1
|
Noer NK, Nielsen KL, Sverrisdóttir E, Kristensen TN, Bahrndorff S. Temporal regulation of temperature tolerances and gene expression in an arctic insect. J Exp Biol 2023; 226:jeb245097. [PMID: 37283090 DOI: 10.1242/jeb.245097] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 05/02/2023] [Indexed: 05/18/2023]
Abstract
Terrestrial arthropods in the Arctic are exposed to highly variable temperatures that frequently reach cold and warm extremes. Yet, ecophysiological studies on arctic insects typically focus on the ability of species to tolerate low temperatures, whereas studies investigating physiological adaptations of species to periodically warm and variable temperatures are few. In this study, we investigated temporal changes in thermal tolerances and the transcriptome in the Greenlandic seed bug Nysius groenlandicus, collected in the field across different times and temperatures in Southern Greenland. We found that plastic changes in heat and cold tolerances occurred rapidly (within hours) and at a daily scale in the field, and that these changes are correlated with diurnal temperature variation. Using RNA sequencing, we provide molecular underpinnings of the rapid adjustments in thermal tolerance across ambient field temperatures and in the laboratory. We show that transcriptional responses are sensitive to daily temperature changes, and days characterized by high temperature variation induced markedly different expression patterns than thermally stable days. Further, genes associated with laboratory-induced heat responses, including expression of heat shock proteins and vitellogenins, were shared across laboratory and field experiments, but induced at time points associated with lower temperatures in the field. Cold stress responses were not manifested at the transcriptomic level.
Collapse
Affiliation(s)
- Natasja Krog Noer
- Department of Chemistry and Bioscience, Aalborg University, Aalborg 9220, Denmark
| | - Kåre Lehmann Nielsen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg 9220, Denmark
| | - Elsa Sverrisdóttir
- Department of Chemistry and Bioscience, Aalborg University, Aalborg 9220, Denmark
| | | | - Simon Bahrndorff
- Department of Chemistry and Bioscience, Aalborg University, Aalborg 9220, Denmark
| |
Collapse
|
2
|
Corbel Q, Carazo P. Perception of dead conspecifics increases reproductive investment in fruit flies. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Quentin Corbel
- Ethology, Ecology and Evolution group; Cavanilles Institute of Biodiversity and Evolutionary Biology University of Valencia Valencia Spain
| | - Pau Carazo
- Ethology, Ecology and Evolution group; Cavanilles Institute of Biodiversity and Evolutionary Biology University of Valencia Valencia Spain
| |
Collapse
|
3
|
Ajayi OM, Gantz JD, Finch G, Lee RE, Denlinger DL, Benoit JB. Rapid stress hardening in the Antarctic midge improves male fertility by increasing courtship success and preventing decline of accessory gland proteins following cold exposure. J Exp Biol 2021; 224:271037. [PMID: 34297110 DOI: 10.1242/jeb.242506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/16/2021] [Indexed: 11/20/2022]
Abstract
Rapid hardening is a process that quickly improves an animal's performance following exposure to potentially damaging stress. In this study of the Antarctic midge, Belgica antarctica (Diptera, Chironomidae), we examined how rapid hardening in response to dehydration (RDH) or cold (RCH) improves male pre- and post-copulatory function when the insects are subsequently subjected to a damaging cold exposure. Neither RDH nor RCH improved survival in response to lethal cold stress, but male activity and mating success following sublethal cold exposure were enhanced. Egg viability decreased following direct exposure of the mating males to sublethal cold but improved following RCH and RDH. Sublethal cold exposure reduced the expression of four accessory gland proteins, while expression remained high in males exposed to RCH. Though rapid hardening may be cryptic in males, this study shows that it can be revealed by pre- and post-copulatory interactions with females.
Collapse
Affiliation(s)
- Oluwaseun M Ajayi
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - J D Gantz
- Department of Biology and Health Science, Hendrix College, Conway, AR 72032, USA
| | - Geoffrey Finch
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Richard E Lee
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | - David L Denlinger
- Departments of Entomology and Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
4
|
Benoit JB, Oyen K, Finch G, Gantz JD, Wendeln K, Arya T, Lee RE. Cold hardening improves larval tick questing under low temperatures at the expense of longevity. Comp Biochem Physiol A Mol Integr Physiol 2021; 257:110966. [PMID: 33895321 PMCID: PMC9936387 DOI: 10.1016/j.cbpa.2021.110966] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 02/03/2023]
Abstract
Questing in ticks is essential for locating a host, and this behavioral response can occur at regionally specific low temperatures for most tick species. Little is known about the dynamics between tick questing behavior and temperature in ticks, specifically how this may impact other aspects of tick biology. Here, we examine whether cold hardening increases questing in three larval tick species (Ixodes uriae, Dermacentor variabilis, and Amblyomma americanum) at low temperatures and whether cold hardening impacts longevity. Rapid cold hardening and prolonged cold acclimation benefitted ticks by decreasing the temperature of chill coma onset, and increased survival, activity, and questing in ticks at low temperatures. Oxygen consumption increased at low temperatures following acclimation in larvae, suggesting this process has a distinct metabolic expense. This increased metabolism associated with hardening led to a substantial reduction in larval longevity as nutrient reserves are limited and cannot be replenished until a host is located. These studies suggest that tick larvae, and likely other developmental stages, require a delicate balance between the need for questing at low temperatures and survival until the first blood meal.
Collapse
Affiliation(s)
- Joshua B. Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221,Author for correspondence: Joshua B. Benoit, Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, , Phone: 513-556-9714
| | - Kennan Oyen
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221
| | - Geoffrey Finch
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221
| | - J. D. Gantz
- Department of Biology and Health Science, Hendrix College, Conway, AR
| | - Katherine Wendeln
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221
| | - Thomas Arya
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221
| | - Richard E. Lee
- Department of Biology, Miami University, Oxford, OH 45056
| |
Collapse
|
5
|
Simultaneous Occurrence of Diapause and Cold Hardiness in Overwintering Eggs of the Apple Oystershell Scale, Lepidosaphes Malicola Borchsenius (Hem.: Diaspididae). Zool Stud 2020; 59:e25. [PMID: 33262848 DOI: 10.6620/zs.2020.59-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/20/2020] [Indexed: 11/18/2022]
Abstract
As the key pest of apple fruits, the oystershell scale, Lepidosaphes malicola Borchsenius (Hem.: Diaspididae), overwinters as diapausing eggs under the protective, waxy cover of females. In this research, the effects of diapause development, cold acclimation, and rapid cold hardening were studied on the cold hardiness of the eggs. The changes in some physiological components were also investigated. The results indicated cold exposure to be a prerequisite for the survival of the diapausing eggs of L. malicola. No eggs hatched without exposure to cold. In addition, a direct relationship was observed among cold hardiness, cold acclimation, and diapause of the eggs based on the results. The highest level of hatching (the highest cold hardiness) of the eggs (80%) occurred in the cold-acclimated eggs at the end of diapause (March). Rapid cold hardening also influenced the cold hardiness of the eggs with diapause development. At the end of diapause, the lowest (61%) and the highest (77%) rates of egg survival were observed when the eggs were exposed to 5 and -10°C for 24 h, respectively. Cold hardiness of the diapausing eggs of L. malicola was also accompanied by some physiological changes, i.e., a decrease in glycogen content and an increase in simple sugar, lipid, and protein contents. The lowest glycogen content (about 50 μg/g) and the highest amounts of total simple sugars (454 μg/g) of lipids (542 μg/g) and proteins (84 μg/g) were observed in the cold-acclimated eggs at the end of diapause.
Collapse
|
6
|
Rosa E, Saastamoinen M. Beyond thermal melanism: association of wing melanization with fitness and flight behaviour in a butterfly. Anim Behav 2020; 167:275-288. [PMID: 32952201 PMCID: PMC7487764 DOI: 10.1016/j.anbehav.2020.07.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cold developmental conditions can greatly affect adult life history of ectotherms in seasonal habitats. Such effects are mostly negative, but sometimes adaptive. Here, we tested how cold conditions experienced during pupal development affect adult wing melanization of an insect ectotherm, the Glanville fritillary butterfly, Melitaea cinxia. We also assessed how in turn previous cold exposure and increased melanization can shape adult behaviour and fitness, by monitoring individuals in a seminatural set-up. We found that, despite pupal cold exposure inducing more melanization, wing melanization was not linked to adult thermoregulation preceding flight, under the conditions tested. Conversely, wing-vibrating behaviour had a major role in producing heat preceding flight. Moreover, more melanized individuals were more mobile across the experimental set-up. This may be caused by a direct impact of melanization on flight ability or a more indirect impact of coloration on behaviours such as mate search strategies and/or eagerness to disperse to more suitable mating habitats. We also found that more melanized individuals of both sexes had reduced mating success and produced fewer offspring, which suggests a clear fitness cost of melanization. Whether the reduced mating success is dictated by impaired mate search behaviour, reduced physical condition leading to a lower dominance status or weakened visual signalling remains unknown. In conclusion, while there was no clear role of melanization in providing a thermal advantage under our seminatural conditions, we found a fitness cost of being more melanized, which potentially impacted adult space use behaviour.
Collapse
Affiliation(s)
- Elena Rosa
- Life-history Evolution Research Group, University of Helsinki, Organismal and Evolutionary Biology Research Programme, Helsinki, Finland
| | - Marjo Saastamoinen
- Life-history Evolution Research Group, University of Helsinki, Organismal and Evolutionary Biology Research Programme, Helsinki, Finland.,Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
7
|
Comparison of Static and Dynamic Assays When Quantifying Thermal Plasticity of Drosophilids. INSECTS 2020; 11:insects11080537. [PMID: 32824251 PMCID: PMC7469138 DOI: 10.3390/insects11080537] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023]
Abstract
Simple Summary Temperature directly affects many biological processes, from enzymatic reactions to population growth, and thermal stress tolerance is central to our understanding of the global distribution and abundance of species and populations. Given the importance of thermal stress tolerance in ecophysiology and evolutionary biology it is important to be able to measure thermal stress resistance accurately and in ecologically relevant ways. Several methods for such quantification exist in the arthropod literature and the comparability of different methods is currently being debated. Here we reconcile the two most commonly used thermal assays (dynamic ramping and static knockdown assays) for quantifying insect heat tolerance limits and plastic responses using a newly suggested modeling technique. We find that results obtained on the basis of the two assays are highly correlated and that data from one assay can therefore reasonably well predict estimates from the other. These data are of general relevance to the study of thermal biology of ectotherms. Abstract Numerous assays are used to quantify thermal tolerance of arthropods including dynamic ramping and static knockdown assays. The dynamic assay measures a critical temperature while the animal is gradually heated, whereas the static assay measures the time to knockdown at a constant temperature. Previous studies indicate that heat tolerance measured by both assays can be reconciled using the time × temperature interaction from “thermal tolerance landscapes” (TTLs) in unhardened animals. To investigate if this relationship remains true within hardened animals, we use a static assay to assess the effect of heat hardening treatments on heat tolerance in 10 Drosophila species. Using this TTL approach and data from the static heat knockdown experiments, we model the expected change in dynamic heat knockdown temperature (CTmax: temperature at which flies enter coma) and compare these predictions to empirical measurements of CTmax. We find that heat tolerance and hardening capacity are highly species specific and that the two assays report similar and consistent responses to heat hardening. Tested assays are therefore likely to measure the same underlying physiological trait and provide directly comparable estimates of heat tolerance. Regardless of this compliance, we discuss why and when static or dynamic assays may be more appropriate to investigate ectotherm heat tolerance.
Collapse
|
8
|
Gantz JD, Spong KE, Seroogy EA, Robertson RM, Lee RE. Effects of brief chilling and desiccation on ion homeostasis in the central nervous system of the migratory locust, Locusta migratoria. Comp Biochem Physiol A Mol Integr Physiol 2020; 249:110774. [PMID: 32712084 DOI: 10.1016/j.cbpa.2020.110774] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 07/17/2020] [Accepted: 07/19/2020] [Indexed: 01/20/2023]
Abstract
In insects, chilling, anoxia, and dehydration are cues to trigger rapid physiological responses enhancing stress tolerance within minutes. Recent evidence suggests that responses elicited by different cues are mechanistically distinct from each other, though these differences have received little attention. Further, the effects are not well studied in neural tissue. In this study, we examined how brief exposure to desiccation and chilling affect ion homeostatic mechanisms in metathoracic ganglion of the migratory locust, Locusta migratoria. Both desiccation and chilling enhanced resistance to anoxia, though only chilling hastened recovery from anoxic coma. Similarly, only chilling enhanced resistance to pharmacological perturbation of neuronal ion homeostasis. Our results indicate that chilling and desiccation trigger mechanistically distinct responses and, while both may be important for neuronal ion homeostasis, chilling has a larger effect on this tissue. SUMMARY STATEMENT: This is one of few studies to demonstrate the importance of the central nervous system in rapid acclimatory responses in insects.
Collapse
Affiliation(s)
- J D Gantz
- Department of Biology, Miami University, Oxford, OH 45056, USA; Department of Biology and Health Sciences, Hendrix College, Conway, AR 72032, USA.
| | - Kristin E Spong
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Erik A Seroogy
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | | | - Richard E Lee
- Department of Biology, Miami University, Oxford, OH 45056, USA
| |
Collapse
|
9
|
Garcia MJ, Littler AS, Sriram A, Teets NM. Distinct cold tolerance traits independently vary across genotypes in Drosophila melanogaster. Evolution 2020; 74:1437-1450. [PMID: 32463118 DOI: 10.1111/evo.14025] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 05/25/2020] [Indexed: 12/27/2022]
Abstract
Cold tolerance, the ability to cope with low temperature stress, is a critical adaptation in thermally variable environments. An individual's cold tolerance comprises several traits including minimum temperatures for growth and activity, ability to survive severe cold, and ability to resume normal function after cold subsides. Across species, these traits are correlated, suggesting they were shaped by shared evolutionary processes or possibly share physiological mechanisms. However, the extent to which cold tolerance traits and their associated mechanisms covary within populations has not been assessed. We measured five cold tolerance traits-critical thermal minimum, chill coma recovery, short- and long-term cold tolerance, and cold-induced changes in locomotor behavior-along with cold-induced expression of two genes with possible roles in cold tolerance (heat shock protein 70 and frost)-across 12 lines of Drosophila melanogaster derived from a single population. We observed significant genetic variation in all traits, but few were correlated across genotypes, and these correlations were sex-specific. Further, cold-induced gene expression varied by genotype, but there was no evidence supporting our hypothesis that cold-hardy lines would have either higher baseline expression or induction of stress genes. These results suggest cold tolerance traits possess unique mechanisms and have the capacity to evolve independently.
Collapse
Affiliation(s)
- Mark J Garcia
- Department of Entomology, College of Agriculture, Food, and Environment, University of Kentucky, Lexington, Kentucky, 40546
| | - Aerianna S Littler
- Department of Entomology, College of Agriculture, Food, and Environment, University of Kentucky, Lexington, Kentucky, 40546
| | - Aditya Sriram
- Department of Entomology, College of Agriculture, Food, and Environment, University of Kentucky, Lexington, Kentucky, 40546
| | - Nicholas M Teets
- Department of Entomology, College of Agriculture, Food, and Environment, University of Kentucky, Lexington, Kentucky, 40546
| |
Collapse
|
10
|
Berry R, López-Martínez G. A dose of experimental hormesis: When mild stress protects and improves animal performance. Comp Biochem Physiol A Mol Integr Physiol 2020; 242:110658. [PMID: 31954863 PMCID: PMC7066548 DOI: 10.1016/j.cbpa.2020.110658] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/13/2020] [Accepted: 01/13/2020] [Indexed: 01/22/2023]
Abstract
The adaptive response characterized by a biphasic curve is known as hormesis. In a hormesis framework, exposure to low doses leads to protective and beneficial responses while exposures to high doses are damaging and detrimental. Comparative physiologists have studied hormesis for over a century, but our understanding of hormesis is fragmented due to rifts in consensus and taxonomic-specific terminology. Hormesis has been and is currently known by multiple names; preconditioning, conditioning, pretreatment, cross tolerance, adaptive homeostasis, and rapid stress hardening (mostly low temperature: rapid cold hardening). These are the most common names used to describe adaptive stress responses in animals. These responses are mechanistically similar, while having stress-specific responses, but they all can fall under the umbrella of hormesis. Here we review how hormesis studies have revealed animal performance benefits in response to changes in oxygen, temperature, ionizing radiation, heavy metals, pesticides, dehydration, gravity, and crowding. And how almost universally, hormetic responses are characterized by increases in performance that include either increases in reproduction, longevity, or both. And while the field can benefit from additional mechanistic work, we know that many of these responses are rooted in increases of antioxidants and oxidative stress protective mechanisms; including heat shock proteins. There is a clear, yet not fully elucidated, overlap between hormesis and the preparation for oxidative stress theory; which predicts part of the responses associated with hormesis. We discuss this, and the need for additional work into animal hormetic effects particularly focusing on the cost of hormesis.
Collapse
Affiliation(s)
- Raymond Berry
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, United States of America
| | - Giancarlo López-Martínez
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58102, United States of America.
| |
Collapse
|
11
|
Teets NM, Gantz JD, Kawarasaki Y. Rapid cold hardening: ecological relevance, physiological mechanisms and new perspectives. ACTA ACUST UNITED AC 2020; 223:223/3/jeb203448. [PMID: 32051174 DOI: 10.1242/jeb.203448] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Rapid cold hardening (RCH) is a type of phenotypic plasticity that allows ectotherms to quickly enhance cold tolerance in response to brief chilling (lasting minutes to hours). In this Review, we summarize the current state of knowledge of this important phenotype and provide new directions for research. As one of the fastest adaptive responses to temperature known, RCH allows ectotherms to cope with sudden cold snaps and to optimize their performance during diurnal cooling cycles. RCH and similar phenotypes have been observed across a diversity of ectotherms, including crustaceans, terrestrial arthropods, amphibians, reptiles, and fish. In addition to its well-defined role in enhancing survival to extreme cold, RCH also protects against nonlethal cold injury by preserving essential functions following cold stress, such as locomotion, reproduction, and energy balance. The capacity for RCH varies across species and across genotypes of the same species, indicating that RCH can be shaped by selection and is likely favored in thermally variable environments. Mechanistically, RCH is distinct from other rapid stress responses in that it typically does not involve synthesis of new gene products; rather, the existing cellular machinery regulates RCH through post-translational signaling mechanisms. However, the protective mechanisms that enhance cold hardiness are largely unknown. We provide evidence that RCH can be induced by multiple triggers in addition to low temperature, and that rapidly induced tolerance and cross-tolerance to a variety of environmental stressors may be a general feature of stress responses that requires further investigation.
Collapse
Affiliation(s)
- Nicholas M Teets
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA
| | - J D Gantz
- Biology Department, Hendrix College, Conway, AK 72032, USA
| | - Yuta Kawarasaki
- Department of Biology, Gustavus Adolphus College, Saint Peter, MN 56082, USA
| |
Collapse
|
12
|
Macchiano A, Sasson DA, Leith NT, Fowler-Finn KD. Patterns of Thermal Sensitivity and Sex-Specificity of Courtship Behavior Differs Between Two Sympatric Species of Enchenopa Treehopper. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00361] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
13
|
Motswagole R, Gotcha N, Nyamukondiwa C. Thermal Biology and Seasonal Population Abundance of Bactrocera dorsalis Hendel (Diptera: Tephritidae): Implications on Pest Management. INTERNATIONAL JOURNAL OF INSECT SCIENCE 2019; 11:1179543319863417. [PMID: 31488955 PMCID: PMC6710710 DOI: 10.1177/1179543319863417] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 06/24/2019] [Indexed: 06/10/2023]
Abstract
Since the first detection of Bactrocera dorsalis in Botswana in 2010, the establishment, spread, and response to prevailing Botswana microclimates under rapidly changing environments remain unknown. This study investigated the presence, seasonal population abundance, and thermal biology of B. dorsalis in Botswana. We measured B. dorsalis thermal tolerance vis critical thermal limits (CTLs) and lethal temperature assays (LTAs) to understand how temperature largely impacts on fitness and hence invasive potential. Seasonal monitoring results indicated B. dorsalis establishment in the Chobe district (its first area of detection). Trap catches showed continuous adult flies' presence all year round and high average monthly trap catches as compared with other districts. Furthermore, B. dorsalis was detected south of Botswana, including Kgatleng, Kweneng, South-east, and Southern districts. Critical thermal maxima (CTmax) to activity for adults and larvae were 46.16°C and 45.23°C, whereas critical thermal minima (CTmin) to activity for adults and larvae were 9.1°C and 7.3°C, respectively. Moreover, we found an improved CTmin for larvae at a slower ramping rate, indicating potential rapid cold hardening. The lower lethal temperature (LLT) and upper lethal temperature (ULT) assays revealed a reduction in survival at all the developmental stages as severity and duration of both temperature extremes increased. Microclimatic temperatures recorded in Botswana showed that environmental temperatures fall within the thermal breath of B. dorsalis activity measured here, indicating a potential conducive climate niche for the insect pest across the country, albeit other factors, e.g., host availability, play a significant role. These results therefore suggest that Botswana microclimatic temperatures aided B. dorsalis activity and invasion pathway are thus significant in mapping invasions and pest risk analysis, and may also aid in designing pest management strategies.
Collapse
Affiliation(s)
| | | | - Casper Nyamukondiwa
- Casper Nyamukondiwa, Department of Biological Sciences & Biotechnology, Botswana International University of Science & Technology, Private Bag 16, Palapye, Botswana.
| |
Collapse
|
14
|
Jensen A, Alemu T, Alemneh T, Pertoldi C, Bahrndorff S. Thermal acclimation and adaptation across populations in a broadly distributed soil arthropod. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13291] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Anne Jensen
- Department of Chemistry and Bioscience; Aalborg University; Aalborg East Denmark
| | - Tibebu Alemu
- Department of Biology; Dire Dawa University; Dire Dawa Ethiopia
| | - Temesgen Alemneh
- Department of Environmental Health Science and Technology; Jimma University; Jimma Ethiopia
| | - Cino Pertoldi
- Department of Chemistry and Bioscience; Aalborg University; Aalborg East Denmark
- Aalborg Zoo; Aalborg C Denmark
| | - Simon Bahrndorff
- Department of Chemistry and Bioscience; Aalborg University; Aalborg East Denmark
| |
Collapse
|
15
|
Garcia MJ, Teets NM. Cold stress results in sustained locomotor and behavioral deficits in Drosophila melanogaster. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2019; 331:192-200. [PMID: 30609298 DOI: 10.1002/jez.2253] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/06/2018] [Accepted: 12/07/2018] [Indexed: 12/19/2022]
Abstract
Tolerance of climatic stressors is an important predictor of the current distribution of insect species, their potential to invade new environments, and their responses to rapid climate change. Cold stress causes acute injury to nerves and muscles, and here we tested the hypothesis that low temperature causes sublethal deficits in locomotor behaviors that are dependent on neuromuscular function. To do so, we applied a previously developed assay, the rapid iterative negative geotaxis (RING) assay, to investigate behavioral consequences of cold stress in Drosophila melanogaster. The RING assay allows for rapid assessment of negative geotaxis behavior by quantifying climbing height and willingness to climb after cold stress. We exposed flies to cold stress at 0°C and assessed the extent to which duration of cold stress, recovery time, and cold acclimation influenced climbing performance. There was a clear dose-response relationship between cold exposure and performance deficits, with climbing height and willingness decreasing as cold exposure increased from 2 to 24 hr. Following cold exposure of an intermediate duration (12 hr), climbing height and willingness gradually improved as recovery time increased from 4 to 72 hr but flies never fully recovered. Finally, cold acclimation improved overall climbing height and willingness in both untreated and cold-stressed flies but did not prevent a reduction in climbing performance. Thus, cold stress causes deficits in locomotor and behavior that are dependent on the dose of cold exposure and persist long after the stress subsides. These results likely have implications for the ecological and evolutionary responses of insect populations to thermally variable environments.
Collapse
Affiliation(s)
- Mark J Garcia
- Department of Entomology, College of Agriculture, Food, and Environment, University of Kentucky, Lexington, Kentucky
| | - Nicholas M Teets
- Department of Entomology, College of Agriculture, Food, and Environment, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
16
|
Teets NM, Kawarasaki Y, Potts LJ, Philip BN, Gantz JD, Denlinger DL, Lee RE. Rapid cold hardening protects against sublethal freezing injury in an Antarctic insect. J Exp Biol 2019; 222:jeb.206011. [DOI: 10.1242/jeb.206011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/22/2019] [Indexed: 01/17/2023]
Abstract
Rapid cold hardening (RCH) is a type of beneficial phenotypic plasticity that occurs on extremely short time scales (minutes to hours) to enhance insects’ ability to cope with cold snaps and diurnal temperature fluctuations. RCH has a well-established role in extending lower lethal limits, but its ability to prevent sublethal cold injury has received less attention. The Antarctic midge, Belgica antarctica is Antarctica's only endemic insect and has a well-studied RCH response that extends freeze tolerance in laboratory conditions. However, the discriminating temperatures used in previous studies of RCH are far below those ever experienced in the field. Here, we tested the hypothesis that RCH protects against nonlethal freezing injury. Larvae of B. antarctica were exposed to either control (2°C), direct freezing (-9°C for 24 h), or RCH (-5°C for 2 h followed by -9°C for 24 h). All larvae survived both freezing treatments, but RCH larvae recovered more quickly from freezing stress and had significantly higher metabolic rates during recovery. RCH larvae also sustained less damage to fat body and midgut tissue and had lower expression of two heat shock protein transcripts (hsp60 and hsp90), which is consistent with RCH protecting against protein denaturation. The protection afforded by RCH resulted in energy savings; directly frozen larvae experienced a significant depletion in glycogen energy stores that was not observed in RCH larvae. Together, these results provide strong evidence that RCH protects against a variety of sublethal freezing injuries and allows insects to rapidly fine-tune their performance in thermally variable environments.
Collapse
Affiliation(s)
| | - Yuta Kawarasaki
- Department of Biology, Gustavus Adolphus College, Saint Peter, MN USA
| | - Leslie J. Potts
- Department of Entomology, University of Kentucky, Lexington, KY USA
| | | | - J. D. Gantz
- Department of Biology, Miami University, Oxford, OH USA
- Current address: Biology Department, Hendrix College, Conway, AR, USA
| | | | | |
Collapse
|
17
|
Gerken AR, Eller-Smith OC, Morgan TJ. Speed of exposure to rapid cold hardening and genotype drive the level of acclimation response in Drosophila melanogaster. J Therm Biol 2018; 76:21-28. [DOI: 10.1016/j.jtherbio.2018.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 06/19/2018] [Accepted: 06/25/2018] [Indexed: 10/28/2022]
|
18
|
Mutamiswa R, Chidawanyika F, Nyamukondiwa C. Thermal plasticity potentially mediates the interaction between host Chilo partellus Swinhoe (Lepidoptera: Crambidae) and endoparasitoid Cotesia flavipes Cameron (Hymenoptera: Braconidae) in rapidly changing environments. PEST MANAGEMENT SCIENCE 2018; 74:1335-1345. [PMID: 29193807 DOI: 10.1002/ps.4807] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Increasing climatic average temperatures and variability elicit various insect physiological responses that affect fitness and survival and may influence subsequent trophic interactions in agroecosystems. In this background, we investigated short- and long-term plastic responses to temperature of the laboratory-reared stemborer Chilo partellus and its larval endoparasitoid Cotesia flavipes. RESULTS Rapid cold- and heat-hardening effects in C. partellus larvae, pupae and adults and C. flavipes adults were highly significant (P < 0.001). High-temperature acclimation improved critical thermal limits and heat knockdown time in C. partellus larvae and C. flavipes adults, respectively. Low-temperature acclimation enhanced the supercooling point in C. flavipes and the chill coma recovery time in both C. partellus larvae and C. flavipes adults. CONCLUSION The results of this study suggest that thermal plasticity may enhance the survival of these two species when they are subjected to lethal low and high temperatures. However, C. partellus appeared to be more plastic than C. flavipes. These results have three major implications: (1) C. partellus may inhabit slightly warmer environments than C. flavipes, suggesting a potential mismatch in biogeography; (2) host-parasitoid relationships are complex and are probably trait dependent, and (3) host-parasitoid differential thermal plastic responses may offset biocontrol efficacy. These results may help inform biocontrol decision making under conditions of global change. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Reyard Mutamiswa
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology (BIUST), Palapye, Botswana
| | - Frank Chidawanyika
- Agricultural Research Council, Plant Protection Research, Weeds Division, Hilton, South Africa
- School of Lifesciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Casper Nyamukondiwa
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology (BIUST), Palapye, Botswana
| |
Collapse
|
19
|
Everman ER, Delzeit JL, Hunter FK, Gleason JM, Morgan TJ. Costs of cold acclimation on survival and reproductive behavior in Drosophila melanogaster. PLoS One 2018; 13:e0197822. [PMID: 29791517 PMCID: PMC5965859 DOI: 10.1371/journal.pone.0197822] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 05/09/2018] [Indexed: 12/27/2022] Open
Abstract
Fitness is determined by the ability of an organism to both survive and reproduce; however, the mechanisms that lead to increased survival may not have the same effect on reproductive success. We used nineteen natural Drosophila melanogaster genotypes from the Drosophila Genetic Reference Panel to determine if adaptive plasticity following short-term acclimation through rapid cold-hardening (RCH) affects mating behavior and mating success. We confirmed that exposure to the acclimation temperature is beneficial to survival following cold stress; however, we found that this same acclimation temperature exposure led to less efficient male courtship and a significant decrease in the likelihood of mating. Cold tolerance and the capacity to respond plastically to cold stress were not correlated with mating behavior following acclimation, suggesting that the genetic control of the physiological effects of the cold temperature exposure likely differ between survival and behavioral responses. We also tested whether the exposure of males to the acclimation temperature influenced courtship song. This exposure again significantly increased courtship duration; however, courtship song was unchanged. These results illustrate costs of short-term acclimation on survival and reproductive components of fitness and demonstrate the pronounced effect that short-term thermal environment shifts can have on reproductive success.
Collapse
Affiliation(s)
- Elizabeth R. Everman
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - Jennifer L. Delzeit
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - F. Kate Hunter
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - Jennifer M. Gleason
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
| | - Theodore J. Morgan
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
- * E-mail:
| |
Collapse
|
20
|
Visser B, Williams CM, Hahn DA, Short CA, López-Martínez G. Hormetic benefits of prior anoxia exposure in buffering anoxia stress in a soil-pupating insect. ACTA ACUST UNITED AC 2018; 221:jeb.167825. [PMID: 29367272 DOI: 10.1242/jeb.167825] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/17/2018] [Indexed: 12/17/2022]
Abstract
Oxygen is essential for most animals, and exposure to a complete lack of oxygen, i.e. anoxia, can result in irreparable damage to cells that can extend up to the organismal level to negatively affect performance. Although it is known that brief anoxia exposure may confer cross-tolerance to other stressors, few data exist on the biochemical and organismal consequences of repeated intermittent bouts of anoxia exposure. In nature, the Caribbean fruit fly, Anastrepha suspensa (Diptera: Tephritidae), is frequently exposed to heavy tropical rainfall while pupating in the soil, equating to multiple exposures to hypoxia or anoxia during development. Here, we tested whether prior anoxia exposures during pupal development can induce a beneficial acclimation response, and we explored the consequences of prior exposure for both whole-organism performance and correlated biochemical metrics. Pharate adults (the last developmental stage in the pupal case) were most sensitive to anoxia exposure, showing decreased survival and fertility compared with controls. These negative impacts were ameliorated by exposure to anoxia in earlier pupal developmental stages, indicating a hormetic effect of prior anoxia exposure. Anoxia exposure early in pupal development reduced the oxygen debt repaid after anoxia exposure relative to pharate adults experiencing anoxia for the first time. Lipid levels were highest in all pupal stages when exposed to prior anoxia. Prior anoxia thus benefits organismal performance and relocates resources towards lipid storage throughout pupal-adult development.
Collapse
Affiliation(s)
- Bertanne Visser
- Evolutionary Ecology and Genetics Group, Biodiversity Research Centre, Earth and Life Institute, Université catholique de Louvain, Croix du Sud 4-5, 1348 Louvain-la-Neuve, Belgium.,Department of Entomology and Nematology, College of Agriculture and Life Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Caroline M Williams
- Department of Entomology and Nematology, College of Agriculture and Life Sciences, University of Florida, Gainesville, FL 32611, USA.,Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Daniel A Hahn
- Department of Entomology and Nematology, College of Agriculture and Life Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Clancy A Short
- Department of Entomology and Nematology, College of Agriculture and Life Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Giancarlo López-Martínez
- Department of Entomology and Nematology, College of Agriculture and Life Sciences, University of Florida, Gainesville, FL 32611, USA .,Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
| |
Collapse
|
21
|
Everman ER, Morgan TJ. Antagonistic pleiotropy and mutation accumulation contribute to age-related decline in stress response. Evolution 2018; 72:303-317. [PMID: 29214647 DOI: 10.1111/evo.13408] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 11/10/2017] [Accepted: 11/13/2017] [Indexed: 01/17/2023]
Abstract
As organisms age, the effectiveness of natural selection weakens, leading to age-related decline in fitness-related traits. The evolution of age-related changes associated with senescence is likely influenced by mutation accumulation (MA) and antagonistic pleiotropy (AP). MA predicts that age-related decline in fitness components is driven by age-specific sets of alleles, nonnegative genetic correlations within trait across age, and an increase in the coefficient of genetic variance. AP predicts that age-related decline in a trait is driven by alleles with positive effects on fitness in young individuals and negative effects in old individuals, and is expected to lead to negative genetic correlations within traits across age. We build on these predictions using an association mapping approach to investigate the change in additive effects of SNPs across age and among traits for multiple stress-response fitness-related traits, including cold stress with and without acclimation and starvation resistance. We found support for both MA and AP theories of aging in the age-related decline in stress tolerance. Our study demonstrates that the evolution of age-related decline in stress tolerance is driven by a combination of alleles that have age-specific additive effects, consistent with MA, as well as nonindependent and antagonistic genetic architectures characteristic of AP.
Collapse
Affiliation(s)
- Elizabeth R Everman
- Division of Biology, Kansas State University, Manhattan, Kansas 66506
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045
| | - Theodore J Morgan
- Division of Biology, Kansas State University, Manhattan, Kansas 66506
| |
Collapse
|
22
|
Sorby KL, Green MP, Dempster TD, Jessop TS. Can physiological engineering/programming increase multi-generational thermal tolerance to extreme temperature events? J Exp Biol 2018; 221:jeb.174672. [DOI: 10.1242/jeb.174672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 05/22/2018] [Indexed: 02/02/2023]
Abstract
Organisms increasingly encounter higher frequencies of extreme weather events as a consequence of global climate change. Currently, few strategies are available to mitigate climate change effects on animals arising from acute extreme high temperature events. We tested the capacity of physiological engineering to influence the intra- and multi-generational upper thermal tolerance capacity of a model organism Artemia, subjected to extreme high temperatures. Enhancement of specific physiological regulators during development could affect thermal tolerances or life-history attributes affecting subsequent fitness. Using experimental Artemia populations we exposed F0 individuals to one of four treatments; heat hardening (28°C to 36°C, 1°C per 10 minutes), heat hardening plus serotonin (0.056 µg ml−1), heat hardening plus methionine (0.79 mg ml−1), and a control treatment. Regulator concentrations were based on previous literature. Serotonin may promote thermotolerance, acting upon metabolism and life-history. Methionine acts as a methylation agent across generations. For all groups, measurements were collected for three performance traits of individual thermal tolerance (upper sublethal thermal limit, lethal limit, and dysregulation range) over two generations. Results showed no treatment increased upper thermal limit during acute thermal stress, although serotonin-treated and methionine-treated individuals outperformed controls across multiple thermal performance traits. Additionally, some effects were evident across generations. Together these results suggest phenotypic engineering provides complex outcomes; and if implemented with heat hardening can further influence performance in multiple thermal tolerance traits, within and across generations. Potentially, such techniques could be up-scaled to provide resilience and stability in populations susceptible to extreme temperature events.
Collapse
Affiliation(s)
- Kris L. Sorby
- School of BioSciences, University of Melbourne, Parkville 3010, Australia
| | - Mark P. Green
- School of BioSciences, University of Melbourne, Parkville 3010, Australia
| | - Tim D. Dempster
- School of BioSciences, University of Melbourne, Parkville 3010, Australia
| | - Tim S. Jessop
- School of BioSciences, University of Melbourne, Parkville 3010, Australia
| |
Collapse
|
23
|
Saeidi F, Moharramipour S, Mikani A. Rapid Cold Hardening Capacity and Its Impact on Performance of Russian Wheat Aphid (Hemiptera: Aphididae). ENVIRONMENTAL ENTOMOLOGY 2017; 46:954-959. [PMID: 28541434 DOI: 10.1093/ee/nvx087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Indexed: 06/07/2023]
Abstract
The Russian wheat aphid, Diuraphis noxia (Kurdjumov), is one of the most important pests of wheat and barley in most wheat-producing countries. Rapid cold hardiness (RCH) is a capacity of insects to develop, within hours, protection against subfreezing temperatures that plays an important role in aphid survival in response to sudden decreases in air temperature. In this research, we investigated the duration and rate of cooling on the induction of RCH of D. noxia and the costs of RCH on aphid development and fecundity. By transferring aphids directly from 20 °C to a range of subzero temperatures for 2 h, the lower lethal temperature for 80% mortality (LT80) was determined to be - 11.9 °C. Preconditioning the aphids at 0 °C for 1-3 h prior to exposure at (LT80) (-11.9 °C) resulted in a sharp increase in survival, with little change with longer durations of preconditioning. The slowest cooling rate (0.05 °C/min) increased survival fourfold, whereas rates from 0.1 to 1 °C/min increased survival twofold compared with a direct transfer to 0 °C, regardless of aphid stage used. Deleterious effects of RCH were not observed on aphid development, longevity, or fecundity. The present study indicates that RCH is induced in D. noxia in just a few hours in response to sudden lowering of temperatures to freezing, with little or no cost in reproductive capacity.
Collapse
Affiliation(s)
- Fatemeh Saeidi
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran 14115-336, Iran
| | - Saeid Moharramipour
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran 14115-336, Iran
| | - Azam Mikani
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran 14115-336, Iran
| |
Collapse
|
24
|
Affiliation(s)
- Johannes Overgaard
- Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark;
| | - Heath A. MacMillan
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
25
|
Newman CE, Toxopeus J, Udaka H, Ahn S, Martynowicz DM, Graether SP, Sinclair BJ, Percival-Smith A. CRISPR-induced null alleles show that Frost protects Drosophila melanogaster reproduction after cold exposure. J Exp Biol 2017; 220:3344-3354. [DOI: 10.1242/jeb.160176] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/09/2017] [Indexed: 12/20/2022]
Abstract
The ability to survive and reproduce after cold exposure is important in all kingdoms of life. However, even in a sophisticated genetic model system like Drosophila melanogaster, few genes have been identified as functioning in cold tolerance. The accumulation of the Frost (Fst) gene transcript increases after cold exposure, making it a good candidate for a gene that has a role in cold tolerance. However, despite extensive RNAi knockdown analysis, no role in cold tolerance has been assigned to Fst. CRISPR is an effective technique for completely knocking down genes, and less likely to produce off-target effects than GAL4-UAS RNAi systems. We have used CRISPR-mediated homologous recombination to generate Fst null alleles, and these Fst alleles uncovered a requirement for FST protein in maintaining female fecundity following cold exposure. However, FST does not have a direct role in survival following cold exposure. FST mRNA accumulates in the Malpighian tubules, and the FST protein is a highly disordered protein with a putative signal peptide for export from the cell. Future work is needed to determine whether FST is exported from the Malpighian tubules and directly interacts with female reproductive tissues post-cold exposure, or if it is required for other repair/recovery functions that indirectly alter energy allocation to reproduction.
Collapse
Affiliation(s)
- Claire E. Newman
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Jantina Toxopeus
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Hiroko Udaka
- Department of Biology, University of Western Ontario, London, ON, Canada
- Present Address: Department of Zoology, Kyoto University, Kyoto, Japan
| | - Soohyun Ahn
- Department of Biology, University of Western Ontario, London, ON, Canada
- Present Address: Melbourne Dental School, University of Melbourne, Melbourne, VIC, Australia
| | - David M. Martynowicz
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Steffen P. Graether
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Brent J. Sinclair
- Department of Biology, University of Western Ontario, London, ON, Canada
| | | |
Collapse
|
26
|
Yi SX, Gantz JD, Lee RE. Desiccation enhances rapid cold-hardening in the flesh fly Sarcophaga bullata: evidence for cross tolerance between rapid physiological responses. J Comp Physiol B 2016; 187:79-86. [PMID: 27568301 DOI: 10.1007/s00360-016-1030-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/29/2016] [Accepted: 08/22/2016] [Indexed: 10/21/2022]
Abstract
Many insects use rapid cold-hardening (RCH), a physiological response to sub-lethal exposure to stressors, such as chilling and desiccation, to enhance their cold tolerance within minutes. Recently, drought-induced RCH, triggered by brief, mild desiccation, was described in larvae of the freeze-tolerant gall fly (Eurosta solidaginis). However, its prevalence and ecological significance in other insects is not known. Consequently, we used a freeze-intolerant model, the flesh fly, Sarcophaga bullata, to investigate the effects and mechanisms of drought-induced RCH. In addition, we investigated how drought- and cold-induced RCH interact by exposing flies to both desiccation and chilling. Desiccation for 3 h increased larval pupariation after cold shock from 28 to 40 %-the first example of drought-induced RCH in both a freeze-intolerant insect and in a non-overwintering life stage. We also found that desiccation and chilling together enhanced the cold hardiness of larvae and adults more than either did separately, suggesting that drought and cold trigger distinct physiological mechanisms that interact to afford greater cold tolerance. These results suggest that drought-induced RCH is a highly conserved response used by insects with diverse life history strategies. Furthermore, the protective interaction between drought- and cold-induced RCH suggests that, in nature, insects use multiple cues and physiological mechanisms to fine-tune their response to changing ambient conditions.
Collapse
Affiliation(s)
- Shu-Xia Yi
- Department of Biology, Miami University, 700 East High Street, Oxford, OH, 45056, USA.
| | - J D Gantz
- Department of Biology, Miami University, 700 East High Street, Oxford, OH, 45056, USA
| | - Richard E Lee
- Department of Biology, Miami University, 700 East High Street, Oxford, OH, 45056, USA
| |
Collapse
|
27
|
Singh K, Prasad NG. Evolution of pre- and post-copulatory traits in female Drosophila melanogaster as a correlated response to selection for resistance to cold stress. JOURNAL OF INSECT PHYSIOLOGY 2016; 91-92:26-33. [PMID: 27317621 DOI: 10.1016/j.jinsphys.2016.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 06/12/2016] [Accepted: 06/13/2016] [Indexed: 06/06/2023]
Abstract
Exposure to low temperatures reduces gamete viability and fecundity in females of insect species like Drosophila. Hence, adaptation to cold stress can in principle involve modifications in reproductive traits in females. Studies on resistance to cold stress have mostly addressed the evolution of adult survivorship post cold shock. Very few studies have addressed the evolution of reproductive traits in females in response to cold stress. We have successfully selected replicate populations of Drosophila melanogaster for resistance to cold shock. After 50 generations of selection, we investigated pre- and post-copulatory traits i.e. mating latency, copulation duration, mating frequency and progeny production in female flies exposed to cold shock or control conditions. Post cold shock, females from the selected populations were better at recovery in terms of mating latency, mating success, and progeny production relative to females from the control populations. Performance of the two types of females was not different under control conditions. These findings clearly indicate that adaptation to cold stress involves rapid modification of the reproductive traits.
Collapse
Affiliation(s)
- Karan Singh
- Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, PO Manauli, Punjab 140306, India.
| | - Nagaraj Guru Prasad
- Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, PO Manauli, Punjab 140306, India.
| |
Collapse
|
28
|
Pujol-Lereis LM, Fagali NS, Rabossi A, Catalá Á, Quesada-Allué LA. Chill-coma recovery time, age and sex determine lipid profiles in Ceratitis capitata tissues. JOURNAL OF INSECT PHYSIOLOGY 2016; 87:53-62. [PMID: 26868723 DOI: 10.1016/j.jinsphys.2016.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 12/21/2015] [Accepted: 02/06/2016] [Indexed: 06/05/2023]
Abstract
The remodeling of membrane composition by changes in phospholipid head groups and fatty acids (FA) degree of unsaturation has been associated with the maintenance of membrane homeostasis under stress conditions. Overall lipid levels and the composition of cuticle lipids also influence insect stress resistance and tissue protection. In a previous study, we demonstrated differences in survival, behavior and Cu/Zn superoxide dismutase gene expression between subgroups of Ceratitis capitata flies that had a reversible recovery from chill-coma and those that developed chilling-injury. Here, we analyzed lipid profiles from comparable subgroups of 15 and 30-day-old flies separated according to their recovery time after a chill-coma treatment. Neutral and polar lipid classes of chill-coma subgroups were separated by thin layer chromatography and quantified by densitometry. FA composition of polar lipids of chill-coma subgroups and non-stressed flies was evaluated using gas chromatography coupled to mass spectrometry. Higher amounts of neutral lipids such as triglycerides, diacylglycerol, wax esters, sterol esters and free esters were found in male flies that recovered faster from chill-coma compared to slower flies. A multivariate analysis revealed changes in patterns of storage and cuticle lipids among subgroups both in males and females. FA unsaturation increased after cold exposure, and was higher in thorax of slower subgroups compared to faster subgroups. The changes in neutral lipid patterns and FA composition depended on recovery time, sex, age and body-part, and were not specifically associated with the development of chilling-injury. An analysis of phospholipid classes showed that the phosphatidylcholine to lysophosphatidylcholine ratio (PC/LPC) was significantly higher, or showed a tendency, in subgroups that may have developed chilling-injury compared to those with a reversible recovery from coma.
Collapse
Affiliation(s)
- Luciana Mercedes Pujol-Lereis
- Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), CONICET, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Fundación Instituto Leloir. Buenos Aires, Argentina.
| | - Natalia Soledad Fagali
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CCT La Plata, CONICET, Facultad de Ciencias, Universidad Nacional de La Plata (UNLP), La Plata, Argentina.
| | - Alejandro Rabossi
- Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), CONICET, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Fundación Instituto Leloir. Buenos Aires, Argentina.
| | - Ángel Catalá
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CCT La Plata, CONICET, Facultad de Ciencias, Universidad Nacional de La Plata (UNLP), La Plata, Argentina.
| | - Luis Alberto Quesada-Allué
- Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), CONICET, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Fundación Instituto Leloir. Buenos Aires, Argentina.
| |
Collapse
|
29
|
Constraints, independence, and evolution of thermal plasticity: probing genetic architecture of long- and short-term thermal acclimation. Proc Natl Acad Sci U S A 2015; 112:4399-404. [PMID: 25805817 DOI: 10.1073/pnas.1503456112] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Seasonal and daily thermal variation can limit species distributions because of physiological tolerances. Low temperatures are particularly challenging for ectotherms, which use both basal thermotolerance and acclimation, an adaptive plastic response, to mitigate thermal stress. Both basal thermotolerance and acclimation are thought to be important for local adaptation and persistence in the face of climate change. However, the evolutionary independence of basal and plastic tolerances remains unclear. Acclimation can occur over longer (seasonal) or shorter (hours to days) time scales, and the degree of mechanistic overlap is unresolved. Using a midlatitude population of Drosophila melanogaster, we show substantial heritable variation in both short- and long-term acclimation. Rapid cold hardening (short-term plasticity) and developmental acclimation (long-term plasticity) are positively correlated, suggesting shared mechanisms. However, there are independent components of these traits, because developmentally acclimated flies respond positively to short-term acclimation. A strong negative correlation between basal cold tolerance and developmental acclimation suggests that basal cold tolerance may constrain developmental acclimation, whereas a weaker negative correlation between basal cold tolerance and short-term acclimation suggests less constraint. Using genome-wide association mapping, we show the genetic architecture of rapid cold hardening and developmental acclimation responses are nonoverlapping at the SNP and corresponding gene level. However, genes associated with each trait share functional similarities, including genes involved in apoptosis and autophagy, cytoskeletal and membrane structural components, and ion binding and transport. These results indicate substantial opportunity for short-term and long-term acclimation responses to evolve separately from each other and for short-term acclimation to evolve separately from basal thermotolerance.
Collapse
|
30
|
Pegoraro M, Gesto JS, Kyriacou CP, Tauber E. Role for circadian clock genes in seasonal timing: testing the Bünning hypothesis. PLoS Genet 2014; 10:e1004603. [PMID: 25188283 PMCID: PMC4154681 DOI: 10.1371/journal.pgen.1004603] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 07/14/2014] [Indexed: 11/18/2022] Open
Abstract
A major question in chronobiology focuses around the “Bünning hypothesis” which implicates the circadian clock in photoperiodic (day-length) measurement and is supported in some systems (e.g. plants) but disputed in others. Here, we used the seasonally-regulated thermotolerance of Drosophila melanogaster to test the role of various clock genes in day-length measurement. In Drosophila, freezing temperatures induce reversible chill coma, a narcosis-like state. We have corroborated previous observations that wild-type flies developing under short photoperiods (winter-like) exhibit significantly shorter chill-coma recovery times (CCRt) than flies that were raised under long (summer-like) photoperiods. Here, we show that arrhythmic mutant strains, per01, tim01 and ClkJrk, as well as variants that speed up or slow down the circadian period, disrupt the photoperiodic component of CCRt. Our results support an underlying circadian function mediating seasonal daylength measurement and indicate that clock genes are tightly involved in photo- and thermo-periodic measurements. The circadian clock consists of an extensive genetic network that drives daily rhythms of physiological, biochemical and behavioural processes. The network is evolutionary conserved and has been extensively studied in a broad range of organisms. Another genetic network constitutes the photoperiodic clock and monitors the seasonal change in day-length. Here, we address a major and long-standing question in chronobiology: whether the circadian clock is involved in photoperiodic timing, also known as the Bünning hypothesis. Drosophila, as with many other insects in temperate regions, exhibits a photoperiodic response that allows the insect to anticipate and survive the winter. Here we show that the cold-tolerance of the fly is regulated by the photoperiod. We use this phenotype to test day-length timing in various circadian clock mutants and observe that in null clock mutants, the photoperiodic response is abolished, whereas in mutants that exhibit short or long daily cycles, the photoperiodic response is modified, further supporting a circadian-clock function. Overall, these results provide the first evidence in Drosophila that support for the Bünning hypothesis, and pave the way for the genetic dissection of seasonal timing in Drosophila melanogaster.
Collapse
Affiliation(s)
- Mirko Pegoraro
- Dept. of Genetics, University of Leicester, Leicester, United Kingdom
| | - Joao S. Gesto
- Dept. of Genetics, University of Leicester, Leicester, United Kingdom
| | | | - Eran Tauber
- Dept. of Genetics, University of Leicester, Leicester, United Kingdom
- * E-mail:
| |
Collapse
|
31
|
Andersen JL, Manenti T, Sørensen JG, MacMillan HA, Loeschcke V, Overgaard J. How to assess
Drosophila
cold tolerance: chill coma temperature and lower lethal temperature are the best predictors of cold distribution limits. Funct Ecol 2014. [DOI: 10.1111/1365-2435.12310] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Jonas L. Andersen
- Zoophysiology Department of Bioscience Aarhus University DK‐8000 Aarhus Denmark
| | - Tommaso Manenti
- Genetics, Ecology and Evolution Department of Bioscience Aarhus University DK‐8000 Aarhus Denmark
| | - Jesper G. Sørensen
- Genetics, Ecology and Evolution Department of Bioscience Aarhus University DK‐8000 Aarhus Denmark
| | - Heath A. MacMillan
- Zoophysiology Department of Bioscience Aarhus University DK‐8000 Aarhus Denmark
| | - Volker Loeschcke
- Genetics, Ecology and Evolution Department of Bioscience Aarhus University DK‐8000 Aarhus Denmark
| | - Johannes Overgaard
- Zoophysiology Department of Bioscience Aarhus University DK‐8000 Aarhus Denmark
| |
Collapse
|
32
|
Everatt MJ, Convey P, Bale JS, Worland MR, Hayward SAL. Responses of invertebrates to temperature and water stress: A polar perspective. J Therm Biol 2014; 54:118-32. [PMID: 26615734 DOI: 10.1016/j.jtherbio.2014.05.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/20/2014] [Accepted: 05/20/2014] [Indexed: 10/25/2022]
Abstract
As small bodied poikilothermic ectotherms, invertebrates, more so than any other animal group, are susceptible to extremes of temperature and low water availability. In few places is this more apparent than in the Arctic and Antarctic, where low temperatures predominate and water is unusable during winter and unavailable for parts of summer. Polar terrestrial invertebrates express a suite of physiological, biochemical and genomic features in response to these stressors. However, the situation is not as simple as responding to each stressor in isolation, as they are often faced in combination. We consider how polar terrestrial invertebrates manage this scenario in light of their physiology and ecology. Climate change is also leading to warmer summers in parts of the polar regions, concomitantly increasing the potential for drought. The interaction between high temperature and low water availability, and the invertebrates' response to them, are therefore also explored.
Collapse
Affiliation(s)
- Matthew J Everatt
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Pete Convey
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK; National Antarctic Research Center, IPS Building, University Malaya, 50603 Kuala Lumpur, Malaysia; Gateway Antarctica, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Jeffrey S Bale
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - M Roger Worland
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | - Scott A L Hayward
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
33
|
Overgaard J, Sørensen JG, Com E, Colinet H. The rapid cold hardening response of Drosophila melanogaster: complex regulation across different levels of biological organization. JOURNAL OF INSECT PHYSIOLOGY 2014; 62:46-53. [PMID: 24508557 DOI: 10.1016/j.jinsphys.2014.01.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 01/27/2014] [Accepted: 01/29/2014] [Indexed: 06/03/2023]
Abstract
Rapid cold hardening (RCH) is a form of thermal acclimation that allows ectotherms to fine-tune their physiological state to match rapid changes in thermal environment. Despite progress in recent years, there is still a considerable uncertainty regarding the physiological basis of RCH in insects. Here we investigated the physiological response of adult Drosophila melanogaster to a gradual reduction of temperature from 25 to 0°C followed by 1h at 0°C. As expected, this RCH treatment promoted cold tolerance, and so we hypothesized that this change could be detected at the proteomic level. Using 2D-DIGE, we found that only a few proteins significantly changed in abundance, and of these, we identified a set of four proteins of particular interest. These were identified as two different variants of glycogen phosphorylase (GlyP) of which three spots were up-regulated and another was down regulated. In subsequent experiments, we quantified upstream events by measuring the GlyP mRNA amount, but we found no marked effect of RCH. We also examined downstream events by measuring GlyP activity and the level of free sugars. We found no effect of RCH on GlyP activity. On the other hand, screening of whole animal sugar contents revealed a small increase in glucose levels following RCH while trehalose content was unaltered. This study highlights a complex regulation of GlyP in relation to RCH where we found associations between the cold tolerance, the protein abundance and the metabolite concentrations but no changes in mRNA expression and enzyme activity. These data stress the necessity of combining the hypothesis-generating power of an 'Omics' approach with subsequent targeted validations across several levels of the biological organization. We discuss reasons why different biological linked levels do not necessarily change stoichiometrically.
Collapse
Affiliation(s)
- Johannes Overgaard
- Zoophysiology, Department of Biosciences, Aarhus University, C.F. Møllers Alle 3, Building 1131, DK-8000 Aarhus C, Denmark.
| | - Jesper Givskov Sørensen
- Genetics, Ecology & Evolution, Department of Biosciences, Aarhus University, Ny Munkegade 114-116, Building 1540, DK-8000 Aarhus C, Denmark
| | - Emmanuelle Com
- Proteomics Core Facility Biogenouest, INSERM U1085 IRSET, Campus de Beaulieu, Université de Rennes 1, 263 Avenue du Général Leclerc CS 2407, 35042 Rennes Cedex, France
| | - Hervé Colinet
- Université de Rennes 1, UMR CNRS 6553 Ecobio, 263 Avenue du Général Leclerc CS 74205, 35042 Rennes Cedex, France
| |
Collapse
|
34
|
Owen EL, Bale JS, Hayward SAL. Can winter-active bumblebees survive the cold? Assessing the cold tolerance of Bombus terrestris audax and the effects of pollen feeding. PLoS One 2013; 8:e80061. [PMID: 24224036 PMCID: PMC3818302 DOI: 10.1371/journal.pone.0080061] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 10/08/2013] [Indexed: 11/22/2022] Open
Abstract
There is now considerable evidence that climate change is disrupting the phenology of key pollinator species. The recently reported UK winter activity of the bumblebee Bombus terrestris brings a novel set of thermal challenges to bumblebee workers that would typically only be exposed to summer conditions. Here we assess the ability of workers to survive acute and chronic cold stress (via lower lethal temperatures and lower lethal times at 0°C), the capacity for rapid cold hardening (RCH) and the influence of diet (pollen versus nectar consumption) on supercooling points (SCP). Comparisons are made with chronic cold stress indices and SCPs in queen bumblebees. Results showed worker bees were able to survive acute temperatures likely to be experienced in a mild winter, with queens significantly more tolerant to chronic cold temperature stress. The first evidence of RCH in any Hymenoptera is shown. In addition, dietary manipulation indicated the consumption of pollen significantly increased SCP temperature. These results are discussed in the light of winter active bumblebees and climate change.
Collapse
Affiliation(s)
- Emily L. Owen
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Jeffrey S. Bale
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | | |
Collapse
|
35
|
Heat tolerance and physiological plasticity in the Antarctic collembolan, Cryptopygus antarcticus, and mite, Alaskozetes antarcticus. J Therm Biol 2013. [DOI: 10.1016/j.jtherbio.2013.02.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
36
|
Teets NM, Yi SX, Lee RE, Denlinger DL. Calcium signaling mediates cold sensing in insect tissues. Proc Natl Acad Sci U S A 2013; 110:9154-9. [PMID: 23671084 PMCID: PMC3670363 DOI: 10.1073/pnas.1306705110] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ability to rapidly respond to changes in temperature is a critical adaptation for insects and other ectotherms living in thermally variable environments. In a process called rapid cold hardening (RCH), insects significantly enhance cold tolerance following brief (i.e., minutes to hours) exposure to nonlethal chilling. Although the ecological relevance of RCH is well-established, the underlying physiological mechanisms that trigger RCH are poorly understood. RCH can be elicited in isolated tissues ex vivo, suggesting cold-sensing and downstream hardening pathways are governed by brain-independent signaling mechanisms. We previously provided preliminary evidence that calcium is involved in RCH, and here we firmly establish that calcium signaling mediates cold sensing in insect tissues. In tracheal cells of the freeze-tolerant goldenrod gall fly, Eurosta solidaginis, chilling to 0 °C evoked a 40% increase in intracellular calcium concentration as determined by live-cell confocal imaging. Downstream of calcium entry, RCH conditions significantly increased the activity of calcium/calmodulin-dependent protein kinase II (CaMKII) while reducing phosphorylation of the inhibitory Thr306 residue. Pharmacological inhibitors of calcium entry, calmodulin activation, and CaMKII activity all prevented ex vivo RCH in midgut and salivary gland tissues, indicating that calcium signaling is required for RCH to occur. Similar results were obtained for a freeze-intolerant species, adults of the flesh fly, Sarcophaga bullata, suggesting that calcium-mediated cold sensing is a general feature of insects. Our results imply that insect tissues use calcium signaling to instantly detect decreases in temperature and trigger downstream cold-hardening mechanisms.
Collapse
Affiliation(s)
| | - Shu-Xia Yi
- Department of Zoology, Miami University, Oxford, OH 45056; and
| | - Richard E. Lee
- Department of Zoology, Miami University, Oxford, OH 45056; and
| | - David L. Denlinger
- Department of Entomology, Ohio State University, Columbus, OH 43210
- Department of Evolution, Ecology, and Organismal Biology, Ohio State University, Columbus, OH 43210
| |
Collapse
|
37
|
Findsen A, Andersen JL, Calderon S, Overgaard J. Rapid cold hardening improves recovery of ion homeostasis and chill coma recovery in the migratory locust Locusta migratoria. J Exp Biol 2013; 216:1630-7. [DOI: 10.1242/jeb.081141] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Summary
Chill tolerance of insects is defined as the ability of insects to tolerate low temperature under circumstances not involving freezing of intra- or extracellular fluids. For many insects chill tolerance is crucial for their ability to persist in cold environments and mounting evidence indicate that chill tolerance is associated with the ability to maintain ion- and water-homeostasis, thereby ensuring muscular function and preventing chill injury at low temperature. The present study describes the relationship between muscle and hemolymph ion-homeostasis and time to regain posture following cold shock (CS, 2h at -4°C) in the chill susceptible locust, Locusta migratoria. This relationship is examined in animals with and without a prior rapid cold hardening treatment (RCH, 2h at 0°C) to investigate the physiological underpinnings of RCH. Cold shock elicited a doubling of hemolymph [K+] and this disturbance was greater in locusts pre-exposed to RCH. Recovery of ion homeostasis was, however, markedly faster in RCH treated animals which correlated well with whole organism performance as hardened individuals regained posture more than 2 minutes faster than non-hardened individuals following CS. The present study indicates that loss and recovery of muscular function is associated with resting membrane potential of excitable membranes as attested from the changes in the equilibrium potential for K+ (EK) following CS. Both hardened and non-hardened animals recovered movement once K+ homeostasis was recovered to a fixed level (EK≈ -41 mV). RCH is therefore not associated with altered sensitivity to ion disturbance but instead a faster recovery of hemolymph [K+].
Collapse
Affiliation(s)
- Anders Findsen
- Zoophysiology, Department of Biosciences, Aarhus University, Denmark
| | | | - Sofia Calderon
- Zoophysiology, Department of Biosciences, Aarhus University, Denmark
| | | |
Collapse
|
38
|
Kawarasaki Y, Teets NM, Denlinger DL, Lee RE. The protective effect of rapid cold-hardening develops more quickly in frozen versus supercooled larvae of the Antarctic midge, Belgica antarctica. J Exp Biol 2013; 216:3937-45. [DOI: 10.1242/jeb.088278] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Summary
During the austral summer, larvae of the terrestrial midge, Belgica antarctica (Diptera: Chironomidae), experience highly variable and often unpredictable thermal conditions. In addition to remaining freeze tolerant year-round, larvae are capable of swiftly increasing their cold tolerance through the rapid cold-hardening (RCH) response. The present study compared the induction of RCH in frozen versus supercooled larvae. At the same induction temperature, RCH occurred more rapidly and conferred a greater level of cryoprotection in frozen versus supercooled larvae. Furthermore, RCH in frozen larvae could be induced at temperatures as low as -12°C, which is the lowest temperature reported to induce RCH. Remarkably, as little as 15 min at -5°C significantly enhanced larval cold tolerance. Not only is protection from RCH acquired swiftly, but it is also quickly lost after thawing for 2 h at 2°C. Because the primary difference between frozen and supercooled larvae is cellular dehydration caused by freeze concentration of body fluids, we also compared the effects of acclimation in dehydrated versus frozen larvae. Since slow dehydration without chilling significantly increased larval survival to a subsequent cold exposure, we hypothesize that cellular dehydration caused by freeze concentration promotes the rapid acquisition of cold tolerance in frozen larvae.
Collapse
|
39
|
Heat stress impedes development and lowers fecundity of the brown planthopper Nilaparvata lugens (Stål). PLoS One 2012; 7:e47413. [PMID: 23071803 PMCID: PMC3469487 DOI: 10.1371/journal.pone.0047413] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Accepted: 09/13/2012] [Indexed: 11/19/2022] Open
Abstract
This study investigated the effects of sub-lethal high temperatures on the development and reproduction of the brown plant hopper Nilaparvata lugens (Stål). When first instar nymphs were exposed at their ULT(50) (41.8°C) mean development time to adult was increased in both males and females, from 15.2±0.3 and 18.2±0.3 days respectively in the control to 18.7±0.2 and 19±0.2 days in the treated insects. These differences in development arising from heat stress experienced in the first instar nymph did not persist into the adult stage (adult longevity of 23.5±1.1 and 24.4±1.1 days for treated males and females compared with 25.7±1.0 and 20.6±1.1 days in the control groups), although untreated males lived longer than untreated females. Total mean longevity was increased from 38.8±0.1 to 43.4±1.0 days in treated females, but male longevity was not affected (40.9±0.9 and 42.2±1.1 days respectively). When male and female first instar nymphs were exposed at their ULT(50) of 41.8°C and allowed to mate on reaching adult, mean fecundity was reduced from 403.8±13.7 to 128.0±16.6 eggs per female in the treated insects. Following exposure of adult insects at their equivalent ULT(50) (42.5°C), the three mating combinations of treated male x treated female, treated male x untreated female, and untreated male x treated female produced 169.3±14.7, 249.6±21.3 and 233.4±17.2 eggs per female respectively, all significantly lower than the control. Exposure of nymphs and adults at their respective ULT(50) temperatures also significantly extended the time required for their progeny to complete egg development for all mating combinations compared with control. Overall, sub-lethal heat stress inhibited nymphal development, lowered fecundity and extended egg development time.
Collapse
|
40
|
Everatt MJ, Worland MR, Bale JS, Convey P, Hayward SAL. Pre-adapted to the maritime Antarctic?--rapid cold hardening of the midge, Eretmoptera murphyi. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:1104-11. [PMID: 22684111 DOI: 10.1016/j.jinsphys.2012.05.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 05/05/2012] [Accepted: 05/14/2012] [Indexed: 05/26/2023]
Abstract
During the 1960s, the midge, Eretmoptera murphyi, was transferred from sub-Antarctic South Georgia (55°S 37°W) where it is endemic to a single location on maritime Antarctic Signy Island (60°S 45°W). Its distribution has since expanded considerably, suggesting that it is pre-adapted to the more severe conditions further south. To test one aspect of the level of its pre-adaptation, the rapid cold hardening (RCH) response in this species was investigated. When juvenile (L1-L2) and mature (L3-L4) larvae of E. murphyi were directly exposed to progressively lower temperatures for 8h, they exhibited Discriminating Temperatures (DTemp, temperature at which there is 10-20% survival of exposed individuals) of -11.5 and -12.5°C, respectively. The mean SCP was above -7.5°C in both larval groups, confirming the finding of previous studies that this species is freeze-tolerant. Following gradual cooling (0.2°Cmin(-1)), survival was significantly greater at the DTemp in both larval groups. The response was strong, lowering the lower lethal temperature (LLT) by up to 6.5°C and maintaining survival above 80% for at least 22h at the DTemp. RCH was also exhibited during the cooling phase of an ecologically relevant thermoperiodic cycle (+4°C to -3°C). Mechanistically, the response did not affect freezing, with no alteration in the supercooling point (SCP) found following gradual cooling, and was not induced while the organism was in a frozen state. These results are discussed in light of E. murphyi's pre-adaptation to conditions on Signy Island and its potential to colonize regions further south in the maritime Antarctic.
Collapse
Affiliation(s)
- M J Everatt
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | | | | | | | | |
Collapse
|
41
|
Vesala L, Salminen TS, Laiho A, Hoikkala A, Kankare M. Cold tolerance and cold-induced modulation of gene expression in two Drosophila virilis group species with different distributions. INSECT MOLECULAR BIOLOGY 2012; 21:107-118. [PMID: 22122733 DOI: 10.1111/j.1365-2583.2011.01119.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The importance of high and low temperature tolerance in adaptation to changing environmental conditions has evoked new interest in modulations in gene expression and metabolism linked with stress tolerance. We investigated the effects of rapid cold hardening and cold acclimatization on the chill coma recovery times of two Drosophila virilis group species, Drosophila montana and D. virilis, with different distributions and utilized a candidate gene approach to trace changes in their gene expression during and after the cold treatments. The study showed that cold acclimatization clearly decreases chill coma recovery times in both species, whereas rapid cold hardening did not have a significant effect. Microarray analysis revealed several genes showing expression changes during different stages of cold response. Amongst the 219 genes studied, two genes showed rather consistent expression changes: hsr-omega, which was up-regulated in both study species during cold acclimatization, and Eip71CD, which was down-regulated in nearly all of the cold treatments. In addition, 29 genes showed expression changes that were more treatment- and/or species specific. Overall, different stages of cold response elicited changes mainly in genes involved in heat shock response, circadian rhythm and metabolism.
Collapse
Affiliation(s)
- Laura Vesala
- Department of Biological and Environmental Science, Centre of Excellence in Evolutionary Research, University of Jyväskylä, Finland.
| | | | | | | | | |
Collapse
|
42
|
Levis NA, Yi SX, Lee RE. Mild desiccation rapidly increases freeze tolerance of the goldenrod gall fly, Eurosta solidaginis: evidence for drought-induced RCH. J Exp Biol 2012; 215:3768-73. [DOI: 10.1242/jeb.076885] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Summary
Overwintering insects may experience extreme cold and desiccation stress. Both freezing and desiccation require cells to tolerate osmotic challenge as solutes become concentrated in the hemolymph. Not surprisingly, physiological responses to low temperature and desiccation share common features and may confer cross-tolerance against these stresses. Freeze-tolerant larvae of the goldenrod gall fly, Eurosta solidaginis (Fitch) (Diptera: Tephritidae), experience extremely dry and cold conditions in winter. To determine whether mild desiccation can improve freeze tolerance at organismal and cellular levels, we assessed survival, hemolymph osmolality, and glycerol levels of control and desiccated larvae. Larvae that lost only 6-10% of their body mass, in as little as 6 h, had markedly higher levels of freeze tolerance. Mild, rapid desiccation increased freezing tolerance at -15°C in September- (33.3±6.7 to 73.3±12%) and at -20°C in October-collected (16.7±6.7 to 46.7±3.3%) larvae. Similarly, 6 h of desiccation improved in vivo survival by 17-43% in fat body, Malpighian tubule, salivary gland, and tracheal cells at -20°C. Desiccation, also, enhanced intrinsic levels of cold tolerance in midgut cells frozen ex vivo (38.7±4.6 to 89.2±5.5 %). Whereas hemolymph osmolality increased significantly with desiccation treatment from 544±16 to 720±26 mOsm, glycerol levels did not differ between control and desiccated groups. The rapidity with which a mild desiccation stress increased freeze tolerance closely resembles the rapid cold-hardening (RCH) response, which occurs during brief sub-lethal chilling, and suggests that drought stress can induce RCH.
Collapse
|
43
|
Basson CH, Nyamukondiwa C, Terblanche JS. Fitness costs of rapid cold-hardening in Ceratitis capitata. Evolution 2011; 66:296-304. [PMID: 22220884 DOI: 10.1111/j.1558-5646.2011.01419.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Rapid cold-hardening (RCH) is a unique form of phenotypic plasticity which confers survival advantages at low temperature. The fitness costs of RCH are generally poorly elucidated and are important to understanding the evolution of plastic physiology. This study examined whether RCH responses, induced by ecologically relevant diel temperature fluctuations, carry metabolic, survival, or fecundity costs. We predicted that potential costs in RCH would be manifested as differences in metabolic rate, fecundity, or survival in flies which have hardened versus those which have not, or flies that have experienced more RCH events would show greater costs than those which have experienced fewer events. One group of flies cooled to 10°C for 2 h for 11 consecutive days experienced daily RCH (Hardened), whereas the other group exposed to 15°C for the same 2-h period each day formed a Control group. Hardened flies had higher survival at -5°C for 2 h than control flies (69 ± 9% vs. 44 ± 19%, P = 0.04). Hardened flies showed no metabolic or fecundity costs, but had reduced average survival (P = 0.0403). Thus, a major cost to repeated low temperature exposures in Ceratitis capitata is through direct mortality caused by chilling injury, although this appears not to be a direct cost of RCH.
Collapse
Affiliation(s)
- C Helene Basson
- Department of Conservation Ecology and Entomology, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| | | | | |
Collapse
|
44
|
Wang H, Lei Z, Li X, Oetting RD. Rapid cold hardening and expression of heat shock protein genes in the B-biotype Bemisia tabaci. ENVIRONMENTAL ENTOMOLOGY 2011; 40:132-139. [PMID: 22182622 DOI: 10.1603/en09357] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
This paper describes the rapid cold hardening processes of the sweetpotato whitefly, Bemisia tabaci (Gennadius). It was found that all developmental stages of B. tabaci have the capacity of rapid cold hardening and the length of time required to induce maximal cold hardiness at 0 °C varies with stage. There was only 18.3% survival when adult whiteflies were transferred directly from 26 °C to -8.5 °C for 2 h. However, exposure to 0 °C for 1 h before transfer to -8.5 °C increased the survival to 81.2%. The whiteflies show "prefreeze" mortality when they were exposed to temperatures above the supercooling point (SCP), although the range of SCP of whiteflies is -26 °C to -29 °C. The rapid cold hardening had no effect on SCP and reduced the lower lethal temperature of adults from -9 °C to -11 °C. Rapid cold-hardened adults had a similar lifespan as the control group but deposited fewer eggs than nonhardened individuals. The expression profiles during cold hardening and recovery from this process revealed that HSP90 did not respond to cold stress. However, HSP70 and HSP20 were significantly induced by cold with different temporal expression patterns. These results suggest that the rapid cold hardening response is possibly advantageous to whiteflies that are often exposed to drastic temperature fluctuations in spring or autumn in northern China, and the expression of HSP70 and HSP20 may be associated with the cold tolerance of B. tabaci.
Collapse
Affiliation(s)
- Haihong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | | | | | | |
Collapse
|
45
|
Strachan LA, Tarnowski-Garner HE, Marshall KE, Sinclair BJ. The Evolution of Cold Tolerance in Drosophila Larvae. Physiol Biochem Zool 2011; 84:43-53. [DOI: 10.1086/657147] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
46
|
Macalpine JLP, Marshall KE, Sinclair BJ. The effects of CO(2) and chronic cold exposure on fecundity of female Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:35-37. [PMID: 20868691 DOI: 10.1016/j.jinsphys.2010.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 09/14/2010] [Accepted: 09/15/2010] [Indexed: 05/29/2023]
Abstract
Carbon dioxide and chilling are sometimes used to immobilise insects for laboratory research. Both of these methods are known to have short-term effects on behaviour and physiology in Drosophila, but their long-term impacts are unknown. We exposed female D. melanogaster adults to high CO(2) concentrations (4h at 18,000ppm) and chronic cold (72h at 4°C). The carbon dioxide exposure increased chill coma recovery time, but did not result in changes in offspring number, sex ratio, or size. By contrast, the cold exposure resulted in fewer, smaller offspring, and resulted in a male-biased sex ratio compared to controls. There was no significant interaction between CO(2) and cold. We conclude that although caution must be used in choosing an immobilisation method, CO(2) appears to have less long-term impact than cold.
Collapse
|
47
|
Rapid cold-hardening blocks cold-induced apoptosis by inhibiting the activation of pro-caspases in the flesh fly Sarcophaga crassipalpis. Apoptosis 2011; 16:249-55. [DOI: 10.1007/s10495-010-0570-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
Stotter R, Terblanche J. Low-temperature tolerance of false codling moth Thaumatotibia leucotreta (Meyrick) (Lepidoptera: Tortricidae) in South Africa. J Therm Biol 2009. [DOI: 10.1016/j.jtherbio.2009.05.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
49
|
Block W, Lewis Smith RI, Kennedy AD. Strategies of survival and resource exploitation in the Antarctic fellfield ecosystem. Biol Rev Camb Philos Soc 2009; 84:449-84. [DOI: 10.1111/j.1469-185x.2009.00084.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Marais E, Terblanche JS, Chown SL. Life stage-related differences in hardening and acclimation of thermal tolerance traits in the kelp fly, Paractora dreuxi (Diptera, Helcomyzidae). JOURNAL OF INSECT PHYSIOLOGY 2009; 55:336-343. [PMID: 19171152 DOI: 10.1016/j.jinsphys.2008.11.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Revised: 11/18/2008] [Accepted: 11/27/2008] [Indexed: 05/27/2023]
Abstract
It is widely appreciated that physiological tolerances differ between life stages. However, few studies have examined stage-related differences in acclimation and hardening. In addition, the behavioural responses involved in determining the form and extent of the short-term phenotypic response are rarely considered. Here, we investigate life stage differences in the acclimation and hardening responses of the survival of a standard heat shock (SHS) and standard low temperature (or cold) shock (SCS), and the crystallization temperature (or supercooling point, SCP) of adults and larvae of the sub-Antarctic kelp fly, Paractora dreuxi. These stages live in the same habitat, but differ substantially in their mobility and thus environmental temperatures experienced. Results showed that neither acclimation nor hardening affected the lower lethal limits in larvae or adults. Adults showed an increase in survival of upper lethal limits after low temperature acclimation, whilst larvae showed a consistent lack of response. The acclimationxhardening interaction significantly affected the SCP in adults, but no response to either acclimation or hardening was found in the larvae. This study further demonstrates the complexities of thermal tolerance responses in P. dreuxi.
Collapse
Affiliation(s)
- Elrike Marais
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland 7602, Stellenbosch, South Africa.
| | | | | |
Collapse
|