1
|
Ou C, Song HP, Peng J, Xu J, Zeng MY, Xie W, Peng QH. Lycium barbarum L. and Salvia miltiorrhiza Bunge extract ameliorates retinitis pigmentosa in rd10 mice by affecting endoplasmic reticulum stress. JOURNAL OF ETHNOPHARMACOLOGY 2024; 337:118971. [PMID: 39427734 DOI: 10.1016/j.jep.2024.118971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/01/2024] [Accepted: 10/18/2024] [Indexed: 10/22/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lycium barbarum L. and Salvia miltiorrhiza Bunge (Gouqi and Danshen, LS) have led to their inclusion in the pharmacopoeia and healthcare systems of numerous countries globally. Traditional herbs known as LS are used in China to treat retinitis pigmentosa (RP). However, the mechanism is not clear. AIM OF THE STUDY This study is to investigate the mechanism by which LS improves RP using rd10 mice as a model. MATERIALS AND METHODS LS extract was used to treat the rd10 mice for four weeks. Fundus photographs, optical coherence tomography, electroretinography, histopathological examination, TUNEL apoptosis assay, digital PCR analysis, western blotting, and immunofluorescence double staining were performed. RESULTS The outer nuclear layer (ONL) thickness of the retina was significantly increased by the LS extract, improving atrophy, and both the ONL and the retinal pigment epithelium (RPE) layer were visible. Following treatment with LS extract, there was a notable increase in the magnitudes of ERG a- and b-waves in the retina, along with a significant reduction in the quantity of TUNEL-positive cells. Additionally, LS extract significantly reduced the levels of ER stress-related factors in rd10 mice. The results of immunofluorescence double staining further confirm that LS extract inhibits the GRP78/PERK/ATF4/CHOP pathway. CONCLUSION In this study, the protective effects of LS extract on the retina were uncovered, suggesting that its mechanism could involve decreasing retinal cell apoptosis through the inhibition of the ER stress pathway.
Collapse
Affiliation(s)
- Chen Ou
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, China; Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Hou-Pan Song
- Hunan Provincial Key Laboratory of TCM Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Jun Peng
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, China
| | - Jian Xu
- Department of Ophthalmology, Dongfang Hospital Affiliated to Shanghai Tongji University, Shanghai 200120, China
| | - Mei-Yan Zeng
- Hunan Provincial Key Laboratory of TCM Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Wei Xie
- Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China; Hunan Provincial Key Laboratory of TCM Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| | - Qing-Hua Peng
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, China; Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China; Hunan Provincial Key Laboratory of TCM Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| |
Collapse
|
2
|
Yalcın B, Onder GO, Goktepe O, Suna PA, Mat OC, Koseoglu E, Cetindag E, Baran M, Bitgen N, Öz Gergı N Ö, Yay A. Enhanced kidney damage induced by increasing nonylphenol doses: impact on autophagy-related proteins and proinflammatory cytokines in rats. Toxicol Mech Methods 2024; 34:867-876. [PMID: 38769906 DOI: 10.1080/15376516.2024.2358348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/05/2024] [Accepted: 05/05/2024] [Indexed: 05/22/2024]
Abstract
Nonylphenol (NP) is an organic pollutant and endocrine disruptor chemical that has harmful effects on the environment and living organisms. This study looked at whether kidney tissues subjected to increasing doses of nonylphenol generated alterations in histopathologic, pro-inflammatory, and autophagic markers. Fifty rats were divided into five groups of ten each: group I: healthy group, II: control (corn oil), group III: 25 μl/kg NP, group IV: 50 μl/kg NP, group V: 75 μl/kg NP. The kidney tissue samples were obtained for histopathological, immunohistochemical, and biochemical analyses. The histological deteriorations observed in all NP groups included tubular epithelial cell degeneration, inflammation areas, and hemorrhage. The immunohistochemical investigations showed that NP significantly elevated the autophagy markers (Beclin-1, LC3A/B, p62), pro-inflammatory cytokines (TNF-α, IL-6), HIF-1α, and eNOS in group III, IV and V compared with group I and II. The biochemical analysis also revealed that pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) increased in correlation with the NP doses, but only IL-1β reached statistical significance in NP treated rats kidney tissue. The biochemical findings have been confirmed by the histological studies. The damage to renal tissue caused by NP exposure may worsen it by increasing inflammatory and autophagic markers.
Collapse
Affiliation(s)
- Betul Yalcın
- Department of Histology and Embryology, Adıyaman University, Adıyaman, Turkey
| | - Gozde Ozge Onder
- Department of Histology and Embryology, Erciyes University, Kayseri, Turkey
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
| | - Ozge Goktepe
- Department of Histology and Embryology, Erciyes University, Kayseri, Turkey
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
| | - Pınar Alisan Suna
- Department of Histology and Embryology, Erciyes University, Kayseri, Turkey
| | - Ozge Cengiz Mat
- Department of Histology and Embryology, Erciyes University, Kayseri, Turkey
| | - Eda Koseoglu
- Department of Histology and Embryology, Erciyes University, Kayseri, Turkey
| | - Emre Cetindag
- Department of Histology and Embryology, Erciyes University, Kayseri, Turkey
| | - Munevver Baran
- Department of Pharmacy Basic Science, Erciyes University, Kayseri, Turkey
| | - Nazmiye Bitgen
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
- Department of Medical Biology, Erciyes University, Kayseri, Turkey
| | - Özlem Öz Gergı N
- Department of Surgical Medicine Science, Anesthesiology and Reanimation, Erciyes University, Kayseri, Turkey
| | - Arzu Yay
- Department of Histology and Embryology, Erciyes University, Kayseri, Turkey
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
| |
Collapse
|
3
|
Gómez-Sierra T, Ortega-Lozano AJ, Rojas-Morales P, Medina-Reyes EI, Barrera-Oviedo D, Pedraza-Chaverri J. Isoliquiritigenin pretreatment regulates ER stress and attenuates cisplatin-induced nephrotoxicity in male Wistar rats. J Biochem Mol Toxicol 2023; 37:e23492. [PMID: 37561086 DOI: 10.1002/jbt.23492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 07/06/2023] [Accepted: 07/31/2023] [Indexed: 08/11/2023]
Abstract
Cisplatin (CP) is a chemotherapeutic drug used to treat solid tumors. However, studies have revealed its nephrotoxic effect. Oxidative stress, endoplasmic reticulum (ER) stress, and mitochondrial dysfunction are involved in CP-induced renal damage. Thus, preconditioning (hormetic effect) of ER stress is a strategy to prevent CP-induced renal damage. On the other hand, isoliquiritigenin (IsoLQ) is recognized as a flavonoid with antioxidant properties and an inducer of ER stress. Therefore, we evaluated the ER stress-inducing capacity of IsoLQ and its possible protective effect against CP-induced nephrotoxicity in adult male Wistar rats. The findings reflected that IsoLQ pretreatment might decrease renal damage by reducing plasma creatinine and blood urea nitrogen levels in animals with CP-induced nephrotoxicity. These may be associated with IsoLQ activating ER stress and unfolded protein response (UPR). We found increased messenger RNA levels of the ER stress marker glucose-related protein 78 kDa (GRP78). In addition, we also found that pretreatment with IsoLQ reduced the levels of CCAAT/enhancer-binding protein-homologous protein (CHOP) and X-box-binding protein 1 (XBP1) in the renal cortex, reflecting that IsoLQ can regulate the UPR and activation of the apoptotic pathway. Moreover, this preconditioning with IsoLQ of ER stress had oxidative stress-regulatory effects, as it restored the activity of glutathione peroxidase and glutathione reductase enzymes. Finally, IsoLQ modifies the protein expression of mitofusin 2 (Mfn-2) and voltage-dependent anion channel (VDAC). In conclusion, these data suggest that IsoLQ pretreatment has a nephroprotective effect; it could functionally regulate the ER and mitochondria and reduce CP-induced renal damage by attenuating hormesis-mediated ER stress.
Collapse
Affiliation(s)
- Tania Gómez-Sierra
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico, Mexico
| | - Ariadna J Ortega-Lozano
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico, Mexico
| | - Pedro Rojas-Morales
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico, Mexico
| | - Estefany I Medina-Reyes
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico, Mexico
| | - Diana Barrera-Oviedo
- Department of Pharmacology, National Autonomous University of Mexico (UNAM), Mexico, Mexico
| | - José Pedraza-Chaverri
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico, Mexico
| |
Collapse
|
4
|
Karakuyu NF, Ertunc O, Bedir M, Dogan HK, Taner R, Sevuk MA, Imeci OB, Ergonul E. Protective role of nebivolol via AKT1/Hif-1α/eNOS signaling pathway: nephrotoxicity caused by methotrexate in a rat model. Can J Physiol Pharmacol 2023; 101:393-399. [PMID: 36947849 DOI: 10.1139/cjpp-2022-0433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Methotrexate (MTX) is an antineoplastic and anti-inflammatory agent, which is used in severe diseases. Its use should be limited due to side effects such as nephrotoxicity, myelotoxicity, and hepatotoxicity. Nebivolol (NBV), which is a beta-blocker used in the treatment of hypertension, also contributes to vasodilation in tissues by activating the endothelial nitric oxide synthase (eNOS) enzyme. The purpose of this study is to research the effect of NBV on MTX-induced nephrotoxicity through the AKT1/hypoxia-inducible factor 1-alpha (Hif-1α)/eNOS signaling pathway. The rats were randomly divided into three groups of eight each. The groups were control, MTX, and MTX + NBV. A single dose of 20 mg/kg MTX was given intraperitoneally to the rats on the first day of the study and 10 mg/kg NBV was given orally to the treatment group for 7 days. At the end of the study, rats' blood and kidney tissues were taken for histopathological, immunohistochemical, and biochemical examinations. MTX administration significantly decreased the expression levels of AKT1, eNOS, and Hif-1α compared with the control group (p < 0.001 for all), and NBV treatment increased these values compared with the MTX group (p < 0.001 for all). In conclusion, NBV treatment ameliorated the MTX-induced nephrotoxicity via AKT1/Hif-1α/eNOS signaling pathway.
Collapse
Affiliation(s)
- N F Karakuyu
- Department of Pharmacology, Faculty of Pharmacy, Suleyman Demirel University, Isparta, Turkey
| | - O Ertunc
- Department of Pathology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - M Bedir
- Department of Medical Biochemistry, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - H K Dogan
- Department of Bioengineering, School of Engineering, Suleyman Demirel University, Isparta, Turkey
| | - R Taner
- Department of Bioengineering, School of Engineering, Suleyman Demirel University, Isparta, Turkey
| | - M A Sevuk
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - O B Imeci
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - E Ergonul
- Department of Medical Education, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
5
|
Kamenshchikov NO, Duong N, Berra L. Nitric Oxide in Cardiac Surgery: A Review Article. Biomedicines 2023; 11:1085. [PMID: 37189703 PMCID: PMC10135597 DOI: 10.3390/biomedicines11041085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/26/2023] [Accepted: 03/29/2023] [Indexed: 05/17/2023] Open
Abstract
Perioperative organ injury remains a medical, social and economic problem in cardiac surgery. Patients with postoperative organ dysfunction have increases in morbidity, length of stay, long-term mortality, treatment costs and rehabilitation time. Currently, there are no pharmaceutical technologies or non-pharmacological interventions that can mitigate the continuum of multiple organ dysfunction and improve the outcomes of cardiac surgery. It is essential to identify agents that trigger or mediate an organ-protective phenotype during cardiac surgery. The authors highlight nitric oxide (NO) ability to act as an agent for perioperative protection of organs and tissues, especially in the heart-kidney axis. NO has been delivered in clinical practice at an acceptable cost, and the side effects of its use are known, predictable, reversible and relatively rare. This review presents basic data, physiological research and literature on the clinical application of NO in cardiac surgery. Results support the use of NO as a safe and promising approach in perioperative patient management. Further clinical research is required to define the role of NO as an adjunct therapy that can improve outcomes in cardiac surgery. Clinicians also have to identify cohorts of responders for perioperative NO therapy and the optimal modes for this technology.
Collapse
Affiliation(s)
- Nikolay O. Kamenshchikov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Nicolette Duong
- Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Anaesthesia, Harvard Medical School, Boston, MA 02115, USA
- Respiratory Care Service, Patient Care Services, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Lorenzo Berra
- Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Anaesthesia, Harvard Medical School, Boston, MA 02115, USA
- Respiratory Care Service, Patient Care Services, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
6
|
Chaabani R, Bejaoui M, Ben Jeddou I, Zaouali MA, Haouas Z, Belgacem S, Peralta C, Ben Abdennebi H. Effect of the Non-steroidal Anti-inflammatory Drug Diclofenac on Ischemia-Reperfusion Injury in Rat Liver: A Nitric Oxide-Dependent Mechanism. Inflammation 2023:10.1007/s10753-023-01802-9. [PMID: 36933163 DOI: 10.1007/s10753-023-01802-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/15/2023] [Accepted: 03/02/2023] [Indexed: 03/19/2023]
Abstract
Ischemia/reperfusion injury (IRI) is an inevitable complication of liver surgery and transplantation. The purpose of this study was to examine the beneficial effects of diclofenac on hepatic IRI and the mechanism behind it. Wistar rats' livers were subjected to warm ischemia for 60 min followed by 24 h of reperfusion. Diclofenac was administered intravenously 15 min before ischemia at 10, 20, and 40 mg/kg body weight. To determine the mechanism of diclofenac protection, the NOS inhibitor L-Nitro-arginine methyl ester (L-NAME) was administered intravenously 10 min after diclofenac injection (40 mg/kg). Liver injury was evaluated by aminotransferases (ALT and AST) activities and histopathological analysis. Oxidative stress parameters (SOD, GPX, MPO, GSH, MDA, and PSH) were also determined. Then, eNOS gene transcription and p-eNOS and iNOS protein expressions were evaluated. The transcription factors PPAR-γ and NF-κB in addition to the regulatory protein IκBα were also investigated. Finally, the gene expression levels of inflammatory (COX-2, IL-6, IL-1β, IL-18, TNF-α, HMGB-1, and TLR-4) and apoptosis (Bcl-2 and Bax) markers were measured. Diclofenac, at the optimal dose of 40 mg/kg, decreased liver injury and maintained histological integrity. It also reduced oxidative stress, inflammation, and apoptosis. Its mechanism of action essentially depended on eNOS activation rather than COX-2 inhibition, since pre-treatment with L-NAME abolished all the protective effects of diclofenac. To our knowledge, this is the first study demonstrating that diclofenac protects rat liver against warm IRI through the induction of NO-dependent pathway. Diclofenac reduced oxidative balance, attenuated the activation of the subsequent pro-inflammatory response and decreased cellular and tissue damage. Therefore, diclofenac could be a promising molecule for the prevention of liver IRI.
Collapse
Affiliation(s)
- Roua Chaabani
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy, University of Monastir, Avicenne Street, 5019, Monastir, Tunisia
| | - Mohamed Bejaoui
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy, University of Monastir, Avicenne Street, 5019, Monastir, Tunisia.
| | - Ikram Ben Jeddou
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy, University of Monastir, Avicenne Street, 5019, Monastir, Tunisia
| | - Mohamed Amine Zaouali
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy, University of Monastir, Avicenne Street, 5019, Monastir, Tunisia
| | - Zohra Haouas
- Laboratory of Histology, Embryology and Cytogenetics (LR18ES40), Faculty of Medicine, University of Monastir, Avicenne Street, 5019, Monastir, Tunisia
| | - Sameh Belgacem
- Laboratory of Medical and Molecular Parasitology-Mycology LP3M (LR12ES08), Faculty of Pharmacy, University of Monastir, Avicenne Street, 5019, Monastir, Tunisia
| | - Carmen Peralta
- Instituto de Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Campus Casanova, Casanova 143, 08036, Barcelona, Spain
| | - Hassen Ben Abdennebi
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy, University of Monastir, Avicenne Street, 5019, Monastir, Tunisia
| |
Collapse
|
7
|
A Potential Route to Reduce Ischemia/Reperfusion Injury in Organ Preservation. Cells 2022; 11:cells11172763. [PMID: 36078175 PMCID: PMC9455584 DOI: 10.3390/cells11172763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
The pathophysiological process of ischemia and reperfusion injury (IRI), an inevitable step in organ transplantation, causes important biochemical and structural changes that can result in serious organ damage. IRI is relevant for early graft dysfunction and graft survival. Today, in a global context of organ shortages, most organs come from extended criteria donors (ECDs), which are more sensitive to IRI. The main objective of organ preservation solutions is to protect against IRI through the application of specific, nonphysiological components, under conditions of no blood or oxygen, and then under conditions of metabolic reduction by hypothermia. The composition of hypothermic solutions includes osmotic and oncotic buffering components, and they are intracellular (rich in potassium) or extracellular (rich in sodium). However, above all, they all contain the same type of components intended to protect against IRI, such as glutathione, adenosine and allopurinol. These components have not changed for more than 30 years, even though our knowledge of IRI, and much of the relevant literature, questions their stability or efficacy. In addition, several pharmacological molecules have been the subjects of preclinical studies to optimize this protection. Among them, trimetazidine, tacrolimus and carvedilol have shown the most benefits. In fact, these drugs are already in clinical use, and it is a question of repositioning them for this novel use, without additional risk. This new strategy of including them would allow us to shift from cold storage solutions to cold preservation solutions including multitarget pharmacological components, offering protection against IRI and thus protecting today's more vulnerable organs.
Collapse
|
8
|
Zhang S, Xia W, Duan H, Li X, Qian S, Shen H. Ischemic Preconditioning Alleviates Mouse Renal Ischemia/Reperfusion Injury by Enhancing Autophagy Activity of Proximal Tubular Cells. KIDNEY DISEASES (BASEL, SWITZERLAND) 2022; 8:217-230. [PMID: 35702707 PMCID: PMC9149508 DOI: 10.1159/000521850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/07/2022] [Indexed: 05/27/2023]
Abstract
OBJECTIVES Ischemia/reperfusion injury (IRI) is one of the most vital pathogenesis leading to kidney injury but lacks effective prevention and treatment strategies. This study was conducted to investigate the influences of ischemic preconditioning (IPC) on the pathological process of mouse renal IRI (RIRI) and to figure out the role of autophagy of proximal tubular cells (PTCs) in this process. METHODS C57BL/6J mice were randomized to three groups, i.e., sham-operated group, ischemia/reperfusion (I/R) group, and IPC + I/R group. Meanwhile, 3-methyladenine, an autophagy inhibitor, was administered when further verification was needed. Histological and functional severity of kidney injury, the autophagy and apoptosis activity of PTCs, as well as the characterization of the immune cell infiltration landscape in kidney tissues were investigated. Furthermore, HK-2 cells and primary cultured PTC were cultured to set up the hypoxic preconditioning and hypoxia/reoxygenation model for in vitro simulation and verification, and a microarray dataset derived from the Gene Expression Omnibus database was analyzed to explore the transcriptome profiles after IPC. RESULTS IPC could significantly attenuate I/R-induced kidney injury functionally and histologically both in the acute and recovery phase of RIRI by enhancing the autophagy activity of PTCs. Cell autophagy could regulate the release of monocyte chemoattractant protein-1, and sequentially decrease macrophages infiltration in kidney tissues in the acute phase of RIRI, thus mediating the reno-protective effect. CONCLUSIONS IPC could attenuate mouse RIRI-induced kidney injury. IPC-mediated activation of autophagy of PTCs plays a vital role in affording protection in RIRI-induced kidney injury.
Collapse
Affiliation(s)
- Shun Zhang
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Weimin Xia
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Huangqi Duan
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xinyan Li
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Subo Qian
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Haibo Shen
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
9
|
Li QY, Liu F, Tang X, Fu H, Mao J. Renoprotective Role of Hypoxia-Inducible Factors and the Mechanism. KIDNEY DISEASES (BASEL, SWITZERLAND) 2022; 8:44-56. [PMID: 35224006 PMCID: PMC8820168 DOI: 10.1159/000520141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/09/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND The kidney requires abundant blood supply, and oxygen is transmitted by diffusion through blood vessels. Most physiological metabolism of the kidney depends on oxygen, so it is very sensitive to oxygen. An increasing pool of evidence suggests that hypoxia is involved in almost all acute and chronic kidney diseases (CKDs). Vascular damage, tubular injury, and fibrosis are the main pathologies associated during hypoxia. Hypoxia-inducible factors (HIFs) are the main mediators during hypoxia, but their functions remain controversial. This article reviewed recent studies and described its mechanisms on renoprotection. SUMMARY HIF is degraded rapidly during under normal oxygen. But under hypoxia, HIFs accumulate and many target genes are regulated by HIFs. Homeostasis during injury is maintained through these genes. Pretreatment of HIF can protect the kidney from acute hypoxia and can improve repair, but HIF's role in CKD and in renal tumor is still controversial. Due to its mechanism in kidney disease, many drugs toward HIFs are widely researched, even some of which have been used in clinical or in clinical research. KEY MESSAGES In this review, we described the known physiological mechanisms, target genes, and renal protective roles of HIFs, and we discussed several drugs that are researched due to such renal protective roles.
Collapse
|
10
|
Nephroprotective Role of Chrysophanol in Hypoxia/Reoxygenation-Induced Renal Cell Damage via Apoptosis, ER Stress, and Ferroptosis. Biomedicines 2021; 9:biomedicines9091283. [PMID: 34572468 PMCID: PMC8467645 DOI: 10.3390/biomedicines9091283] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/11/2021] [Accepted: 09/18/2021] [Indexed: 12/16/2022] Open
Abstract
Acute kidney injury (AKI) is caused by hypoxia-reoxygenation (H/R), which is a kidney injury produced by a variety of causes, resulting in the remaining portion of the kidney function being unable to maintain the balance for performing the tasks of waste excretion metabolism, and electrolyte and acid-base balance. Many studies have reported the use of Chinese medicine to slow down the progression and alleviate the complications of chronic renal failure. Chrysophanol is a component of Rheum officinale Baill, a traditional Chinese medicine that has been clinically used to treat renal disease. We aimed to study the nephroprotective effect of chrysophanol on hypoxia/ reoxygenation (H/R)-induced cell damage. The results showed that chrysophanol prevented H/R-induced apoptosis via downregulation of cleaved Caspase-3, p-JNK, and Bax but upregulation of Bcl-2 expression. In contrast, chrysophanol attenuated H/R-induced endoplasmic reticulum (ER) stress via the downregulation of CHOP and p-IRE1α expression. Our data demonstrated that chrysophanol alleviated H/R-induced lipid ROS accumulation and ferroptosis. Therefore, we propose that chrysophanol may have a protective effect against AKI by regulating apoptosis, ER stress, and ferroptosis.
Collapse
|
11
|
Carcy R, Cougnon M, Poet M, Durandy M, Sicard A, Counillon L, Blondeau N, Hauet T, Tauc M, F Pisani D. Targeting oxidative stress, a crucial challenge in renal transplantation outcome. Free Radic Biol Med 2021; 169:258-270. [PMID: 33892115 DOI: 10.1016/j.freeradbiomed.2021.04.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/31/2021] [Accepted: 04/15/2021] [Indexed: 02/07/2023]
Abstract
Disorders characterized by ischemia/reperfusion (I/R) are the most common causes of debilitating diseases and death in stroke, cardiovascular ischemia, acute kidney injury or organ transplantation. In the latter example the I/R step defines both the amplitude of the damages to the graft and the functional recovery outcome. During transplantation the kidney is subjected to blood flow arrest followed by a sudden increase in oxygen supply at the time of reperfusion. This essential clinical protocol causes massive oxidative stress which is at the basis of cell death and tissue damage. The involvement of both reactive oxygen species (ROS) and nitric oxides (NO) has been shown to be a major cause of these cellular damages. In fact, in non-physiological situations, these species escape endogenous antioxidant control and dangerously accumulate in cells. In recent years, the objective has been to find clinical and pharmacological treatments to reduce or prevent the appearance of oxidative stress in ischemic pathologies. This is very relevant because, due to the increasing success of organ transplantation, clinicians are required to use limit organs, the preservation of which against oxidative stress is crucial for a better outcome. This review highlights the key actors in oxidative stress which could represent new pharmacological targets.
Collapse
Affiliation(s)
- Romain Carcy
- Université Côte d'Azur, CNRS, LP2M, Nice, France; CHU Nice, Hôpital Pasteur 2, Service de Réanimation Polyvalente et Service de Réanimation des Urgences Vitales, Nice, France; Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| | - Marc Cougnon
- Université Côte d'Azur, CNRS, LP2M, Nice, France; Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| | - Mallorie Poet
- Université Côte d'Azur, CNRS, LP2M, Nice, France; Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| | - Manon Durandy
- Université Côte d'Azur, CNRS, LP2M, Nice, France; Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| | - Antoine Sicard
- Université Côte d'Azur, CNRS, LP2M, Nice, France; Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France; CHU Nice, Hôpital Pasteur 2, Service de Néphrologie-Dialyse-Transplantation, Nice, France; Clinical Research Unit of Université Côte d'Azur (UMR2CA), France
| | - Laurent Counillon
- Université Côte d'Azur, CNRS, LP2M, Nice, France; Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| | | | - Thierry Hauet
- Université de Poitiers, INSERM, IRTOMIT, CHU de Poitiers, La Milétrie, Poitiers, France
| | - Michel Tauc
- Université Côte d'Azur, CNRS, LP2M, Nice, France; Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| | - Didier F Pisani
- Université Côte d'Azur, CNRS, LP2M, Nice, France; Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France.
| |
Collapse
|
12
|
Abolhasanpour N, Alihosseini S, Golipourkhalili S, Badalzadeh R, Mahmoudi J, Hosseini L. Insight into the effects of melatonin on endoplasmic reticulum, mitochondrial function, and their cross-talk in the stroke. Arch Med Res 2021; 52:673-682. [PMID: 33926763 DOI: 10.1016/j.arcmed.2021.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/13/2021] [Accepted: 04/07/2021] [Indexed: 12/28/2022]
Abstract
Ischemic stroke has remained a principal cause of mortality and neurological disabilities worldwide. Blood flow resumption, reperfusion, in the cerebral ischemia prompts a cascade in the brain characterized by various cellular mechanisms like mitochondrial dysfunction, oxidative stresses, endoplasmic reticulum (ER) stress, and excitotoxicity, finally resulting in programmed cell death. Any changes in the ER-mitochondria axis are probably responsible for both the onset and progression of central nervous system diseases. Melatonin, a neurohormone secreted by the pineal gland, has antioxidative, anti-inflammatory, and anti-apoptotic properties. Most studies have shown that it exerts neuroprotective effects against ischemic stroke. It was observed that melatonin therapy after the stroke not only leads to reduce mitochondrial dysfunction but also cause to alleviate ER stress and inflammation. This review discusses the impact of melatonin on mitochondrial, ER function, and on the crosstalk between two organelles as a therapeutic target for stroke. Given that the influences of melatonin on each organelle separately, its effects on mechanisms of crosstalk between ER and mitochondria are discussed.
Collapse
Affiliation(s)
- Nasrin Abolhasanpour
- Research Center for Evidence-Based Medicine, Tabriz University of Medical Sciences
| | - Samin Alihosseini
- Student research center, Tabriz university of medical sciences, Tabriz, Iran
| | - Sevda Golipourkhalili
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Badalzadeh
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Hosseini
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, IR Iran; Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
13
|
Antioxidant Therapy against Oxidative Damage of the Inner Ear: Protection and Preconditioning. Antioxidants (Basel) 2020; 9:antiox9111076. [PMID: 33147893 PMCID: PMC7693733 DOI: 10.3390/antiox9111076] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/22/2020] [Accepted: 10/30/2020] [Indexed: 12/15/2022] Open
Abstract
Oxidative stress is an important mechanism underlying cellular damage of the inner ear, resulting in hearing loss. In order to prevent hearing loss, several types of antioxidants have been investigated; several experiments have shown their ability to effectively prevent noise-induced hearing loss, age-related hearing loss, and ototoxicity in animal models. Exogenous antioxidants has been used as single therapeutic agents or in combination. Antioxidant therapy is generally administered before the production of reactive oxygen species. However, post-exposure treatment could also be effective. Preconditioning refers to the phenomenon of pre-inducing a preventative pathway by subtle stimuli that do not cause permanent damage in the inner ear. This renders the inner ear more resistant to actual stimuli that cause permanent hearing damage. The preconditioning mechanism is also related to the induction of antioxidant enzymes. In this review, we discuss the mechanisms underlying antioxidant-associated therapeutic effects and preconditioning in the inner ear.
Collapse
|
14
|
Begg K, Tavassoli M. Inside the hypoxic tumour: reprogramming of the DDR and radioresistance. Cell Death Discov 2020; 6:77. [PMID: 32864165 PMCID: PMC7434912 DOI: 10.1038/s41420-020-00311-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/27/2020] [Accepted: 04/09/2020] [Indexed: 12/19/2022] Open
Abstract
The hypoxic tumour is a chaotic landscape of struggle and adaption. Against the adversity of oxygen starvation, hypoxic cancer cells initiate a reprogramming of transcriptional activities, allowing for survival, metastasis and treatment failure. This makes hypoxia a crucial feature of aggressive tumours. Its importance, to cancer and other diseases, was recognised by the award of the 2019 Nobel Prize in Physiology or Medicine for research contributing to our understanding of the cellular response to oxygen deprivation. For cancers with limited treatment options, for example those that rely heavily on radiotherapy, the results of hypoxic adaption are particularly restrictive to treatment success. A fundamental aspect of this hypoxic reprogramming with direct relevance to radioresistance, is the alteration to the DNA damage response, a complex set of intermingling processes that guide the cell (for good or for bad) towards DNA repair or cell death. These alterations, compounded by the fact that oxygen is required to induce damage to DNA during radiotherapy, means that hypoxia represents a persistent obstacle in the treatment of many solid tumours. Considerable research has been done to reverse, correct or diminish hypoxia's power over successful treatment. Though many clinical trials have been performed or are ongoing, particularly in the context of imaging studies and biomarker discovery, this research has yet to inform clinical practice. Indeed, the only hypoxia intervention incorporated into standard of care is the use of the hypoxia-activated prodrug Nimorazole, for head and neck cancer patients in Denmark. Decades of research have allowed us to build a picture of the shift in the DNA repair capabilities of hypoxic cancer cells. A literature consensus tells us that key signal transducers of this response are upregulated, where repair proteins are downregulated. However, a complete understanding of how these alterations lead to radioresistance is yet to come.
Collapse
Affiliation(s)
- Katheryn Begg
- Head and Neck Oncology Group, Centre for Host Microbiome Interaction, King’s College London, Hodgkin Building, London, SE1 1UL UK
| | - Mahvash Tavassoli
- Head and Neck Oncology Group, Centre for Host Microbiome Interaction, King’s College London, Hodgkin Building, London, SE1 1UL UK
| |
Collapse
|
15
|
Packer M. Mechanisms Leading to Differential Hypoxia-Inducible Factor Signaling in the Diabetic Kidney: Modulation by SGLT2 Inhibitors and Hypoxia Mimetics. Am J Kidney Dis 2020; 77:280-286. [PMID: 32711072 DOI: 10.1053/j.ajkd.2020.04.016] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/26/2020] [Indexed: 12/13/2022]
Abstract
Sodium/glucose cotransporter 2 (SGLT2) inhibitors exert important renoprotective effects in the diabetic kidney, which cannot be readily explained by their actions to lower blood glucose, blood pressure, or glomerular filtration pressures. Their effects to promote erythrocytosis suggest that these drugs act on hypoxia-inducible factors (HIFs; specifically, HIF-1α and HIF-2α), which may underlie their ability to reduce the progression of nephropathy. Type 2 diabetes is characterized by renal hypoxia, oxidative and endoplasmic reticulum stress, and defective nutrient deprivation signaling, which (acting in concert) are poised to cause both activation of HIF-1α and suppression of HIF-2α. This shift in the balance of HIF-1α/HIF-2α activities promotes proinflammatory and profibrotic pathways in glomerular and renal tubular cells. SGLT2 inhibitors alleviate renal hypoxia and cellular stress and enhance nutrient deprivation signaling, which collectively may explain their actions to suppress HIF-1α and activate HIF-2α and thereby augment erythropoiesis, while muting organellar dysfunction, inflammation, and fibrosis. Cobalt chloride, a drug conventionally classified as a hypoxia mimetic, has a profile of molecular and cellular actions in the kidney that is similar to those of SGLT2 inhibitors. Therefore, many renoprotective benefits of SGLT2 inhibitors may be related to their effect to promote oxygen deprivation signaling in the diabetic kidney.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Baylor University Medical Center, Dallas, TX; Imperial College, London, United Kingdom.
| |
Collapse
|
16
|
Nasrallah H, Aissa I, Slim C, Boujbiha MA, Zaouali MA, Bejaoui M, Wilke V, Ben Jannet H, Mosbah H, Ben Abdennebi H. Effect of oleuropein on oxidative stress, inflammation and apoptosis induced by ischemia-reperfusion injury in rat kidney. Life Sci 2020; 255:117833. [PMID: 32450167 DOI: 10.1016/j.lfs.2020.117833] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/11/2020] [Accepted: 05/19/2020] [Indexed: 12/11/2022]
Abstract
AIMS This study aimed to evaluate the effect of oleuropein (OLE), the main phenolic compound present in olive leaves, on kidney ischemia-reperfusion injury (IRI) and to explore the underlying protective mechanism. MAIN METHODS Rat kidneys were subjected to 60 min of bilateral warm ischemia followed by 120 min of reperfusion. OLE was administered orally 48 h, 24 h and 30 min prior to ischemia at doses of 10, 50 and 100 mg/kg body weight. The creatinine, urea, uric acid concentrations and lactate dehydrogenase (LDH) activity in plasma were evaluated. Oxidative stress and inflammation parameters were also assessed. Renal expression of AMP-activated protein kinase (p-AMPK), endothelial nitric oxide synthase (eNOS), mitogen-activated protein kinases (MAPK), inflammatory proteins and apoptotic proteins were evaluated using Western blot. KEY FINDINGS Our results showed that OLE at 50 mg/kg reduced kidney IRI as revealed by a significant decrease of plasmatic creatinine, urea, uric acid concentrations and LDH activity. In parallel, OLE up-regulated antioxidant capacities. Moreover, OLE diminished the level of CRP and the expression of cyclooxygenase 2 (COX-2). Finally, OLE enhanced AMPK phosphorylation as well as eNOS expression whereas MAPK, and cleaved caspase-3 implicated in cellular apoptosis were attenuated in the ischemic kidneys. SIGNIFICANCE In conclusion, this study shows that OLE could be used as therapeutic agent to reduce IRI through its anti-oxidative, anti-inflammatory and anti-apoptotic properties.
Collapse
Affiliation(s)
- Hana Nasrallah
- Laboratoire de Génome Humain et Maladies Multifactorielles (LR12ES07), Faculté de Pharmacie de Monastir, Université de Monastir, Tunisia
| | - Imen Aissa
- Laboratoire de Chimie Hétérocyclique, Produits Naturels et Réactivité, équipe: Chimie Médicinale et Produits Naturels (LR11ES39), Faculté des Sciences de Monastir, Université de Monastir, Monastir, Tunisia
| | - Chérifa Slim
- Laboratoire de Génome Humain et Maladies Multifactorielles (LR12ES07), Faculté de Pharmacie de Monastir, Université de Monastir, Tunisia
| | - Mohamed Ali Boujbiha
- Laboratoire de Bioressources: Biologie Intégrative & Valorisation (LR14ES06), Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, Monastir, Tunisia
| | - Mohamed Amine Zaouali
- Laboratoire de Génome Humain et Maladies Multifactorielles (LR12ES07), Faculté de Pharmacie de Monastir, Université de Monastir, Tunisia; Département des Sciences du Vivant et Biotechnologie, Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, Monastir, Tunisia.
| | - Mohamed Bejaoui
- Laboratoire de Génome Humain et Maladies Multifactorielles (LR12ES07), Faculté de Pharmacie de Monastir, Université de Monastir, Tunisia
| | - Victoria Wilke
- Laboratoire de Génome Humain et Maladies Multifactorielles (LR12ES07), Faculté de Pharmacie de Monastir, Université de Monastir, Tunisia
| | - Hichem Ben Jannet
- Laboratoire de Chimie Hétérocyclique, Produits Naturels et Réactivité, équipe: Chimie Médicinale et Produits Naturels (LR11ES39), Faculté des Sciences de Monastir, Université de Monastir, Monastir, Tunisia
| | - Habib Mosbah
- Laboratoire de Bioressources: Biologie Intégrative & Valorisation (LR14ES06), Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, Monastir, Tunisia
| | - Hassen Ben Abdennebi
- Laboratoire de Génome Humain et Maladies Multifactorielles (LR12ES07), Faculté de Pharmacie de Monastir, Université de Monastir, Tunisia
| |
Collapse
|
17
|
Mazaheri B, Emami F, Moslemi F, Talebi A, Nematbakhsh M. Zinc Supplementation and Ischemia Pre-conditioning in Renal Ischemia/Reperfusion Injury. Malays J Med Sci 2019; 26:39-46. [PMID: 31496892 PMCID: PMC6719886 DOI: 10.21315/mjms2019.26.4.5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 06/02/2019] [Indexed: 12/16/2022] Open
Abstract
Backgrounds Renal ischemia/reperfusion (RIR) is a major cause of kidney dysfunction in clinic. The main objective of this study was to investigate the effect of pre-conditioning ischemia (IPC) and zinc (Zn) supplementation on renal RIR injury. Methods A total of 63 unilateral nephrectomised male and female Wistar rats were divided into five groups. Group 1 (ShOPR): Rats as sham-operated group were subjected to surgical procedure without RIR. Group 2 (Isch): Rats underwent RIR (left kidney ischemia for 30 min followed by 48 h reperfusion). Group 3 (Zn+Isch): Rats were treated as group 2 but they received Zn sulphate (30 mg/kg) 1 h before induction of RIR. Group 4 (IPC+Isch): Rats were treated as group 2 but they underwent 1 min of ischemia followed by 3 min reperfusion as IPC, which was repeated for three times before induction of RIR. Group 5 (Zn+IPC+Isch): Rats were subjected to receive both Zn sulphate and IPC before induction of RIR. Urine samples were collected in the last 6 h of reperfusion, and finally biochemical and histological measurements were performed. Results The serum level of creatinine (Cr), normalised kidney weight (KW) and kidney tissue damage score (KTDS) increased by RIR alone significantly (P < 0.05). These parameters were attenuated statistically by Zn supplementation (P < 0.05). However, IPC alone or co-treatment of Zn and IPC did not improve the biochemical and histological markers altered by RIR injury. Conclusion Zn supplementation had a protective role against RIR while such protective effect was not observed by IPC alone or by co-treatment of Zn and IPC.
Collapse
Affiliation(s)
- Bahar Mazaheri
- Water and Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Emami
- Water and Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Moslemi
- Water and Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ardeshir Talebi
- Water and Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Clinical Pathology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehdi Nematbakhsh
- Water and Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Physiology, Isfahan University of Medical Sciences, Isfahan, Iran.,Isfahan Institute of Basic and Applied Sciences Research, Isfahan, Iran
| |
Collapse
|
18
|
Kianian F, Karimian SM, Kadkhodaee M, Takzaree N, Seifi B, Adeli S, Harati E, Sadeghipour HR. Combination of ascorbic acid and calcitriol attenuates chronic asthma disease by reductions in oxidative stress and inflammation. Respir Physiol Neurobiol 2019; 270:103265. [PMID: 31404684 DOI: 10.1016/j.resp.2019.103265] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 07/24/2019] [Accepted: 08/02/2019] [Indexed: 11/29/2022]
Abstract
Airway inflammation and oxidative stress are the two major characteristics of asthma pathogenesis. Therefore, this study evaluated the protective effects of ascorbic acid in combination with calcitriol on the oxidative damages and inflammation in asthma model. All animals, except in the control group, were sensitized and challenged with ovalbumin. One day after the last challenge, samples of bronchoalveolar lavage fluid was collected for the assessment of total white blood cell counts and differential count of white blood cell and plasma was used for the measurement of pro-oxidant/antioxidant balance level. Lung tissue samples were also stored for examining peribronchial inflammatory cell infiltration, phosphorylated nuclear factor-kappa B expression and measurement of malondialdehyde level. Induction of asthma caused significant increases in total white blood cell counts, percentage of neutrophils and eosinophils and a decrease in the percentage of lymphocytes. Moreover, asthma resulted in significant increases of peribronchial inflammatory cell infiltration, phosphorylated nuclear factor-kappa B expression and malondialdehyde level. However, no significant changes were observed in pro-oxidant/antioxidant balance level with the induction of asthma. Co-administration of low doses of ascorbic acid and calcitriol returned all to the levels measured before sensitization and challenge. Combination of low doses of ascorbic acid with calcitriol improves mouse asthma model by a possible additive effects through the decrease of oxidative stress and inflammation.
Collapse
Affiliation(s)
- Farzaneh Kianian
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Morteza Karimian
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehri Kadkhodaee
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasrin Takzaree
- Department of Anatomy and Histology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Behjat Seifi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Soheila Adeli
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Harati
- Iranian Center of Neurological Research, Neuroscience Institute, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Sadeghipour
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Alsahafi E, Begg K, Amelio I, Raulf N, Lucarelli P, Sauter T, Tavassoli M. Clinical update on head and neck cancer: molecular biology and ongoing challenges. Cell Death Dis 2019; 10:540. [PMID: 31308358 PMCID: PMC6629629 DOI: 10.1038/s41419-019-1769-9] [Citation(s) in RCA: 318] [Impact Index Per Article: 63.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/23/2019] [Accepted: 05/28/2019] [Indexed: 12/15/2022]
Abstract
Head and neck squamous cell carcinomas (HNSCCs) are an aggressive, genetically complex and difficult to treat group of cancers. In lieu of truly effective targeted therapies, surgery and radiotherapy represent the primary treatment options for most patients. But these treatments are associated with significant morbidity and a reduction in quality of life. Resistance to both radiotherapy and the only available targeted therapy, and subsequent relapse are common. Research has therefore focussed on identifying biomarkers to stratify patients into clinically meaningful groups and to develop more effective targeted therapies. However, as we are now discovering, the poor response to therapy and aggressive nature of HNSCCs is not only affected by the complex alterations in intracellular signalling pathways but is also heavily influenced by the behaviour of the extracellular microenvironment. The HNSCC tumour landscape is an environment permissive of these tumours' aggressive nature, fostered by the actions of the immune system, the response to tumour hypoxia and the influence of the microbiome. Solving these challenges now rests on expanding our knowledge of these areas, in parallel with a greater understanding of the molecular biology of HNSCC subtypes. This update aims to build on our earlier 2014 review by bringing up to date our understanding of the molecular biology of HNSCCs and provide insights into areas of ongoing research and perspectives for the future.
Collapse
Affiliation(s)
- Elham Alsahafi
- Head and Neck Oncology Group, Centre for Host Microbiome Interaction, King's College London, Hodgkin Building, London, SE1 1UL, UK
| | - Katheryn Begg
- Head and Neck Oncology Group, Centre for Host Microbiome Interaction, King's College London, Hodgkin Building, London, SE1 1UL, UK
| | - Ivano Amelio
- Medical Research Council, Toxicology Unit, Leicester University, Leicester, LE1 9HN, UK
| | - Nina Raulf
- Head and Neck Oncology Group, Centre for Host Microbiome Interaction, King's College London, Hodgkin Building, London, SE1 1UL, UK
| | - Philippe Lucarelli
- Faculté des Sciences, de La Technologie et de La Communication, University of Luxembourg, 6, Avenue Du Swing, Belvaux, 4367, Luxembourg
| | - Thomas Sauter
- Faculté des Sciences, de La Technologie et de La Communication, University of Luxembourg, 6, Avenue Du Swing, Belvaux, 4367, Luxembourg
| | - Mahvash Tavassoli
- Head and Neck Oncology Group, Centre for Host Microbiome Interaction, King's College London, Hodgkin Building, London, SE1 1UL, UK.
| |
Collapse
|
20
|
Sedaghat Z, Kadkhodaee M, Seifi B, Salehi E. Inducible and endothelial nitric oxide synthase distribution and expression with hind limb per-conditioning of the rat kidney. Arch Med Sci 2019; 15:1081-1091. [PMID: 31360203 PMCID: PMC6657261 DOI: 10.5114/aoms.2019.85651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 03/05/2017] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION We recently reported that a series of brief hind limb ischemia and reperfusion (IR) at the beginning of renal ischemia (remote per-conditioning - RPEC) significantly attenuated the ischemia/reperfusion-induced acute kidney injury. In the present study, we investigated whether the nitric oxide synthase (NOS) pathway is involved in the RPEC protection of the rat ischemic kidneys. MATERIAL AND METHODS Male rats were subjected to right nephrectomy and randomized as: (1) sham, no additional intervention; (2) IR, 45 min of renal ischemia followed by 24 h reperfusion; (3) RPEC, four 5 min cycles of lower limb IR administered at the beginning of renal ischemia; (4) RPEC+L-NAME (a non-specific NOS inhibitor, 10 mg/kg, i.p.) (5) RPEC + 1400W (a specific iNOS inhibitor, 1 mg/kg, i.p.). After 24 h, blood, urine and tissue samples were collected. RESULTS The protective effect of RPEC on renal function, oxidative stress indices, pro-inflammatory marker expression and histopathological changes of kidneys subjected to 45 min ischemia were completely inhibited by pretreatment with L-NAME or 1400W. It was accompanied by increased iNOS and eNOS expression in the RPEC group compared with the IR group. CONCLUSIONS These findings suggest that the protective effects of RPEC on renal IR injury are closely dependent on the nitric oxide production after the reperfusion and both eNOS and iNOS are involved in this protection.
Collapse
Affiliation(s)
- Zahra Sedaghat
- Department of Physiology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehri Kadkhodaee
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Behjat Seifi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Eisa Salehi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Zhou Q, Gong X, Kuang G, Jiang R, Xie T, Tie H, Chen X, Li K, Wan J, Wang B. Ferulic Acid Protected from Kidney Ischemia Reperfusion Injury in Mice: Possible Mechanism Through Increasing Adenosine Generation via HIF-1α. Inflammation 2019; 41:2068-2078. [PMID: 30143933 DOI: 10.1007/s10753-018-0850-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ferulic acid (FA), derived from fruits and vegetables, is well-known as a potent antioxidant of scavenging free radicals. However, the role and underlying mechanism of FA on kidney ischemia reperfusion (I/R) injury are limited. Here, we explored the effects of FA on kidney I/R injury. The kidney I/R injury models were carried out by clamping bilateral pedicles for 35 min followed by reperfusion for 24 h. Mice were orally pretreated with different doses of FA for three times 24 h before I/R. The renal function was assessed by serum creatine (Scr) and blood urea nitrogen (BUN). Kidney histology was examined by hematoxylin and eosin (HE) staining and terminal deoxynucleotidly transferased UTP nick-end labeling (TUNEL) assay. Proinflammatory cytokines, caspase-3 activity, adenosine generation, adenosine signaling molecules, and hypoxia inducible factor-1 alpha (HIF-1α) were also detected, respectively. The siHIF-1α adenovirus vectors were in vivo used to inhibit the expression of HIF-1α. The results showed that FA significantly attenuated kidney damage in renal I/R-operated mice as indicated by reducing levels of Scr and BUN, ameliorating renal pathological structural changes, and tubular cells apoptosis. Moreover, FA pretreatment inhibited I/R-induced renal proinflammatory cytokines and neutrophils recruitment. Interestingly, the levels of HIF-α, CD39, and CD73 mRNA and protein as well as adenosine production were all significantly increased after FA pretreatment in the kidney of I/R-performed mice, and inhibiting HIF-α expression using siRNA abolished this protection of FA on I/R-induced acute kidney injury as evidenced by more severe renal damage and reduced adenosine production. Our findings indicated that FA protected against kidney I/R injury by reducing apoptosis, alleviating inflammation, increasing adenosine generation, and upregulating CD39 and CD73 expression, which might be mediated by HIF-1α.
Collapse
Affiliation(s)
- Qin Zhou
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Department of Pharmacology, Chongqing Medical University, Chongqing, 400016, China
| | - Xia Gong
- Department of Anatomy, Chongqing Medical University, Chongqing, 400016, China
| | - Ge Kuang
- Department of Pharmacology, Chongqing Medical University, Chongqing, 400016, China
| | - Rong Jiang
- Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Tianjun Xie
- Department of Pharmacology, Chongqing Medical University, Chongqing, 400016, China
| | - HongTao Tie
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - XiaHong Chen
- Department of Pharmacology, Chongqing Medical University, Chongqing, 400016, China
| | - Ke Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - JingYuan Wan
- Department of Pharmacology, Chongqing Medical University, Chongqing, 400016, China.
| | - Bin Wang
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
22
|
Didar G, Delpazir F, Kaviani M, Azarpira N, Sepehrara L, Ebadi P, Koohpeyma F. Influence of mesenchymal stem cells and royal jelly on kidney damage triggered by ischemia-reperfusion injury: comparison with ischemic preconditioning in an animal model. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s00580-018-2842-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
23
|
Endoplasmic Reticulum Stress, a Driver or an Innocent Bystander in Endothelial Dysfunction Associated with Hypertension? Curr Hypertens Rep 2018; 19:64. [PMID: 28717886 DOI: 10.1007/s11906-017-0762-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW Hypertension (htn) is a polygenic disorder that effects up to one third of the US population. The endoplasmic reticulum (ER) stress response is a homeostatic pathway that regulates membrane structure, protein folding, and secretory function. Emerging evidence suggests that ER stress may induce endothelial dysfunction; however, it is unclear whether ER stress-associated endothelial dysfunction modulates htn. RECENT FINDINGS Exogenous and endogenous molecules activate ER stress in the endothelium, and ER stress mediates some forms of neurogenic htn, such as angiotensin II-dependent htn. Human studies suggest that ER stress induces endothelial dysfunction, though direct evidence that ER stress augments blood pressure in humans is lacking. However, animal and cellular models demonstrate direct evidence that ER stress influences htn. ER stress is likely one of many players in a complex interplay among molecular pathways that influence the expression of htn. Targeted activation of specific ER stress pathways may provide novel therapeutic opportunities.
Collapse
|
24
|
Xie Y, Jiang D, Xiao J, Fu C, Zhang Z, Ye Z, Zhang X. Ischemic preconditioning attenuates ischemia/reperfusion-induced kidney injury by activating autophagy via the SGK1 signaling pathway. Cell Death Dis 2018; 9:338. [PMID: 29497029 PMCID: PMC5832808 DOI: 10.1038/s41419-018-0358-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 12/12/2022]
Abstract
Ischemic preconditioning (IPC) has a strong renoprotective effect during renal ischemia/reperfusion (I/R) injury that is thought to relate to autophagy. However, the role of autophagy during IPC-afforded renoprotection and the precise mechanisms involved are unknown. In this study, an in vitro hypoxia/reoxygenation (H/R) model was established in which oxygen and glucose deprivation (OGD) was applied to renal cells for 15 h followed by reoxygenation under normal conditions for 30 min, 2 h or 6 h; transient OGD and subsequent reoxygenation were implemented before prolonged H/R injury to achieve hypoxic preconditioning (HPC). 3-Methyladenine (3-MA) was used to inhibit autophagy. In a renal I/R injury model, rats were subjected to 40 min of renal ischemia followed by 6 h, 12 h or 24 h of reperfusion. IPC was produced by four cycles of ischemia (8 min each) followed by 5 min of reperfusion prior to sustained ischemia. We found that IPC increased LC3II and Beclin-1 levels and decreased SQSTM/p62 and cleaved caspase-3 levels in a time-dependent manner during renal I/R injury, as well as increased the number of intracellular double-membrane vesicles in injured renal cells. IPC-induced renal protection was efficiently attenuated by pretreatment with 5 mM 3-MA. Pretreatment with IPC also dynamically affected the expression of SGK1/FOXO3a/HIF-1α signaling components. Moreover, knocking down SGK1 expression significantly downregulated phosphorylated-FOXO3a (p-FOXO3a)/FOXO3 and HIF-1α, suppressed LC3II and Beclin-1 levels, increased SQSTM/p62 and cleaved caspase-3 levels, and abolished the protective effect of IPC against I/R-induced renal damage. SGK1 overexpression efficiently increased p-FOXO3a/FOXO3 and HIF-1α levels, promoted the autophagy flux and enhanced the protective effect mediated by HPC. Furthermore, FOXO3a overexpression decreased HIF-1α protein levels, inhibited HIF-1α transcriptional activity and reduced the protective effect of IPC. Our study indicates that IPC can ameliorate renal I/R injury by promoting autophagy through the SGK1 pathway.
Collapse
Affiliation(s)
- Ying Xie
- Department of Nephrology, Huadong Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China
| | - Daofang Jiang
- Department of Nephrology, Huadong Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China
| | - Jing Xiao
- Department of Nephrology, Huadong Hospital, Fudan University, Shanghai, China
| | - Chensheng Fu
- Department of Nephrology, Huadong Hospital, Fudan University, Shanghai, China
| | - Zhenxing Zhang
- Department of Nephrology, Huadong Hospital, Fudan University, Shanghai, China
| | - Zhibin Ye
- Department of Nephrology, Huadong Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China
| | - Xiaoli Zhang
- Department of Nephrology, Huadong Hospital, Fudan University, Shanghai, China. .,Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China.
| |
Collapse
|
25
|
Cybulsky AV. Endoplasmic reticulum stress, the unfolded protein response and autophagy in kidney diseases. Nat Rev Nephrol 2017; 13:681-696. [DOI: 10.1038/nrneph.2017.129] [Citation(s) in RCA: 244] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Xu Z, Lu Y, Wang J, Ding X, Chen J, Miao C. The protective effect of propofol against TNF-α-induced apoptosis was mediated via inhibiting iNOS/NO production and maintaining intracellular Ca 2+ homeostasis in mouse hippocampal HT22 cells. Biomed Pharmacother 2017; 91:664-672. [DOI: 10.1016/j.biopha.2017.04.110] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/01/2017] [Accepted: 04/24/2017] [Indexed: 10/24/2022] Open
|
27
|
Liu H, Min J, Sun H, Zhang CL. Correlation study between gene and respiratory disease in children. Exp Ther Med 2017; 14:1463-1466. [PMID: 28781625 PMCID: PMC5526194 DOI: 10.3892/etm.2017.4643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 06/12/2017] [Indexed: 11/05/2022] Open
Abstract
The study was designed to explore the correlation between c-Jun N-terminal kinase 1 (JNK1) gene and bronchitis in children with respiratory diseases. From April 2013 to April 2015, 32 cases of children who were admitted to our hospital for bronchitis were selected as the observation group, while 28 cases of normal children in the same period were selected as the control group. The JNK1 gene expression level in the blood of patients of the control and observation groups was detected by quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, and western blot analysis. Additionally, the correlation between the levels of JNK1 expression and bronchitis in children was statistically analyzed using SPSS software. JNK1 expression significantly increased in the observation group compared to the control group, and a significant difference was identified (P<0.05). Furthermore, from the detection of JNK1 protein content of blood of child bronchitis with different conditions, we found JNK1 expression gradually increased with the aggravation of bronchitis in children, showing a positive correlation. JNK1 expression was significantly higher in the blood of patients with acute pediatric bronchitis than that of patients with chronic bronchitis. In conclusion, JNK1 promotes the production and deterioration of bronchitis in children, which provides a theoretical and experimental basis for the diagnosis and treatment of children afflicted with bronchitis.
Collapse
Affiliation(s)
- Huaibin Liu
- Department of Internal Medicine, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221002, P.R. China
| | - Jie Min
- Department of Internal Medicine, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221002, P.R. China
| | - Haomiao Sun
- Department of Internal Medicine, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221002, P.R. China
| | - Chong-Lin Zhang
- Department of Respiration, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221002, P.R. China
| |
Collapse
|
28
|
The age-associated loss of ischemic preconditioning in the kidney is accompanied by mitochondrial dysfunction, increased protein acetylation and decreased autophagy. Sci Rep 2017; 7:44430. [PMID: 28294175 PMCID: PMC5353572 DOI: 10.1038/srep44430] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 02/07/2017] [Indexed: 12/27/2022] Open
Abstract
In young rats, ischemic preconditioning (IPC), which consists of 4 cycles of ischemia and reperfusion alleviated kidney injury caused by 40-min ischemia. However,old rats lost their ability to protect the ischemic kidney by IPC. A similar aged phenotype was demonstrated in 6-month-old OXYS rats having signs of premature aging. In the kidney of old and OXYS rats, the levels of acetylated nuclear proteins were higher than in young rats, however, unlike in young rats, acetylation levels in old and OXYS rats were further increased after IPC. In contrast to Wistar rats, age-matched OXYS demonstrated no increase in lysosome abundance and LC3 content in the kidney after ischemia/reperfusion. The kidney LC3 levels were also lower in OXYS, even under basal conditions, and mitochondrial PINK1 and ubiquitin levels were higher, suggesting impaired mitophagy. The kidney mitochondria from old rats contained a population with diminished membrane potential and this fraction was expanded by IPC. Apparently, oxidative changes with aging result in the appearance of malfunctioning renal mitochondria due to a low efficiency of autophagy. Elevated protein acetylation might be a hallmark of aging which is associated with a decreased autophagy, accumulation of dysfunctional mitochondria, and loss of protection against ischemia by IPC.
Collapse
|
29
|
Brito MVH, Yasojima EY, Percário S, Ribeiro Júnior RFG, Cavalcante LCDC, Monteiro AM, Couteiro RP, Rodrigues IADS, Santos HAGD. Effects of hypertonic saline solution associated to remote ischemic perconditioning in kidney ischemia/reperfusion injury in rats. Acta Cir Bras 2017; 32:211-218. [DOI: 10.1590/s0102-865020170030000005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/22/2017] [Indexed: 11/22/2022] Open
|
30
|
Hussein AM, Barakat N, Awadalla A, Gabr MM, Khater S, Harraz AM, Shokeir AA. Modulation of renal ischemia/reperfusion in rats by a combination of ischemic preconditioning and adipose-derived mesenchymal stem cells (ADMSCs). Can J Physiol Pharmacol 2016; 94:936-46. [PMID: 27411029 DOI: 10.1139/cjpp-2016-0018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The present study investigated the effects of combination of ischemic preconditioning (Ipre) and adipose-derived mesenchymal stem cells (ADMSCs) on renal ischemia-reperfusion (I-R) injury in rats. 90 male Sprague Dawley rats were divided into 5 equal groups; sham operated, control (45 min left renal ischemia), Ipre group as control group with 3 cycles of Ipre just before renal ischemia, ADMSCs-treated group (as control with ADMSCs 10(6) cells in 0.1 mL via penile vein 60 min before ischemia time), and Ipre + ADMSCs group as ADMCs group with 3 cycles of Ipre. Ipre and ADMSCs groups showed significant decrease in serum creatinine and blood urea nitrogen (BUN) and caspase-3 and CD45 expression in kidney and significant increase in HIF-1α, SDF-1α, CD31, and Ki67 expressions in kidney compared with the control group (p < 0.05). Moreover, the Ipre + ADMSCs group showed significant decrease in serum BUN and caspase-3 and CD45 expression in kidney with significant increase in HIF-1α, SDF-1α, CD31, and Ki67 expression in kidney compared with the Ipre and ADMCs groups (p < 0.05). We concluded that Ipre potentiates the renoprotective effect of ADMSCs against renal I/R injury probably by upregulation of HIF-1α, SDF-1α, CD31, and Ki67 and downregulation of caspase-3 and CD45.
Collapse
Affiliation(s)
- Abdelaziz M Hussein
- a Physiology Department, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Nashwa Barakat
- b Urology and Nephrology Center, Mansoura University, Mansoura, 35516, Egypt
| | - Amira Awadalla
- b Urology and Nephrology Center, Mansoura University, Mansoura, 35516, Egypt
| | - Mahmoud M Gabr
- b Urology and Nephrology Center, Mansoura University, Mansoura, 35516, Egypt
| | - Sherry Khater
- b Urology and Nephrology Center, Mansoura University, Mansoura, 35516, Egypt
| | - Ahmed M Harraz
- b Urology and Nephrology Center, Mansoura University, Mansoura, 35516, Egypt
| | - Ahmed A Shokeir
- b Urology and Nephrology Center, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
31
|
Jain K, Suryakumar G, Ganju L, Singh SB. Amelioration of ER stress by 4-phenylbutyric acid reduces chronic hypoxia induced cardiac damage and improves hypoxic tolerance through upregulation of HIF-1α. Vascul Pharmacol 2016; 83:36-46. [PMID: 27058435 DOI: 10.1016/j.vph.2016.03.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 02/27/2016] [Accepted: 03/12/2016] [Indexed: 12/14/2022]
Abstract
While endoplasmic reticulum (ER) stress has been observed in several human diseases, few studies have reported the involvement of ER stress in chronic hypoxia (CH) induced cardiac damage. Hypoxia, such as that prevalent at high altitude (HA), forms the underlying cause of several maladies including cardiovascular diseases. While the role of hypoxia inducible factor-1 (HIF-1α) in the adaptive responses to hypoxia is known, the role of the unfolded protein response (UPR) is only recently being explored in the HA pathophysiologies. The present study investigates the effect of ER stress modulation on CH mediated injury and the cardioprotective action of 4-phenylbutyric acid (PBA) in enhancing survival response under hypoxia. Here, we observed that exposure of rats, for 1, 7 and 14days CH to a simulated altitude of 7620m, led to cardiac hypertrophy and significant protein oxidation. This induced the activation of UPR signaling mechanisms, mediated by PERK, IRE1α and ATF6. By 14days, there was a marked upregulation of apoptosis, evident in increased CHOP and caspase-3/9 activity. PBA reduced CH induced right ventricular enlargement and apoptosis. Further, in contrast to tunicamycin, PBA considerably enhanced hypoxic tolerance. An elevation in the level of antioxidant enzymes, HIF-1α and its regulated proteins (HO-1, GLUT-1) was observed in the PBA administered animals, along with a concomitant suppression of UPR markers. Our study thus emphasizes upon the attenuation of ER stress by PBA as a mechanism to diminish CH induced cardiac injury and boost hypoxic survival, providing an insight into the novel relationship between the HIF-1α and UPR under hypoxia.
Collapse
Affiliation(s)
- Kanika Jain
- Cellular Biochemistry Division, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi 110 054, India
| | - Geetha Suryakumar
- Cellular Biochemistry Division, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi 110 054, India.
| | - Lilly Ganju
- Cellular Biochemistry Division, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi 110 054, India
| | - Shashi Bala Singh
- Cellular Biochemistry Division, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi 110 054, India
| |
Collapse
|
32
|
Xu Y, Guo M, Jiang W, Dong H, Han Y, An XF, Zhang J. Endoplasmic reticulum stress and its effects on renal tubular cells apoptosis in ischemic acute kidney injury. Ren Fail 2016; 38:831-7. [DOI: 10.3109/0886022x.2016.1160724] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
33
|
Ding W, Cai Y, Wang W, Ji L, Dong Y, Zhang X, Su M, Liu J, Lu G, Zhang X. Adiponectin protects the kidney against chronic intermittent hypoxia-induced injury through inhibiting endoplasmic reticulum stress. Sleep Breath 2016; 20:1069-74. [PMID: 26993339 DOI: 10.1007/s11325-016-1321-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 01/05/2016] [Accepted: 02/08/2016] [Indexed: 11/27/2022]
Abstract
PURPOSE The current study was carried out to assess the effects of chronic intermittent hypoxia (CIH) on the kidney, the intervention roles of adiponectin (Ad), and the associated mechanisms. METHODS Sixty Wistar rats were randomly divided into four groups: the normal control (NC), normal control plus Ad supplement (NC + Ad), CIH, and CIH plus Ad supplement (CIH + Ad) groups. The rats in both CIH and CIH + Ad groups were submitted to a CIH environment for 4 months, while the rats in NC and NC + Ad groups were housed with the normal air for 4 months. In addition, the rats in NC + Ad and CIH + Ad groups were treated with an intravenous injection of Ad at a dosage of 10 μg per injection, twice a week, for four successive months. RESULTS The production level of reactive oxygen species (ROS) and the protein levels of endoplasmic reticulum (ER) stress, as well as the cell apoptosis level in kidney, were all higher in the CIH group than in the NC and NC + Ad groups (all p < 0.05). However, the ROS production, the protein of ER stress, and cell apoptosis levels in kidney were all lower in the CIH + Ad group than those in the CIH group (all p < 0.05). CONCLUSION Ad could protect against CIH-induced renal cell apoptosis through inhibiting ROS-related ER stress.
Collapse
Affiliation(s)
- Wenxiao Ding
- Department of Respiratory, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Yuanpei Cai
- Department of Respiratory, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Wenjing Wang
- Department of Respiratory, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Lingling Ji
- Department of Respiratory, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Yanbin Dong
- Department of Respiratory, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Xiaofeng Zhang
- Department of Respiratory, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Mei Su
- Department of Respiratory, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Jiannan Liu
- Department of Respiratory Diseases, Jiangsu Geriatric Hospital, 42 Jiangsu Road, Nanjing, 210029, China
| | - Gan Lu
- Department of Respiratory Diseases, Jiangsu Geriatric Hospital, 42 Jiangsu Road, Nanjing, 210029, China.
| | - Xilong Zhang
- Department of Respiratory, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
| |
Collapse
|
34
|
Fu Q, Colgan SP, Shelley CS. Hypoxia: The Force that Drives Chronic Kidney Disease. Clin Med Res 2016; 14:15-39. [PMID: 26847481 PMCID: PMC4851450 DOI: 10.3121/cmr.2015.1282] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 09/30/2015] [Indexed: 12/15/2022]
Abstract
In the United States the prevalence of end-stage renal disease (ESRD) reached epidemic proportions in 2012 with over 600,000 patients being treated. The rates of ESRD among the elderly are disproportionally high. Consequently, as life expectancy increases and the baby-boom generation reaches retirement age, the already heavy burden imposed by ESRD on the US health care system is set to increase dramatically. ESRD represents the terminal stage of chronic kidney disease (CKD). A large body of evidence indicating that CKD is driven by renal tissue hypoxia has led to the development of therapeutic strategies that increase kidney oxygenation and the contention that chronic hypoxia is the final common pathway to end-stage renal failure. Numerous studies have demonstrated that one of the most potent means by which hypoxic conditions within the kidney produce CKD is by inducing a sustained inflammatory attack by infiltrating leukocytes. Indispensable to this attack is the acquisition by leukocytes of an adhesive phenotype. It was thought that this process resulted exclusively from leukocytes responding to cytokines released from ischemic renal endothelium. However, recently it has been demonstrated that leukocytes also become activated independent of the hypoxic response of endothelial cells. It was found that this endothelium-independent mechanism involves leukocytes directly sensing hypoxia and responding by transcriptional induction of the genes that encode the β2-integrin family of adhesion molecules. This induction likely maintains the long-term inflammation by which hypoxia drives the pathogenesis of CKD. Consequently, targeting these transcriptional mechanisms would appear to represent a promising new therapeutic strategy.
Collapse
Affiliation(s)
- Qiangwei Fu
- Kabara Cancer Research Institute, La Crosse, WI
| | - Sean P Colgan
- Mucosal Inflammation Program and University of Colorado School of Medicine, Aurora, CO
| | - Carl Simon Shelley
- University of Wisconsin School of Medicine and Public Health, Madison, WI
| |
Collapse
|
35
|
Tasoulis MK, Douzinas EE. Hypoxemic reperfusion of ischemic states: an alternative approach for the attenuation of oxidative stress mediated reperfusion injury. J Biomed Sci 2016; 23:7. [PMID: 26786360 PMCID: PMC4717563 DOI: 10.1186/s12929-016-0220-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/11/2016] [Indexed: 12/15/2022] Open
Abstract
Ischemia and reperfusion (I/R) - induced injury has been described as one of the main factors that contribute to the observed morbidity and mortality in a variety of clinical entities, including myocardial infarction, ischemic stroke, cardiac arrest and trauma. An imbalance between oxygen demand and supply, within the organ beds during ischemia, results in profound tissue hypoxia. The subsequent abrupt oxygen re-entry upon reperfusion, may lead to a burst of oxidative aggression through production of reactive oxygen species by the primed cells. The predominant role of oxidative stress in the pathophysiology of I/R mediated injury, has been well established. A number of strategies that target the attenuation of the oxidative burst have been tested both in the experimental and the clinical setting. Despite these advances, I/R injury continues to be a major problem in everyday medical practice. The aim of this paper is to review the existing literature regarding an alternative approach, termed hypoxemic reperfusion, that has exhibited promising results in the attenuation of I/R injury, both in the experimental and the clinical setting. Further research to clarify its underlying mechanisms and to assess its efficacy in the clinical setting is warranted.
Collapse
Affiliation(s)
- Marios-Konstantinos Tasoulis
- 2nd Department of Surgery, National and Kapodistrian University of Athens, Medical School, Aretaieion University Hospital, 76 Vas. Sofias Ave, 11528, Athens, Greece.
| | - Emmanuel E Douzinas
- 3rd Department of Critical Care Medicine, National and Kapodistrian University of Athens, Medical School, Evgenideio Hospital, 20 Papadiamantopoulou St., 11528, Athens, Greece.
| |
Collapse
|
36
|
Liu D, Liu X, Zhou T, Yao W, Zhao J, Zheng Z, Jiang W, Wang F, Aikhionbare FO, Hill DL, Emmett N, Guo Z, Wang D, Yao X, Chen Y. IRE1-RACK1 axis orchestrates ER stress preconditioning-elicited cytoprotection from ischemia/reperfusion injury in liver. J Mol Cell Biol 2015; 8:144-56. [PMID: 26711306 DOI: 10.1093/jmcb/mjv066] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 09/22/2015] [Indexed: 12/14/2022] Open
Abstract
Endoplasmic reticulum (ER) stress is involved in ischemic preconditioning that protects various organs from ischemia/reperfusion (I/R) injury. We established an in vivo ER stress preconditioning model in which tunicamycin was injected into rats before hepatic I/R. The hepatic I/R injury, demonstrated by serum aminotransferase level and the ultra-structure of the liver, was alleviated by administration of tunicamycin, which induced ER stress in rat liver by activating inositol-requiring enzyme 1 (IRE1) and upregulating 78 kDa glucose-regulated protein (GRP78). The proteomic identification for IRE1 binders revealed interaction and cooperation among receptor for activated C kinase 1 (RACK1), phosphorylated AMPK, and IRE1 under ER stress conditions in a spatiotemporal manner. Furthermore, in vitro ER stress preconditioning was induced by thapsigargin and tunicamycin in L02 and HepG2 cells. Surprisingly, BCL2 was found to be phosphorylated by IRE1 under ER stress conditions to prevent apoptotic process by activation of autophagy. In conclusion, ER stress preconditioning protects against hepatic I/R injury, which is orchestrated by IRE1-RACK1 axis through the activation of BCL2. Our findings provide novel insights into the molecular pathways underlying ER stress preconditioning-elicited cytoprotective effect against hepatic I/R injury.
Collapse
Affiliation(s)
- Dong Liu
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China Present address: Department of Hepatobiliary Surgery, Navy General Hospital, Beijing 100048, China
| | - Xing Liu
- Anhui Key Laboratory of Cellular Dynamics and Hefei National Laboratory for Physical Sciences at Nanoscale, Hefei 230027, China
| | - Ti Zhou
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - William Yao
- Atlanta Clinical & Translational Science Institute, Atlanta, GA 30310, USA
| | - Jun Zhao
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Zhigang Zheng
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Wei Jiang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Fengsong Wang
- Anhui Key Laboratory of Cellular Dynamics and Hefei National Laboratory for Physical Sciences at Nanoscale, Hefei 230027, China Atlanta Clinical & Translational Science Institute, Atlanta, GA 30310, USA Department of Biochemistry, Anhui Medical University, Hefei 230027, China
| | | | - Donald L Hill
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Nerimah Emmett
- Atlanta Clinical & Translational Science Institute, Atlanta, GA 30310, USA
| | - Zhen Guo
- Anhui Key Laboratory of Cellular Dynamics and Hefei National Laboratory for Physical Sciences at Nanoscale, Hefei 230027, China
| | - Dongmei Wang
- Anhui Key Laboratory of Cellular Dynamics and Hefei National Laboratory for Physical Sciences at Nanoscale, Hefei 230027, China
| | - Xuebiao Yao
- Atlanta Clinical & Translational Science Institute, Atlanta, GA 30310, USA
| | - Yong Chen
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
37
|
Kierulf-Lassen C, Nieuwenhuijs-Moeke GJ, Krogstrup NV, Oltean M, Jespersen B, Dor FJMF. Molecular Mechanisms of Renal Ischemic Conditioning Strategies. Eur Surg Res 2015; 55:151-83. [PMID: 26330099 DOI: 10.1159/000437352] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 07/02/2015] [Indexed: 11/19/2022]
Abstract
Ischemia-reperfusion injury is the leading cause of acute kidney injury in a variety of clinical settings such as renal transplantation and hypovolemic and/or septic shock. Strategies to reduce ischemia-reperfusion injury are obviously clinically relevant. Ischemic conditioning is an inherent part of the renal defense mechanism against ischemia and can be triggered by short periods of intermittent ischemia and reperfusion. Understanding the signaling transduction pathways of renal ischemic conditioning can promote further clinical translation and pharmacological advancements in this era. This review summarizes research on the molecular mechanisms underlying both local and remote ischemic pre-, per- and postconditioning of the kidney. The different types of conditioning strategies in the kidney recruit similar powerful pro-survival mechanisms. Likewise, renal ischemic conditioning mobilizes many of the same protective signaling pathways as in other organs, but differences are recognized.
Collapse
|
38
|
Mahfoudh-Boussaid A, Hadj Ayed Tka K, Zaouali MA, Roselló-Catafau J, Ben Abdennebi H. Effects of trimetazidine on the Akt/eNOS signaling pathway and oxidative stress in an in vivo rat model of renal ischemia-reperfusion. Ren Fail 2015; 36:1436-42. [PMID: 25246344 DOI: 10.3109/0886022x.2014.949765] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Renal ischemia reperfusion (I/R) injury, which occurs during renal surgery or transplantation, is the major cause of acute renal failure. Trimetazidine (TMZ), an anti-ischemic drug, protects kidney against the deleterious effects of I/R. However its protective mechanism remains unclear. The aim of this study is to examine the relevance of Akt, endothelial nitric oxide synthase (eNOS), and hypoxia inducible factor-1α (HIF-1α) on TMZ induced protection of kidneys against I/R injury. Wistar rats were subjected to 60 min of warm renal ischemia followed by 120 min of reperfusion, or to intraperitoneal injection of TMZ (3 mg/kg) 30 min before ischemia. In sham operated group renal pedicles were only dissected. Compared to I/R, TMZ treatment decreased lactate dehydrogenase (845 ± 13 vs. 1028 ± 30 U/L). In addition, creatinine clearance and sodium reabsorption rates reached 105 ± 12 versus 31 ± 11 μL/min/g kidney weight and 95 ± 1 versus 68 ± 5%, respectively. Besides, we noted a decrease in malondialdehyde concentration (0.33 ± 0.01 vs. 0.59 ± 0.03 nmol/mg of protein) and an increase in glutathione concentration (2.6 ± 0.2 vs. 0.93 ± 0.16 µg GSH/mg of protein), glutathione peroxidase (95 ± 4 vs. 61 ± 3 µg GSH/min/mg of protein), and superoxide dismutase (25 ± 3 vs. 11 ± 2 U/mg of protein) and catalase (91 ± 12 vs. 38 ± 9 μmol/min/mg of protein) activities. Parallely, we noted a significant increase in p-Akt, eNOS, nitrite and nitrate (18 ± 2 vs. 8 ± 0.1 pomL/mg of protein), HIF-1α (333 ± 48 vs. 177 ± 14 µg/mg of protein) and heme oxygenase-1 (HO-1) levels regarding I/R. TMZ treatment improves renal tolerance to warm I/R. Such protection implicates an activation of Akt/eNOS signaling pathway, HIF-1α stabilization and HO-1 activation.
Collapse
Affiliation(s)
- Asma Mahfoudh-Boussaid
- Research Unit "Biologie et Anthropologie Moléculaire Appliquées au Développement et à la Santé" (UR12ES11), Faculty of Pharmacy, University of Monastir, Rue Avicenne , Monastir , Tunisia and
| | | | | | | | | |
Collapse
|
39
|
Sun L, Xu C, Chen G, Yu M, Yang S, Qiu Y, Peng K, Wang W, Xiao W, Yang H. A Novel Role of OS-9 in the Maintenance of Intestinal Barrier Function from Hypoxia-induced Injury via p38-dependent Pathway. Int J Biol Sci 2015; 11:664-71. [PMID: 25999789 PMCID: PMC4440256 DOI: 10.7150/ijbs.10783] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 02/18/2015] [Indexed: 12/11/2022] Open
Abstract
OS-9 is a lectin required for efficient ubquitination of glycosylated substrates of endoplasmic reticulum-associated degradation (ERAD). OS-9 has previously been implicated in ER-to-Golgi transport and transcription factor turnover. However, we know very little about other functions of OS-9 under endoplasmic reticulum stress. Here, we used gene knockdown and overexpression approaches to study the protective effect of OS-9 on intestinal barrier function of intestinal epithelial cell Caco-2 monolayer. We found that OS-9 attenuated intestinal epithelial barrier dysfunction under hypoxia through up-regulating occludin and claudin-1 protein expression. Furthermore, we showed that the up-regulation of occludin and claudin-1 induced by OS-9 was mediated by p38 and ERK1/2 phosphorylation and did not involve HIF-1α. In summary, our results demonstrate that OS-9 up-regulates occludin and claudin-1 by activating the MAP kinase (MAPK) pathway, and thus protects the epithelial barrier function of Caco-2 monolayer under hypoxia condition.
Collapse
Affiliation(s)
- Lihua Sun
- Department of General Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Chao Xu
- Department of General Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Guoqing Chen
- Department of General Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Min Yu
- Department of General Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Songwei Yang
- Department of General Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yuan Qiu
- Department of General Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Ke Peng
- Department of General Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Wensheng Wang
- Department of General Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Weidong Xiao
- Department of General Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Hua Yang
- Department of General Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
40
|
Ge YZ, Wu R, Xin H, Liu H, Lu TZ, Zhao YC, Shen JW, Hu ZK, Yu P, Zhou LH, Xu LW, Xu Z, Wu JP, Li WC, Zhu JG, Jia RP. Effects of ischemic preconditioning on the systemic and renal hemodynamic changes in renal ischemia reperfusion injury. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:1128-1140. [PMID: 25972999 PMCID: PMC4396246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 01/23/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Ischemic preconditioning (IPC) could protect against subsequent renal ischemia reperfusion injury (IRI). However, the mechanisms underlying IPC remain far from complete. Hence, we explored the effects of IPC on the renal and systemic hemodynamic changes, renal function and morphology, as well the involvement of endothelial and inducible nitric oxide synthase (eNOS/iNOS), and nitric oxide (NO). METHODS Male Sprague-Dawley rats were randomly divided into five groups after right-side nephrectomy: Sham group (surgery without vascular clamping); IRI group (the left renal artery was clamped for 45 min); IPC group (pretreated with 15 min of ischemia and 10 min of reperfusion); IPC + vehicle group (administrated with 0.9% saline 5 min before IPC); and IPC + N(G)-nitro-L-arginine methylester (L-NAME) group (pretreated with L-NAME 5 min prior to IPC). The renal and systemic hemodynamic parameters, renal function and morphology, as well as eNOS, iNOS, and NO expression levels in the kidneys were measured at the indicated time points after reperfusion. RESULTS IPC rats exhibited significant improvements in renal function, morphology, and renal artery blood flow (RABF), without obvious influence on the systemic hemodynamics and renal vein blood flow. Increased eNOS, iNOS, and NO expression levels were detected in the kidneys of IPC rats 24 h after reperfusion. Furthermore, the beneficial effects were fully abolished by the administration of L-NAME. CONCLUSIONS The results suggest that IPC contributes to early restoration of RABF, probably through eNOS/iNOS-mediated NO production, thereby alleviating the renal dysfunction and histological damage caused by IRI.
Collapse
Affiliation(s)
- Yu-Zheng Ge
- Department of Urology, Nanjing First Hospital, Nanjing Medical University68 Changle Road, Nanjing 210006, China
- Center for Renal Transplantation, Nanjing First Hospital, Nanjing Medical University68 Changle Road, Nanjing 210006, China
| | - Ran Wu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University68 Changle Road, Nanjing 210006, China
- Center for Renal Transplantation, Nanjing First Hospital, Nanjing Medical University68 Changle Road, Nanjing 210006, China
| | - Hui Xin
- Department of Urology, Nanjing First Hospital, Nanjing Medical University68 Changle Road, Nanjing 210006, China
- Center for Renal Transplantation, Nanjing First Hospital, Nanjing Medical University68 Changle Road, Nanjing 210006, China
| | - Hao Liu
- Department of Urology, The Second Affiliated Hospital of Zhejiang University School of Medicine88 Jiefang Road, Hangzhou 310009, China
| | - Tian-Ze Lu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University68 Changle Road, Nanjing 210006, China
- Department of Pathology, Nanjing First Hospital, Nanjing Medical University68 Changle Road, Nanjing 210006, China
| | - You-Cai Zhao
- Department of Pathology, Nanjing First Hospital, Nanjing Medical University68 Changle Road, Nanjing 210006, China
| | - Jiang-Wei Shen
- Department of Urology, Nanjing First Hospital, Nanjing Medical University68 Changle Road, Nanjing 210006, China
- Department of Ultrasound and Radiology, Nanjing First Hospital, Nanjing Medical University68 Changle Road, Nanjing 210006, China
| | - Zhi-Kai Hu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University68 Changle Road, Nanjing 210006, China
- Department of Ultrasound and Radiology, Nanjing First Hospital, Nanjing Medical University68 Changle Road, Nanjing 210006, China
| | - Peng Yu
- Department of Urology, The First Hospital of Nanchang, Nanchang University128 Xiangshan North Road, Nanchang 330008, China
| | - Liu-Hua Zhou
- Department of Urology, Nanjing First Hospital, Nanjing Medical University68 Changle Road, Nanjing 210006, China
- Center for Renal Transplantation, Nanjing First Hospital, Nanjing Medical University68 Changle Road, Nanjing 210006, China
| | - Lu-Wei Xu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University68 Changle Road, Nanjing 210006, China
- Center for Renal Transplantation, Nanjing First Hospital, Nanjing Medical University68 Changle Road, Nanjing 210006, China
| | - Zheng Xu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University68 Changle Road, Nanjing 210006, China
- Center for Renal Transplantation, Nanjing First Hospital, Nanjing Medical University68 Changle Road, Nanjing 210006, China
| | - Jian-Ping Wu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University68 Changle Road, Nanjing 210006, China
- Center for Renal Transplantation, Nanjing First Hospital, Nanjing Medical University68 Changle Road, Nanjing 210006, China
| | - Wen-Cheng Li
- Department of Urology, Nanjing First Hospital, Nanjing Medical University68 Changle Road, Nanjing 210006, China
- Center for Renal Transplantation, Nanjing First Hospital, Nanjing Medical University68 Changle Road, Nanjing 210006, China
| | - Jia-Geng Zhu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University68 Changle Road, Nanjing 210006, China
- Center for Renal Transplantation, Nanjing First Hospital, Nanjing Medical University68 Changle Road, Nanjing 210006, China
| | - Rui-Peng Jia
- Department of Urology, Nanjing First Hospital, Nanjing Medical University68 Changle Road, Nanjing 210006, China
- Center for Renal Transplantation, Nanjing First Hospital, Nanjing Medical University68 Changle Road, Nanjing 210006, China
| |
Collapse
|
41
|
Yoo W, Noh KH, Ahn JH, Yu JH, Seo JA, Kim SG, Choi KM, Baik SH, Choi DS, Kim TW, Kim HJ, Kim NH. HIF-1α expression as a protective strategy of HepG2 cells against fatty acid-induced toxicity. J Cell Biochem 2014; 115:1147-58. [PMID: 24402912 DOI: 10.1002/jcb.24757] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 12/20/2013] [Indexed: 01/04/2023]
Abstract
Free fatty acid-induced lipotoxicity via increased endoplasmic reticulum (ER) stress and hepatocyte apoptosis is a key pathological mechanism of non-alcoholic steatohepatitis. A role of hypoxia-inducible factor 1α (HIF-1α) in this process has been suggested, but direct evidence is lacking. Here, we used HepG2 cells as a model to study whether HIF-1α can reduce palmitic acid-induced lipotoxicity and ER stress. In HepG2 cells treated with 500 µM palmitic acid, HIF-1α expression increased transiently, the decline was associated with increased cleaved caspase-3 expression. Overexpression and knockdown of HIF-1α decreased and exacerbated, respectively, palmitic acid-induced lipoapoptosis. The overexpression also blunted upregulation of the ER stress markers, C/EBP homologous protein (CHOP) and chaperone immunoglobulin heavy chain binding protein (Bip), while the knockdown increased the level of CHOP. In line with this, CHOP promoter activity decreased following HIF-1α binding to the CHOP promoter hypoxia response element. These results indicate that hepatocyte lipotoxicity is associated with decreased HIF-1α expression. It also suggests that upregulation of HIF-1α can be a possible strategy to reduce lipotoxicity in non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Wonbaek Yoo
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea; Graduate School of Medicine, Korea University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Stem cell transplantation therapy has emerged as a promising regenerative medicine for ischemic stroke and other neurodegenerative disorders. However, many issues and problems remain to be resolved before successful clinical applications of the cell-based therapy. To this end, some recent investigations have sought to benefit from well-known mechanisms of ischemic/hypoxic preconditioning. Ischemic/hypoxic preconditioning activates endogenous defense mechanisms that show marked protective effects against multiple insults found in ischemic stroke and other acute attacks. As in many other cell types, a sub-lethal hypoxic exposure significantly increases the tolerance and regenerative properties of stem cells and progenitor cells. So far, a variety of preconditioning triggers have been tested on different stem cells and progenitor cells. Preconditioned stem cells and progenitors generally show much better cell survival, increased neuronal differentiation, enhanced paracrine effects leading to increased trophic support, and improved homing to the lesion site. Transplantation of preconditioned cells helps to suppress inflammatory factors and immune responses, and promote functional recovery. Although the preconditioning strategy in stem cell therapy is still an emerging research area, accumulating information from reports over the last few years already indicates it as an attractive, if not essential, prerequisite for transplanted cells. It is expected that stem cell preconditioning and its clinical applications will attract more attention in both the basic research field of preconditioning as well as in the field of stem cell translational research. This review summarizes the most important findings in this active research area, covering the preconditioning triggers, potential mechanisms, mediators, and functional benefits for stem cell transplant therapy.
Collapse
Affiliation(s)
- Shan Ping Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
43
|
Xu X, Kriegel AJ, Jiao X, Liu H, Bai X, Olson J, Liang M, Ding X. miR-21 in ischemia/reperfusion injury: a double-edged sword? Physiol Genomics 2014; 46:789-97. [PMID: 25159851 DOI: 10.1152/physiolgenomics.00020.2014] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
MicroRNAs (miRNAs or miRs) are endogenous, small RNA molecules that suppress expression of targeted mRNA. miR-21, one of the most extensively studied miRNAs, is importantly involved in divergent pathophysiological processes relating to ischemia/reperfusion (I/R) injury, such as inflammation and angiogenesis. The role of miR-21 in renal I/R is complex, with both protective and pathological pathways being regulated by miR-21. Preconditioning-induced upregulation of miR-21 contributes to the protection against subsequent renal I/R injury through the targeting of genes such as the proapoptotic gene programmed cell death 4 and interactions between miR-21 and hypoxia-inducible factor. Conversely, long-term elevation of miR-21 may be detrimental to the organ by promoting the development of renal interstitial fibrosis following I/R injury. miR-21 is importantly involved in several pathophysiological processes related to I/R injury including inflammation and angiogenesis as well as the biology of stem cells that could be used to treat I/R injury; however, the effect of miR-21 on these processes in renal I/R injury remains to be studied.
Collapse
Affiliation(s)
- Xialian Xu
- Division of Nephrology, Fudan University Zhongshan Hospital, Shanghai, Peoples Republic of China
| | - Alison J Kriegel
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Xiaoyan Jiao
- Division of Nephrology, Fudan University Zhongshan Hospital, Shanghai, Peoples Republic of China
| | - Hong Liu
- Division of Nephrology, Fudan University Zhongshan Hospital, Shanghai, Peoples Republic of China
| | - Xiaowen Bai
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jessica Olson
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Mingyu Liang
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Xiaoqiang Ding
- Division of Nephrology, Fudan University Zhongshan Hospital, Shanghai, Peoples Republic of China; Institutes of Biomedical Sciences of Shanghai Medical School, Fudan University, Shanghai, Peoples Republic of China; Kidney and Dialysis Institute of Shanghai, Shanghai, Peoples Republic of China; and Kidney and Blood Purification Laboratory of Shanghai, Shanghai, Peoples Republic of China
| |
Collapse
|
44
|
Abstract
The reduction or cessation of the blood supply to an organ results in tissue ischemia. Ischemia can cause significant tissue damage, and is observed as a result of a thrombosis, as part of a disease process, and during surgery. However, the restoration of the blood supply often causes more damage to the tissue than the ischemic episode itself. Research is therefore focused on identifying the cellular pathways involved in the protection of organs from the damage incurred by this process of ischemia reperfusion (I/R). The hypoxia-inducible factors (HIFs) are a family of heterodimeric transcription factors that are stabilized during ischemia. The genes that are expressed downstream of HIF activity enhance oxygen-independent ATP generation, cell survival, and angiogenesis, amongst other phenotypes. They are, therefore, important factors in the protection of tissues from I/R injury. Interestingly, a number of the mechanisms already known to induce organ protection against I/R injury, including preconditioning, postconditioning, and activation of signaling pathways such as adenosine receptor signaling, converge on the HIF system. This review describes the evidence for HIFs playing a role in I/R protection mediated by these factors, highlights areas that require further study, and discuss whether HIFs themselves are good therapeutic targets for protecting tissues from I/R injury.
Collapse
Affiliation(s)
- Neil J Howell
- Department of Cardiothoracic Surgery, University Hospital Birmingham, Edgbaston, Birmingham, UK
| | - Daniel A Tennant
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
45
|
The cyclin-dependent kinase inhibitor p21 is essential for the beneficial effects of renal ischemic preconditioning on renal ischemia/reperfusion injury in mice. Kidney Int 2014; 85:871-9. [DOI: 10.1038/ki.2013.496] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 07/23/2013] [Accepted: 08/22/2013] [Indexed: 01/02/2023]
|
46
|
McCafferty K, Byrne C, Yaqoob MM. Ischaemic conditioning strategies for the nephrologist: a promise lost in translation? Nephrol Dial Transplant 2014; 29:1827-40. [PMID: 24589718 DOI: 10.1093/ndt/gfu034] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Over the last quarter of a century, a huge effort has been made to develop interventions that can minimise ischaemia reperfusion injury. The most potent of these are the ischaemic conditioning strategies, which comprise ischaemic preconditioning, remote ischaemic preconditioning and ischaemic postconditioning. While much of the focus for these interventions has been on protecting the myocardium, other organs including the kidney can be similarly protected. However, translation of these beneficial effects from animal models into routine clinical practice has been less straightforward than expected. In this review, we examine the role of ischaemic conditioning strategies in reducing tissue injury from the 'bench to the bedside' and discuss the barriers to their greater translation.
Collapse
Affiliation(s)
- Kieran McCafferty
- Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University London, London, UK
| | - Conor Byrne
- Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University London, London, UK
| | - Muhammad M Yaqoob
- Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University London, London, UK
| |
Collapse
|
47
|
Endoplasmic reticulum stress in cerebral ischemia. Neurochem Int 2014; 68:18-27. [DOI: 10.1016/j.neuint.2014.02.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 12/27/2013] [Accepted: 02/03/2014] [Indexed: 12/20/2022]
|
48
|
Adrenomedullin-RAMP2 system suppresses ER stress-induced tubule cell death and is involved in kidney protection. PLoS One 2014; 9:e87667. [PMID: 24505304 PMCID: PMC3914859 DOI: 10.1371/journal.pone.0087667] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 12/29/2013] [Indexed: 11/19/2022] Open
Abstract
Various bioactive peptides have been implicated in the homeostasis of organs and tissues. Adrenomedullin (AM) is a peptide with various bioactivities. AM-receptor, calcitonin-receptor-like receptor (CLR) associates with one of the subtypes of the accessory proteins, RAMPs. Among the RAMP subisoforms, only RAMP2 knockout mice (−/−) reproduce the phenotype of embryonic lethality of AM−/−, illustrating the importance of the AM-RAMP2-signaling system. Although AM and RAMP2 are abundantly expressed in kidney, their function there remains largely unknown. We used genetically modified mice to assess the pathophysiological functions of the AM-RAMP2 system. RAMP2+/− mice and their wild-type littermates were used in a streptozotocin (STZ)-induced renal injury model. The effect of STZ on glomeruli did not differ between the 2 types of mice. On the other hand, damage to the proximal urinary tubules was greater in RAMP2+/−. Tubular injury in RAMP2+/− was resistant to correction of blood glucose by insulin administration. We examined the effect of STZ on human renal proximal tubule epithelial cells (RPTECs), which express glucose transporter 2 (GLUT2), the glucose transporter that specifically takes up STZ. STZ activated the endoplasmic reticulum (ER) stress sensor protein kinase RNA-like endoplasmic reticulum kinase (PERK). AM suppressed PERK activation, its downstream signaling, and CCAAT/enhancer-binding homologous protein (CHOP)-induced cell death. We confirmed that the tubular damage was caused by ER stress-induced cell death using tunicamycin (TUN), which directly evokes ER stress. In RAMP2+/− kidneys, TUN caused severe injury with enhanced ER stress. In wild-type mice, TUN-induced tubular damage was reversed by AM administration. On the other hand, in RAMP2+/−, the rescue effect of exogenous AM was lost. These results indicate that the AM-RAMP2 system suppresses ER stress-induced tubule cell death, thereby exerting a protective effect on kidney. The AM-RAMP2 system thus has the potential to serve as a therapeutic target in kidney disease.
Collapse
|
49
|
Li X, Zhao H, Wu Y, Zhang S, Zhao X, Zhang Y, Wang J, Wang J, Liu H. Up-regulation of hypoxia-inducible factor-1α enhanced the cardioprotective effects of ischemic postconditioning in hyperlipidemic rats. Acta Biochim Biophys Sin (Shanghai) 2014; 46:112-8. [PMID: 24389644 DOI: 10.1093/abbs/gmt132] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hyperlipidemia is an independent risk factor in the development of ischemic heart disease, which can increase myocardial susceptibility to ischemia/reperfusion (I/R) injury. Ischemic postconditioning (PostC) has now been demonstrated as a novel strategy to harness nature's protection against myocardial I/R injury in normal conditions. However, the effect of PostC on hyperlipidemic animals remains elusive. It has been shown in our previous study that PostC reduces the myocardial I/R injury, and hypoxia-inducible factor-1α (HIF-1α) may play an important role in the cardioprotective mechanisms of PostC on normal rats. Here, we tested the hypothesis that the cardioprotection of PostC on hyperlipidemic rats is associated with the up-regulated HIF-1α expression. Male Wistar rats were fed with a high-fat diet for 8 weeks, and then randomly divided into five groups: sham, I/R, dimethyloxalylglycine (DMOG) + I/R, PostC, and DMOG + PostC group. The detrimental indices induced by I/R injury included infarct size, plasma creatine kinase (CK) activity and caspase-3 activity. The results showed that PostC could reduce the infarct size, when compared with the I/R group, which was consistent with the significant lower levels of plasma CK activity and caspase-3 activity, and that it increased the expression of HIF-1α in hyperlipidemic rats. When DMOG was given before PostC to up-regulate HIF-1α protein level, the degree of I/R injury was attenuated. In conclusion, these data suggested that the up-regulation of HIF-1α may be one of the cardioprotective mechanisms of PostC against I/R injury in hyperlipidemic rats.
Collapse
Affiliation(s)
- Xiaoyu Li
- Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Lu WC, Li GY, Xie H, Qiu B, Yang RM, Guo ZZ. Erythromycin pretreatment induces tolerance against focal cerebral ischemia through up-regulation of nNOS but not down-regulation of HIF-1α in rats. Neurol Sci 2013; 35:687-93. [PMID: 24277204 DOI: 10.1007/s10072-013-1584-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Accepted: 11/12/2013] [Indexed: 01/27/2023]
Abstract
The purpose of this study was to determine whether the antibiotic erythromycin induces tolerance against focal cerebral ischemia, and the possible underlying mechanism including the involvement of neuronal nitric oxide synthase (nNOS) and hypoxia-inducible factor-1α (HIF-1α). In rat focal cerebral ischemia models, we found that erythromycin preconditioning could significantly decrease the cerebral infarct volume and brain edema. Meanwhile, the neurological deficits from day 4 through 7 after surgery were also remarkably decreased after erythromycin preconditioning. Moreover, erythromycin preconditioning induced significantly increased nNOS levels and decreased HIF-1α levels in both mRNA and protein expression. This study for the first time indicated that erythromycin preconditioning could induce focal brain ischemic tolerance and attenuate brain injury of subsequent transient focal cerebral ischemia. The potential mechanism may be due to up-regulation of nNOS, but the HIF-1α system was not involved.
Collapse
Affiliation(s)
- Wei-Cheng Lu
- Department of Neurosurgery, First Affiliated Hospital of China Medical University, No. 155, North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, People's Republic of China
| | | | | | | | | | | |
Collapse
|