hepatic metastases, restoring immune responses and enhancing anti-tumor effects. A post-treatment scrutiny of the immune microenvironment landscape in the liver reveals repolarization of immunosuppressive hepatic macrophages, upregulation of Th1-like effector CD4+ T cells, and rejuvenation of dendritic cells along with CD8+ T cells. These findings suggest adaptations of liver-centric immune milieu modulation strategies to improve the efficacy of ICIs for a variety of "cold" tumors and their liver metastases.
Collapse
Affiliation(s)
- Zhenyu Luo
- School of Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China; College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Mengshi Jiang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Ningtao Cheng
- School of Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China; Hangzhou Yuhang BoYu Intelligent Health Innovation Lab, Hangzhou, Zhejiang 311121, China.
| | - Xiaoqi Zhao
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Huihui Liu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Sijie Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Qing Lin
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Jiaxin Huang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Xuemeng Guo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Xu Liu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Xinyu Shan
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Yichao Lu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Yingying Shi
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Lihua Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
26
|
Chen Z, Hu Y, Mei H. Harmonizing the symphony of chimeric antigen receptor T cell immunotherapy with the elegance of biomaterials. Trends Biotechnol 2024:S0167-7799(24)00211-7. [PMID: 39181760 DOI: 10.1016/j.tibtech.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/11/2024] [Accepted: 07/29/2024] [Indexed: 08/27/2024]
Abstract
Chimeric antigen receptor T cell (CAR-T) immunotherapy has become a heated field of cancer research, demonstrating revolutionary efficacy in refractory and relapsed hematologic malignancies. However, CAR-T therapy has still encountered tough challenges, including complicated and lengthy manufacturing procedures, mediocre targeted delivery, limited therapeutic effect against solid tumors and difficulties in real-time in vivo monitoring. To overcome these limitations, various versatile biomaterials have been used in the above aspects and have improved CAR-T therapy impressively. This review mainly summarizes the latest research progress of biomaterials promoting CAR-T therapy in manufacturing, enhancing targeted delivery and tumor infiltration, and dramatic in vivo tracking to provide new insights and inspiration for clinical treatment.
Collapse
Affiliation(s)
- Zhaozhao Chen
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei, China; Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei, China; Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China
| | - Heng Mei
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei, China; Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China.
| |
Collapse
|
27
|
Wittling MC, Cole AC, Brammer B, Diatikar KG, Schmitt NC, Paulos CM. Strategies for Improving CAR T Cell Persistence in Solid Tumors. Cancers (Basel) 2024; 16:2858. [PMID: 39199630 PMCID: PMC11352972 DOI: 10.3390/cancers16162858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024] Open
Abstract
CAR T cells require optimization to be effective in patients with solid tumors. There are many barriers affecting their ability to succeed. One barrier is persistence, as to achieve an optimal antitumor response, infused CAR T cells must engraft and persist. This singular variable is impacted by a multitude of factors-the CAR T cell design, lymphodepletion regimen used, expansion method to generate the T cell product, and more. Additionally, external agents can be utilized to augment CAR T cells, such as the addition of novel cytokines, pharmaceutical drugs that bolster memory formation, or other agents during either the ex vivo expansion process or after CAR T cell infusion to support them in the oppressive tumor microenvironment. This review highlights many strategies being used to optimize T cell persistence as well as future directions for improving the persistence of infused cells.
Collapse
Affiliation(s)
- Megen C. Wittling
- Department of Surgery/Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA
- School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Anna C. Cole
- Department of Surgery/Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA
| | - Brianna Brammer
- School of Medicine, Emory University, Atlanta, GA 30322, USA
- Department of Otolaryngology, Emory University, Atlanta, GA 30322, USA
| | - Kailey G. Diatikar
- Department of Surgery/Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA
| | - Nicole C. Schmitt
- Department of Otolaryngology, Emory University, Atlanta, GA 30322, USA
| | - Chrystal M. Paulos
- Department of Surgery/Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
28
|
Xu L, Shi J, Wu S. Positron emission tomography probes for stem cell monitoring: a review. Am J Transl Res 2024; 16:3534-3544. [PMID: 39262689 PMCID: PMC11384350 DOI: 10.62347/ciut6327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/08/2024] [Indexed: 09/13/2024]
Abstract
Stem cells possess unique self-renewal and differentiation capacities, that are central to cell replacement and tissue regeneration. The therapeutic potential of stem cell applications has garnered increasing attention in recent years for a spectrum of human diseases, from ischemic disorders to oncological challenges. Despite their potential, a comprehensive understanding of the biological behavior, efficacy, and safety of these cells remains elusive, hindering their clinical adoption. This review focuses on the use of positron emission tomography (PET) imaging as a cutting-edge tool for bridging this knowledge gap. PET imaging, a noninvasive diagnostic method, has been highlighted for its ability to monitor cellular dynamics after stem cell transplantation. A variety of molecular probes within the PET framework enable the longitudinal and quantitative evaluation of post-transplant cellular behavior. This discourse systematically delineates various PET probes specifically designed for the in vivo tracking of the stem cell life cycle. These probes offer a pathway to a deeper understanding and more precise evaluation of stem cell behavior post-transplantation. Implementing PET imaging probes can revolutionize the clinical understanding of stem cell behavior, advancing and widening clinical therapeutic applications.
Collapse
Affiliation(s)
- Ligong Xu
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine Hangzhou, Zhejiang, China
| | - Jingjing Shi
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine) Hangzhou, Zhejiang, China
| | - Shuang Wu
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou, Zhejiang, China
| |
Collapse
|
29
|
Uslu U, Castelli S, June CH. CAR T cell combination therapies to treat cancer. Cancer Cell 2024; 42:1319-1325. [PMID: 39059390 DOI: 10.1016/j.ccell.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024]
Abstract
Chimeric antigen receptor (CAR) T cells are effectively used in certain hematological malignancies, though tumor relapse and limited success in solid tumors persist. Recent efforts focus on developing combination treatments to enhance outcomes and safety. Here, we provide a comprehensive overview of such combinatorial approaches and a consideration of ongoing clinical trials.
Collapse
Affiliation(s)
- Ugur Uslu
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sofia Castelli
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Carl H June
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
30
|
Yaga M, Hasegawa K, Ikeda S, Matsubara M, Hiroshima T, Kimura T, Shirai Y, Tansri W, Uehara H, Tachikawa M, Okairi Y, Sone M, Mori H, Kogue Y, Akamine H, Okuzaki D, Kawagishi K, Kawanaka S, Yamato H, Takeuchi Y, Okura E, Kanzaki R, Okami J, Nakamichi I, Nakane S, Kobayashi A, Iwazawa T, Tokunaga T, Yokouchi H, Yano Y, Uchida J, Mori M, Komuta K, Tachi T, Kuroda H, Kijima N, Kishima H, Ichii M, Futami S, Naito Y, Shiroyama T, Miyake K, Koyama S, Hirata H, Takeda Y, Funaki S, Shintani Y, Kumanogoh A, Hosen N. CD98 heavy chain protein is overexpressed in non-small cell lung cancer and is a potential target for CAR T-cell therapy. Sci Rep 2024; 14:17917. [PMID: 39095551 PMCID: PMC11297167 DOI: 10.1038/s41598-024-68779-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024] Open
Abstract
Chimeric antigen receptor (CAR) T cells are effective against hematological cancers, but are less effective against solid tumors such as non-small cell lung cancer (NSCLC). One of the reasons is that only a few cell surface targets specific for NSCLC cells have been identified. Here, we report that CD98 heavy chain (hc) protein is overexpressed on the surface of NSCLC cells and is a potential target for CAR T cells against NSCLC. Screening of over 10,000 mAb clones raised against NSCLC cell lines showed that mAb H2A011 bound to NSCLC cells but not normal lung epithelial cells. H2A011 recognized CD98hc. Although CAR T cells derived from H2A011 could not be established presumably due to the high level of H2A011 reactivity in activated T cells, those derived from the anti-CD98hc mAb R8H283, which had been shown to lack reactivity with CD98hc glycoforms expressed on normal hematopoietic cells and some normal tissues, were successfully developed. R8H283 specifically reacted with NSCLC cells in six of 15 patients. R8H283-derived CAR T cells exerted significant anti-tumor effects in a xenograft NSCLC model in vivo. These results suggest that R8H283 CAR T cells may become a new therapeutic tool for NSCLC, although careful testing for off-tumor reactivity should be performed in the future.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Mice
- Antibodies, Monoclonal/immunology
- Carcinoma, Non-Small-Cell Lung/therapy
- Carcinoma, Non-Small-Cell Lung/immunology
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Line, Tumor
- Fusion Regulatory Protein 1, Heavy Chain/metabolism
- Immunotherapy, Adoptive/methods
- Lung Neoplasms/therapy
- Lung Neoplasms/immunology
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Receptors, Chimeric Antigen/metabolism
- Receptors, Chimeric Antigen/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Moto Yaga
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Laboratory of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
| | - Kana Hasegawa
- Laboratory of Cellular Immunotherapy, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
| | - Shunya Ikeda
- Department of Clinical Laboratory and Biomedical Sciences, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Miwa Matsubara
- Department of Clinical Laboratory and Biomedical Sciences, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Takashi Hiroshima
- Department of General Thoracic Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Toru Kimura
- Department of General Thoracic Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yuya Shirai
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Statistical Genetics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Wibowo Tansri
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hirofumi Uehara
- Department of Clinical Laboratory and Biomedical Sciences, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Mana Tachikawa
- Department of Clinical Laboratory and Biomedical Sciences, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yuzuru Okairi
- Osaka Research Center for Drug Discovery, Otsuka Pharmaceutical Co., Ltd, Osaka, Japan
| | - Masayuki Sone
- Osaka Research Center for Drug Discovery, Otsuka Pharmaceutical Co., Ltd, Osaka, Japan
| | - Hiromi Mori
- Osaka Research Center for Drug Discovery, Otsuka Pharmaceutical Co., Ltd, Osaka, Japan
| | - Yosuke Kogue
- Osaka Research Center for Drug Discovery, Otsuka Pharmaceutical Co., Ltd, Osaka, Japan
| | - Hiroki Akamine
- Osaka Research Center for Drug Discovery, Otsuka Pharmaceutical Co., Ltd, Osaka, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases (RIMD), Osaka University, Suita, Osaka, Japan
- Laboratory of Human Immunology (Single Cell Genomics), World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
| | - Kotaro Kawagishi
- Department of General Thoracic Surgery, National Hospital Organization Osaka Toneyama Medical Center, Toyonaka, Osaka, Japan
| | - Satoshi Kawanaka
- Department of General Thoracic Surgery, National Hospital Organization Osaka Toneyama Medical Center, Toyonaka, Osaka, Japan
| | - Hiroyuki Yamato
- Department of General Thoracic Surgery, National Hospital Organization Osaka Toneyama Medical Center, Toyonaka, Osaka, Japan
| | - Yukiyasu Takeuchi
- Department of General Thoracic Surgery, National Hospital Organization Osaka Toneyama Medical Center, Toyonaka, Osaka, Japan
| | - Eiji Okura
- Department of Surgery, Takarazuka City Hospital, Takarazuka, Hyogo, Japan
| | - Ryu Kanzaki
- Department of General Thoracic Surgery, Osaka International Cancer Institute, Osaka, Osaka, Japan
| | - Jiro Okami
- Department of General Thoracic Surgery, Osaka International Cancer Institute, Osaka, Osaka, Japan
| | - Itsuko Nakamichi
- Department of Pathology, Minoh City Hospital, Minoh, Osaka, Japan
| | - Shigeru Nakane
- Department of Surgery, Minoh City Hospital, Minoh, Osaka, Japan
| | - Aki Kobayashi
- Department of Surgery, Toyonaka Municipal Hospital, Toyonaka, Osaka, Japan
| | - Takashi Iwazawa
- Department of Surgery, Toyonaka Municipal Hospital, Toyonaka, Osaka, Japan
| | - Toshiteru Tokunaga
- Department of General Thoracic Surgery, National Hospital Organization Kinki-Chuo Chest Medical Center, Sakai, Osaka, Japan
| | - Hideoki Yokouchi
- Department of Surgery, Suita Municipal Hospital, Suita, Osaka, Japan
| | - Yukihiro Yano
- Department of Thoracic Oncology, National Hospital Organization Osaka Toneyama Medical Center, Toyonaka, Osaka, Japan
| | - Junji Uchida
- Department of Thoracic Oncology, National Hospital Organization Osaka Toneyama Medical Center, Toyonaka, Osaka, Japan
| | - Masahide Mori
- Department of Thoracic Oncology, National Hospital Organization Osaka Toneyama Medical Center, Toyonaka, Osaka, Japan
| | - Kiyoshi Komuta
- Department of Internal Medicine, Osaka Anti-Tuberculosis Association Osaka Fukujuji Hospital, Neyagawa, Osaka, Japan
| | - Tetsuro Tachi
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hideki Kuroda
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Noriyuki Kijima
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Haruhiko Kishima
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Michiko Ichii
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, 2-2, Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Shinji Futami
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yujiro Naito
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Takayuki Shiroyama
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Kotaro Miyake
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Shohei Koyama
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Immunology and Molecular Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center, Tokyo/Chiba, Japan
| | - Haruhiko Hirata
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yoshito Takeda
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Soichiro Funaki
- Department of General Thoracic Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yasushi Shintani
- Department of General Thoracic Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Laboratory of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan
- Center for Infectious Diseases for Education and Research (CiDER), Osaka University, Suita, Osaka, Japan
- Japan Agency for Medical Research and Development - Core Research for Evolutional Science and Technology (AMED-CREST), Osaka University, Suita, Osaka, Japan
- Center for Advanced Modalities and DDS (CAMaD), Osaka University, Suita, Osaka, Japan
| | - Naoki Hosen
- Laboratory of Cellular Immunotherapy, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan.
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, 2-2, Yamada-Oka, Suita, Osaka, 565-0871, Japan.
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
31
|
Meng Y, Sun J, Zhang G. A viable remedy for overcoming resistance to anti-PD-1 immunotherapy: Fecal microbiota transplantation. Crit Rev Oncol Hematol 2024; 200:104403. [PMID: 38838927 DOI: 10.1016/j.critrevonc.2024.104403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/12/2024] [Accepted: 05/24/2024] [Indexed: 06/07/2024] Open
Abstract
Anti-PD-1 immunotherapy is a cancer therapy that focuses explicitly on the PD-1 receptor found on the surface of immune cells. This targeted therapeutic strategy is specifically designed to amplify the immune system's innate capacity to detect and subsequently eliminate cells that have become cancerous. Nevertheless, it should be noted that not all patients exhibit a favourable response to this particular therapeutic modality, necessitating the exploration of novel strategies to augment the effectiveness of immunotherapy. Previous studies have shown that fecal microbiota transplantation (FMT) can enhance the efficacy of anti-PD-1 immunotherapy in advanced melanoma patients. To investigate this intriguing possibility further, we turned to PubMed and conducted a comprehensive search for studies that analyzed the interplay between FMT and anti-PD-1 therapy in the context of tumor treatment. Our search criteria were centred around two key phrases: "fecal microbiota transplantation" and "anti-PD-1 therapy." The studies we uncovered all echo a similar sentiment. They pointed towards the potential of FMT to improve the effectiveness of immunotherapy. FMT may enhance the effectiveness of immunotherapy by altering the gut microbiota and boosting the patient's immunological response. Although promising, additional investigation is needed to improve the efficacy of FMT in the context of cancer therapy and attain a comprehensive understanding of the possible advantages and drawbacks associated with this therapeutic strategy.
Collapse
Affiliation(s)
- Yiming Meng
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan road, Dadong district, Shenyang 110042, China.
| | - Jing Sun
- Department of Biobank, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan road, Dadong district, Shenyang 110042, China
| | - Guirong Zhang
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan road, Dadong district, Shenyang 110042, China
| |
Collapse
|
32
|
Long J, Wang Y, Jiang X, Ge J, Chen M, Zheng B, Wang R, Wang M, Xu M, Ke Q, Wang J. Nanomaterials Boost CAR-T Therapy for Solid Tumors. Adv Healthc Mater 2024; 13:e2304615. [PMID: 38483400 DOI: 10.1002/adhm.202304615] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/29/2024] [Indexed: 05/22/2024]
Abstract
T cell engineering, particularly via chimeric antigen receptor (CAR) modifications for enhancing tumor specificity, has shown efficacy in treating hematologic malignancies. The extension of CAR-T cell therapy to solid tumors, however, is impeded by several challenges: The absence of tumor-specific antigens, antigen heterogeneity, a complex immunosuppressive tumor microenvironment, and physical barriers to cell infiltration. Additionally, limitations in CAR-T cell manufacturing capacity and the high costs associated with these therapies restrict their widespread application. The integration of nanomaterials into CAR-T cell production and application offers a promising avenue to mitigate these challenges. Utilizing nanomaterials in the production of CAR-T cells can decrease product variability and lower production expenses, positively impacting the targeting and persistence of CAR-T cells in treatment and minimizing adverse effects. This review comprehensively evaluates the use of various nanomaterials in the production of CAR-T cells, genetic modification, and in vivo delivery. It discusses their underlying mechanisms and potential for clinical application, with a focus on improving specificity and safety in CAR-T cell therapy.
Collapse
Affiliation(s)
- Jun Long
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, 1001 Xueyuan Road, Shenzhen, 518055, China
| | - Yian Wang
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha, 410013, China
| | - Xianjie Jiang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Junshang Ge
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, 410078, China
| | - Mingfen Chen
- Department of Radiation Oncology, The Second Affiliated Hospital of Fujian Medical University, Fujian Medical University, Quanzhou, 362000, China
| | - Boshu Zheng
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, No.1 Xuefu North Road University Town, Fuzhou, 350122, China
| | - Rong Wang
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, No.1 Xuefu North Road University Town, Fuzhou, 350122, China
| | - Meifeng Wang
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, No.1 Xuefu North Road University Town, Fuzhou, 350122, China
| | - Meifang Xu
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, No.1 Xuefu North Road University Town, Fuzhou, 350122, China
| | - Qi Ke
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, No.1 Xuefu North Road University Town, Fuzhou, 350122, China
| | - Jie Wang
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, No.1 Xuefu North Road University Town, Fuzhou, 350122, China
| |
Collapse
|
33
|
Taylor CA, Glover M, Maher J. CAR-T cell technologies that interact with the tumour microenvironment in solid tumours. Expert Rev Clin Immunol 2024; 20:849-871. [PMID: 39021098 DOI: 10.1080/1744666x.2024.2380894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
INTRODUCTION Chimeric antigen receptor (CAR) T-cells have emerged as a ground-breaking therapy for the treatment of hematological malignancies due to their capacity for rapid tumor-specific killing and long-lasting tumor immunity. However, the same success has not been observed in patients with solid tumors. Largely, this is due to the additional challenges imposed by safe and uniform target selection, inefficient CAR T-cell access to sites of disease and the presence of a hostile immunosuppressive tumor microenvironment. AREAS COVERED Literature was reviewed on the PubMed database from the first description of a CAR by Kuwana, Kurosawa and colleagues in December 1987 through to the present day. This literature indicates that in order to tackle solid tumors, CAR T-cells can be further engineered with additional armoring strategies that facilitate trafficking to and infiltration of malignant lesions together with reversal of suppressive immune checkpoints that operate within solid tumor lesions. EXPERT OPINION In this review, we describe a number of recent advances in CAR T-cell technology that set out to combat the problems imposed by solid tumors including tumor recruitment, infiltration, immunosuppression, metabolic compromise, and hypoxia.
Collapse
Affiliation(s)
| | | | - John Maher
- Leucid Bio Ltd, Guy's Hospital, London, UK
- King's College London, School of Cancer and Pharmaceutical Sciences, Guy's Hospital, London, UK
- Department of Immunology, Eastbourne Hospital, Eastbourne, East Sussex, UK
| |
Collapse
|
34
|
Qi C, Liu C, Gong J, Liu D, Wang X, Zhang P, Qin Y, Ge S, Zhang M, Peng Z, Zhou J, Lu Z, Lu M, Cao Y, Yuan J, Wang Y, Wang Z, Xue R, Peng X, Wang Y, Yuan D, Li J, Zhang X, Shen L. Claudin18.2-specific CAR T cells in gastrointestinal cancers: phase 1 trial final results. Nat Med 2024; 30:2224-2234. [PMID: 38830992 DOI: 10.1038/s41591-024-03037-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 04/30/2024] [Indexed: 06/05/2024]
Abstract
Claudin18.2 (CLDN18.2) is highly expressed with the development of various malignant tumors, especially gastrointestinal cancers, and is emerging as a new target for cancer treatment. Satricabtagene autoleucel (satri-cel)/CT041 is an autologous chimeric antigen receptor (CAR) T cell targeting CLDN18.2, and the interim results of the CT041-CG4006 trial were reported in June 2022. Here we present the final results of this single-arm, open-label, phase 1 trial, which evaluated the safety and efficacy of satri-cel in patients with CLDN18.2-positive advanced gastrointestinal cancers. This trial included a dose-escalation stage (n = 15) and a dose-expansion stage in four different cohorts (total n = 83): cohort 1, satri-cel monotherapy in 61 patients with standard chemotherapy-refractory gastrointestinal cancers; cohort 2, satri-cel plus anti-PD-1 therapy in 15 patients with standard chemotherapy-refractory gastrointestinal cancers; cohort 3, satri-cel as sequential treatment after first-line therapy in five patients with gastrointestinal cancers; and cohort 4, satri-cel monotherapy in two patients with anti-CLDN18.2 monoclonal antibody-refractory gastric cancer. The primary endpoint was safety; secondary endpoints included efficacy, pharmacokinetics and immunogenicity. A total of 98 patients received satri-cel infusion, among whom 89 were dosed with 2.5 × 108, six with 3.75 × 108 and three with 5.0 × 108 CAR T cells. Median follow-up was 32.4 months (95% confidence interval (CI): 27.3, 36.5) since apheresis. No dose-limiting toxicities, treatment-related deaths or immune effector cell-associated neurotoxicity syndrome were reported. Cytokine release syndrome occurred in 96.9% of patients, all classified as grade 1-2. Gastric mucosal injuries were identified in eight (8.2%) patients. The overall response rate and disease control rate in all 98 patients were 38.8% and 91.8%, respectively, and the median progression-free survival and overall survival were 4.4 months (95% CI: 3.7, 6.6) and 8.8 months (95% CI: 7.1, 10.2), respectively. Satri-cel demonstrates therapeutic potential with a manageable safety profile in patients with CLDN18.2-positive advanced gastrointestinal cancer. ClinicalTrials.gov identifier: NCT03874897 .
Collapse
Affiliation(s)
- Changsong Qi
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Early Drug Development Centre, Peking University Cancer Hospital & Institute, Beijing, China.
| | - Chang Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Early Drug Development Centre, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jifang Gong
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Dan Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Early Drug Development Centre, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xicheng Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Panpan Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Early Drug Development Centre, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yanru Qin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Sai Ge
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Miao Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Early Drug Development Centre, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhi Peng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jun Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhihao Lu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Ming Lu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yanshuo Cao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jiajia Yuan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yakun Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhenghang Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Ran Xue
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | | | - Yumeng Wang
- CARsgen Therapeutics Co., Ltd., Shanghai, China
| | | | - Jian Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, China.
| | - Xiaotian Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, China.
| | - Lin Shen
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, China.
| |
Collapse
|
35
|
Dai R, Uppot R, Arellano R, Kalva S. Image-guided Ablative Procedures. Clin Oncol (R Coll Radiol) 2024; 36:484-497. [PMID: 38087706 DOI: 10.1016/j.clon.2023.11.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/19/2023] [Accepted: 11/21/2023] [Indexed: 07/09/2024]
Abstract
Various image-guided ablative procedures include chemical and thermal ablation techniques and irreversible electroporation. These have been used for curative intent for small tumours and palliative intent for debulking, immunogenicity and pain control. Understanding these techniques is critical to avoiding complications and achieving superior clinical outcomes. Additionally, combination with immunotherapy and chemotherapies is rapidly evolving. There are numerous opportunities in interventional radiology to advance ablation techniques and seamlessly integrate into current treatment regimens for both benign and malignant tumours.
Collapse
Affiliation(s)
- R Dai
- Massachusetts General Hospital, Department of Radiology, Division of Intervention Radiology, Boston, Massachusetts, USA.
| | - R Uppot
- Massachusetts General Hospital, Department of Radiology, Division of Intervention Radiology, Boston, Massachusetts, USA
| | - R Arellano
- Massachusetts General Hospital, Department of Radiology, Division of Intervention Radiology, Boston, Massachusetts, USA
| | - S Kalva
- Massachusetts General Hospital, Department of Radiology, Division of Intervention Radiology, Boston, Massachusetts, USA
| |
Collapse
|
36
|
Posey AD, Young RM, June CH. Future perspectives on engineered T cells for cancer. Trends Cancer 2024; 10:687-695. [PMID: 38853073 DOI: 10.1016/j.trecan.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 06/11/2024]
Abstract
Chimeric antigen receptor (CAR) T cell therapy has emerged as a revolutionary treatment for hematological malignancies, but its adaptation to solid tumors is impeded by multiple challenges, particularly T cell dysfunction and exhaustion. The heterogeneity and inhospitableness of the solid tumor microenvironment (TME) contribute to diminished CAR T cell efficacy exhibited by reduced cytotoxicity, proliferation, cytokine secretion, and the upregulation of inhibitory receptors, similar to the phenotype of tumor-infiltrating lymphocytes (TILs). In this review, we highlight recent advances in T cell therapy for solid tumors, particularly brain cancer. Innovative strategies, including locoregional delivery and 'armoring' CAR T cells with cytokines such as interleukin (IL)-18, are under investigation to improve efficacy and safety. We also highlight emerging issues with toxicity management of CAR T cell adverse events. This review discusses the obstacles associated with CAR T cell therapy in the context of solid tumors and outlines current and future strategies to overcome these challenges.
Collapse
MESH Headings
- Humans
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/adverse effects
- Neoplasms/immunology
- Neoplasms/therapy
- Neoplasms/genetics
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Tumor Microenvironment/immunology
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Animals
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/genetics
Collapse
Affiliation(s)
- Avery D Posey
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy at the University of Pennsylvania, Philadelphia, PA, USA; Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Regina M Young
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy at the University of Pennsylvania, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Carl H June
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy at the University of Pennsylvania, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
37
|
Amit U, Uslu U, Verginadis II, Kim MM, Motlagh SAO, Diffenderfer ES, Assenmacher CA, Bicher S, Atoche SJ, Ben-Josef E, Young RM, June CH, Koumenis C. Proton radiation boosts the efficacy of mesothelin-targeting chimeric antigen receptor T cell therapy in pancreatic cancer. Proc Natl Acad Sci U S A 2024; 121:e2403002121. [PMID: 39047033 PMCID: PMC11294999 DOI: 10.1073/pnas.2403002121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) represents a challenge in oncology, with limited treatment options for advanced-stage patients. Chimeric antigen receptor T cell (CAR T) therapy targeting mesothelin (MSLN) shows promise, but challenges such as the hostile immunosuppressive tumor microenvironment (TME) hinder its efficacy. This study explores the synergistic potential of combining proton radiation therapy (RT) with MSLN-targeting CAR T therapy in a syngeneic PDAC model. Proton RT significantly increased MSLN expression in tumor cells and caused a significant increase in CAR T cell infiltration into tumors. The combination therapy reshaped the immunosuppressive TME, promoting antitumorigenic M1 polarized macrophages and reducing myeloid-derived suppressor cells (MDSC). In a flank PDAC model, the combination therapy demonstrated superior attenuation of tumor growth and improved survival compared to individual treatments alone. In an orthotopic PDAC model treated with image-guided proton RT, tumor growth was significantly reduced in the combination group compared to the RT treatment alone. Further, the combination therapy induced an abscopal effect in a dual-flank tumor model, with increased serum interferon-γ levels and enhanced proliferation of extratumoral CAR T cells. In conclusion, combining proton RT with MSLN-targeting CAR T therapy proves effective in modulating the TME, enhancing CAR T cell trafficking, and exerting systemic antitumor effects. Thus, this combinatorial approach could present a promising strategy for improving outcomes in unresectable PDAC.
Collapse
Affiliation(s)
- Uri Amit
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Department of Radiation Oncology, Tel Aviv Medical Center, Tel Aviv64239, Israel
| | - Ugur Uslu
- Department of Pathology and Laboratory Medicine, Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA19104
- Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA19104
| | - Ioannis I. Verginadis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Michele M. Kim
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Seyyedeh Azar Oliaei Motlagh
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Eric S. Diffenderfer
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Charles-Antoine Assenmacher
- Department of Pathobiology, School of Veterinary Medicine, Comparative Pathology Core, University of Pennsylvania, Philadelphia, PA19104
| | - Sandra Bicher
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Sebastian J. Atoche
- Department of Pathology and Laboratory Medicine, Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA19104
- Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA19104
| | - Edgar Ben-Josef
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Regina M. Young
- Department of Pathology and Laboratory Medicine, Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA19104
- Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA19104
| | - Carl H. June
- Department of Pathology and Laboratory Medicine, Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA19104
- Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA19104
| | - Constantinos Koumenis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| |
Collapse
|
38
|
Liu Y, Zhu J, Du TY, Liu XH, Xin Y, Wang Y, Wang YP, Xu JH, Chen Y, Wei HF, Cheng Y. Navigating first-line therapies for extensive-stage small-cell lung cancer: a frequentist network meta-analysis and systematic review. Future Oncol 2024; 20:2109-2122. [PMID: 39072397 PMCID: PMC11497961 DOI: 10.1080/14796694.2024.2376514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024] Open
Abstract
Aim: To identify the optimal first-line treatment for patients with extensive-stage small-cell lung cancer (ES-SCLC).Materials & methods: We conducted a network meta-analysis (CRD42023486863) to systematically evaluate the efficacy and safety of eight first-line treatment regimens for ES-SCLC, including 15 clinical trials.Results: Our analysis showed that the PD-1/PD-L1 + etoposide combined with platinum (EP) and PD-L1 + vascular endothelial growth factor (VEGF) + EP regimens significantly enhanced overall survival and progression-free survival, with subgroup analysis revealing that serplulimab ranked as the most promising option for improving overall survival. Integrating anti-angiogenesis drugs into immunochemotherapy presents potential benefits, with an increased incidence of adverse events necessitating further investigation.Conclusion: Our findings offer valuable insights for future research and for developing more effective treatment strategies for ES-SCLC, underscoring the critical need for continued innovation in this therapeutic area.
Collapse
Affiliation(s)
- Ying Liu
- Department of Oncology, Jilin Cancer Hospital, 1066 Jinhu Rd, Jilin, Changchun, 130000, China
| | - Jing Zhu
- Department of Oncology, Jilin Cancer Hospital, 1066 Jinhu Rd, Jilin, Changchun, 130000, China
| | - Tian-Ying Du
- Department of Oncology, Jilin Cancer Hospital, 1066 Jinhu Rd, Jilin, Changchun, 130000, China
| | - Xian-Hong Liu
- Department of Oncology, Jilin Cancer Hospital, 1066 Jinhu Rd, Jilin, Changchun, 130000, China
| | - Ying Xin
- Department of Oncology, Jilin Cancer Hospital, 1066 Jinhu Rd, Jilin, Changchun, 130000, China
| | - Ying Wang
- Department of Oncology, Jilin Cancer Hospital, 1066 Jinhu Rd, Jilin, Changchun, 130000, China
| | - Yan-Ping Wang
- Department of Oncology, Jilin Cancer Hospital, 1066 Jinhu Rd, Jilin, Changchun, 130000, China
| | - Jin-Hua Xu
- Department of Oncology, Jilin Cancer Hospital, 1066 Jinhu Rd, Jilin, Changchun, 130000, China
| | - Yan Chen
- Department of Oncology, Jilin Cancer Hospital, 1066 Jinhu Rd, Jilin, Changchun, 130000, China
| | - Hua-Fang Wei
- Department of Oncology, Jilin Cancer Hospital, 1066 Jinhu Rd, Jilin, Changchun, 130000, China
| | - Ying Cheng
- Department of Oncology, Jilin Cancer Hospital, 1066 Jinhu Rd, Jilin, Changchun, 130000, China
| |
Collapse
|
39
|
Gu X, Zhang Y, Zhou W, Wang F, Yan F, Gao H, Wang W. Infusion and delivery strategies to maximize the efficacy of CAR-T cell immunotherapy for cancers. Exp Hematol Oncol 2024; 13:70. [PMID: 39061100 PMCID: PMC11282638 DOI: 10.1186/s40164-024-00542-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has achieved substantial clinical outcomes for tumors, especially for hematological malignancies. However, extending the duration of remission, reduction of relapse for hematological malignancies and improvement of the anti-tumor efficacy for solid tumors are challenges for CAR-T cells immunotherapy. Besides the endeavors to enhance the functionality of CAR-T cell per se, optimization of the infusion and delivery strategies facilitates the breakthrough of the hurdles that limited the efficacy of this cancer immunotherapy. Here, we summarized the infusion and delivery strategies of CAR-T cell therapies under pre-clinical study, clinical trials and on-market status, through which the improvements of safety and efficacy for hematological and solid tumors were analyzed. Of note, novel infusion and delivery strategies, including local-regional infusion, biomaterials bearing the CAR-T cells and multiple infusion technique, overcome many limitations of CAR-T cell therapy. This review provides hints to determine infusion and delivery strategies of CAR-T cell cancer immunotherapy to maximize clinical benefits.
Collapse
Affiliation(s)
- Xinyu Gu
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, People's Republic of China
| | - Yalan Zhang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, People's Republic of China
| | - Weilin Zhou
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, People's Republic of China
| | - Fengling Wang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, People's Republic of China
| | - Feiyang Yan
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, People's Republic of China
| | - Haozhan Gao
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, People's Republic of China
| | - Wei Wang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|
40
|
Kim J, Maharjan R, Park J. Current Trends and Innovative Approaches in Cancer Immunotherapy. AAPS PharmSciTech 2024; 25:168. [PMID: 39044047 DOI: 10.1208/s12249-024-02883-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/05/2024] [Indexed: 07/25/2024] Open
Abstract
Immunotherapy is one of the most promising therapeutic approaches in the field of cancer treatment. As a tumor progresses, tumor cells employ an array of immune-regulatory mechanisms to suppress immune responses within the tumor microenvironment. Using our understanding of these mechanisms, cancer immunotherapy has been developed to enhance the immune system's effectiveness in treating cancer. Numerous cancer immunotherapies are currently in clinical use, yet many others are either in different stages of development or undergoing clinical studies. In this paper, we briefly discuss the features and current status of cancer immunotherapies. This includes the application of monoclonal antibodies, immune checkpoint inhibitors, adoptive cell therapy, cytokine therapy, cancer vaccines, and gene therapy, all of which have gained significant recognition in clinical practice. Additionally, we discuss limitations that may hinder successful clinical utilization and promising strategies, such as combining immunotherapy with nanotechnology.
Collapse
Affiliation(s)
- Jaechang Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone, Lexington, KY, 40506, USA
| | - Ruby Maharjan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone, Lexington, KY, 40506, USA
| | - Jonghyuck Park
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone, Lexington, KY, 40506, USA.
- Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY, USA.
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
41
|
Liu T, Yao W, Sun W, Yuan Y, Liu C, Liu X, Wang X, Jiang H. Components, Formulations, Deliveries, and Combinations of Tumor Vaccines. ACS NANO 2024; 18:18801-18833. [PMID: 38979917 DOI: 10.1021/acsnano.4c05065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Tumor vaccines, an important part of immunotherapy, prevent cancer or kill existing tumor cells by activating or restoring the body's own immune system. Currently, various formulations of tumor vaccines have been developed, including cell vaccines, tumor cell membrane vaccines, tumor DNA vaccines, tumor mRNA vaccines, tumor polypeptide vaccines, virus-vectored tumor vaccines, and tumor-in-situ vaccines. There are also multiple delivery systems for tumor vaccines, such as liposomes, cell membrane vesicles, viruses, exosomes, and emulsions. In addition, to decrease the risk of tumor immune escape and immune tolerance that may exist with a single tumor vaccine, combination therapy of tumor vaccines with radiotherapy, chemotherapy, immune checkpoint inhibitors, cytokines, CAR-T therapy, or photoimmunotherapy is an effective strategy. Given the critical role of tumor vaccines in immunotherapy, here, we look back to the history of tumor vaccines, and we discuss the antigens, adjuvants, formulations, delivery systems, mechanisms, combination therapy, and future directions of tumor vaccines.
Collapse
Affiliation(s)
- Tengfei Liu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Wenyan Yao
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Wenyu Sun
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Yihan Yuan
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Chen Liu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Xiaohui Liu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Xuemei Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Hui Jiang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| |
Collapse
|
42
|
Chen Q, Sun Y, Li H. Application of CAR-T cell therapy targeting mesothelin in solid tumor treatment. Discov Oncol 2024; 15:289. [PMID: 39023820 PMCID: PMC11258118 DOI: 10.1007/s12672-024-01159-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024] Open
Abstract
Chimeric antigen receptor (CAR)-T-cell therapy is one of the most effective immunotherapies. CAR-T-cell therapy has achieved great success in the treatment of hematological malignancies. However, due to the characteristics of solid malignant tumors, such as on-target effects, off-tumor toxicity, an immunosuppressive tumor microenvironment (TME), and insufficient trafficking, CAR-T-cell therapy for solid tumors is still in the exploration stage. Mesothelin (MSLN) is a molecule expressed on the surface of various solid malignant tumor cells that is suitable as a target of tumor cells with high MSLN expression for CAR-T-cell therapy. This paper briefly described the development of CAR-T cell therapy and the structural features of MSLN, and especially summarized the strategies of structure optimization of MSLN-targeting CAR-T-cells and the enhancement methods of MSLN-targeting CAR-T cell anti-tumor efficacy by summarizing some preclinical experiment and clinical trials. When considering MSLN-targeting CAR-T-cell therapy as an example, this paper summarizes the efforts made by researchers in CAR-T-cell therapy for solid tumors and summarizes feasible treatment plans by integrating the existing research results.
Collapse
Affiliation(s)
- Qiuhong Chen
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, People's Republic of China
| | - Yang Sun
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, People's Republic of China
| | - Hua Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, People's Republic of China.
| |
Collapse
|
43
|
Dreyzin A, Rankin AW, Luciani K, Gavrilova T, Shah NN. Overcoming the challenges of primary resistance and relapse after CAR-T cell therapy. Expert Rev Clin Immunol 2024; 20:745-763. [PMID: 38739466 PMCID: PMC11180598 DOI: 10.1080/1744666x.2024.2349738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/26/2024] [Indexed: 05/16/2024]
Abstract
INTRODUCTION While CAR T-cell therapy has led to remarkable responses in relapsed B-cell hematologic malignancies, only 50% of patients ultimately have a complete, sustained response. Understanding the mechanisms of resistance and relapse after CAR T-cell therapy is crucial to future development and improving outcomes. AREAS COVERED We review reasons for both primary resistance and relapse after CAR T-cell therapies. Reasons for primary failure include CAR T-cell manufacturing problems, suboptimal fitness of autologous T-cells themselves, and intrinsic features of the underlying cancer and tumor microenvironment. Relapse after initial response to CAR T-cell therapy may be antigen-positive, due to CAR T-cell exhaustion or limited persistence, or antigen-negative, due to antigen-modulation on the target cells. Finally, we discuss ongoing efforts to overcome resistance to CAR T-cell therapy with enhanced CAR constructs, manufacturing methods, alternate cell types, combinatorial strategies, and optimization of both pre-infusion conditioning regimens and post-infusion consolidative strategies. EXPERT OPINION There is a continued need for novel approaches to CAR T-cell therapy for both hematologic and solid malignancies to obtain sustained remissions. Opportunities for improvement include development of new targets, optimally combining existing CAR T-cell therapies, and defining the role for adjunctive immune modulators and stem cell transplant in enhancing long-term survival.
Collapse
Affiliation(s)
- Alexandra Dreyzin
- Pediatric Oncology Branch, Center of Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Division of Pediatric Oncology, Children's National Hospital, Washington DC, USA
| | - Alexander W Rankin
- Pediatric Oncology Branch, Center of Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Katia Luciani
- School of Medicine, University of Limerick, Limerick, Ireland
| | | | - Nirali N Shah
- Pediatric Oncology Branch, Center of Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
44
|
Zauderer MG, Dagogo-Jack I. Refreshing the mesothelioma catalogue: tailoring cellular therapy in the DENIM trial. Lancet Oncol 2024; 25:825-827. [PMID: 38848740 DOI: 10.1016/s1470-2045(24)00291-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/09/2024]
Affiliation(s)
- Marjorie G Zauderer
- Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY 10021, USA.
| | - Ibiayi Dagogo-Jack
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
45
|
Sheth RA, Wehrenberg-Klee E, Patel SP, Brock KK, Fotiadis N, de Baère T. Intratumoral Injection of Immunotherapeutics: State of the Art and Future Directions. Radiology 2024; 312:e232654. [PMID: 39078294 PMCID: PMC11294769 DOI: 10.1148/radiol.232654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 02/17/2024] [Accepted: 02/28/2024] [Indexed: 07/31/2024]
Abstract
Systemic immunotherapies have led to tremendous progress across the cancer landscape. However, several challenges exist, potentially limiting their efficacy in the treatment of solid tumors. Direct intratumoral injection can increase the therapeutic index of immunotherapies while overcoming many of the barriers associated with systemic administration, including limited bioavailability to tumors and potential systemic safety concerns. However, challenges remain, including the lack of standardized approaches for administration, issues relating to effective drug delivery, logistical hurdles, and safety concerns specific to this mode of administration. This article reviews the biologic rationale for the localized injection of immunotherapeutic agents into tumors. It also addresses the existing limitations and practical considerations for safe and effective implementation and provide recommendations for optimizing logistics and treatment workflows. It also highlights the critical role that radiologists, interventional radiologists, and medical physicists play in intratumoral immunotherapy with respect to target selection, image-guided administration, and response assessment.
Collapse
Affiliation(s)
- Rahul A. Sheth
- From the Departments of Interventional Radiology (R.A.S.), Melanoma
Medical Oncology (S.P.P.), and Imaging Physics (K.K.B.), University of Texas MD
Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030; Department of
Radiology, Massachusetts General Hospital, Boston, Mass (E.W.K.); Department of
Radiology, Royal Marsden Hospital, London, England (N.F.); and Department of
Interventional Radiology, Institut de Cancérologie Gustave Roussy,
Villejuif, France (T.d.B.)
| | - Eric Wehrenberg-Klee
- From the Departments of Interventional Radiology (R.A.S.), Melanoma
Medical Oncology (S.P.P.), and Imaging Physics (K.K.B.), University of Texas MD
Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030; Department of
Radiology, Massachusetts General Hospital, Boston, Mass (E.W.K.); Department of
Radiology, Royal Marsden Hospital, London, England (N.F.); and Department of
Interventional Radiology, Institut de Cancérologie Gustave Roussy,
Villejuif, France (T.d.B.)
| | - Sapna P. Patel
- From the Departments of Interventional Radiology (R.A.S.), Melanoma
Medical Oncology (S.P.P.), and Imaging Physics (K.K.B.), University of Texas MD
Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030; Department of
Radiology, Massachusetts General Hospital, Boston, Mass (E.W.K.); Department of
Radiology, Royal Marsden Hospital, London, England (N.F.); and Department of
Interventional Radiology, Institut de Cancérologie Gustave Roussy,
Villejuif, France (T.d.B.)
| | - Kristy K. Brock
- From the Departments of Interventional Radiology (R.A.S.), Melanoma
Medical Oncology (S.P.P.), and Imaging Physics (K.K.B.), University of Texas MD
Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030; Department of
Radiology, Massachusetts General Hospital, Boston, Mass (E.W.K.); Department of
Radiology, Royal Marsden Hospital, London, England (N.F.); and Department of
Interventional Radiology, Institut de Cancérologie Gustave Roussy,
Villejuif, France (T.d.B.)
| | - Nicos Fotiadis
- From the Departments of Interventional Radiology (R.A.S.), Melanoma
Medical Oncology (S.P.P.), and Imaging Physics (K.K.B.), University of Texas MD
Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030; Department of
Radiology, Massachusetts General Hospital, Boston, Mass (E.W.K.); Department of
Radiology, Royal Marsden Hospital, London, England (N.F.); and Department of
Interventional Radiology, Institut de Cancérologie Gustave Roussy,
Villejuif, France (T.d.B.)
| | - Thierry de Baère
- From the Departments of Interventional Radiology (R.A.S.), Melanoma
Medical Oncology (S.P.P.), and Imaging Physics (K.K.B.), University of Texas MD
Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030; Department of
Radiology, Massachusetts General Hospital, Boston, Mass (E.W.K.); Department of
Radiology, Royal Marsden Hospital, London, England (N.F.); and Department of
Interventional Radiology, Institut de Cancérologie Gustave Roussy,
Villejuif, France (T.d.B.)
| |
Collapse
|
46
|
Gitto SB, Ihewulezi CJN, Powell DJ. Adoptive T cell therapy for ovarian cancer. Gynecol Oncol 2024; 186:77-84. [PMID: 38603955 PMCID: PMC11216867 DOI: 10.1016/j.ygyno.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/27/2024] [Accepted: 04/01/2024] [Indexed: 04/13/2024]
Abstract
Although ovarian cancer patients typically respond to standard of care therapies, including chemotherapy and DNA repair inhibitors, the majority of tumors recur highlighting the need for alternative therapies. Ovarian cancer is an immunogenic cancer in which the accumulation of tumor infiltrating lymphocytes (TILs), particularly T cells, is associated with better patient outcome. Thus, harnessing the immune system through passive administration of T cells, a process called adoptive cell therapy (ACT), is a promising therapeutic option for the treatment of ovarian cancer. There are multiple routes by which tumor-specific T cell products can be generated. Dendritic cell cancer vaccines can be administered to the patients to induce or bolster T cell responses against tumor antigens or be utilized ex vivo to prime T cells against tumor antigens; these T cells can then be prepared for infusion. ACT protocols can also utilize naturally-occurring tumor-reactive T cells isolated from a patient tumor, known as TILs, as these cells often are heterogeneous in composition and antigen specificity with patient-specific cancer recognition. Alternatively, T cells may be sourced from the peripheral blood, including those that are genetically modified to express a tumor antigen-specific T cell receptor (TCR) or chimeric antigen receptor (CAR) to redirect their specificity and promote their activity against tumor cells expressing the target tumor antigen. Here, we review current ACT strategies for ovarian cancer and provide insights into advancing ACT therapy strategies for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Sarah B Gitto
- Department of Pathology and Laboratory Medicine, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chibuike J N Ihewulezi
- Department of Pathology and Laboratory Medicine, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel J Powell
- Department of Pathology and Laboratory Medicine, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Ovarian Cancer Research Center, Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
47
|
Aerts JG, Belderbos R, Baas P, Scherpereel A, Bezemer K, Enninga I, Meijer R, Willemsen M, Berardi R, Fennell D, Kerstens R, Cornelissen R, van Meerbeeck JP. Dendritic cells loaded with allogeneic tumour cell lysate plus best supportive care versus best supportive care alone in patients with pleural mesothelioma as maintenance therapy after chemotherapy (DENIM): a multicentre, open-label, randomised, phase 2/3 study. Lancet Oncol 2024; 25:865-878. [PMID: 38848742 DOI: 10.1016/s1470-2045(24)00191-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND Dendritic cell immunotherapy has proven to be safe and induces an immune response in humans. We aimed to establish the efficacy of dendritic cells loaded with allogeneic tumour cell lysate (MesoPher, Amphera BV, 's-Hertogenbosch, Netherlands) as maintenance therapy in patients with pleural mesothelioma. METHODS In this open-label, randomised, phase 2/3 study, patients with histologically confirmed unresectable pleural mesothelioma, aged 18 years or older, with an Eastern Cooperative Oncology Group performance status score of 0-1, and non-progressing disease after four to six cycles of standard chemotherapy (with pemetrexed 500 mg/m2 plus platinum [cisplatin 75 mg/m2 or carboplatin area under the curve of 5]) were recruited from four centres in Belgium, France, and The Netherlands. Participants were randomly assigned (1:1), using block randomisation (block size of 4), stratified by centre and histology (epithelioid vs other), to MesoPher treatment plus best supportive care or best supportive care alone. Patients received up to a maximum of five MesoPher infusions, with treatment administered on days 1, 15, and 29, and weeks 18 and 30. At each timepoint, participants received an injection of 25 × 106 dendritic cells (two-thirds of the dendritic cells were administered intravenously and a third were injected intradermally). Best supportive care was per local institutional standards. The primary endpoint was overall survival, assessed in all participants randomly assigned to treatment (full analysis set) and safety assessed in all randomly assigned participants, and who underwent leukapheresis if they were in the MesoPher group. This study is registered with ClinicalTrials.gov, NCT03610360, and is closed for accrual. FINDINGS Between June 21, 2018, and June 10, 2021, 176 patients were screened and randomly assigned to the MesoPher group (n=88) or best supportive care alone group (n=88). One participant in the MesoPher group did not undergo leukapheresis. Mean age was 68 years (SD 8), 149 (85%) of 176 were male, 27 (15%) were female, 173 (98%) were White, two were Asian (1%), and one (1%) was other race. As of data cutoff (June 24, 2023), after a median follow up of 15·1 months (IQR 9·5-22·4), median overall survival was 16·8 months (95% CI 12·4-20·3; 61 [69%] of 88 died) in the MesoPher group and 18·3 months (14·3-21·9; 59 [67%] of 88 died) in the best supportive care group (hazard ratio 1·10 [95% CI 0·77-1·57]; log-rank p=0·62). The most common grade 3-4 treatment-emergent adverse events were chest pain (three [3%] of 87 in the MesoPher group vs two [2%] of 88 in the best supportive care group), dyspnoea (none vs two [2%]), anaemia (two [2%] vs none), nausea (none vs two [2%]), and pneumonia (none vs two [2%]). No deaths due to treatment-emergent adverse events were recorded. Treatment-related adverse events consisted of infusion-related reactions (fever, chills, and fatigue), which occurred in 64 (74%) of 87 patients in the MesoPher group, and injection-site reactions (itch, erythema, and induration), which occurred in 73 (84%) patients, and all were grade 1-2 in severity. No deaths were determined to be treatment related. INTERPRETATION MesoPher did not show improvement in overall survival in patients with pleural mesothelioma. Immune checkpoint therapy is now standard of care in pleural mesothelioma. Further randomised studies are needed of combinations of MesoPher and immune checkpoint therapy, which might increase efficacy without adding major toxicities. FUNDING Amphera BV and EU HORIZON.
Collapse
Affiliation(s)
- Joachim G Aerts
- Department of Pulmonary Medicine, Erasmus University Medical Centre, Rotterdam, Netherlands; Erasmus Cancer Institute, Erasmus University Medical Centre, Rotterdam, Netherlands.
| | - Robert Belderbos
- Department of Pulmonary Medicine, Erasmus University Medical Centre, Rotterdam, Netherlands; Erasmus Cancer Institute, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Paul Baas
- Netherlands Cancer Institute, Amsterdam, Netherlands
| | | | - Koen Bezemer
- Department of Pulmonary Medicine, Erasmus University Medical Centre, Rotterdam, Netherlands; Amphera BV, s'-Hertogenbosch, Netherlands
| | | | - Rob Meijer
- Amphera BV, s'-Hertogenbosch, Netherlands
| | - Marcella Willemsen
- Department of Pulmonary Medicine, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Rossana Berardi
- Clinical Oncology, Università Politecnica delle Marche, Ospedali Riuniti di Ancona, Ancona, Italy
| | - Dean Fennell
- Cancer Research UK Centre, University of Leicester, Leicester, UK
| | - Rene Kerstens
- Orion Statistical Consulting BV, Hilvarenbeek, Netherlands
| | - Robin Cornelissen
- Department of Pulmonary Medicine, Erasmus University Medical Centre, Rotterdam, Netherlands; Erasmus Cancer Institute, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Jan P van Meerbeeck
- Department of Thoracic Oncology, University Hospital Antwerp, Antwerp, Belgium
| |
Collapse
|
48
|
Sugita Y, Muraoka D, Demachi-Okamura A, Komuro H, Masago K, Sasaki E, Fukushima Y, Matsui T, Shinohara S, Takahashi Y, Nishida R, Takashima C, Yamaguchi T, Horio Y, Hashimoto K, Tanaka I, Hamana H, Kishi H, Miura D, Tanaka Y, Onoue K, Onoguchi K, Yamashita Y, Stratford R, Clancy T, Yamaguchi R, Kuroda H, Ishibashi H, Okubo K, Matsushita H. Candidate tumor-specific CD8 + T cell subsets identified in the malignant pleural effusion of advanced lung cancer patients by single-cell analysis. Oncoimmunology 2024; 13:2371556. [PMID: 38952674 PMCID: PMC11216099 DOI: 10.1080/2162402x.2024.2371556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/19/2024] [Indexed: 07/03/2024] Open
Abstract
Isolation of tumor-specific T cells and their antigen receptors (TCRs) from malignant pleural effusions (MPE) may facilitate the development of TCR-transduced adoptive cellular immunotherapy products for advanced lung cancer patients. However, the characteristics and markers of tumor-specific T-cells in MPE are largely undefined. To this end, to establish the phenotypes and antigen specificities of CD8+ T cells, we performed single-cell RNA and TCR sequencing of samples from three advanced lung cancer patients. Dimensionality reduction on a total of 4,983 CD8+ T cells revealed 10 clusters including naïve, memory, and exhausted phenotypes. We focused particularly on exhausted T cell clusters and tested their TCR reactivity against neoantigens predicted from autologous cancer cell lines. Four different TCRs specific for the same neoantigen and one orphan TCR specific for the autologous cell line were identified from one of the patients. Differential gene expression analysis in tumor-specific T cells relative to the other T cells identified CXCL13, as a candidate gene expressed by tumor-specific T cells. In addition to expressing CXCL13, tumor-specific T cells were present in a higher proportion of T cells co-expressing PDCD1(PD-1)/TNFRSF9(4-1BB). Furthermore, flow cytometric analyses in advanced lung cancer patients with MPE documented that those with high PD-1/4-1BB expression have a better prognosis in the subset of 57 adenocarcinoma patients (p = .039). These data suggest that PD-1/4-1BB co-expression might identify tumor-specific CD8+ T cells in MPE, which are associated with patients' prognosis. (233 words).
Collapse
Affiliation(s)
- Yusuke Sugita
- Division of Translational Oncoimmunology, Aichi Cancer Center Research Institute, Nagoya, Japan
- Department of Thoracic Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Daisuke Muraoka
- Division of Translational Oncoimmunology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Ayako Demachi-Okamura
- Division of Translational Oncoimmunology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Hiroyasu Komuro
- Division of Translational Oncoimmunology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Katsuhiro Masago
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Eiichi Sasaki
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Yasunori Fukushima
- Division of Translational Oncoimmunology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Takuya Matsui
- Division of Translational Oncoimmunology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Shuichi Shinohara
- Division of Translational Oncoimmunology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Yusuke Takahashi
- Division of Translational Oncoimmunology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Reina Nishida
- Division of Translational Oncoimmunology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Chieko Takashima
- Division of Translational Oncoimmunology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Teppei Yamaguchi
- Department of Thoracic Oncology, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Yoshitsugu Horio
- Department of Thoracic Oncology, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Kana Hashimoto
- Department of Respiratory Internal Medicine, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Ichidai Tanaka
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Hamana
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Hiroyuki Kishi
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Daiki Miura
- AI Drug Development Division, NEC Corporation, Tokyo, Japan
| | - Yuki Tanaka
- AI Drug Development Division, NEC Corporation, Tokyo, Japan
| | - Kousuke Onoue
- AI Drug Development Division, NEC Corporation, Tokyo, Japan
| | | | | | | | - Trevor Clancy
- NEC OncoImmunity AS, Oslo Cancer Cluster, Oslo, Norway
| | - Rui Yamaguchi
- Division of Cancer System Biology, Aichi Cancer Center Research Institute, Nagoya, Japan
- Division of Cancer Informatics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroaki Kuroda
- Department of Thoracic Surgery, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Hironori Ishibashi
- Department of Thoracic Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kenichi Okubo
- Department of Thoracic Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hirokazu Matsushita
- Division of Translational Oncoimmunology, Aichi Cancer Center Research Institute, Nagoya, Japan
- Division of Cancer Immunogenomics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
49
|
Monje M, Mahdi J, Majzner R, Yeom K, Schultz LM, Richards RM, Barsan V, Song KW, Kamens J, Baggott C, Kunicki M, Lim AS, Reschke A, Mavroukakis S, Egeler E, Moon J, Patel S, Chinnasamy H, Erickson C, Jacobs A, Duh AK, Rietberg SP, Tunuguntla R, Klysz DD, Fowler C, Green S, Beebe B, Carr C, Fujimoto M, Brown AK, Petersen ALG, McIntyre C, Siddiqui A, Lepori-Bui N, Villar K, Pham K, Bove R, Musa E, Reynolds W, Kuo A, Prabhu S, Rasmussen L, Cornell TT, Partap S, Fisher PG, Campen CJ, Grant G, Prolo L, Ye X, Sahaf B, Davis KL, Feldman SA, Ramakrishna S, Mackall C. Sequential intravenous and intracerebroventricular GD2-CAR T-cell therapy for H3K27M-mutated diffuse midline gliomas. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.25.24309146. [PMID: 38978673 PMCID: PMC11230330 DOI: 10.1101/2024.06.25.24309146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
H3K27M-mutant diffuse midline gliomas (DMGs) express high levels of the GD2 disialoganglioside and chimeric antigen receptor modified T-cells targeting GD2 (GD2-CART) eradicate DMGs in preclinical models. Arm A of the Phase I trial NCT04196413 administered one IV dose of autologous GD2-CART to patients with H3K27M-mutant pontine (DIPG) or spinal (sDMG) diffuse midline glioma at two dose levels (DL1=1e6/kg; DL2=3e6/kg) following lymphodepleting (LD) chemotherapy. Patients with clinical or imaging benefit were eligible for subsequent intracerebroventricular (ICV) GD2-CART infusions (10-30e6 GD2-CART). Primary objectives were manufacturing feasibility, tolerability, and identification of a maximally tolerated dose of IV GD2-CART. Secondary objectives included preliminary assessments of benefit. Thirteen patients enrolled and 11 received IV GD2-CART on study [n=3 DL1(3 DIPG); n=8 DL2(6 DIPG/2 sDMG). GD2-CART manufacturing was successful for all patients. No dose-limiting toxicities (DLTs) occurred on DL1, but three patients experienced DLT on DL2 due to grade 4 cytokine release syndrome (CRS). Nine patients received ICV infusions, which were not associated with DLTs. All patients exhibited tumor inflammation-associated neurotoxicity (TIAN). Four patients demonstrated major volumetric tumor reductions (52%, 54%, 91% and 100%). One patient exhibited a complete response ongoing for >30 months since enrollment. Eight patients demonstrated neurological benefit based upon a protocol-directed Clinical Improvement Score. Sequential IV followed by ICV GD2-CART induced tumor regressions and neurological improvements in patients with DIPG and sDMG. DL1 was established as the maximally tolerated IV GD2-CART dose. Neurotoxicity was safely managed with intensive monitoring and close adherence to a management algorithm.
Collapse
|
50
|
Schlegel LS, Werbrouck C, Boettcher M, Schlegel P. Universal CAR 2.0 to overcome current limitations in CAR therapy. Front Immunol 2024; 15:1383894. [PMID: 38962014 PMCID: PMC11219820 DOI: 10.3389/fimmu.2024.1383894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/03/2024] [Indexed: 07/05/2024] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has effectively complemented the treatment of advanced relapsed and refractory hematological cancers. The remarkable achievements of CD19- and BCMA-CAR T therapies have raised high expectations within the fields of hematology and oncology. These groundbreaking successes are propelling a collective aspiration to extend the reach of CAR therapies beyond B-lineage malignancies. Advanced CAR technologies have created a momentum to surmount the limitations of conventional CAR concepts. Most importantly, innovations that enable combinatorial targeting to address target antigen heterogeneity, using versatile adapter CAR concepts in conjunction with recent transformative next-generation CAR design, offer the promise to overcome both the bottleneck associated with CAR manufacturing and patient-individualized treatment regimens. In this comprehensive review, we delineate the fundamental prerequisites, navigate through pivotal challenges, and elucidate strategic approaches, all aimed at paving the way for the future establishment of multitargeted immunotherapies using universal CAR technologies.
Collapse
Affiliation(s)
- Lara Sophie Schlegel
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Coralie Werbrouck
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Michael Boettcher
- Department of Pediatric Surgery, University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Patrick Schlegel
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Department of Pediatric Hematology and Oncology, Westmead Children’s Hospital, Sydney, NSW, Australia
| |
Collapse
|