1
|
Mizumura K, Taguchi T. Neurochemical mechanism of muscular pain: Insight from the study on delayed onset muscle soreness. J Physiol Sci 2025; 74:4. [PMID: 39843003 PMCID: PMC10809664 DOI: 10.1186/s12576-023-00896-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024]
Abstract
We reviewed fundamental studies on muscular pain, encompassing the characteristics of primary afferent fibers and neurons, spinal and thalamic projections, several muscular pain models, and possible neurochemical mechanisms of muscle pain. Most parts of this review were based on data obtained from animal experiments, and some researches on humans were also introduced. We focused on delayed-onset muscle soreness (DOMS) induced by lengthening contractions (LC), suitable for studying myofascial pain syndromes. The muscular mechanical withdrawal threshold (MMWT) decreased 1-3 days after LC in rats. Changing the speed and range of stretching showed that muscle injury seldom occurred, except in extreme conditions, and that DOMS occurred in parameters without muscle damage. The B2 bradykinin receptor-nerve growth factor (NGF) route and COX-2-glial cell line-derived neurotrophic factor (GDNF) route were involved in the development of DOMS. The interactions between these routes occurred at two levels. A repeated-bout effect was observed in MMWT and NGF upregulation, and this study showed that adaptation possibly occurred before B2 bradykinin receptor activation. We have also briefly discussed the prevention and treatment of DOMS.
Collapse
Affiliation(s)
- Kazue Mizumura
- Nagoya University, 464-8601, Nagoya, Japan; Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, 101-8310, Tokyo, Japan.
| | - Toru Taguchi
- Department of Physical Therapy, Faculty of Rehabilitation, Niigata University of Health and Welfare, 950-3198, Niigata, Japan; Institute for Human Movement and Medical Sciences (IHMMS), Niigata University of Health and Welfare, 950-3198, Niigata, Japan
| |
Collapse
|
2
|
Liao C, Zhang W. Nerve decompression for diabetic peripheral neuropathy with nerve entrapment: a narrative review. Ther Adv Neurol Disord 2024; 17:17562864241265287. [PMID: 39411723 PMCID: PMC11475385 DOI: 10.1177/17562864241265287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/12/2024] [Indexed: 10/19/2024] Open
Abstract
Diabetic peripheral neuropathy (DPN) is one of the most common complications of diabetes which primarily affects the sensory nervous system. Pain is the most common complaint that prompts patients to seek medical advice. With various presentations and intricate pathological mechanisms, diabetic peripheral neuropathic pain is currently the most crucial and challenging aspect of managing diabetic complications. As a heterogeneous disorder, there is no medication or treatment modality that is effective for all types of DPN and its associated neuropathic pain. Peripheral nerve decompression provides a new option for treating patients with diabetic peripheral neuropathic pain in the lower extremities. However, the clinical applicability of nerve decompression has been debated since it was first proposed. This review discusses the theoretical basis of nerve decompression, the clinical indications, and the progress of basic research based on the pathological mechanisms and nerve impairment patterns of diabetic peripheral neuropathic pain. The heterogeneity of DPN patients is summarized in terms of three aspects: complex pathophysiological mechanisms, multilevel nervous system involvement, and various nerve impairment properties. Identifying the presence of nerve entrapment among complex pathophysiological mechanisms is the key to successful outcomes. Tinel signs, focal pain, mechanical allodynia, and two-point discrimination were reported to be prognostic factors for good surgical outcomes, and their predictive ability might stem from their association with the early stage of entrapment neuropathy.
Collapse
Affiliation(s)
- Chenlong Liao
- Department of Neurosurgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenchuan Zhang
- Department of Neurosurgery, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, No. 639 Shanghai Zhizaoju Road, Huangpu District, Shanghai 200011, China
| |
Collapse
|
3
|
Choi D, Goodwin G, Stevens EB, Soliman N, Namer B, Denk F. Spontaneous activity in peripheral sensory nerves: a systematic review. Pain 2024; 165:983-996. [PMID: 37991272 PMCID: PMC11017746 DOI: 10.1097/j.pain.0000000000003115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/29/2023] [Accepted: 09/23/2023] [Indexed: 11/23/2023]
Abstract
ABSTRACT In the peripheral nervous system, spontaneous activity in sensory neurons is considered to be one of the 2 main drivers of chronic pain states, alongside neuronal sensitization. Despite this, the precise nature and timing of this spontaneous activity in neuropathic pain is not well-established. Here, we have performed a systematic search and data extraction of existing electrophysiological literature to shed light on which fibre types have been shown to maintain spontaneous activity and over what time frame. We examined both in vivo recordings of preclinical models of neuropathic pain, as well as microneurography recordings in humans. Our analyses reveal that there is broad agreement on the presence of spontaneous activity in neuropathic pain conditions, even months after injury or years after onset of neuropathic symptoms in humans. However, because of the highly specialised nature of the electrophysiological methods used to measure spontaneous activity, there is also a high degree of variability and uncertainty around these results. Specifically, there are very few directly controlled experiments, with less directly comparable data between human and animals. Given that spontaneous peripheral neuron activity is considered to be a key mechanistic feature of chronic pain conditions, it may be beneficial to conduct further experiments in this space.
Collapse
Affiliation(s)
- Dongchan Choi
- Wolfson Centre for Age-Related Diseases, Guy's Campus, King's College London, London, United Kingdom
| | - George Goodwin
- Wolfson Centre for Age-Related Diseases, Guy's Campus, King's College London, London, United Kingdom
| | - Edward B. Stevens
- Metrion Biosciences Ltd, Building 2 Granta Centre, Granta Park, Cambridge, United Kingdom
| | - Nadia Soliman
- Imperial College London, Pain Research Group, Chelsea and Westminster Hospital, London, United Kingdom
| | - Barbara Namer
- Research Group Neuroscience of the Interdisziplinary Center for Clinical Research, University Hospital of the RWTH Aachen, Aachen, Germany
- Institute for Physiology, University Hospital of the RWTH Aachen, Aachen, Germany
| | - Franziska Denk
- Wolfson Centre for Age-Related Diseases, Guy's Campus, King's College London, London, United Kingdom
| |
Collapse
|
4
|
Liu XG. Normalization of Neuroinflammation: A New Strategy for Treatment of Persistent Pain and Memory/Emotional Deficits in Chronic Pain. J Inflamm Res 2022; 15:5201-5233. [PMID: 36110505 PMCID: PMC9469940 DOI: 10.2147/jir.s379093] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/18/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic pain, which affects around 1/3 of the world population and is often comorbid with memory deficit and mood depression, is a leading source of suffering and disability. Studies in past decades have shown that hyperexcitability of primary sensory neurons resulting from abnormal expression of ion channels and central sensitization mediated pathological synaptic plasticity, such as long-term potentiation in spinal dorsal horn, underlie the persistent pain. The memory/emotional deficits are associated with impaired synaptic connectivity in hippocampus. Dysregulation of numerous endogenous proteins including receptors and intracellular signaling molecules is involved in the pathological processes. However, increasing knowledge contributes little to clinical treatment. Emerging evidence has demonstrated that the neuroinflammation, characterized by overproduction of pro-inflammatory cytokines and glial activation, is reliably detected in humans and animals with chronic pain, and is sufficient to induce persistent pain and memory/emotional deficits. The abnormal expression of ion channels and pathological synaptic plasticity in spinal dorsal horn and in hippocampus are resulting from neuroinflammation. The neuroinflammation is initiated and maintained by the interactions of circulating monocytes, glial cells and neurons. Obviously, unlike infectious diseases and cancer, which are caused by pathogens or malignant cells, chronic pain is resulting from alterations of cells and molecules which have numerous physiological functions. Therefore, normalization (counterbalance) but not simple inhibition of the neuroinflammation is the right strategy for treating neuronal disorders. Currently, no such agent is available in clinic. While experimental studies have demonstrated that intracellular Mg2+ deficiency is a common feature of chronic pain in animal models and supplement Mg2+ are capable of normalizing the neuroinflammation, activation of upregulated proteins that promote recovery, such as translocator protein (18k Da) or liver X receptors, has a similar effect. In this article, relevant experimental and clinical evidence is reviewed and discussed.
Collapse
Affiliation(s)
- Xian-Guo Liu
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, Guangzhou, People's Republic of China
| |
Collapse
|
5
|
Shin SM, Wang F, Qiu C, Itson-Zoske B, Hogan QH, Yu H. Sigma-1 receptor activity in primary sensory neurons is a critical driver of neuropathic pain. Gene Ther 2022; 29:1-15. [PMID: 32424233 PMCID: PMC7671947 DOI: 10.1038/s41434-020-0157-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/21/2020] [Accepted: 05/04/2020] [Indexed: 12/15/2022]
Abstract
The Sigma-1 receptor (σ1R) is highly expressed in the primary sensory neurons (PSNs) that are the critical site of initiation and maintenance of pain following peripheral nerve injury. By immunoblot and immunohistochemistry, we observed increased expression of both σ1R and σ1R-binding immunoglobulin protein (BiP) in the lumbar (L) dorsal root ganglia (DRG) ipsilateral to painful neuropathy induced by spared nerve injury (SNI). To evaluate the therapeutic potential of PSN-targeted σ1R inhibition at a selected segmental level, we designed a recombinant adeno-associated viral (AAV) vector expressing a small hairpin RNA (shRNA) against rat σ1R. Injection of this vector into the L4/L5 DRGs induced downregulation of σ1R in DRG neurons of all size groups, while expression of BiP was not affected. This was accompanied by attenuation of SNI-induced cutaneous mechanical and thermal hypersensitivity. Whole-cell current-clamp recordings of dissociated neurons showed that knockdown of σ1R suppressed neuronal excitability, suggesting that σ1R silencing attenuates pain by reversal of injury-induced neuronal hyperexcitability. These findings support a critical role of σ1R in modulating PSN nociceptive functions, and that the nerve injury-induced elevated σ1R activity in the PSNs can be a significant driver of neuropathic pain. Further understanding the role of PSN-σ1R in pain pathology may open routes to exploit this system for DRG-targeted pain therapy.
Collapse
Affiliation(s)
- Seung Min Shin
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Zablocki Veterans Affairs Medical Center, Milwaukee, WI, 53295, USA
| | - Fei Wang
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, PR China
| | - Chensheng Qiu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Department of Orthopedic Surgery, Affiliated Hospital of Qingdao University, Qingdao, 266000, PR China
| | - Brandon Itson-Zoske
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Quinn H Hogan
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Zablocki Veterans Affairs Medical Center, Milwaukee, WI, 53295, USA
| | - Hongwei Yu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
- Zablocki Veterans Affairs Medical Center, Milwaukee, WI, 53295, USA.
| |
Collapse
|
6
|
Bernal L, Cisneros E, Roza C. Activation of the regeneration-associated gene STAT3 and functional changes in intact nociceptors after peripheral nerve damage in mice. Eur J Pain 2021; 25:886-901. [PMID: 33345380 DOI: 10.1002/ejp.1718] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND In the context of neuropathic pain, the contribution of regeneration to the development of positive symptoms is not completely understood. Several efforts have been done to described changes in axotomized neurons, however, there is scarce data on changes occurring in intact neurons, despite experimental evidence of functional changes. To address this issue, we analysed by immunohistochemistry the presence of phosphorylated signal transducer and activator of transcription 3 (pSTAT3), an accepted marker of regeneration, within DRGs where axotomized neurons were retrogradely labelled following peripheral nerve injury. Likewise, we have characterized abnormal electrophysiological properties in intact fibres after partial nerve injury. METHODS/RESULTS We showed that induction of pSTAT3 in sensory neurons was similar after partial or total transection of the sciatic nerve and to the same extent within axotomized and non-axotomized neurons. We also examined pSTAT3 presence on non-peptidergic and peptidergic nociceptors. Whereas the percentage of neurons marked by IB4 decrease after injury, the proportion of CGRP neurons did not change, but its expression switched from small- to large-diameter neurons. Besides, the percentage of CGRP+ neurons expressing pSTAT3 increased significantly 2.5-folds after axotomy, preferentially in neurons with large diameters. Electrophysiological recordings showed that after nerve damage, most of the neurons with ectopic spontaneous activity (39/46) were non-axotomized C-fibres with functional receptive fields in the skin far beyond the site of damage. CONCLUSIONS Neuronal regeneration after nerve injury, likely triggered from the site of injury, may explain the abnormal functional properties gained by intact neurons, reinforcing their role in neuropathic pain. SIGNIFICANCE Positive symptoms in patients with peripheral neuropathies correlate to abnormal functioning of different subpopulations of primary afferents. Peripheral nerve damage triggers regenerating programs in the cell bodies of axotomized but also in non-axotomized nociceptors which is in turn, develop abnormal spontaneous and evoked discharges. Therefore, intact nociceptors have a significant role in the development of neuropathic pain due to their hyperexcitable peripheral terminals. Therapeutical targets should focus on inhibiting peripheral hyperexcitability in an attempt to limit peripheral and central sensitization.
Collapse
Affiliation(s)
- Laura Bernal
- Department of System's Biology, Medical School, University of Alcala, Alcalá de Henares, Spain
| | - Elsa Cisneros
- Department of System's Biology, Medical School, University of Alcala, Alcalá de Henares, Spain.,Health Sciences School, Centro Universitario Internacional de Madrid (CUNIMAD), Madrid, Spain.,Health Sciences School, Universidad Internacional de La Rioja (UNIR), Logroño, Spain
| | - Carolina Roza
- Department of System's Biology, Medical School, University of Alcala, Alcalá de Henares, Spain
| |
Collapse
|
7
|
Zhu C, Liu N, Tian M, Ma L, Yang J, Lan X, Ma H, Niu J, Yu J. Effects of alkaloids on peripheral neuropathic pain: a review. Chin Med 2020; 15:106. [PMID: 33024448 PMCID: PMC7532100 DOI: 10.1186/s13020-020-00387-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/20/2020] [Indexed: 12/16/2022] Open
Abstract
Neuropathic pain is a debilitating pathological pain condition with a great therapeutic challenge in clinical practice. Currently used analgesics produce deleterious side effects. Therefore, it is necessary to investigate alternative medicines for neuropathic pain. Chinese herbal medicines have been widely used in treating intractable pain. Compelling evidence revealed that the bioactive alkaloids of Chinese herbal medicines stand out in developing novel drugs for neuropathic pain due to multiple targets and satisfactory efficacy. In this review, we summarize the recent progress in the research of analgesic effects of 20 alkaloids components for peripheral neuropathic pain and highlight the potential underlying molecular mechanisms. We also point out the opportunities and challenges of the current studies and shed light on further in-depth pharmacological and toxicological studies of these bioactive alkaloids. In conclusion, the alkaloids hold broad prospects and have the potentials to be novel drugs for treating neuropathic pain. This review provides a theoretical basis for further applying some alkaloids in clinical trials and developing new drugs of neuropathic pain.
Collapse
Affiliation(s)
- Chunhao Zhu
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, No. 1160 Shengli Street, Yinchuan, 750004 Ningxia China
| | - Ning Liu
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, No. 1160 Shengli Street, Yinchuan, 750004 Ningxia China.,Ningxia Collaborative Innovation Center of Regional Characteristic Traditional Chinese Medicine, Ningxia Medical University, No. 692 Shengli Street, Yinchuan, 750004 Ningxia China
| | - Miaomiao Tian
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, No. 1160 Shengli Street, Yinchuan, 750004 Ningxia China
| | - Lin Ma
- Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, No. 1160 Shengli Street, Yinchuan, 750004 Ningxia China
| | - Jiamei Yang
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, No. 1160 Shengli Street, Yinchuan, 750004 Ningxia China.,Ningxia Collaborative Innovation Center of Regional Characteristic Traditional Chinese Medicine, Ningxia Medical University, No. 692 Shengli Street, Yinchuan, 750004 Ningxia China
| | - Xiaobing Lan
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, No. 1160 Shengli Street, Yinchuan, 750004 Ningxia China.,Ningxia Collaborative Innovation Center of Regional Characteristic Traditional Chinese Medicine, Ningxia Medical University, No. 692 Shengli Street, Yinchuan, 750004 Ningxia China
| | - Hanxiang Ma
- Department of Anesthesiology, General Hospital of Ningxia Medical University, No. 804 Shengli Street, Yinchuan, Ningxia Hui Autonomous Region, 750004 Ningxia China
| | - Jianguo Niu
- Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, No. 1160 Shengli Street, Yinchuan, 750004 Ningxia China
| | - Jianqiang Yu
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, No. 1160 Shengli Street, Yinchuan, 750004 Ningxia China.,Ningxia Collaborative Innovation Center of Regional Characteristic Traditional Chinese Medicine, Ningxia Medical University, No. 692 Shengli Street, Yinchuan, 750004 Ningxia China.,Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, No. 1160 Shengli Street, Yinchuan, 750004 Ningxia China
| |
Collapse
|
8
|
Mai JZ, Liu C, Huang Z, Mai CL, Zhou X, Zhang J, Liu XG. Oral application of bulleyaconitine A attenuates morphine tolerance in neuropathic rats by inhibiting long-term potentiation at C-fiber synapses and protein kinase C gamma in spinal dorsal horn. Mol Pain 2020; 16:1744806920917242. [PMID: 32290780 PMCID: PMC7160774 DOI: 10.1177/1744806920917242] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Morphine is frequently used for the treatment of chronic pain, while long-term
use of the drug leads to analgesic tolerance. At present, the prevention of the
side effect remains a big challenge. Bulleyaconitine A, a diterpenoid alkaloid
from Aconitum bulleyanum plants, has been used to treat chronic
pain in China for more than 30 years. In the present study, we tested the effect
of bulleyaconitine A on analgesic tolerance induced by morphine injections
(10 mg/kg s.c., b.i.d.) in the lumbar 5 spinal nerve ligation model of
neuropathic pain. We found that intragastrical application of bulleyaconitine A
(0.4 mg/kg) 30 min before each morphine injection substantially inhibited the
decrease in morphine’s inhibitory effect on mechanical allodynia and thermal
hyperalgesia. Mechanistically, morphine injections further potentiated the
lumbar 5 spinal nerve ligation induced long-term potentiation at C-fiber
synapses in the spinal dorsal horn, a synaptic model of chronic pain. This
effect was completely blocked by intragastrical bulleyaconitine A. It has been
well established that activation of protein kinase C gamma and of glial cells in
the spinal dorsal horn are critical for the development of opioid tolerance and
neuropathic pain. We found that morphine injections exacerbated the upregulation
of phospho-protein kinase C gamma (an active form of protein kinase C gamma),
and the activation of microglia and astrocytes in the spinal dorsal horn induced
by lumbar 5 spinal nerve ligation, and the effects were considerably prohibited
by intragastrical bulleyaconitine A. Thus, spinal long-term potentiation at
C-fiber synapses may underlie morphine tolerance. Oral administration of
bulleyaconitine A may be a novel and simple approach for treating of opioid
tolerance.
Collapse
Affiliation(s)
- Jie-Zhen Mai
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chong Liu
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhuo Huang
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chun-Lin Mai
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xin Zhou
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jun Zhang
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xian-Guo Liu
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Guangzhou, China
| |
Collapse
|
9
|
Mechanisms of dynamical complexity changes in patterns of sensory neurons under antinociceptive effect emergence. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2019.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Xie MX, Zhu HQ, Pang RP, Wen BT, Liu XG. Mechanisms for therapeutic effect of bulleyaconitine A on chronic pain. Mol Pain 2019; 14:1744806918797243. [PMID: 30180777 PMCID: PMC6125851 DOI: 10.1177/1744806918797243] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Bulleyaconitine A, a diterpenoid alkaloid isolated from Aconitum bulleyanum plants, has been used for the treatment of chronic pain in China since 1985. Clinical studies show that the oral administration of bulleyaconitine A is effective for treating different kinds of chronic pain, including back pain, joint pain, and neuropathic pain with minimal side effect in human patients. The experimental studies have revealed that bulleyaconitine A at therapeutic doses potently inhibits the peripheral sensitization and central sensitization that underlie chronic pain and has no effect on acute pain. Bulleyaconitine A preferably blocks tetrodotoxin-sensitive voltage-gated sodium channels in dorsal root ganglion neurons by inhibition of protein kinase C, and the effect is around 600 times more potent in neuropathic animals than in naïve ones. Bulleyaconitine A at 5 nM inhibits the hypersensitivity of dorsal root ganglion neurons in neuropathic rats but has no effect on excitability of dorsal root ganglion neurons in sham group. Bulleyaconitine A inhibits long-term potentiation at C-fiber synapses in spinal dorsal horn, a synaptic model of pathological pain, preferably in neuropathic pain rats over naïve rats. The following mechanisms may underlie the selective effect of bulleyaconitine A on chronic pain. (1) In neuropathic conditions, protein kinase C and voltage-gated sodium channels in dorsal root ganglion neurons are upregulated, which enhances bulleyaconitine A's effect. (2) Bulleyaconitine A use-dependently blocks voltage-gated sodium channels and therefore inhibits the ectopic discharges that are important for neuropathic pain. (3) Bulleyaconitine A is shown to inhibit neuropathic pain by the modulation of spinal microglia, which are involved in the chronic pain but not in acute (nociceptive) pain. Moreover, bulleyaconitine A facilitates the anesthetic effect of morphine and inhibits morphine tolerance in rats. Together, bulleyaconitine A is able to inhibit chronic pain by targeting at multiple molecules. Further clinical and experimental studies are needed for evaluating the efficacy of bulleyaconitine A in different forms of chronic pain in patients and for exploring the underlying mechanisms.
Collapse
Affiliation(s)
- Man-Xiu Xie
- 1 Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - He-Quan Zhu
- 2 Pain Research Center, Sun Yat-sen University, Guangzhou, China
| | - Rui-Ping Pang
- 2 Pain Research Center, Sun Yat-sen University, Guangzhou, China
| | - Bing-Ting Wen
- 2 Pain Research Center, Sun Yat-sen University, Guangzhou, China
| | - Xian-Guo Liu
- 2 Pain Research Center, Sun Yat-sen University, Guangzhou, China.,3 Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, China
| |
Collapse
|
11
|
Devor M. Rethinking the causes of pain in herpes zoster and postherpetic neuralgia: the ectopic pacemaker hypothesis. Pain Rep 2018; 3:e702. [PMID: 30706041 PMCID: PMC6344138 DOI: 10.1097/pr9.0000000000000702] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 10/10/2018] [Indexed: 01/29/2023] Open
Abstract
INTRODUCTION Pain in herpes zoster (HZ) and postherpetic neuralgia (PHN) is traditionally explained in terms of 2 processes: irritable nociceptors in the rash-inflamed skin and, later, deafferentation due to destruction of sensory neurons in one virally infected dorsal root ganglion. OBJECTIVES AND METHODS Consideration of the evidence supporting this explanation in light of contemporary understanding of the pain system finds it wanting. An alternative hypothesis is proposed as a replacement. RESULTS This model, the ectopic pacemaker hypothesis of HZ and PHN, proposes that pain in both conditions is driven by hyperexcitable ectopic pacemaker sites at various locations in primary sensory neurons affected by the causative varicella zoster virus infection. This peripheral input is exacerbated by central sensitization induced and maintained by the ectopic activity. CONCLUSIONS The shift in perspective regarding the pain mechanism in HZ/PHN has specific implications for clinical management.
Collapse
Affiliation(s)
- Marshall Devor
- Department of Cell and Developmental Biology, Institute of Life Sciences, and Center for Research on Pain, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
12
|
Yang J, Xie MX, Hu L, Wang XF, Mai JZ, Li YY, Wu N, Zhang C, Li J, Pang RP, Liu XG. Upregulation of N-type calcium channels in the soma of uninjured dorsal root ganglion neurons contributes to neuropathic pain by increasing neuronal excitability following peripheral nerve injury. Brain Behav Immun 2018; 71:52-65. [PMID: 29709527 DOI: 10.1016/j.bbi.2018.04.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 04/24/2018] [Accepted: 04/26/2018] [Indexed: 01/05/2023] Open
Abstract
N-type voltage-gated calcium (Cav2.2) channels are expressed in the central terminals of dorsal root ganglion (DRG) neurons, and are critical for neurotransmitter release. Cav2.2 channels are also expressed in the soma of DRG neurons, where their function remains largely unknown. Here, we showed that Cav2.2 was upregulated in the soma of uninjured L4 DRG neurons, but downregulated in those of injured L5 DRG neurons following L5 spinal nerve ligation (L5-SNL). Local application of specific Cav2.2 blockers (ω-conotoxin GVIA, 1-100 μM or ZC88, 10-1000 μM) onto L4 and 6 DRGs on the operated side, but not the contralateral side, dose-dependently reversed mechanical allodynia induced by L5-SNL. Patch clamp recordings revealed that both ω-conotoxin GVIA (1 μM) and ZC88 (10 μM) depressed hyperexcitability in L4 but not in L5 DRG neurons of L5-SNL rats. Consistent with this, knockdown of Cav2.2 in L4 DRG neurons with AAV-Cav2.2 shRNA substantially prevented L5-SNL-induced mechanical allodynia and hyperexcitability of L4 DRG neurons. Furthermore, in L5-SNL rats, interleukin-1 beta (IL-1β) and IL-10 were upregulated in L4 DRGs and L5 DRGs, respectively. Intrathecal injection of IL-1β induced mechanical allodynia and Cav2.2 upregulation in bilateral L4-6 DRGs of naïve rats, whereas injection of IL-10 substantially prevented mechanical allodynia and Cav2.2 upregulation in L4 DRGs in L5-SNL rats. Finally, in cultured DRG neurons, Cav2.2 was dose-dependently upregulated by IL-1β and downregulated by IL-10. These data indicate that the upregulation of Cav2.2 in uninjured DRG neurons via IL-1β over-production contributes to neuropathic pain by increasing neuronal excitability following peripheral nerve injury.
Collapse
Affiliation(s)
- Jie Yang
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China
| | - Man-Xiu Xie
- Department of Anesthesiology, Cancer Center, Sun Yat-sen University, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, East 651 Dongfeng Rd, Guangzhou 510060, China
| | - Li Hu
- CAS Key Laboratory of Mental Health, Institute of Psychology, 16 Lincui Rd, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Fang Wang
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China
| | - Jie-Zhen Mai
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China
| | - Yong-Yong Li
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China
| | - Ning Wu
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China
| | - Cheng Zhang
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China
| | - Jin Li
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China
| | - Rui-Ping Pang
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China.
| | - Xian-Guo Liu
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, 74 Zhongshan Rd. 2, Guangzhou 510080, China.
| |
Collapse
|
13
|
Tode J, Kirillova-Woytke I, Rausch VH, Baron R, Jänig W. Mechano- and thermosensitivity of injured muscle afferents 20 to 80 days after nerve injury. J Neurophysiol 2018; 119:1889-1901. [PMID: 29465328 DOI: 10.1152/jn.00894.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Chronic injury of limb nerves leading to neuropathic pain affects deep somatic nerves. Here the functional properties of injured afferent fibers in the lateral gastrocnemius-soleus nerve were investigated 20 and 80 days after suturing the central stump of this muscle nerve to the distal stump of the sural nerve in anesthetized rats. Neurophysiological recordings were made from afferent axons identified in either the sciatic nerve (87 A-, 63 C-fibers) or the dorsal root L4/L5 (52 A-, 26 C-fibers) by electrical stimulation of the injured nerve. About 70% of the functionally identified A-fibers had regenerated into skin by 80 days after nerve suture; the remaining A-fibers could be activated only from the injured nerve. In contrast, 93% of the functionally identified C-fibers could only be activated from the injured sural nerve after 80 days. Nearly half of the injured A- (45%) and C-fibers (44%) exhibited ongoing and/or mechanically or thermally evoked activity. Because ~50% of the A- and C-fibers are somatomotor or sympathetic postganglionic axons, respectively, probably all injured muscle afferent A- and C-fibers developed ectopic activity. Ongoing activity was present in 17% of the A- and 46% of the C-fibers. Mechanosensitivity was present in most injured A- (99%) and C-fibers (85%), whereas thermosensitivity was more common in C-fibers (cold 46%, heat 47%) than in A-fibers (cold 18%, heat 12%). Practically all thermosensitive A-fibers and C-fibers were also mechanosensitive. Thus, unlike cutaneous axons, almost all A- and C-fibers afferents in injured muscle nerves demonstrate ectopic activity, even chronically after nerve injury. NEW & NOTEWORTHY After chronic injury of a muscle nerve, allowing the nerve fibers to regenerate to the target tissue, 1) most afferent A-fibers are mechanosensitive and regenerate to the target tissue; 2) ectopic ongoing activity, cold sensitivity, and heat sensitivity significantly decrease with time after injury in A-afferents; 3) most afferent C-fibers do not regenerate to the target tissue; and 4) injured C-afferents maintain the patterns of ectopic discharge properties they already show soon after nerve injury.
Collapse
Affiliation(s)
- Jan Tode
- Physiologisches Institut, Christian-Albrechts-Universität zu Kiel, Kiel , Germany
| | | | - Vanessa H Rausch
- Physiologisches Institut, Christian-Albrechts-Universität zu Kiel, Kiel , Germany
| | - Ralf Baron
- Division of Neurological Pain Research and Therapy, Department of Neurology, Christian-Albrechts-Universität zu Kiel, Kiel , Germany
| | - Wilfrid Jänig
- Physiologisches Institut, Christian-Albrechts-Universität zu Kiel, Kiel , Germany
| |
Collapse
|
14
|
Bernal L, Roza C. Hyperpolarization-activated channels shape temporal patterns of ectopic spontaneous discharge in C-nociceptors after peripheral nerve injury. Eur J Pain 2018; 22:1377-1387. [PMID: 29635758 DOI: 10.1002/ejp.1226] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND Neuropathic pain is thought to be mediated by aberrant impulses from sensitized primary afferents, and the temporal summation of the discharges might also influence nociceptive processing. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels (Ih current) generate rhythmic activity in neurons within the central nervous system and contribute to nociceptors excitability in neuropathic pain. METHODS We searched for single fibres with ectopic spontaneous discharges from an in vitro preparation in mice containing a neuroma formed in a peripheral branch of the saphenous nerve together with the undamaged branches. RESULTS Both damaged (axotomized) and undamaged fibres (putative intact) developed ectopic spontaneous activity with different temporal spike trains: Clock-like, Irregular or Bursts. The Ih current blocker, ZD7288, significantly suppressed ectopic spontaneous discharges in nociceptive fibres (3/5 Aδ- and 24/31 C-units and 1 nonclassified) by 64%. Additionally, ZD7288 changed the spike patterns of 5/7 Clock-like and 3/4 Burst units to Irregular. Exogenous cAMP produced a significant ~65% increase in the ectopic firing in 5 Irregular fibres, which was restored by ZD7288. In six additional fibres (three Clock-like and three Irregular), exogenous cAMP had no further effect, but co-application with ZD7288 decreased their discharge by half. These units showed significant higher levels of discharges than the cAMP-sensitive ones. CONCLUSIONS Our data suggest that HCN channels modulate ectopic spontaneous firing in C-nociceptors and shape their temporal patterns of discharge which will, ultimately, modify the nociceptive message received and processed by second-order neurons. SIGNIFICANCE We show an involvement of HCN channels in the modulation of ectopic spontaneous discharges from C-nociceptors. This finding exposes a mechanism of nociceptive transmission enhancement and highlights the clinical relevance of peripheral HCN blockade for spontaneous pain relief during neuropathy.
Collapse
Affiliation(s)
- L Bernal
- Department of Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - C Roza
- Department of Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
15
|
Takkala P, Prescott SA. Using dynamic clamp to quantify pathological changes in the excitability of primary somatosensory neurons. J Physiol 2018; 596:2209-2227. [PMID: 29601637 PMCID: PMC5983269 DOI: 10.1113/jp275580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/21/2018] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Primary somatosensory neurons normally respond to somatic depolarization with transient spiking but can switch to repetitive spiking under pathological conditions. This switch in spiking pattern reflects a qualitative change in spike initiation dynamics and contributes to the hyperexcitability associated with chronic pain. Neurons can be converted to repetitive spiking by adding a virtual conductance using dynamic clamp. By titrating the conductance to determine how much must be added to cause repetitive spiking, we found that small cells are more susceptible to switching (i.e. required less added conductance) than medium-large cells. By measuring how much less conductance is required to cause repetitive spiking when dynamic clamp was combined with other pathomimetic manipulations (e.g. application of inflammatory mediators), we measured how much each manipulation facilitated repetitive spiking. Our results suggest that many pathological factors facilitate repetitive spiking but that the switch to repetitive spiking requires the cumulative effect of many co-occurring factors. ABSTRACT Primary somatosensory neurons become hyperexcitable in many chronic pain conditions. Hyperexcitability can include a switch from transient to repetitive spiking during sustained somatic depolarization. This switch results from diverse pathological processes that impact ion channel expression or function. Because multiple pathological processes co-occur, isolating how much each contributes to switching the spiking pattern is difficult. Our approach to this challenge involves adding a virtual sodium conductance via dynamic clamp. The magnitude of that conductance was titrated to determine the minimum required to enable rheobasic stimulation to evoke repetitive spiking. The minimum required conductance, termed g¯ Na ∗, was re-measured before and during manipulations designed to model various pathological processes in vitro. The reduction in g¯ Na ∗ caused by each pathomimetic manipulation reflects how much the modelled process contributes to switching the spiking pattern. We found that elevating extracellular potassium or applying inflammatory mediators reduced g¯ Na ∗ whereas direct hyperpolarization had no effect. Inflammatory mediators reduced g¯ Na ∗ more in medium-large (>30 μm diameter) neurons than in small (⩽30 μm diameter) neurons, but had equivalent effects in cutaneous and muscle afferents. The repetitive spiking induced by dynamic clamp was also found to differ between small and medium-large neurons, thus revealing latent differences in adaptation. Our study demonstrates a novel way to determine to what extent individual pathological factors facilitate repetitive spiking. Our results suggest that most factors facilitate but do not cause repetitive spiking on their own, and, therefore, that a switch to repetitive spiking results from the cumulative effect of many co-occurring factors.
Collapse
Affiliation(s)
- Petri Takkala
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada, M5G 0A4.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada, M5S 1A8
| | - Steven A Prescott
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada, M5G 0A4.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada, M5S 1A8.,Department of Physiology and Institute of Biomaterials and Biomedical Engineering, University of Toronto, Ontario, Canada, M5S 1A8
| |
Collapse
|
16
|
Two-Point Discrimination Predicts Pain Relief after Lower Limb Nerve Decompression for Painful Diabetic Peripheral Neuropathy. Plast Reconstr Surg 2018; 141:397e-403e. [PMID: 29481409 DOI: 10.1097/prs.0000000000004171] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Peripheral nerve decompression surgery has been reported to be effective for pain reduction in patients with painful diabetic peripheral neuropathy. The aim of this study was to characterize which patients may have more pain relief benefits in the lower limbs after nerve decompression surgery. METHODS A retrospective study was conducted. Pain levels were measured with the Numerical Rating Scale. Treatment effects were classified by either substantial relief (at least 50 percent reduction in Numerical Rating Scale score compared with preoperative Numerical Rating Scale score) or nonsubstantial relief (<50 percent reduction or worse in Numerical Rating Scale score) at 12 months based on established criteria. Sex, age, body mass index, duration of diabetes mellitus, duration of diabetic peripheral neuropathy pain, preoperative Numerical Rating Scale score, and two-point discrimination were evaluated using univariate and logistic regression analysis. RESULTS The mean preoperative Numerical Rating Scale score (8.65 ± 1.29) decreased significantly 6 days (3.56 ± 2.22; p < 0.01), 6 months (3.03 ± 2.11; p < 0.01), and 12 months (3.44 ± 2.36; p < 0.01) after surgery; 64.7 percent of patients had substantial pain relief at 12 months. According to univariate and logistic regression analysis, better two-point discrimination was associated with substantial pain relief (OR, 3.700; p = 0.046, logistic regression analysis). CONCLUSIONS Nerve decompression surgery was able to alleviate pain in patients with painful diabetic peripheral neuropathy. Two-point discrimination may be a predictive factor for the prognosis of painful diabetic peripheral neuropathy after nerve decompression surgery. CLINICAL QUESTION/LEVEL OF EVIDENCE Risk, III.
Collapse
|
17
|
Barassi G, Bellomo RG, Di Giulio C, Giannuzzo G, Irace G, Barbato C, Saggini R. Effects of Manual Somatic Stimulation on the Autonomic Nervous System and Posture. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1070:97-109. [DOI: 10.1007/5584_2018_153] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Weir GA, Middleton SJ, Clark AJ, Daniel T, Khovanov N, McMahon SB, Bennett DL. Using an engineered glutamate-gated chloride channel to silence sensory neurons and treat neuropathic pain at the source. Brain 2017; 140:2570-2585. [PMID: 28969375 PMCID: PMC5841150 DOI: 10.1093/brain/awx201] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 06/12/2017] [Accepted: 07/03/2017] [Indexed: 12/14/2022] Open
Abstract
See Basbaum (doi:10.1093/brain/awx227) for a scientific commentary on this article. Peripheral neuropathic pain arises as a consequence of injury to sensory neurons; the development of ectopic activity in these neurons is thought to be critical for the induction and maintenance of such pain. Local anaesthetics and anti-epileptic drugs can suppress hyperexcitability; however, these drugs are complicated by unwanted effects on motor, central nervous system and cardiac function, and alternative more selective treatments to suppress hyperexcitability are therefore required. Here we show that a glutamate-gated chloride channel modified to be activated by low doses of ivermectin (but not glutamate) is highly effective in silencing sensory neurons and reversing neuropathic pain-related hypersensitivity. Activation of the glutamate-gated chloride channel expressed in either rodent or human induced pluripotent stem cell-derived sensory neurons in vitro potently inhibited their response to both electrical and algogenic stimuli. We have shown that silencing is achieved both at nerve terminals and the soma and is independent of membrane hyperpolarization and instead likely mediated by lowering of the membrane resistance. Using intrathecal adeno-associated virus serotype 9-based delivery, the glutamate-gated chloride channel was successfully targeted to mouse sensory neurons in vivo, resulting in high level and long-lasting expression of the channel selectively in sensory neurons. This enabled reproducible and reversible modulation of thermal and mechanical pain thresholds in vivo; analgesia was observed for 3 days after a single systemic dose of ivermectin. We did not observe any motor or proprioceptive deficits and noted no reduction in cutaneous afferent innervation or upregulation of the injury marker ATF3 following prolonged glutamate-gated chloride channel expression. Established mechanical and cold pain-related hypersensitivity generated by the spared nerve injury model of neuropathic pain was reversed by ivermectin treatment. The efficacy of ivermectin in ameliorating behavioural hypersensitivity was mirrored at the cellular level by a cessation of ectopic activity in sensory neurons. These findings demonstrate the importance of aberrant afferent input in the maintenance of neuropathic pain and the potential for targeted chemogenetic silencing as a new treatment modality in neuropathic pain.
Collapse
Affiliation(s)
- Greg A Weir
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Steven J Middleton
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Alex J Clark
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Tarun Daniel
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | | | | - David L Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
19
|
Lewis SS, Grace PM, Hutchinson MR, Maier SF, Watkins LR. Constriction of the buccal branch of the facial nerve produces unilateral craniofacial allodynia. Brain Behav Immun 2017; 64:59-64. [PMID: 27993689 PMCID: PMC5474358 DOI: 10.1016/j.bbi.2016.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/02/2016] [Accepted: 12/05/2016] [Indexed: 01/23/2023] Open
Abstract
Despite pain being a sensory experience, studies of spinal cord ventral root damage have demonstrated that motor neuron injury can induce neuropathic pain. Whether injury of cranial motor nerves can also produce nociceptive hypersensitivity has not been addressed. Herein, we demonstrate that chronic constriction injury (CCI) of the buccal branch of the facial nerve results in long-lasting, unilateral allodynia in the rat. An anterograde and retrograde tracer (3000MW tetramethylrhodamine-conjugated dextran) was not transported to the trigeminal ganglion when applied to the injury site, but was transported to the facial nucleus, indicating that this nerve branch is not composed of trigeminal sensory neurons. Finally, intracisterna magna injection of interleukin-1 (IL-1) receptor antagonist reversed allodynia, implicating the pro-inflammatory cytokine IL-1 in the maintenance of neuropathic pain induced by facial nerve CCI. These data extend the prior evidence that selective injury to motor axons can enhance pain to supraspinal circuits by demonstrating that injury of a facial nerve with predominantly motor axons is sufficient for neuropathic pain, and that the resultant pain has a neuroimmune component.
Collapse
Affiliation(s)
- Susannah S. Lewis
- Department of Psychology & Neuroscience, University of Colorado, Boulder, USA
| | - Peter M. Grace
- Department of Psychology & Neuroscience, University of Colorado, Boulder, USA,School of Medicine, University of Adelaide, Adelaide, Australia
| | - Mark R. Hutchinson
- School of Medicine, University of Adelaide, Adelaide, Australia,Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Adelaide, Australia
| | - Steven F. Maier
- Department of Psychology & Neuroscience, University of Colorado, Boulder, USA
| | - Linda R. Watkins
- Department of Psychology & Neuroscience, University of Colorado, Boulder, USA,Corresponding author: Department of Psychology, Campus Box 345, University of Colorado at Boulder, Boulder, Colorado, USA 80309-0345, , Fax: (303) 492-2967, Phone: (303) 492-7034
| |
Collapse
|
20
|
Bulleyaconitine A preferably reduces tetrodotoxin-sensitive sodium current in uninjured dorsal root ganglion neurons of neuropathic rats probably via inhibition of protein kinase C. Pain 2017; 158:2169-2180. [DOI: 10.1097/j.pain.0000000000001018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
Bost A, Shaib AH, Schwarz Y, Niemeyer BA, Becherer U. Large dense-core vesicle exocytosis from mouse dorsal root ganglion neurons is regulated by neuropeptide Y. Neuroscience 2017; 346:1-13. [PMID: 28089870 DOI: 10.1016/j.neuroscience.2017.01.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 01/03/2017] [Accepted: 01/04/2017] [Indexed: 12/12/2022]
Abstract
Peptidergic dorsal root ganglion (DRG) neurons transmit sensory and nociceptive information from the periphery to the central nervous system. Their synaptic activity is profoundly affected by neuromodulatory peptides stored and released from large dense-core vesicles (LDCVs). However, the mechanism of peptide secretion from DRG neurons is poorly understood. Using total internal reflection fluorescence microscopy (TIRFM), we visualized individual LDCVs loaded with fluorescent neuropeptide Y (NPY) and analyzed their stimulation-dependent release. We tested several protocols and found an overall low stimulation-secretion coupling that increased after raising intracellular Ca2+ concentration by applying a weak pre-stimulus. Interestingly, the stimulation protocol also influenced the mechanism of LDCV fusion. Depolarization of DRG neurons with a solution containing 60mM KCl triggered full fusion, kiss-and-run, and kiss-and-stay exocytosis with equal frequency. In contrast, field electrode stimulation primarily induced full fusion exocytosis. Finally, our results indicate that NPY can promote LDCV secretion. These results shed new light on the mechanism of NPY action during modulation of DRG neuron activity, an important pathway in the treatment of chronic pain.
Collapse
Affiliation(s)
- Anneka Bost
- Institute of Physiology, CIPMM, Saarland University, 66421 Homburg/Saar, Germany
| | - Ali H Shaib
- Institute of Physiology, CIPMM, Saarland University, 66421 Homburg/Saar, Germany
| | - Yvonne Schwarz
- Institute of Physiology, CIPMM, Saarland University, 66421 Homburg/Saar, Germany
| | - Barbara A Niemeyer
- Molecular Biophysics, CIPMM, Saarland University, 66421 Homburg/Saar, Germany
| | - Ute Becherer
- Institute of Physiology, CIPMM, Saarland University, 66421 Homburg/Saar, Germany.
| |
Collapse
|
22
|
Calvo M, Richards N, Schmid AB, Barroso A, Zhu L, Ivulic D, Zhu N, Anwandter P, Bhat MA, Court FA, McMahon SB, Bennett DLH. Altered potassium channel distribution and composition in myelinated axons suppresses hyperexcitability following injury. eLife 2016; 5:e12661. [PMID: 27033551 PMCID: PMC4841771 DOI: 10.7554/elife.12661] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 03/15/2016] [Indexed: 12/25/2022] Open
Abstract
Neuropathic pain following peripheral nerve injury is associated with hyperexcitability in damaged myelinated sensory axons, which begins to normalise over time. We investigated the composition and distribution of shaker-type-potassium channels (Kv1 channels) within the nodal complex of myelinated axons following injury. At the neuroma that forms after damage, expression of Kv1.1 and 1.2 (normally localised to the juxtaparanode) was markedly decreased. In contrast Kv1.4 and 1.6, which were hardly detectable in the naïve state, showed increased expression within juxtaparanodes and paranodes following injury, both in rats and humans. Within the dorsal root (a site remote from injury) we noted a redistribution of Kv1-channels towards the paranode. Blockade of Kv1 channels with α-DTX after injury reinstated hyperexcitability of A-fibre axons and enhanced mechanosensitivity. Changes in the molecular composition and distribution of axonal Kv1 channels, therefore represents a protective mechanism to suppress the hyperexcitability of myelinated sensory axons that follows nerve injury.
Collapse
Affiliation(s)
- Margarita Calvo
- Wolfson Centre for Age-Related Diseases, Kings College London, London, United Kingdom.,Departamento de Fisiologia, Facultad de Ciencias Biologicas- Pontificia Universidad Catolica de Chile, Santiago, Chile.,Departamento de Anestesiologia, Facultad de Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Natalie Richards
- Wolfson Centre for Age-Related Diseases, Kings College London, London, United Kingdom
| | - Annina B Schmid
- School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Australia.,Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Alejandro Barroso
- Wolfson Centre for Age-Related Diseases, Kings College London, London, United Kingdom.,Hospital Regional Universitario de Málaga. Servicio de Anestesiología, Málaga, Spain
| | - Lan Zhu
- Wolfson Centre for Age-Related Diseases, Kings College London, London, United Kingdom.,School of Allied Health Sciences, Faculty of Health and Life Sciences, De Montfort University, Leicester, United Kingdom
| | - Dinka Ivulic
- Departamento de Fisiologia, Facultad de Ciencias Biologicas- Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Ning Zhu
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Philipp Anwandter
- Departamento Ortopedia y Traumatologia, Facultad de Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Manzoor A Bhat
- Department of Physiology, UT Health Science Center at San Antonio, San Antonio, United States.,School of Medicine, UT Health Science Center at San Antonio, San Antonio, United States
| | - Felipe A Court
- Center for Integrative Biology, Universidad Mayor, Santiago, Chile.,FONDAP, Geroscience Center for Brain Health and Metabolism, Santiago, Chile.,Millenium Nucleus for Regenerative Biology, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Stephen B McMahon
- Wolfson Centre for Age-Related Diseases, Kings College London, London, United Kingdom
| | - David L H Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
23
|
Neuropathic Pain: Sensory Nerve Injury or Motor Nerve Injury? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 904:59-75. [DOI: 10.1007/978-94-017-7537-3_5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
24
|
Medici T, Shortland PJ. Effects of peripheral nerve injury on parvalbumin expression in adult rat dorsal root ganglion neurons. BMC Neurosci 2015; 16:93. [PMID: 26674138 PMCID: PMC4681077 DOI: 10.1186/s12868-015-0232-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 12/07/2015] [Indexed: 12/24/2022] Open
Abstract
Background Parvalbumin (PV) is a calcium binding protein that identifies a subpopulation of proprioceptive dorsal root ganglion (DRG) neurons. Calcitonin gene-related peptide (CGRP) is also expressed in a high proportion of muscle afferents but its relationship to PV is unclear. Little is known of the phenotypic responses of muscle afferents to nerve injury. Sciatic nerve axotomy or L5 spinal nerve ligation and section (SNL) lesions were used to explore these issues in adult rats using immunocytochemistry. Results In naive animals, the mean PV expression was 25 % of L4 or L5 dorsal root ganglion (DRG) neurons, and this was unchanged 2 weeks after sciatic nerve axotomy. Colocalization studies with the injury marker activating transcription factor 3 (ATF3) showed that approximately 24 % of PV neurons expressed ATF3 after sciatic nerve axotomy suggesting that PV may show a phenotypic switch from injured to uninjured neurons. This possibility was further assessed using the spinal nerve ligation (SNL) injury model where injured and uninjured neurons are located in different DRGs. Two weeks after L5 SNL there was no change in total PV staining and essentially all L5 PV neurons expressed ATF3. Additionally, there was no increase in PV-ir in the adjacent uninjured L4 DRG cells. Co-labelling of DRG neurons revealed that less than 2 % of PV neurons normally expressed CGRP and no colocalization was seen after injury. Conclusion These experiments clearly show that axotomy does not produce down regulation of PV protein in the DRG. Moreover, this lack of change is not due to a phenotypic switch in PV immunoreactive (ir) neurons, or de novo expression of PV-ir in uninjured neurons after nerve injury. These results further illustrate differences that occur when muscle afferents are injured as compared to cutaneous afferents.
Collapse
Affiliation(s)
- Tom Medici
- Centre for Neuroscience and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E1 2AT, UK. .,Queens Hospital, Romford, Essex, RM7 0AG, UK.
| | - Peter J Shortland
- School of Science and Health, Western Sydney University, Narellen Road, Campbelltown, NSW, 2560, Australia. .,Centre for Neuroscience and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E1 2AT, UK.
| |
Collapse
|
25
|
Yilmaz E, Gold MS. Sensory neuron subpopulation-specific dysregulation of intracellular calcium in a rat model of chemotherapy-induced peripheral neuropathy. Neuroscience 2015; 300:210-8. [PMID: 25982563 PMCID: PMC4485584 DOI: 10.1016/j.neuroscience.2015.05.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 05/01/2015] [Accepted: 05/07/2015] [Indexed: 02/06/2023]
Abstract
The purpose of the present study was to test the prediction that the unique manifestation of chemotherapeutic-induced peripheral neuropathy (CIPN) would be reflected in a specific pattern of changes in the regulation of the intracellular Ca(2+) concentration ([Ca(2+)]i) in subpopulations of cutaneous neurons. To test this prediction, we characterized the pattern of changes in mechanical nociceptive threshold associated with paclitaxel administration (2mg/kg, iv, every other day for four days), as well as the impact of target of innervation and paclitaxel treatment on the regulation of [Ca(2+)]i in subpopulations of putative nociceptive and non-nociceptive neurons. Neurons innervating the glabrous and hairy skin of the hindpaw as well as the thigh were identified with retrograde tracers, and fura-2 was used to assess changes in [Ca(2+)]i. Paclitaxel was associated with a persistent decrease in mechanical nociceptive threshold in response to stimuli applied to the glabrous skin of the hindpaw, but not the hairy skin of the hindpaw or the thigh. However, in both putative nociceptive and non-nociceptive neurons, resting [Ca(2+)]i was significantly lower in neurons innervating the thigh after treatment. The magnitude of the depolarization-evoked Ca(2+) transient was also lower in putative non-nociceptive thigh neurons. More interestingly, while paclitaxel had no detectable influence on either resting or depolarization-evoked Ca(2+) transients in putative non-nociceptive neurons, in putative nociceptive neurons there was a subpopulation-specific decrease in the duration of the evoked Ca(2+) transient that was largely restricted to neurons innervating the glabrous skin. These results suggest that peripheral nerve length alone, does not account for the selective distribution of CIPN symptoms. Rather, they suggest the symptoms of CIPN reflect an interaction between the toxic actions of the therapeutic and unique properties of the neurons deleteriously impacted.
Collapse
Affiliation(s)
- E Yilmaz
- Center for Neuroscience, University of Pittsburgh, United States; Center for Pain Research, United States
| | - M S Gold
- Center for Neuroscience, University of Pittsburgh, United States; Center for Pain Research, United States; Department of Anesthesiology, University of Pittsburgh School of Medicine, United States.
| |
Collapse
|
26
|
Abstract
Both clinical and animal studies suggest that exercise may be an effective way to manage inflammatory and neuropathic pain conditions. However, existing animal studies commonly use forced exercise paradigms that incorporate varying degrees of stress, which itself can elicit analgesia, and thus may complicate the interpretation of the effects of exercise on pain. We investigated the analgesic potential of voluntary wheel running in the formalin model of acute inflammatory pain and the spared nerve injury model of neuropathic pain in mice. In uninjured, adult C57BL/6J mice, 1 to 4 weeks of exercise training did not alter nociceptive thresholds, lumbar dorsal root ganglia neuronal excitability, or hindpaw intraepidermal innervation. Further, exercise training failed to attenuate formalin-induced spontaneous pain. Lastly, 2 weeks of exercise training was ineffective in reversing spared nerve injury-induced mechanical hypersensitivity or in improving muscle wasting or hindpaw denervation. These findings indicate that in contrast to rodent forced exercise paradigms, short durations of voluntary wheel running do not improve pain-like symptoms in mouse models of acute inflammation and peripheral nerve injury.
Collapse
|
27
|
Zang Y, Chen SX, Liao GJ, Zhu HQ, Wei XH, Cui Y, Na XD, Pang RP, Xin WJ, Zhou LJ, Liu XG. Calpain-2 contributes to neuropathic pain following motor nerve injury via up-regulating interleukin-6 in DRG neurons. Brain Behav Immun 2015; 44:37-47. [PMID: 25150005 DOI: 10.1016/j.bbi.2014.08.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/25/2014] [Accepted: 08/12/2014] [Indexed: 01/09/2023] Open
Abstract
Motor nerve injury by L5 ventral root transection (L5-VRT) initiates interleukin-6 (IL-6) up-regulation in primary afferent system contributing to neuropathic pain. However, the early upstream regulatory mechanisms of IL-6 after L5-VRT are still unknown. Here, we monitored both the activity of calpain, a calcium-dependent protease suggested as one of the earliest mediators for cytokine regulation, and the expression of IL-6 in bilateral L4-L6 dorsal root ganglias (DRGs) soon after L5-VRT. We found that the protein level of calpain-2 in DRGs, but not calpain-1 was increased transiently in the first 10 min(-1)h ipsilaterally and 20 min(-1)h contralaterally after L5-VRT, long before mechanical allodynia was initiated (5-15 h ipsilaterally and 15 h(-1)d contralaterally). The early activation of calpain evaluated by the generation of spectrin breakdown products (SBDP) correlated well with IL-6 up-regulation in bilateral DRGs. Double immunofluorescence staining revealed that almost all the calpain-2 positive neurons expressed IL-6, indicating an association between calpain-2 and IL-6. Inhibition of calpain by pre-treatment with MDL28170 (25mg/kg, i.p.) attenuated the rat mechanical allodynia and prevented the early up-regulation of IL-6 following L5-VRT. Addition of exogenous calpain-2 onto the surface of left L5 DRG triggered a temporal allodynia and increased IL-6 in bilateral DRGs simultaneously. Taken together, the early increase of calpain-2 in L5-VRT rats might be responsible for the induction of allodynia via up-regulating IL-6 in DRG neurons.
Collapse
Affiliation(s)
- Ying Zang
- Pain Research Center and Department of Physiology, Zhongshan Medical School of Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China.
| | - Shao-Xia Chen
- Pain Research Center and Department of Physiology, Zhongshan Medical School of Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China
| | - Guang-Jie Liao
- Pain Research Center and Department of Physiology, Zhongshan Medical School of Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China; Department of Pathology, The Red Cross Hospital of Yulin, 1 Jinwang Rd., Yulin 537000, China
| | - He-Quan Zhu
- Pain Research Center and Department of Physiology, Zhongshan Medical School of Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China
| | - Xu-Hong Wei
- Pain Research Center and Department of Physiology, Zhongshan Medical School of Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China
| | - Yu Cui
- Pain Research Center and Department of Physiology, Zhongshan Medical School of Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China
| | - Xiao-Dong Na
- Pain Research Center and Department of Physiology, Zhongshan Medical School of Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China; Department of Pathophysiology, Zhongshan Medical School of Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China
| | - Rui-Ping Pang
- Pain Research Center and Department of Physiology, Zhongshan Medical School of Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China
| | - Wen-Jun Xin
- Pain Research Center and Department of Physiology, Zhongshan Medical School of Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China
| | - Li-Jun Zhou
- Pain Research Center and Department of Physiology, Zhongshan Medical School of Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China
| | - Xian-Guo Liu
- Pain Research Center and Department of Physiology, Zhongshan Medical School of Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China
| |
Collapse
|
28
|
Fukuoka T, Miyoshi K, Noguchi K. De novo expression of Nav1.7 in injured putative proprioceptive afferents: Multiple tetrodotoxin-sensitive sodium channels are retained in the rat dorsal root after spinal nerve ligation. Neuroscience 2014; 284:693-706. [PMID: 25453779 DOI: 10.1016/j.neuroscience.2014.10.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/11/2014] [Accepted: 10/14/2014] [Indexed: 12/23/2022]
Abstract
Tetrodotoxin-sensitive (TTX-s) spontaneous activity is recorded from the dorsal roots after peripheral nerve injury. Primary sensory neurons in the dorsal root ganglion (DRG) express multiple TTX-s voltage-gated sodium channel α-subunits (Navs). Since Nav1.3 increases, whereas all other Navs decrease, in the DRG neurons after peripheral nerve lesion, Nav1.3 is proposed to be critical for the generation of these spontaneous discharges and the contributions of other Navs have been ignored. Here, we re-evaluate the changes in expression of three other TTX-s Navs, Nav1.1, Nav1.6 and Nav1.7, in the injured 5th lumbar (L5) primary afferent components following L5 spinal nerve ligation (SNL) using in situ hybridization histochemistry and immunohistochemistry. While the overall signal intensities for these Nav mRNAs decreased, many injured DRG neurons still expressed these transcripts at clearly detectable levels. All these Nav proteins accumulated at the proximal stump of the ligated L5 spinal nerve. The immunostaining patterns of Nav1.6 and Nav1.7 associated with the nodes of Ranvier were maintained in the ipsilateral L5 dorsal root. Interestingly, putative proprioceptive neurons characterized by α3 Na+/K+ ATPase-immunostaining specifically lacked Nav1.7 mRNA in naïve DRG but displayed de novo expression of this transcript following SNL. Nav1.7-immunoreactive fibers were significantly increased in the ipsilateral gracile nucleus where central axonal branches of the injured A-fiber afferents terminated. These data indicate that multiple TTX-s channel subunits could contribute to the generation and propagation of the spontaneous discharges in the injured primary afferents. Specifically, Nav1.7 may cause some functional changes in sensory processing in the gracile nucleus after peripheral nerve injury.
Collapse
Affiliation(s)
- T Fukuoka
- Department of Anatomy & Neuroscience, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan.
| | - K Miyoshi
- Department of Anatomy & Neuroscience, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - K Noguchi
- Department of Anatomy & Neuroscience, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| |
Collapse
|
29
|
Watson PCN, Mackinnon SE, Dostrovsky JO, Bennett GJ, Farran PR, Carlson T. Nerve resection, crush and re-location relieve complex regional pain syndrome type II: A case report. Pain 2014; 155:1168-1173. [DOI: 10.1016/j.pain.2014.01.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 01/13/2014] [Accepted: 01/28/2014] [Indexed: 10/25/2022]
|
30
|
Ratté S, Zhu Y, Lee KY, Prescott SA. Criticality and degeneracy in injury-induced changes in primary afferent excitability and the implications for neuropathic pain. eLife 2014; 3:e02370. [PMID: 24692450 PMCID: PMC3970756 DOI: 10.7554/elife.02370] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Neuropathic pain remains notoriously difficult to treat despite numerous drug targets. Here, we offer a novel explanation for this intractability. Computer simulations predicted that qualitative changes in primary afferent excitability linked to neuropathic pain arise through a switch in spike initiation dynamics when molecular pathologies reach a tipping point (criticality), and that this tipping point can be reached via several different molecular pathologies (degeneracy). We experimentally tested these predictions by pharmacologically blocking native conductances and/or electrophysiologically inserting virtual conductances. Multiple different manipulations successfully reproduced or reversed neuropathic changes in primary afferents from naïve or nerve-injured rats, respectively, thus confirming the predicted criticality and its degenerate basis. Degeneracy means that several different molecular pathologies are individually sufficient to cause hyperexcitability, and because several such pathologies co-occur after nerve injury, that no single pathology is uniquely necessary. Consequently, single-target-drugs can be circumvented by maladaptive plasticity in any one of several ion channels. DOI:http://dx.doi.org/10.7554/eLife.02370.001 Although the pain associated with an injury is unpleasant, it normally serves an important purpose: to make you avoid its source. However, some pain appears to arise from nowhere. Frustratingly, this type of pain, known as neuropathic pain, does not respond to common painkillers and is thus very difficult to treat. The neurons that transmit pain and other sensory information do so using electrical signals. In response to a stimulus, ions travel through channels in the membrane of a neuron, which leads to a change in the electrical potential of the membrane. When this change is large enough, a voltage spike is produced: this signal is ultimately transmitted to the brain. When certain neurons fire too easily or too often, neuropathic pain can arise. This hyperexcitability can make something painful feel even worse, or it can make things hurt that shouldn’t. To prevent this, extensive research has been devoted to identify drugs that target particular types of ion channels and block them. However, despite the discovery of many promising drugs, those drugs have been frustratingly ineffective in clinical trials. Using simulations and experiments, Ratté et al. have examined the behavior of a type of neuron that normally conducts information about touch, but the brain sometimes misinterprets this information as pain. Increasing the flow of ions through the cell membrane in these simulations eventually causes a ‘tipping point’ to be crossed, which triggers a dramatic, discontinuous change in spiking pattern. However, as several different types of ion channels contribute to the current, there are several different ways in which the tipping point can be crossed. This ability to produce the same result by multiple means is a common feature of complex systems. Known as degeneracy, it makes systems more robust, as a given result can still be achieved if one particular attempt to achieve this result fails. The work of Ratté et al. helps to explain why drugs that target just one type of ion channel may fail to relieve neuropathic pain: maladaptive changes in any one of several other ion channels may circumvent the therapeutic effect. DOI:http://dx.doi.org/10.7554/eLife.02370.002
Collapse
Affiliation(s)
- Stéphanie Ratté
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Canada
| | | | | | | |
Collapse
|
31
|
Kirillova-Woytke I, Baron R, Jänig W. Reflex inhibition of cutaneous and muscle vasoconstrictor neurons during stimulation of cutaneous and muscle nociceptors. J Neurophysiol 2014; 111:1833-45. [PMID: 24501261 DOI: 10.1152/jn.00798.2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cutaneous (CVC) and muscle (MVC) vasoconstrictor neurons exhibit typical reflex patterns to physiological stimulation of somatic and visceral afferent neurons. Here we tested the hypothesis that CVC neurons are inhibited by stimulation of cutaneous nociceptors but not of muscle nociceptors and that MVC neurons are inhibited by stimulation of muscle nociceptors but not of cutaneous nociceptors. Activity in the vasoconstrictor neurons was recorded from postganglionic axons isolated from the sural nerve or the lateral gastrocnemius-soleus nerve in anesthetized rats. The nociceptive afferents were excited by mechanical stimulation of the toes of the ipsilateral hindpaw (skin), by hypertonic saline injected into the ipsi- or contralateral gastrocnemius-soleus muscle, or by heat or noxious cold stimuli applied to the axons in the common peroneal nerve or tibial nerve. The results show that CVC neurons are inhibited by noxious stimulation of skin but not by noxious stimulation of skeletal muscle and that MVC neurons are inhibited by noxious stimulation of skeletal muscle but not by noxious stimulation of skin. These inhibitory reflexes are mostly lateralized and are most likely organized in the spinal cord. Stimulation of nociceptive cold-sensitive afferents does not elicit inhibitory or excitatory reflexes in CVC or MVC neurons. The reflex inhibition of activity in CVC or MVC neurons generated by stimulation of nociceptive cutaneous or muscle afferents during tissue injury leads to local increase of blood flow, resulting in an increase of transport of immunocompetent cells, proteins, and oxygen to the site of injury and enhancing the processes of healing.
Collapse
|
32
|
Cummins TR, Rush AM. Voltage-gated sodium channel blockers for the treatment of neuropathic pain. Expert Rev Neurother 2014; 7:1597-612. [DOI: 10.1586/14737175.7.11.1597] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
33
|
Kv2 dysfunction after peripheral axotomy enhances sensory neuron responsiveness to sustained input. Exp Neurol 2013; 251:115-26. [PMID: 24252178 PMCID: PMC3898477 DOI: 10.1016/j.expneurol.2013.11.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 10/21/2013] [Accepted: 11/07/2013] [Indexed: 12/16/2022]
Abstract
Peripheral nerve injuries caused by trauma are associated with increased sensory neuron excitability and debilitating chronic pain symptoms. Axotomy-induced alterations in the function of ion channels are thought to largely underlie the pathophysiology of these phenotypes. Here, we characterise the mRNA distribution of Kv2 family members in rat dorsal root ganglia (DRG) and describe a link between Kv2 function and modulation of sensory neuron excitability. Kv2.1 and Kv2.2 were amply expressed in cells of all sizes, being particularly abundant in medium-large neurons also immunoreactive for neurofilament-200. Peripheral axotomy led to a rapid, robust and long-lasting transcriptional Kv2 downregulation in the DRG, correlated with the onset of mechanical and thermal hypersensitivity. The consequences of Kv2 loss-of-function were subsequently investigated in myelinated neurons using intracellular recordings on ex vivo DRG preparations. In naïve neurons, pharmacological Kv2.1/Kv2.2 inhibition by stromatoxin-1 (ScTx) resulted in shortening of action potential (AP) after-hyperpolarization (AHP). In contrast, ScTx application on axotomized neurons did not alter AHP duration, consistent with the injury-induced Kv2 downregulation. In accordance with a shortened AHP, ScTx treatment also reduced the refractory period and improved AP conduction to the cell soma during high frequency stimulation. These results suggest that Kv2 downregulation following traumatic nerve lesion facilitates greater fidelity of repetitive firing during prolonged input and thus normal Kv2 function is postulated to limit neuronal excitability. In summary, we have profiled Kv2 expression in sensory neurons and provide evidence for the contribution of Kv2 dysfunction in the generation of hyperexcitable phenotypes encountered in chronic pain states. Kv2.1 and Kv2.2 are expressed in rat dorsal root ganglion neurons. Kv2 subunits are most abundant in myelinated sensory neurons. Kv2.1 and Kv.2 subunits are downregulated in a traumatic nerve injury pain model. Kv2 inhibition ex vivo allows higher firing rates during sustained stimulation. We conclude that Kv2 channels contribute to limiting peripheral neuron excitability.
Collapse
|
34
|
Zusman M. Mechanisms of peripheral neuropathic pain: implications for musculoskeletal physiotherapy. PHYSICAL THERAPY REVIEWS 2013. [DOI: 10.1179/174328808x356375] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
35
|
Wei XH, Na XD, Liao GJ, Chen QY, Cui Y, Chen FY, Li YY, Zang Y, Liu XG. The up-regulation of IL-6 in DRG and spinal dorsal horn contributes to neuropathic pain following L5 ventral root transection. Exp Neurol 2012; 241:159-68. [PMID: 23261764 DOI: 10.1016/j.expneurol.2012.12.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 12/12/2012] [Accepted: 12/13/2012] [Indexed: 12/28/2022]
Abstract
Our previous works have shown that pro-inflammatory cytokine tumor necrosis factor-alpha (TNF-α) plays an important role in neuropathic pain produced by lumber 5 ventral root transection (L5-VRT). In the present work we evaluate the role of interleukin-6 (IL-6), another key inflammatory cytokine, in the L5-VRT model. We found that IL-6 was up-regulated in the ipsilateral L4 and L5 dorsal root ganglian (DRG) neurons and in bilateral lumbar spinal cord following L5-VRT. Double immunofluorescence stainings revealed that in DRGs the increased immunoreactivity (IR) of IL-6 was almost restricted in neuronal cells, while in the spinal dorsal horn IL-6-IR up-regulated in both glial cells (astrocyte and microglia) and neurons. Intrathecal administration of IL-6 neutralizing antibody significantly delayed the induction of mechanical allodynia in bilateral hindpaws after L5-VRT. Furthermore, inhibition of TNF-α synthesis by intraperitoneal thalidomide prevented both mechanical allodynia and the up-regulation of IL-6 in DRGs following L5-VRT. These data suggested that the increased IL-6 in afferent neurons and spinal cord contribute to the development of neuropathic pain following motor fiber injury, and that TNF-α is responsible for the up-regulation of IL-6.
Collapse
Affiliation(s)
- Xu-Hong Wei
- Pain Research Center and Department of Physiology, Zhongshan Medical School of Sun Yat-Sen University, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Peripheral nerve injury produces a sustained shift in the balance between glutamate release and uptake in the dorsal horn of the spinal cord. Pain 2012; 153:2422-2431. [PMID: 23021150 DOI: 10.1016/j.pain.2012.08.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 07/31/2012] [Accepted: 08/22/2012] [Indexed: 12/20/2022]
Abstract
Peripheral nerve injury provokes heightened excitability of primary sensory afferents including nociceptors, and elicits ectopic activity in lesioned and neighboring intact nerve fibers. The major transmitter released by sensory afferents in the superficial dorsal horn of the spinal cord is glutamate. Glutamate is critically involved in nociceptive signaling and the development of neuropathic pain. We recorded miniature excitatory postsynaptic currents (mEPSCs) from neurons in lamina II of the rat dorsal horn to assess spontaneous synaptic activity after spared nerve injury (SNI), a model of chronic neuropathic pain. Following SNI, the frequency of mEPSCs doubled, indicating heightened glutamate release from primary afferents or spinal interneurons. Consistent with this finding, glutamate concentrations in the cerebrospinal fluid were elevated at 1 and 4 weeks after SNI. Transmitter uptake was insufficient to prevent the rise in extracellular glutamate as the expression of glutamate transporters remained unchanged or decreased. 2-Methyl-6-(phenylethynyl)pyridine hydrochloride, an antagonist of metabotropic glutamate receptor 5 (mGluR5), reduced the frequency of mEPSCs to its preinjury level, suggesting a positive feedback mechanism that involves facilitation of transmitter release by mGluR5 activation in the presence of high extracellular glutamate. Treatment with the β-lactam antibiotic ceftriaxone increased the expression of glutamate transporter 1 (Glt1) in the dorsal horn after SNI, raised transmitter uptake, and lowered extracellular glutamate. Improving glutamate clearance prevented the facilitation of transmitter release by mGluR5 and attenuated neuropathic pain-like behavior. Balancing glutamate release and uptake after nerve injury should be an important target in the management of chronic neuropathic pain.
Collapse
|
37
|
Djouhri L, Fang X, Koutsikou S, Lawson SN. Partial nerve injury induces electrophysiological changes in conducting (uninjured) nociceptive and nonnociceptive DRG neurons: Possible relationships to aspects of peripheral neuropathic pain and paresthesias. Pain 2012; 153:1824-1836. [PMID: 22721911 PMCID: PMC3425771 DOI: 10.1016/j.pain.2012.04.019] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 03/25/2012] [Accepted: 04/23/2012] [Indexed: 01/24/2023]
Abstract
Partial nerve injury leads to peripheral neuropathic pain. This injury results in conducting/uninterrupted (also called uninjured) sensory fibres, conducting through the damaged nerve alongside axotomised/degenerating fibres. In rats seven days after L5 spinal nerve axotomy (SNA) or modified-SNA (added loose-ligation of L4 spinal nerve with neuroinflammation-inducing chromic-gut), we investigated a) neuropathic pain behaviours and b) electrophysiological changes in conducting/uninterrupted L4 dorsal root ganglion (DRG) neurons with receptive fields (called: L4-receptive-field-neurons). Compared to pretreatment, modified-SNA rats showed highly significant increases in spontaneous-foot-lifting duration, mechanical-hypersensitivity/allodynia, and heat-hypersensitivity/hyperalgesia, that were significantly greater than after SNA, especially spontaneous-foot-lifting. We recorded intracellularly in vivo from normal L4/L5 DRG neurons and ipsilateral L4-receptive-field-neurons. After SNA or modified-SNA, L4-receptive-field-neurons showed the following: a) increased percentages of C-, Ad-, and Ab-nociceptors and cutaneous Aa/b-low-threshold mechanoreceptors with ongoing/spontaneous firing; b) spontaneous firing in C-nociceptors that originated peripherally; this was at a faster rate in modified-SNA than SNA; c) decreased electrical thresholds in A-nociceptors after SNA; d) hyperpolarised membrane potentials in A-nociceptors and Aa/b-low-threshold-mechanoreceptors after SNA, but not C-nociceptors; e) decreased somatic action potential rise times in C- and A-nociceptors, not Aa/b-low-threshold-mechanoreceptors. We suggest that these changes in subtypes of conducting/uninterrupted neurons after partial nerve injury contribute to the different aspects of neuropathic pain as follows: spontaneous firing in nociceptors to ongoing/spontaneous pain; spontaneous firing in Aa/b-low-threshold-mechanoreceptors to dysesthesias/paresthesias; and lowered A-nociceptor electrical thresholds to A-nociceptor sensitization, and greater evoked pain.
Collapse
Affiliation(s)
- Laiche Djouhri
- School of Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, UK
| | | | | | | |
Collapse
|
38
|
Birch R, Misra P, Stewart MPM, Eardley WGP, Ramasamy A, Brown K, Shenoy R, Anand P, Clasper J, Dunn R, Etherington J. Nerve injuries sustained during warfare: part II: Outcomes. ACTA ACUST UNITED AC 2012; 94:529-35. [PMID: 22434471 DOI: 10.1302/0301-620x.94b4.28488] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The outcomes of 261 nerve injuries in 100 patients were graded good in 173 cases (66%), fair in 70 (26.8%) and poor in 18 (6.9%) at the final review (median 28.4 months (1.3 to 64.2)). The initial grades for the 42 sutures and graft were 11 good, 14 fair and 17 poor. After subsequent revision repairs in seven, neurolyses in 11 and free vascularised fasciocutaneous flaps in 11, the final grades were 15 good, 18 fair and nine poor. Pain was relieved in 30 of 36 patients by nerve repair, revision of repair or neurolysis, and flaps when indicated. The difference in outcome between penetrating missile wounds and those caused by explosions was not statistically significant; in the latter group the onset of recovery from focal conduction block was delayed (mean 4.7 months (2.5 to 10.2) vs 3.8 months (0.6 to 6); p = 0.0001). A total of 42 patients (47 lower limbs) presented with an insensate foot. By final review (mean 27.4 months (20 to 36)) plantar sensation was good in 26 limbs (55%), fair in 16 (34%) and poor in five (11%). Nine patients returned to full military duties, 18 to restricted duties, 30 to sedentary work, and 43 were discharged from military service. Effective rehabilitation must be early, integrated and vigorous. The responsible surgeons must be firmly embedded in the process, at times exerting leadership.
Collapse
Affiliation(s)
- R Birch
- War Nerve Injury Clinic, Headley Court, Epsom, Surrey KT18 6JW, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Wu Q, Henry JL. Functional changes in muscle afferent neurones in an osteoarthritis model: implications for impaired proprioceptive performance. PLoS One 2012; 7:e36854. [PMID: 22606297 PMCID: PMC3351471 DOI: 10.1371/journal.pone.0036854] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Accepted: 04/14/2012] [Indexed: 01/02/2023] Open
Abstract
Background Impaired proprioceptive performance is a significant clinical issue for many who suffer osteoarthritis (OA) and is a risk factor for falls and other liabilities. This study was designed to evaluate weight-bearing distribution in a rat model of OA and to determine whether changes also occur in muscle afferent neurones. Methodology/Principal Findings Intracellular recordings were made in functionally identified dorsal root ganglion neurones in acute electrophysiological experiments on the anaesthetized animal following measurements of hind limb weight bearing in the incapacitance test. OA rats but not naïve control rats stood with less weight on the ipsilateral hind leg (P = 0.02). In the acute electrophysiological experiments that followed weight bearing measurements, action potentials (AP) elicited by electrical stimulation of the dorsal roots differed in OA rats, including longer AP duration (P = 0.006), slower rise time (P = 0.001) and slower maximum rising rate (P = 0.03). Depolarizing intracellular current injection elicited more APs in models than in naïve muscle afferent neurones (P = 0.01) indicating greater excitability. Axonal conduction velocity in model animals was slower (P = 0.04). Conclusions/Significance The present study demonstrates changes in hind limb stance accompanied by changes in the functional properties of muscle afferent neurones in this derangement model of OA. This may provide a possible avenue to explore mechanisms underlying the impaired proprioceptive performance and perhaps other sensory disorders in people with OA.
Collapse
Affiliation(s)
- Qi Wu
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - James L. Henry
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
- * E-mail:
| |
Collapse
|
40
|
Excitability of Aβ sensory neurons is altered in an animal model of peripheral neuropathy. BMC Neurosci 2012; 13:15. [PMID: 22289651 PMCID: PMC3292996 DOI: 10.1186/1471-2202-13-15] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 01/30/2012] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Causes of neuropathic pain following nerve injury remain unclear, limiting the development of mechanism-based therapeutic approaches. Animal models have provided some directions, but little is known about the specific sensory neurons that undergo changes in such a way as to induce and maintain activation of sensory pain pathways. Our previous studies implicated changes in the Aβ, normally non-nociceptive neurons in activating spinal nociceptive neurons in a cuff-induced animal model of neuropathic pain and the present study was directed specifically at determining any change in excitability of these neurons. Thus, the present study aimed at recording intracellularly from Aβ-fiber dorsal root ganglion (DRG) neurons and determining excitability of the peripheral receptive field, of the cell body and of the dorsal roots. METHODS A peripheral neuropathy was induced in Sprague Dawley rats by inserting two thin polyethylene cuffs around the right sciatic nerve. All animals were confirmed to exhibit tactile hypersensitivity to von Frey filaments three weeks later, before the acute electrophysiological experiments. Under stable intracellular recording conditions neurons were classified functionally on the basis of their response to natural activation of their peripheral receptive field. In addition, conduction velocity of the dorsal roots, configuration of the action potential and rate of adaptation to stimulation were also criteria for classification. Excitability was measured as the threshold to activation of the peripheral receptive field, the response to intracellular injection of depolarizing current into the soma and the response to electrical stimulation of the dorsal roots. RESULTS In control animals mechanical thresholds of all neurons were within normal ranges. Aβ DRG neurons in neuropathic rats demonstrated a mean mechanical threshold to receptive field stimulation that were significantly lower than in control rats, a prolonged discharge following this stimulation, a decreased activation threshold and a greater response to depolarizing current injection into the soma, as well as a longer refractory interval and delayed response to paired pulse electrical stimulation of the dorsal roots. CONCLUSIONS The present study has demonstrated changes in functionally classified Aβ low threshold and high threshold DRG neurons in a nerve intact animal model of peripheral neuropathy that demonstrates nociceptive responses to normally innocuous cutaneous stimuli, much the same as is observed in humans with neuropathic pain. We demonstrate further that the peripheral receptive fields of these neurons are more excitable, as are the somata. However, the dorsal roots exhibit a decrease in excitability. Thus, if these neurons participate in neuropathic pain this differential change in excitability may have implications in the peripheral drive that induces central sensitization, at least in animal models of peripheral neuropathic pain, and Aβ sensory neurons may thus contribute to allodynia and spontaneous pain following peripheral nerve injury in humans.
Collapse
|
41
|
Perioperative nerve blockade: clues from the bench. Anesthesiol Res Pract 2011; 2011:124898. [PMID: 21776253 PMCID: PMC3138083 DOI: 10.1155/2011/124898] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 03/23/2011] [Accepted: 05/06/2011] [Indexed: 11/18/2022] Open
Abstract
Peripheral and
neuraxial nerve blockades are widely used in the
perioperative period. Their values to diminish
acute postoperative pain are established but
other important outcomes such as chronic
postoperative pain, or newly, cancer recurrence,
or infections could also be influenced. The
long-term effects of perioperative nerve
blockade are still controversial. We will review
current knowledge of the effects of blocking
peripheral electrical activity in different
animal models of pain. We will first go over the
mechanisms of pain development and evaluate
which types of fibers are activated after an
injury. In the light of experimental results, we
will propose some hypotheses explaining the
mitigated results obtained in clinical studies
on chronic postoperative pain. Finally, we will
discuss three major disadvantages of the current
blockade: the absence of blockade of myelinated
fibers, the inappropriate duration of blockade,
and the existence of activity-independent
mechanisms.
Collapse
|
42
|
Kirillova I, Teliban A, Gorodetskaya N, Grossmann L, Bartsch F, Rausch VH, Struck M, Tode J, Baron R, Jänig W. Effect of local and intravenous lidocaine on ongoing activity in injured afferent nerve fibers. Pain 2011; 152:1562-1571. [DOI: 10.1016/j.pain.2011.02.046] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 02/09/2011] [Accepted: 02/22/2011] [Indexed: 10/18/2022]
|
43
|
Abstract
It is well known that the adult brain is capable of profound plasticity. Much of our understanding of the mechanisms underlying injury-induced changes in the brain is based on animal models. The development of sophisticated noninvasive neuroimaging techniques over the past decade provides a unique opportunity to examine brain plasticity in humans. In this article, the authors examine the consequences of nerve injury and surgical repair on peripheral nerve degeneration and regeneration and review classic animal literature that laid the foundation of injury-induced plasticity research. They relate these concepts to recent findings of functional and structural changes in the human brain following peripheral nerve injury. They then present a working theoretical model that links behavioral outcomes of nerve injury with functional and structural brain plasticity and personality.
Collapse
Affiliation(s)
- Karen D. Davis
- Division of Brain, Imaging and Behaviour –Systems Neuroscience,Toronto Western Research Institute, University Health Network, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Department of Surgery, University of Toronto, Toronto, Canada
| | - Keri S. Taylor
- Division of Brain, Imaging and Behaviour –Systems Neuroscience,Toronto Western Research Institute, University Health Network, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Dimitri J. Anastakis
- Division of Brain, Imaging and Behaviour –Systems Neuroscience,Toronto Western Research Institute, University Health Network, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Department of Surgery, University of Toronto, Toronto, Canada
| |
Collapse
|
44
|
Kirillova I, Rausch VH, Tode J, Baron R, Jänig W. Mechano- and thermosensitivity of injured muscle afferents. J Neurophysiol 2011; 105:2058-73. [PMID: 21307318 DOI: 10.1152/jn.00938.2010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Injury of limb nerves leading to neuropathic pain mostly affects deep somatic nerves including muscle nerves. Here, we investigated the functional properties of injured afferent fibers innervating the lateral gastrocnemius-soleus muscle 4-13 h [time period (TP) I] and 4-7 days (TP II) after nerve crush in anesthetized rats using neurophysiological recordings from either the sciatic nerve (165 A-, 137 C-fibers) or the dorsal root L(5) (43 A-, 28 C-fibers). Ongoing activity and responses to mechanical or thermal stimulation of the injury site of the nerve were studied quantitatively. Of the electrically identified A- and C-fibers, 5 and 38% exhibited ectopic activity, respectively, in TP I and 51 and 61%, respectively, in TP II. Thus all afferent fibers in an injured muscle nerve developed ectopic activity since ∼ 50% of the fibers in a muscle nerve are somatomotor or sympathetic postganglionic. Ongoing activity was present in 50% of the afferent A-fibers (TP II) and in 53-56% of the afferent C-fibers (TP I and II). In TP II, mechanical, cold, and heat sensitivity were present in 91, 63, and 52% of the afferent A-fibers and in 50, 40, and 66% of the afferent C-fibers. The cold and heat activation thresholds were 5-27 and 35-48°C, respectively, covering the noxious and innocuous range. Most afferent fibers showed combinations of these sensitivities. Mechano- and cold sensitivity had a significantly higher representation in A- than in C-fibers, but heat sensitivity had a significantly higher representation in C- than in A-fibers. These functional differences between A- and C-fibers applied to large- as well as small-diameter A-fibers. Comparing the functional properties of injured muscle A- and C-afferents with those of injured cutaneous A- and C-afferents shows that both populations of injured afferent neurons behave differently in several aspects.
Collapse
Affiliation(s)
- Irina Kirillova
- Physiologisches Institut, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, 24098 Kiel, Germany
| | | | | | | | | |
Collapse
|
45
|
Ochi K, Horiuchi Y, Tazaki K, Takayama S, Nakamura T, Ikegami H, Matsumura T, Toyama Y. Surgical treatment of spontaneous posterior interosseous nerve palsy. ACTA ACUST UNITED AC 2011; 93:217-22. [DOI: 10.1302/0301-620x.93b2.24748] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We have reviewed 38 surgically treated cases of spontaneous posterior interosseous nerve palsy in 38 patients with a mean age of 43 years (13 to 68) in order to identify clinical factors associated with its prognosis. Interfascicular neurolysis was performed at a mean of 13 months (1 to 187) after the onset of symptoms. The mean follow-up was 21 months (5.5 to 221). Medical Research Council muscle power of more than grade 4 was considered to be a good result. A further 12 cases in ten patients were treated conservatively and assessed similarly. Of the 30 cases treated surgically with available outcome data, the result of interfascicular neurolysis was significantly better in patients < 50 years old (younger group (18 nerves); good: 13 nerves (72%), poor: five nerves (28%)) than in cases > 50 years old (older group (12 nerves); good: one nerve (8%), poor: 11 nerves (92%)) (p < 0.001). A pre-operative period of less than seven months was also associated with a good result in the younger group (p = 0.01). The older group had a poor result regardless of the pre-operative delay. Our recommended therapeutic approach therefore is to perform interfascicular neurolysis if the patient is < 50 years of age, and the pre-operative delay is < seven months. If the patient is > 50 years of age with no sign of recovery for seven months, or in the younger group with a pre-operative delay of more than a year, we advise interfascicular neurolysis together with tendon transfer as the primary surgical procedure.
Collapse
Affiliation(s)
- K. Ochi
- Department of Orthopaedic Surgery
| | - Y. Horiuchi
- Kawasaki Municipal Kawasaki Hospital, 12-1 Shinkawa-dori, Kawasaki-ku, Kawasaki, Kanagawa 210-0013, Japan
| | - K. Tazaki
- Ogikubo Hospital, 3-1-24 Imagawa, Suginami-ku, Tokyo, 167-0035, Japan
| | - S. Takayama
- National Center for Child Health and Development, 2-10-1 Ookura, Setagaya-ku, Tokyo 157-8535, Japan
| | - T. Nakamura
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - H. Ikegami
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - T. Matsumura
- Matsumura Geka Seikeigeka Clinic, 1-1-6 Baba-dori, Utsunomiya, Tochigi 320-0026, Japan
| | - Y. Toyama
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
46
|
Nociceptors, Pain, and Spinal Manipulation. Pain Manag 2011. [DOI: 10.1016/b978-1-4377-0721-2.00137-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
47
|
Zang Y, He XH, Xin WJ, Pang RP, Wei XH, Zhou LJ, Li YY, Liu XG. Inhibition of NF-kappaB prevents mechanical allodynia induced by spinal ventral root transection and suppresses the re-expression of Nav1.3 in DRG neurons in vivo and in vitro. Brain Res 2010; 1363:151-8. [PMID: 20858468 DOI: 10.1016/j.brainres.2010.09.048] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2010] [Revised: 09/13/2010] [Accepted: 09/14/2010] [Indexed: 10/19/2022]
Abstract
Activation of nucleus factor-kappaB (NF-κB) in the dorsal root ganglia (DRG) is critical for development of neuropathic pain. The underlying mechanisms, however, are largely unknown. In the present work we tested if the activation of NF-κB is required for re-expression of Nav1.3, which is important for development of neuropathic pain, in uninjured DRG neurons. We found that intrathecal injection of pyrrolidine dithiocarbamate (PDTC), a NF-κB inhibitor, completely blocked the mechanical allodynia induced by L5 ventral root transection (L5-VRT), when applied 30 min before or 8h after operation, but at 7d after L5-VRT the same manipulation had no effect on established allodynia. Pre-treatment with PDTC also prevented the re-expression of Nav1.3 induced by L5-VRT. As our previous work has shown that up-regulation of tumor necrosis factor-alpha (TNF-α) in DRG is responsible for the re-expression of Nav1.3 in uninjured DRG neurons following L5 ventral root injury, we investigated whether activation of NF-κB is essential for the up-regulation of Nav1.3 by TNF-α. Results showed that application of rat recombinant TNF-α (rrTNF) into the cultured normal adult rat DRG neurons increased the immunoreactive (IR) of Nav1.3 localized mainly around the cell membrane and pre-treatment with PDTC blocked the change dose-dependently. The data suggested that injury to ventral root might lead to neuropathic pain and the re-expression of Nav1.3 in primary sensory neurons by activation of NF-κB.
Collapse
Affiliation(s)
- Ying Zang
- Pain Research Center and Department of Physiology, Zhongshan Medical School of Sun Yat-Sen University, 74 Zhongshan Rd 2, Guangzhou 510080, PR China
| | | | | | | | | | | | | | | |
Collapse
|
48
|
TNF-α contributes to up-regulation of Nav1.3 and Nav1.8 in DRG neurons following motor fiber injury. Pain 2010; 151:266-279. [PMID: 20638792 DOI: 10.1016/j.pain.2010.06.005] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 04/07/2010] [Accepted: 06/10/2010] [Indexed: 12/13/2022]
Abstract
A large body of evidence has demonstrated that the ectopic discharges of action potentials in primary afferents, resulted from the abnormal expression of voltage gated sodium channels (VGSCs) in dorsal root ganglion (DRG) neurons following peripheral nerve injury are important for the development of neuropathic pain. However, how nerve injury affects the expression of VGSCs is largely unknown. Here, we reported that selective injury of motor fibers by L5 ventral root transection (L5-VRT) up-regulated Nav1.3 and Nav1.8 at both mRNA and protein level and increased current densities of TTX-S and TTX-R channels in DRG neurons, suggesting that nerve injury may up-regulate functional VGSCs in sensory neurons indirectly. As the up-regulated Nav1.3 and Nav1.8 were highly co-localized with TNF-α, we tested the hypothesis that the increased TNF-α may lead to over-expression of the sodium channels. Indeed, we found that peri-sciatic administration of recombinant rat TNF-α (rrTNF) without any nerve injury, which produced lasting mechanical allodynia, also up-regulated Nav1.3 and Nav1.8 in DRG neurons in vivo and that rrTNF enhanced the expression of Nav1.3 and Nav1.8 in cultured adult rat DRG neurons in a dose-dependent manner. Furthermore, inhibition of TNF-α synthesis, which prevented neuropathic pain, strongly inhibited the up-regulation of Nav1.3 and Nav1.8. The up-regulation of the both channels following L5-VRT was significantly lower in TNF receptor 1 knockout mice than that in wild type mice. These data suggest that increased TNF-α may be responsible for up-regulation of Nav1.3 and Nav1.8 in uninjured DRG neurons following nerve injury.
Collapse
|
49
|
Wu Q, Henry JL. Changes in Abeta non-nociceptive primary sensory neurons in a rat model of osteoarthritis pain. Mol Pain 2010; 6:37. [PMID: 20594346 PMCID: PMC2908067 DOI: 10.1186/1744-8069-6-37] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 07/01/2010] [Indexed: 11/18/2022] Open
Abstract
Background Pain is a major debilitating factor in osteoarthritis (OA), yet few mechanism-based therapies are available. To address the need to understand underlying mechanisms the aim of the present study was to determine changes in sensory neurons in an animal model of OA pain. Results The model displayed typical osteoarthritis pathology characterized by cartilage degeneration in the knee joint and also manifested knee pathophysiology (edema and increased vasculature permeability of the joint) and altered nociception of the affected limb (hind paw tenderness and knee articulation-evoked reduction in the tail flick latency). Neurons included in this report innervated regions throughout the entire hind limb. Aβ-fiber low threshold mechanoreceptors exhibited a slowing of the dynamics of action potential (AP) genesis, including wider AP duration and slower maximum rising rate, and muscle spindle neurons were the most affected subgroup. Only minor AP configuration changes were observed in either C- or Aδ-fiber nociceptors. Conclusion Thus, at one month after induction of the OA model Aβ-fiber low threshold mechanoreceptors but not C- or Aδ-fiber nociceptors had undergone changes in electrophysiological properties. If these changes reflect a change in functional role of these neurons in primary afferent sensory processing, then Aβ-fiber non-nociceptive primary sensory neurons may be involved in the pathogenesis of OA pain. Further, it is important to point out that the patterns of the changes we observed are consistent with observations in models of peripheral neuropathy but not models of peripheral inflammation.
Collapse
Affiliation(s)
- Qi Wu
- Psychiatry and Behavioral Neurosciences, McMaster University, HSC 4N35, Hamilton, Ontario, Canada
| | | |
Collapse
|
50
|
Enes J, Langwieser N, Ruschel J, Carballosa-Gonzalez MM, Klug A, Traut MH, Ylera B, Tahirovic S, Hofmann F, Stein V, Moosmang S, Hentall ID, Bradke F. Electrical activity suppresses axon growth through Ca(v)1.2 channels in adult primary sensory neurons. Curr Biol 2010; 20:1154-64. [PMID: 20579880 DOI: 10.1016/j.cub.2010.05.055] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 05/18/2010] [Accepted: 05/19/2010] [Indexed: 12/17/2022]
Abstract
BACKGROUND Primary sensory neurons of the dorsal root ganglia (DRG) regenerate their spinal cord axon if the peripheral nerve axon has previously been cut. This conditioning lesion confers axon growth competence to the neurons. However, the signal that is sensed by the cell upon peripheral lesion to initiate the regenerative response remains elusive. RESULTS We show here that loss of electrical activity following peripheral deafferentiation is an important signal to trigger axon regrowth. We first verified that firing in sensory fibers, as recorded from dorsal roots in vivo, declined after peripheral lesioning but was not altered after central lesioning. We found that electrical activity strongly inhibited axon outgrowth in cultured adult sensory neurons. The inhibitory effect depended on the L-type voltage-gated Ca(2+) channel current and involved transcriptional changes. After a peripheral lesion, the L-type current was consistently diminished and the L-type pore-forming subunit, Ca(v)1.2, was downregulated. Genetic ablation of Ca(v)1.2 in the nervous system caused an increase in axon outgrowth from dissociated DRG neurons and enhanced peripheral nerve regeneration in vivo. CONCLUSIONS Our data indicate that cessation of electrical activity after peripheral lesion contributes to the regenerative response observed upon conditioning and might be necessary to promote regeneration after central nervous system injury.
Collapse
Affiliation(s)
- Joana Enes
- Axonal Growth and Regeneration, Max Planck Institute of Neurobiology, Martinsried, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|