1
|
Réthi-Nagy Z, Juhász S. Microbiome's Universe: Impact on health, disease and cancer treatment. J Biotechnol 2024; 392:161-179. [PMID: 39009231 DOI: 10.1016/j.jbiotec.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/27/2024] [Accepted: 07/07/2024] [Indexed: 07/17/2024]
Abstract
The human microbiome is a diverse ecosystem of microorganisms that reside in the body and influence various aspects of health and well-being. Recent advances in sequencing technology have brought to light microbial communities in organs and tissues that were previously considered sterile. The gut microbiota plays an important role in host physiology, including metabolic functions and immune modulation. Disruptions in the balance of the microbiome, known as dysbiosis, have been linked to diseases such as cancer, inflammatory bowel disease and metabolic disorders. In addition, the administration of antibiotics can lead to dysbiosis by disrupting the structure and function of the gut microbial community. Targeting strategies are the key to rebalancing the microbiome and fighting disease, including cancer, through interventions such as probiotics, fecal microbiota transplantation (FMT), and bacteria-based therapies. Future research must focus on understanding the complex interactions between diet, the microbiome and cancer in order to optimize personalized interventions. Multidisciplinary collaborations are essential if we are going to translate microbiome research into clinical practice. This will revolutionize approaches to cancer prevention and treatment.
Collapse
Affiliation(s)
- Zsuzsánna Réthi-Nagy
- Hungarian Centre of Excellence for Molecular Medicine, Cancer Microbiome Core Group, Budapesti út 9, Szeged H-6728, Hungary
| | - Szilvia Juhász
- Hungarian Centre of Excellence for Molecular Medicine, Cancer Microbiome Core Group, Budapesti út 9, Szeged H-6728, Hungary.
| |
Collapse
|
2
|
Lerner A, Benzvi C, Vojdani A. The Potential Harmful Effects of Genetically Engineered Microorganisms (GEMs) on the Intestinal Microbiome and Public Health. Microorganisms 2024; 12:238. [PMID: 38399642 PMCID: PMC10892181 DOI: 10.3390/microorganisms12020238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Gut luminal dysbiosis and pathobiosis result in compositional and biodiversified alterations in the microbial and host co-metabolites. The primary mechanism of bacterial evolution is horizontal gene transfer (HGT), and the acquisition of new traits can be achieved through the exchange of mobile genetic elements (MGEs). Introducing genetically engineered microbes (GEMs) might break the harmonized balance in the intestinal compartment. The present objectives are: 1. To reveal the role played by the GEMs' horizontal gene transfers in changing the landscape of the enteric microbiome eubiosis 2. To expand on the potential detrimental effects of those changes on the human genome and health. A search of articles published in PubMed/MEDLINE, EMBASE, and Scielo from 2000 to August 2023 using appropriate MeSH entry terms was performed. The GEMs' horizontal gene exchanges might induce multiple human diseases. The new GEMs can change the long-term natural evolution of the enteric pro- or eukaryotic cell inhabitants. The worldwide regulatory authority's safety control of GEMs is not enough to protect public health. Viability, biocontainment, and many other aspects are only partially controlled and harmful consequences for public health should be avoided. It is important to remember that prevention is the most cost-effective strategy and primum non nocere should be the focus.
Collapse
Affiliation(s)
- Aaron Lerner
- Chaim Sheba Medical Center, The Zabludowicz Center for Autoimmune Diseases, Ramat Gan 52621, Israel;
- Ariel Campus, Ariel University, Ariel 40700, Israel
| | - Carina Benzvi
- Chaim Sheba Medical Center, The Zabludowicz Center for Autoimmune Diseases, Ramat Gan 52621, Israel;
| | | |
Collapse
|
3
|
Ahire JJ, Rohilla A, Kumar V, Tiwari A. Quality Management of Probiotics: Ensuring Safety and Maximizing Health Benefits. Curr Microbiol 2023; 81:1. [PMID: 37935938 DOI: 10.1007/s00284-023-03526-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/16/2023] [Indexed: 11/09/2023]
Abstract
Consumption of probiotics, which are beneficial live microorganisms, has received a lot of attention because of their potential to improve health and wellness. Robust quality control measures are necessary to ensure the safety of probiotics and maximize their health effects. This review delves into the topic of quality management in probiotics, highlighting the significance of sticking to strict guidelines from manufacture to storage to distribution. Probiotic quality standards, Good Manufacturing Practices (GMP) implementation, quality control and testing techniques, and documentation and traceability systems are all discussed in detail. The importance of taking precautions to avoid microbial contamination, meeting all applicable regulations, and clearly marking and packaging probiotic products is also emphasized. In addition, it reviews the clinical evidence supporting the possible health advantages of probiotics and investigates the processes through which probiotics enhance health. The review continues by stressing the significance of educating and informing consumers about probiotics and their proper use in order to maximize health benefits. Probiotics' potential health benefits can be maximized and consumer faith in these helpful microbes can be bolstered by adopting thorough quality management measures to ensure their safety, efficacy, and consistency.
Collapse
Affiliation(s)
- Jayesh J Ahire
- Dr. Reddy's Laboratories Limited, Ameerpet, Hyderabad, 500016, India.
| | - Alka Rohilla
- Faculty of Science, Institute of Biology Sciences, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Vikram Kumar
- Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management, Sonipat, 131028, India
| | - Amit Tiwari
- Advanced Enzyme Technologies Limited, Sun Magnetica, LIC Service Road, Louiswadi, Thane West, Maharashtra, 400 604, India
| |
Collapse
|
4
|
Guo C, Kong L, Xiao L, Liu K, Cui H, Xin Q, Gu X, Jiang C, Wu J. The impact of the gut microbiome on tumor immunotherapy: from mechanism to application strategies. Cell Biosci 2023; 13:188. [PMID: 37828613 PMCID: PMC10571290 DOI: 10.1186/s13578-023-01135-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 09/15/2023] [Indexed: 10/14/2023] Open
Abstract
Immunotherapy is one of the fastest developing areas in the field of oncology. Many immunological treatment strategies for refractory tumors have been approved and marketed. Nevertheless, much clinical and preclinical experimental evidence has shown that the efficacy of immunotherapy in tumor treatment varies markedly among individuals. The commensal microbiome mainly colonizes the intestinal lumen in humans, is affected by a variety of factors and exhibits individual variation. Moreover, the gut is considered the largest immune organ of the body due to its influence on the immune system. In the last few decades, with the development of next-generation sequencing (NGS) techniques and in-depth research, the view that the gut microbiota intervenes in antitumor immunotherapy through the immune system has been gradually confirmed. Here, we review important studies published in recent years focusing on the influences of microbiota on immune system and the progression of malignancy. Furthermore, we discuss the mechanism by which microbiota affect tumor immunotherapy, including immune checkpoint blockade (ICB) and adoptive T-cell therapy (ACT), and strategies for modulating the microbial composition to facilitate the antitumor immune response. Finally, opportunity and some challenges are mentioned to enable a more systematic understanding of tumor treatment in the future and promote basic research and clinical application in related fields.
Collapse
Affiliation(s)
- Ciliang Guo
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, National Institute of Healthcare Data Science at Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China
| | - Lingkai Kong
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, National Institute of Healthcare Data Science at Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China
| | - Lingjun Xiao
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, National Institute of Healthcare Data Science at Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China
| | - Kua Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, National Institute of Healthcare Data Science at Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China
| | - Huawei Cui
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, National Institute of Healthcare Data Science at Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China
| | - Qilei Xin
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Qingdao Road 3716#, Huaiyin District, Jinan, Shandong, China
| | - Xiaosong Gu
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, National Institute of Healthcare Data Science at Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Qingdao Road 3716#, Huaiyin District, Jinan, Shandong, China
| | - Chunping Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, National Institute of Healthcare Data Science at Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Qingdao Road 3716#, Huaiyin District, Jinan, Shandong, China.
| | - Junhua Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, National Institute of Healthcare Data Science at Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Qingdao Road 3716#, Huaiyin District, Jinan, Shandong, China.
| |
Collapse
|
5
|
Mousa WK, Mousa S, Ghemrawi R, Obaid D, Sarfraz M, Chehadeh F, Husband S. Probiotics Modulate Host Immune Response and Interact with the Gut Microbiota: Shaping Their Composition and Mediating Antibiotic Resistance. Int J Mol Sci 2023; 24:13783. [PMID: 37762089 PMCID: PMC10531388 DOI: 10.3390/ijms241813783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The consortium of microbes inhabiting the human body, together with their encoded genes and secreted metabolites, is referred to as the "human microbiome." Several studies have established a link between the composition of the microbiome and its impact on human health. This impact spans local gastrointestinal inflammation to systemic autoimmune disorders and neurodegenerative diseases such as Alzheimer's and Autism. Some of these links have been validated by rigorous experiments that identify specific strains as mediators or drivers of a particular condition. Consequently, the development of probiotics to compensate for a missing beneficial microbe(s) has advanced and become popular, especially in the treatment of irritable bowel diseases and to restore disrupted gut flora after antibiotic administration. The widespread use of probiotics is often advocated as a natural ecological therapy. However, this perception is not always accurate, as there is a potential for unexpected interactions when administering live microbial cultures. Here, we designed this research to explore the intricate interactions among probiotics, the host, and microbes through a series of experiments. Our objectives included assessing their immunomodulatory effects, response to oral medications, impact on microbial population dynamics, and mediation of antibiotic resistance. To achieve these goals, we employed diverse experimental protocols, including cell-based enzyme -linked immunosorbent assay (ELISA), antibiotic susceptibility testing, antimicrobial activity assays, computational prediction of probiotic genes responsible for antibiotic resistance, polymerase chain reaction (PCR)-based validation of predicted genes, and survival assays of probiotics in the presence of selected oral medications. Our findings highlight that more than half of the tested probiotics trigger an inflammatory response in the Caco-2 cell line, are influenced by oral medications, exhibit antibacterial activity, and possess genes encoding antimicrobial resistance. These results underscore the necessity for a reevaluation of probiotic usage and emphasize the importance of establishing regulations to govern probiotic testing, approval, and administration.
Collapse
Affiliation(s)
- Walaa K. Mousa
- College of Pharmacy, Al Ain University, Abu Dhabi P.O. Box 64141, United Arab Emirates; (S.M.); (R.G.); (D.O.); (M.S.)
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
- College of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Sara Mousa
- College of Pharmacy, Al Ain University, Abu Dhabi P.O. Box 64141, United Arab Emirates; (S.M.); (R.G.); (D.O.); (M.S.)
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
| | - Rose Ghemrawi
- College of Pharmacy, Al Ain University, Abu Dhabi P.O. Box 64141, United Arab Emirates; (S.M.); (R.G.); (D.O.); (M.S.)
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
| | - Dana Obaid
- College of Pharmacy, Al Ain University, Abu Dhabi P.O. Box 64141, United Arab Emirates; (S.M.); (R.G.); (D.O.); (M.S.)
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
| | - Muhammad Sarfraz
- College of Pharmacy, Al Ain University, Abu Dhabi P.O. Box 64141, United Arab Emirates; (S.M.); (R.G.); (D.O.); (M.S.)
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
| | - Fadia Chehadeh
- Anschutz Medical Campus, Colorado School of Public Health, University of Colorado, Aurora, CO 173364, USA;
| | - Shannon Husband
- Department of Biology, Whitman College, Walla Walla, WA 99362, USA;
| |
Collapse
|
6
|
Li P, Roos S, Luo H, Ji B, Nielsen J. Metabolic engineering of human gut microbiome: Recent developments and future perspectives. Metab Eng 2023; 79:1-13. [PMID: 37364774 DOI: 10.1016/j.ymben.2023.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/10/2023] [Accepted: 06/10/2023] [Indexed: 06/28/2023]
Abstract
Many studies have demonstrated that the gut microbiota is associated with human health and disease. Manipulation of the gut microbiota, e.g. supplementation of probiotics, has been suggested to be feasible, but subject to limited therapeutic efficacy. To develop efficient microbiota-targeted diagnostic and therapeutic strategies, metabolic engineering has been applied to construct genetically modified probiotics and synthetic microbial consortia. This review mainly discusses commonly adopted strategies for metabolic engineering in the human gut microbiome, including the use of in silico, in vitro, or in vivo approaches for iterative design and construction of engineered probiotics or microbial consortia. Especially, we highlight how genome-scale metabolic models can be applied to advance our understanding of the gut microbiota. Also, we review the recent applications of metabolic engineering in gut microbiome studies as well as discuss important challenges and opportunities.
Collapse
Affiliation(s)
- Peishun Li
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE41296, Gothenburg, Sweden
| | - Stefan Roos
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, SE75007, Uppsala, Sweden
| | - Hao Luo
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE41296, Gothenburg, Sweden
| | - Boyang Ji
- BioInnovation Institute, Ole Maaløes Vej 3, DK2200, Copenhagen, Denmark
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE41296, Gothenburg, Sweden; BioInnovation Institute, Ole Maaløes Vej 3, DK2200, Copenhagen, Denmark.
| |
Collapse
|
7
|
Pal R, Athamneh AI, Deshpande R, Ramirez JAR, Adu KT, Muthuirulan P, Pawar S, Biazzo M, Apidianakis Y, Sundekilde UK, de la Fuente-Nunez C, Martens MG, Tegos GP, Seleem MN. Probiotics: insights and new opportunities for Clostridioides difficile intervention. Crit Rev Microbiol 2023; 49:414-434. [PMID: 35574602 PMCID: PMC9743071 DOI: 10.1080/1040841x.2022.2072705] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/17/2022] [Accepted: 04/28/2022] [Indexed: 02/08/2023]
Abstract
Clostridioides difficile infection (CDI) is a life-threatening disease caused by the Gram-positive, opportunistic intestinal pathogen C. difficile. Despite the availability of antimicrobial drugs to treat CDI, such as vancomycin, metronidazole, and fidaxomicin, recurrence of infection remains a significant clinical challenge. The use of live commensal microorganisms, or probiotics, is one of the most investigated non-antibiotic therapeutic options to balance gastrointestinal (GI) microbiota and subsequently tackle dysbiosis. In this review, we will discuss major commensal probiotic strains that have the potential to prevent and/or treat CDI and its recurrence, reassess the efficacy of probiotics supplementation as a CDI intervention, delve into lessons learned from probiotic modulation of the immune system, explore avenues like genome-scale metabolic network reconstructions, genome sequencing, and multi-omics to identify novel strains and understand their functionality, and discuss the current regulatory framework, challenges, and future directions.
Collapse
Affiliation(s)
- Rusha Pal
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Ahmad I.M. Athamneh
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
| | | | - Jose A. R Ramirez
- ProbioWorld Consulting Group, James Cook University, 4811, Queensland, Australia
| | - Kayode T. Adu
- ProbioWorld Consulting Group, James Cook University, 4811, Queensland, Australia
- Cann Group, Walter and Eliza Hall Institute, La Trobe University, Victoria 3083, Australia
| | | | - Shrikant Pawar
- The Anlyan Center Yale Center for Genomic Analysis, Yale School of Medicine, New Haven CT USA
| | - Manuele Biazzo
- The Bioarte Ltd Laboratories at Life Science Park, San Gwann, Malta
| | | | | | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Mark G. Martens
- Reading Hospital, Tower Health, West Reading, PA 19611, USA
- Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - George P. Tegos
- Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Mohamed N. Seleem
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
8
|
Liang D, Wu F, Zhou D, Tan B, Chen T. Commercial probiotic products in public health: current status and potential limitations. Crit Rev Food Sci Nutr 2023; 64:6455-6476. [PMID: 36688290 DOI: 10.1080/10408398.2023.2169858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Consumption of commercial probiotics for health improvement and disease treatment has increased in popularity among the public in recent years. The local shops and pharmacies are brimming with various probiotic products such as probiotic food, dietary supplement and pharmaceuticals that herald a range of health benefits, from nutraceutical benefits to pharmaceutical effects. However, although the probiotic market is expanding rapidly, there is increasing evidence challenging it. Emerging insights from microbiome research and public health demonstrate several potential limitations of the natural properties, regulatory frameworks, and market consequences of commercial probiotics. In this review, we highlight the potential safety and performance issues of the natural properties of commercial probiotics, from the genetic level to trait characteristics and probiotic properties and further to the probiotic-host interaction. Besides, the diverse regulatory frameworks and confusing probiotic guidelines worldwide have led to product consequences such as pathogenic contamination, overstated claims, inaccurate labeling and counterfeit trademarks for probiotic products. Here, we propose a plethora of available methods and strategies related to strain selection and modification, safety and efficacy assessment, and some recommendations for regulatory agencies to address these limitations to guarantee sustainability and progress in the probiotic industry and improve long-term public health and development.
Collapse
Affiliation(s)
- Dingfa Liang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
- Queen Mary School, Nanchang University, Nanchang, China
| | - Fei Wu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
| | - Dexi Zhou
- National Engineering Research Centre for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Buzhen Tan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
| | - Tingtao Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
- National Engineering Research Centre for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
9
|
Kombucha: Perceptions and Future Prospects. Foods 2022; 11:foods11131977. [PMID: 35804792 PMCID: PMC9265386 DOI: 10.3390/foods11131977] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/19/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Kombucha is an increasingly consumed product classified as a nutraceutical. Legislative efforts about these products remain confusing and without global harmonization. This natural product has been developed to improve or promote physical and mental health. However, it needs regulatory guidelines to control the production and guarantee the product’s efficacy and safety. Aim: The study intends to draw attention to the need for regulatory guidelines and the potential of this product in the market and peoples’ health. Key findings and conclusions: The lack of regulation and the low level of literacy about this product can limit its development, marketing, and impact on health. Thus, it is essential to highlight the potential value of this product and invest in its development and marketing. Likewise, it is important to spread awareness among the population of these products and their impacts on people’s health. Thus, this study focuses on a pertinent theme and alerts to the need for legislation for these products, to draw attention to the inexistent legislative control and the consequent need for regulatory guidelines for better and safer production and consumption.
Collapse
|
10
|
Ebenso B, Otu A, Giusti A, Cousin P, Adetimirin V, Razafindralambo H, Effa E, Gkisakis V, Thiare O, Levavasseur V, Kouhounde S, Adeoti K, Rahim A, Mounir M. Nature-Based One Health Approaches to Urban Agriculture Can Deliver Food and Nutrition Security. Front Nutr 2022; 9:773746. [PMID: 35360699 PMCID: PMC8963785 DOI: 10.3389/fnut.2022.773746] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/17/2022] [Indexed: 12/03/2022] Open
Abstract
The increasing global human population is projected to reach 9.7 billion people by 2050. This population growth is currently linked to the trends of world-wide urbanization, growth of megacities and shifting dietary patterns. While humankind faces the daunting challenge of feeding and providing healthy lives for its teeming populations, urban agriculture holds promise for improving the quality of life in cities. Fortunately, policymakers and planners are accepting the need to support peri-urban farmers to increase the resilience of food systems while efficiently managing already strained natural resources. We argue that for urban agriculture to significantly increase food yields, it is crucial to adopt a One Health approach to agriculture and environmental stewardship. Here, we propose six nature-based and climate-smart approaches to accelerate the transition toward more sustainable food systems. These approaches include reducing the reliance on synthetic agricultural inputs, increasing biodiversity through producing locally adapted crops and livestock breeds, using probiotics and postbiotics, and adopting portable digital decision-support systems. Such radical approaches to transforming food production will require cross-sectoral stakeholder engagement at international, national, and community levels to protect biodiversity and the environment whilst ensuring sustainable and nutritious diets that are culturally acceptable, accessible, and affordable for all.
Collapse
Affiliation(s)
- Bassey Ebenso
- Leeds Institute of Health Sciences, University of Leeds, Leeds, United Kingdom
| | - Akaninyene Otu
- Leeds Institute of Health Sciences, University of Leeds, Leeds, United Kingdom
- Foundation for Healthcare Innovation and Development (FHIND), Calabar, Nigeria
- Department of Internal Medicine, University of Calabar, Calabar, Nigeria
- Hull University Teaching Hospital, Hull, United Kingdom
| | | | | | - Victor Adetimirin
- Department of Crop and Horticultural Sciences, University of Ibadan, Ibadan, Nigeria
| | | | - Emmanuel Effa
- Foundation for Healthcare Innovation and Development (FHIND), Calabar, Nigeria
- Department of Internal Medicine, University of Calabar, Calabar, Nigeria
| | - Vasileios Gkisakis
- Institute of Olive Tree, Subtropical Crops & Viticulture, Department of Olive and Horticultural crops, ELGO – DIMITRA, Kalamata, Greece
| | - Ousmane Thiare
- Université Gaston Berger de Saint Louis, Saint-Louis, Senegal
| | | | - Sonagnon Kouhounde
- Laboratory of Applied Biologic Sciences, Université Aube Nouvelle, Bobo-Dioulasso, Burkina Faso
| | - Kifouli Adeoti
- Laboratoire de Microbiologie et de Technologie Alimentaire (LAMITA), Faculté des Sciences et Techniques, Université d’Abomey-Calavi, Cotonou, Benin
| | | | - Majid Mounir
- Department of Food Science and Nutrition, Biotransformations Laboratory, Hassan II Institute of Agronomy and Veterinary Medicine, Rabat Instituts, Rabat, Morocco
| |
Collapse
|
11
|
To HTA, Chhetri V, Settachaimongkon S, Prakitchaiwattana C. Stress tolerance-Bacillus with a wide spectrum bacteriocin as an alternative approach for food bio-protective culture production. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
12
|
Probiotic Molecules That Inhibit Inflammatory Diseases. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Consumption of probiotics for health purposes has increased vastly in the past few decades, and yet the scientific evidence to support health benefits from probiotics is only beginning to emerge. As more probiotics are studied, we are beginning to understand the mechanisms of action by which they benefit human health, as well as to identify the bacterial molecules responsible for these benefits. A new era of therapeutics is on the horizon in which purified molecules from probiotics will be used to prevent and treat diseases. In this review, we summarize the active molecules from probiotic bacteria that have been shown to affect innate and adaptive immunity and have health benefits in experimental settings. We focus particularly on the cellular and molecular mechanisms of the probiotic Bacillus subtilis and its active molecule, exopolysaccharide (ESPBs).
Collapse
|
13
|
Wu Y, Hu S, Wu C, Gu F, Yang Y. Probiotics: Potential Novel Therapeutics Against Fungal Infections. Front Cell Infect Microbiol 2022; 11:793419. [PMID: 35127557 PMCID: PMC8813855 DOI: 10.3389/fcimb.2021.793419] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/20/2021] [Indexed: 11/21/2022] Open
Abstract
The global infection rate of fungal diseases is increasing year by year, and it has gradually become one of the most serious infectious diseases threatening human health. However, the side effects of antifungal drugs and the fungal resistance to these drugs are gradually increasing. Therefore, the development of new broad-spectrum, safe, and economical alternatives to antibacterial drugs are essential. Probiotics are microorganisms that are beneficial for human health. They boost human immunity, resist pathogen colonization, and reduce pathogen infection. Many investigations have shown their inhibitory activity on a wide range of pathogenic fungi. However, their antibacterial mechanism is still a secret. This article reviews the progress of probiotics as a new method for the treatment of fungal diseases.
Collapse
Affiliation(s)
- Yunjian Wu
- Department of Biotechnology, Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing Institute of Radiation Medicine, Beijing, China
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China
| | - Shan Hu
- Department of Laboratory Medicine, Xuzhou Tumor Hospital, Xuzhou, China
| | - Changyu Wu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Changyu Wu, ; Feng Gu, ; Ying Yang,
| | - Feng Gu
- Department of Laboratory Medicine, Xuzhou Central Hospital, Xuzhou, China
- *Correspondence: Changyu Wu, ; Feng Gu, ; Ying Yang,
| | - Ying Yang
- Department of Biotechnology, Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing Institute of Radiation Medicine, Beijing, China
- *Correspondence: Changyu Wu, ; Feng Gu, ; Ying Yang,
| |
Collapse
|
14
|
Chen F, Zhang J, Ji HJ, Kim MK, Kim KW, Choi JI, Han SH, Lim S, Seo HS, Ahn KB. Deinococcus radiodurans Exopolysaccharide Inhibits Staphylococcus aureus Biofilm Formation. Front Microbiol 2022; 12:712086. [PMID: 35002990 PMCID: PMC8739996 DOI: 10.3389/fmicb.2021.712086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022] Open
Abstract
Deinococcus radiodurans is an extremely resistant bacterium against extracellular stress owing to on its unique physiological functions and the structure of its cellular constituents. Interestingly, it has been reported that the pattern of alteration in Deinococcus proportion on the skin is negatively correlated with skin inflammatory diseases, whereas the proportion of Staphylococcus aureus was increased in patients with chronic skin inflammatory diseases. However, the biological mechanisms of deinococcal interactions with other skin commensal bacteria have not been studied. In this study, we hypothesized that deinococcal cellular constituents play a pivotal role in preventing S. aureus colonization by inhibiting biofilm formation. To prove this, we first isolated cellular constituents, such as exopolysaccharide (DeinoPol), cell wall (DeinoWall), and cell membrane (DeinoMem), from D. radiodurans and investigated their inhibitory effects on S. aureus colonization and biofilm formation in vitro and in vivo. Among them, only DeinoPol exhibited an anti-biofilm effect without affecting bacterial growth and inhibiting staphylococcal colonization and inflammation in a mouse skin infection model. Moreover, the inhibitory effect was impaired in the Δdra0033 strain, a mutant that cannot produce DeinoPol. Remarkably, DeinoPol not only interfered with S. aureus biofilm formation at early and late stages but also disrupted a preexisting biofilm by inhibiting the production of poly-N-acetylglucosamine (PNAG), a key molecule required for S. aureus biofilm formation. Taken together, the present study suggests that DeinoPol is a key molecule in the negative regulation of S. aureus biofilm formation by D. radiodurans. Therefore, DeinoPol could be applied to prevent and/or treat infections or inflammatory diseases associated with S. aureus biofilms.
Collapse
Affiliation(s)
- Fengjia Chen
- Research Division for Radiation Science, Korea Atomic Energy Research Institute, Jeongeup, South Korea.,Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju, South Korea
| | - Jing Zhang
- Research Division for Radiation Science, Korea Atomic Energy Research Institute, Jeongeup, South Korea
| | - Hyun Jung Ji
- Research Division for Radiation Science, Korea Atomic Energy Research Institute, Jeongeup, South Korea.,Department of Oral Microbiology and Immunology, School of Dentistry, Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Min-Kyu Kim
- Research Division for Radiation Science, Korea Atomic Energy Research Institute, Jeongeup, South Korea
| | - Kyoung Whun Kim
- Department of Oral Microbiology and Immunology, School of Dentistry, Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Jong-Il Choi
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju, South Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, School of Dentistry, Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Sangyong Lim
- Research Division for Radiation Science, Korea Atomic Energy Research Institute, Jeongeup, South Korea.,Department of Radiation Biotechnology and Applied Radioisotope Science, University of Science and Technology, Daejeon, South Korea
| | - Ho Seong Seo
- Research Division for Radiation Science, Korea Atomic Energy Research Institute, Jeongeup, South Korea.,Department of Radiation Biotechnology and Applied Radioisotope Science, University of Science and Technology, Daejeon, South Korea
| | - Ki Bum Ahn
- Research Division for Radiation Science, Korea Atomic Energy Research Institute, Jeongeup, South Korea
| |
Collapse
|
15
|
Characteristics of functional ice cream produced with probiotic Saccharomyces boulardii in combination with Lactobacillus rhamnosus GG. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112489] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
16
|
Abstract
Several products consist of probiotics that are available in markets, and their potential uses are growing day by day, mainly because some strains of probiotics promote the health of gut microbiota, especially Furmicutes and Bacteroidetes, and may prevent certain gastrointestinal tract (GIT) problems. Some common diseases are inversely linked with the consumption of probiotics, i.e., obesity, type 2 diabetes, autism, osteoporosis, and some immunological disorders, for which the disease progression gets delayed. In addition to disease mitigating properties, these microbes also improve oral, nutritional, and intestinal health, followed by a robust defensive mechanism against particular gut pathogens, specifically by antimicrobial substances and peptides producing probiotics (AMPs). All these positive attributes of probiotics depend upon the type of microbial strains dispensed. Lactic acid bacteria (LAB) and Bifidobacteria are the most common microbes used, but many other microbes are available, and their use depends upon origin and health-promoting properties. This review article focuses on the most common probiotics, their health benefits, and the alleviating mechanisms against chronic kidney diseases (CKD), type 1 diabetes (T1D), type 2 diabetes (T2D), gestational diabetes mellitus (GDM), and obesity.
Collapse
|
17
|
Ferchichi M, Sebei K, Boukerb AM, Karray-Bouraoui N, Chevalier S, Feuilloley MGJ, Connil N, Zommiti M. Enterococcus spp.: Is It a Bad Choice for a Good Use-A Conundrum to Solve? Microorganisms 2021; 9:2222. [PMID: 34835352 PMCID: PMC8622268 DOI: 10.3390/microorganisms9112222] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Since antiquity, the ubiquitous lactic acid bacteria (LAB) Enterococci, which are just as predominant in both human and animal intestinal commensal flora, have been used (and still are) as probiotics in food and feed production. Their qualities encounter several hurdles, particularly in terms of the array of virulence determinants, reflecting a notorious reputation that nearly prevents their use as probiotics. Additionally, representatives of the Enterococcus spp. genus showed intrinsic resistance to several antimicrobial agents, and flexibility to acquire resistance determinants encoded on a broad array of conjugative plasmids, transposons, and bacteriophages. The presence of such pathogenic aspects among some species represents a critical barrier compromising their use as probiotics in food. Thus, the genus neither has Generally Recognized as Safe (GRAS) status nor has it been included in the Qualified Presumption of Safety (QPS) list implying drastic legislation towards these microorganisms. To date, the knowledge of the virulence factors and the genetic structure of foodborne enterococcal strains is rather limited. Although enterococcal infections originating from food have never been reported, the consumption of food carrying virulence enterococci seems to be a risky path of transfer, and hence, it renders them poor choices as probiotics. Auspiciously, enterococcal virulence factors seem to be strain specific suggesting that clinical isolates carry much more determinants that food isolates. The latter remain widely susceptible to clinically relevant antibiotics and subsequently, have a lower potential for pathogenicity. In terms of the ideal enterococcal candidate, selected strains deemed for use in foods should not possess any virulence genes and should be susceptible to clinically relevant antibiotics. Overall, implementation of an appropriate risk/benefit analysis, in addition to the case-by-case assessment, the establishment of a strain's innocuity, and consideration for relevant guidelines, legislation, and regulatory aspects surrounding functional food development seem to be the crucial elements for industries, health-staff and consumers to accept enterococci, like other LAB, as important candidates for useful and beneficial applications in food industry and food biotechnology. The present review aims at shedding light on the world of hurdles and limitations that hampers the Enterococcus spp. genus and its representatives from being used or proposed for use as probiotics. The future of enterococci use as probiotics and legislation in this field are also discussed.
Collapse
Affiliation(s)
- Mounir Ferchichi
- Unité de Protéomique Fonctionnelle et Potentiel Nutraceutique de la Biodiversité de Tunisie, Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El Manar, Tunis 1006, Tunisia; (M.F.); (K.S.)
| | - Khaled Sebei
- Unité de Protéomique Fonctionnelle et Potentiel Nutraceutique de la Biodiversité de Tunisie, Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El Manar, Tunis 1006, Tunisia; (M.F.); (K.S.)
| | - Amine Mohamed Boukerb
- Laboratoire de Microbiologie, Signaux et Microenvironnement (LMSM) EA 4312, Université de Rouen Normandie, 27000 Evreux, France; (A.M.B.); (S.C.); (M.G.J.F.); (N.C.)
| | - Najoua Karray-Bouraoui
- Laboratoire de Productivité Végétale et Contraintes Abiotiques, LR18ES04, Faculté des Sciences de Tunis, Université Tunis El Manar, Tunis 2092, Tunisia;
| | - Sylvie Chevalier
- Laboratoire de Microbiologie, Signaux et Microenvironnement (LMSM) EA 4312, Université de Rouen Normandie, 27000 Evreux, France; (A.M.B.); (S.C.); (M.G.J.F.); (N.C.)
| | - Marc G. J. Feuilloley
- Laboratoire de Microbiologie, Signaux et Microenvironnement (LMSM) EA 4312, Université de Rouen Normandie, 27000 Evreux, France; (A.M.B.); (S.C.); (M.G.J.F.); (N.C.)
| | - Nathalie Connil
- Laboratoire de Microbiologie, Signaux et Microenvironnement (LMSM) EA 4312, Université de Rouen Normandie, 27000 Evreux, France; (A.M.B.); (S.C.); (M.G.J.F.); (N.C.)
| | - Mohamed Zommiti
- Laboratoire de Microbiologie, Signaux et Microenvironnement (LMSM) EA 4312, Université de Rouen Normandie, 27000 Evreux, France; (A.M.B.); (S.C.); (M.G.J.F.); (N.C.)
| |
Collapse
|
18
|
Milner E, Stevens B, An M, Lam V, Ainsworth M, Dihle P, Stearns J, Dombrowski A, Rego D, Segars K. Utilizing Probiotics for the Prevention and Treatment of Gastrointestinal Diseases. Front Microbiol 2021; 12:689958. [PMID: 34434175 PMCID: PMC8381467 DOI: 10.3389/fmicb.2021.689958] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Probiotics are heavily advertised to promote a healthy gastrointestinal tract and boost the immune system. This review article summarizes the history and diversity of probiotics, outlines conventional in vitro assays and in vivo models, assesses the pharmacologic effects of probiotic and pharmaceutical co-administration, and the broad impact of clinical probiotic utilization for gastrointestinal disease indications.
Collapse
Affiliation(s)
- Erin Milner
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY, United States
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Benjamin Stevens
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY, United States
| | - Martino An
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY, United States
| | - Victoria Lam
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY, United States
| | - Michael Ainsworth
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY, United States
| | - Preston Dihle
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY, United States
| | - Jocelyn Stearns
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY, United States
| | - Andrew Dombrowski
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY, United States
| | - Daniel Rego
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY, United States
| | - Katharine Segars
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY, United States
| |
Collapse
|
19
|
Mazzantini D, Calvigioni M, Celandroni F, Lupetti A, Ghelardi E. Spotlight on the Compositional Quality of Probiotic Formulations Marketed Worldwide. Front Microbiol 2021; 12:693973. [PMID: 34354690 PMCID: PMC8329331 DOI: 10.3389/fmicb.2021.693973] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/29/2021] [Indexed: 11/13/2022] Open
Abstract
On the worldwide market, a great number of probiotic formulations are available to consumers as drugs, dietary supplements, and functional foods. For exerting their beneficial effects on host health, these preparations should contain a sufficient amount of the indicated living microbes and be pathogen-free to be safe. Therefore, the contained microbial species and their amount until product expiry are required to be accurately reported on the labels. While commercial formulations licensed as drugs are subjected to rigorous quality controls, less stringent regulations are generally applied to preparations categorized as dietary supplements and functional foods. Many reports indicated that the content of several probiotic formulations does not always correspond to the label claims in terms of microbial identification, number of living organisms, and purity, highlighting the requirement for more stringent quality controls by manufacturers. The main focus of this review is to provide an in-depth overview of the microbiological quality of probiotic formulations commercialized worldwide. Many incongruences in the compositional quality of some probiotic formulations available on the worldwide market were highlighted. Even if manufacturers carry at least some of the responsibility for these inconsistencies, studies that analyze probiotic products should be conducted following recommended and up-to-date methodologies.
Collapse
Affiliation(s)
- Diletta Mazzantini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Marco Calvigioni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Francesco Celandroni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Antonella Lupetti
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Emilia Ghelardi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.,Research Center Nutraceuticals and Food for Health-Nutrafood, University of Pisa, Pisa, Italy
| |
Collapse
|
20
|
Infectious complications of probiotic use: A matched case-control study. Infect Control Hosp Epidemiol 2021; 43:1498-1500. [PMID: 34236023 DOI: 10.1017/ice.2021.261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In this matched case-control study, we sought to determined the association between probiotic use and invasive infections caused by typical probiotic organisms. The odds of probiotic use in cases were 127 times the odds of probiotic use in controls (95% CI, 6.21-2600). Further research into these rare but severe complications is needed.
Collapse
|
21
|
How to: prophylactic interventions for prevention of Clostridioides difficile infection. Clin Microbiol Infect 2021; 27:1777-1783. [PMID: 34245901 DOI: 10.1016/j.cmi.2021.06.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/24/2021] [Accepted: 06/26/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Clostridioides difficile infection (CDI) remains the leading cause of healthcare-associated diarrhoea, despite existing guidelines for infection control measures and antimicrobial stewardship. The high associated health and economic burden of CDI calls for novel strategies to prevent the development and spread of CDI in susceptible patients. OBJECTIVES We aim to review CDI prophylactic treatment strategies and their implementation in clinical practice. SOURCES We searched PubMed, Embase, Emcare, Web of Science, and the COCHRANE Library databases to identify prophylactic interventions aimed at prevention of CDI. The search was restricted to articles published in English since 2012. CONTENT A toxin-based vaccine candidate is currently being investigated in a phase III clinical trial. However, a recent attempt to develop a toxin-based vaccine has failed. Conventional probiotics have not yet proved to be an effective strategy for prevention of CDI. New promising microbiota-based interventions that bind and inactivate concomitantly administered antibiotics, such as ribaxamase and DAV-132, have been developed. Prophylaxis of CDI with C. difficile antibiotics should not be performed routinely and should be considered only for secondary prophylaxis in very selected patients who are at the highest imminent risk for recurrent CDI (R-CDI) after a thorough evaluation. Faecal microbiota transplantation (FMT) has proved to be a very effective treatment for patients with multiple recurrences. Bezlotoxumab provides protection against R-CDI, mainly in patients with primary episodes and a high risk of relapse. IMPLICATIONS There are no proven effective, evidenced-based prophylaxis options for primary CDI. As for secondary prevention, FMT is considered the option of choice in patients with multiple recurrences. Bezlotoxumab can be added to standard treatment for patients at high risk for R-CDI. The most promising strategies are those aimed at reducing changes in intestinal microbiota and development of a new effective non-toxin-based vaccine.
Collapse
|
22
|
Probiotics-based foods and beverages as future foods and their overall safety and regulatory claims. FUTURE FOODS 2021. [DOI: 10.1016/j.fufo.2021.100013] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
23
|
Waziri A, Bharti C, Aslam M, Jamil P, Mirza A, Javed MN, Pottoo U, Ahmadi A, Alam MS. Probiotics for the Chemoprotective Role Against the Toxic Effect of Cancer Chemotherapy. Anticancer Agents Med Chem 2021; 22:654-667. [PMID: 33992067 DOI: 10.2174/1871520621666210514000615] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/10/2020] [Accepted: 01/05/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The processes of chemo- and radiation therapy-based clinical management of different types of cancers are associated with toxicity and side effects of chemotherapeutic agents. So, there is always an unmet need to explore agents to reduce such risk factors. Among these, natural products have generated much attention because of their potent antioxidant and antitumor effects. In the past, some breakthrough outcomes established that various bacteria in the human intestinal gut are bearing growth-promoting attributes and suppressing the conversion of pro-carcinogens into carcinogens. Hence, probiotics integrated approaches are nowadays being explored as rationalized therapeutics in the clinical management of cancer. METHODS Here, published literature was explored to review chemoprotective roles of probiotics against toxic and side effects of chemotherapeutics. RESULTS Apart from excellent anti-cancer abilities, probiotics are bearing and alleviate toxicity and side effects of chemotherapeutics, with a high degree of safety and efficiency. CONCLUSION Preclinical and clinical evidence suggested that due to the chemoprotective roles of probiotics against side effects and toxicity of chemotherapeutics, their integration in chemotherapy would be a judicious approach.
Collapse
Affiliation(s)
- Aafrin Waziri
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Delhi, India
| | - Charu Bharti
- School of medical and Allied Sciences, K R Mangalam University, Haryana, India
| | - Mohammed Aslam
- Faculty of Pharmacy, AL Hawash Private University, Homs, Serbia
| | - Parween Jamil
- Faculty of Dentistry, Jamia Millia Islamia, New Delhi, India
| | - Aamir Mirza
- Faculty of Pharmacy, Jamia Hamdard, New Delhi, India
| | | | - Uzma Pottoo
- Department of Food Science & Technology, School of Applied Sciences & Technology, University of Kashmir, JK, India
| | - Amirhossein Ahmadi
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Md Sabir Alam
- School of medical and Allied Sciences, K R Mangalam University, Haryana, India
| |
Collapse
|
24
|
Heil EL, Harris AD, Brown CH, Seung H, Thom KA, von Rosenvinge E, Sorongon S, Pineles L, Goodman KE, Leekha S. A Multi-Center Evaluation of Probiotic Use for the Primary Prevention of Clostridioides difficile infection. Clin Infect Dis 2021; 73:1330-1337. [PMID: 33972996 DOI: 10.1093/cid/ciab417] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Primary prevention of C. difficile infection (CDI) is a priority for hospitals and probiotics have the potential to interfere with colonization and infection with C. difficile. This study evaluated the impact of a computerized clinical decision support tool (CCDS) to prescribe probiotics for primary prevention of CDI among adult hospitalized patients. METHODS A CCDS tool was implemented into the electronic medical record at four hospitals prompting prescription of a probiotic preparation at the time of antibiotic prescription in high-risk patients in May 2019. Interrupted time series using segmented regression analysis was conducted to evaluate hospital-wide CDI incidence for the year pre- and post-CCDS implementation. In addition, multivariable logistic regression was used to evaluate CDI incidence in patients qualifying for probiotics in the pre- versus post-intervention periods adjusting for potential confounders. To adjust for potential differences in patients who received probiotics in the post-intervention period, propensity score matched pairs were developed to evaluate CDI risk by receipt of probiotics. RESULTS Quarterly CDI incidence increased over time post-intervention relative to baseline trends (slope change 1.4, 95% CI 0.9-1.9). The odds ratio (OR) of CDI was 1.41 in eligible patients post-intervention compared to pre-intervention (adjusted OR 1.41, 95% CI 1.11, 1.79). Propensity score matched analysis showed that patients who received probiotics did not have lower rates of CDI compared to those who did not receive probiotics (OR 1.46, 95% CI 0.87, 2.45). CONCLUSIONS Use of probiotics for primary prevention of CDI among adult inpatients receiving antibiotics is not supported.
Collapse
Affiliation(s)
- Emily L Heil
- University of Maryland School of Pharmacy, Department of Pharmacy Practice and Science, Baltimore, MD USA
| | - Anthony D Harris
- University of Maryland School of Medicine, Department of Epidemiology and Public Health, Baltimore, MD USA
| | - Clayton H Brown
- University of Maryland School of Medicine, Department of Epidemiology and Public Health, Baltimore, MD USA
| | - Hyunuk Seung
- University of Maryland School of Pharmacy, Department of Pharmacy Practice and Science, Baltimore, MD USA
| | - Kerri A Thom
- University of Maryland School of Medicine, Department of Epidemiology and Public Health, Baltimore, MD USA
| | - Erik von Rosenvinge
- University of Maryland School of Medicine, Department of Medicine, Division of Gastroenterology, Baltimore, MD USA
| | - Scott Sorongon
- University of Maryland School of Medicine, Department of Epidemiology and Public Health, Baltimore, MD USA
| | - Lisa Pineles
- University of Maryland School of Medicine, Department of Epidemiology and Public Health, Baltimore, MD USA
| | - Katherine E Goodman
- University of Maryland School of Medicine, Department of Epidemiology and Public Health, Baltimore, MD USA
| | - Surbhi Leekha
- University of Maryland School of Medicine, Department of Epidemiology and Public Health, Baltimore, MD USA
| |
Collapse
|
25
|
Śmiałek M, Kowalczyk J, Koncicki A. The Use of Probiotics in the Reduction of Campylobacter spp. Prevalence in Poultry. Animals (Basel) 2021; 11:1355. [PMID: 34068764 PMCID: PMC8150830 DOI: 10.3390/ani11051355] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/21/2021] [Accepted: 05/06/2021] [Indexed: 12/23/2022] Open
Abstract
Campylobacter spp. are widely distributed microorganisms, many of which are commensals of gastrointestinal tract in multiple animal species, including poultry. Most commonly detected are C. jejuni and C. coli. Although infections are usually asymptomatic in poultry, poultry meat and products represent main sources of infection with these bacteria to humans. According to recent EFSA report, campylobacteriosis is the most commonly reported zoonotic disease. In 2018, EFSA Panel on Biological Hazards indicated that use of feed and water additives is the second most likely strategy that can be successful in minimizing Campylobacter spp. colonization rate in broiler chickens. One of those feed and water additives are probiotics. From numerous research papers it can be concluded that probiotics exhibit plenty of mechanisms of anti-Campylobacter activity, which were evaluated under in vitro conditions. These results, to some extent, can explain the efficacy of probiotics in in vivo studies, although different outcome can be observed under these two laboratory conditions. Probiotics are capable of reducing Campylobacter spp. population count in poultry gastrointestinal tract and they can reduce carcass contamination. Potential modes of anti-Campylobacter activity of probiotics, results of in vivo studies and studies performed at a farm level are widely discussed in the paper.
Collapse
Affiliation(s)
- Marcin Śmiałek
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego 13, 10-719 Olsztyn, Poland; (J.K.); (A.K.)
| | | | | |
Collapse
|
26
|
Comparison of functional characteristics of distinct Saccharomyces boulardii strains isolated from commercial food supplements. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110340] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
27
|
Microbiota reprogramming for treatment of alcohol-related liver disease. Transl Res 2020; 226:26-38. [PMID: 32687975 PMCID: PMC7572584 DOI: 10.1016/j.trsl.2020.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/01/2020] [Accepted: 07/13/2020] [Indexed: 02/08/2023]
Abstract
In the past decade knowledge has expanded regarding the importance of the gut microbiota in maintaining intestinal homeostasis and overall health. During this same time, we have also gained appreciation for the role of the gut-liver axis in the development of liver diseases. Alcohol overconsumption is one of the leading causes of liver failure globally. However, not all people with alcohol use disorder progress to advanced stages of liver disease. With advances in technology to investigate the gut microbiome and metabolome, we are now beginning to delineate alcohol's effects on the gut microbiome in relation to liver disease. This review presents our current understanding on the role of the gut microbiota during alcohol exposure, and various therapeutic attempts that have been made to reprogram the gut microbiota with the goal of alleviating alcoholic-related liver disease.
Collapse
|
28
|
Hernández-Granados MJ, Franco-Robles E. Postbiotics in human health: Possible new functional ingredients? Food Res Int 2020; 137:109660. [DOI: 10.1016/j.foodres.2020.109660] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023]
|
29
|
Sharifi-Rad J, Rodrigues CF, Stojanović-Radić Z, Dimitrijević M, Aleksić A, Neffe-Skocińska K, Zielińska D, Kołożyn-Krajewska D, Salehi B, Milton Prabu S, Schutz F, Docea AO, Martins N, Calina D. Probiotics: Versatile Bioactive Components in Promoting Human Health. MEDICINA (KAUNAS, LITHUANIA) 2020; 56:E433. [PMID: 32867260 PMCID: PMC7560221 DOI: 10.3390/medicina56090433] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/19/2020] [Accepted: 08/25/2020] [Indexed: 02/08/2023]
Abstract
The positive impact of probiotic strains on human health has become more evident than ever before. Often delivered through food, dietary products, supplements, and drugs, different legislations for safety and efficacy issues have been prepared. Furthermore, regulatory agencies have addressed various approaches toward these products, whether they authorize claims mentioning a disease's diagnosis, prevention, or treatment. Due to the diversity of bacteria and yeast strains, strict approaches have been designed to assess for side effects and post-market surveillance. One of the most essential delivery systems of probiotics is within food, due to the great beneficial health effects of this system compared to pharmaceutical products and also due to the increasing importance of food and nutrition. Modern lifestyle or various diseases lead to an imbalance of the intestinal flora. Nonetheless, as the amount of probiotic use needs accurate calculations, different factors should also be taken into consideration. One of the novelties of this review is the presentation of the beneficial effects of the administration of probiotics as a potential adjuvant therapy in COVID-19. Thus, this paper provides an integrative overview of different aspects of probiotics, from human health care applications to safety, quality, and control.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1991953381, Iran;
| | - Célia F. Rodrigues
- LEPABE—Department of Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal;
| | - Zorica Stojanović-Radić
- Department of Biology and Ecology, Faculty of Science and Mathematics, University of Niš, 18000 Niš, Serbia; (Z.S.-R.); (M.D.); (A.A.)
| | - Marina Dimitrijević
- Department of Biology and Ecology, Faculty of Science and Mathematics, University of Niš, 18000 Niš, Serbia; (Z.S.-R.); (M.D.); (A.A.)
| | - Ana Aleksić
- Department of Biology and Ecology, Faculty of Science and Mathematics, University of Niš, 18000 Niš, Serbia; (Z.S.-R.); (M.D.); (A.A.)
| | - Katarzyna Neffe-Skocińska
- Department of Food Gastronomy and Food Hygiene, Warsaw University of Life Sciences (WULS), 02-776 Warszawa, Poland; (K.N.-S.); (D.Z.); (D.K.-K.)
| | - Dorota Zielińska
- Department of Food Gastronomy and Food Hygiene, Warsaw University of Life Sciences (WULS), 02-776 Warszawa, Poland; (K.N.-S.); (D.Z.); (D.K.-K.)
| | - Danuta Kołożyn-Krajewska
- Department of Food Gastronomy and Food Hygiene, Warsaw University of Life Sciences (WULS), 02-776 Warszawa, Poland; (K.N.-S.); (D.Z.); (D.K.-K.)
| | - Bahare Salehi
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam 44340847, Iran
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran
| | - Selvaraj Milton Prabu
- Department of Zoology, Annamalai University, Annamalai Nagar 608002, Chidambaram, India;
| | - Francine Schutz
- Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Natália Martins
- Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, 4200-135 Porto, Portugal
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
30
|
Žuntar I, Petric Z, Bursać Kovačević D, Putnik P. Safety of Probiotics: Functional Fruit Beverages and Nutraceuticals. Foods 2020; 9:E947. [PMID: 32708933 PMCID: PMC7404568 DOI: 10.3390/foods9070947] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/05/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
Over the last decade, fruit juice consumption has increased. Their rise in popularity can be attributed to the belief that they are a quick way to consuming a dietary portion of fruit. Probiotics added to fruit juices produce various bioactive compounds, thus probiotic fruit juices can be considered as a new type of functional foods. Such combinations could improve nutritional properties and provide health benefits of fruit juices, due to delivering positive health attributes from both sources (fruit juices and probiotics). However, this review discusses the other side of the same coin, i.e., the one that challenges general beliefs that probiotics are undoubtedly safe. This topic deserves more acknowledgments from the medical and nutritional literature, as it is highly important for health care professionals and nutritionists who must be aware of potential probiotic issues. Still, clinical trials have not adequately questioned the safety of probiotics, as they are generally considered safe. Therefore, this reviews aims to give an evidence-based perspective of probiotic safety, focusing on probiotic fruit beverages and nutraceuticals, by providing documented clinical case reports and studies. Finally, the paper deals with some additional insights from the pharmacological and toxicological point of views, such as pharmacological repercussions of probiotics on health.
Collapse
Affiliation(s)
- Irena Žuntar
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia;
| | - Zvonimir Petric
- Unit of Pharmacokinetics and Drug Metabolism, Department of Pharmacology at the Institute of Neuroscience and Physiology Sahlgrenska Academy at the University of Gothenburg, 40530 Göteborg, Sweden;
| | - Danijela Bursać Kovačević
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia;
| | - Predrag Putnik
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia;
| |
Collapse
|
31
|
Diorio C, Kelly KM, Afungchwi GM, Ladas EJ, Marjerrison S. Nutritional traditional and complementary medicine strategies in pediatric cancer: A narrative review. Pediatr Blood Cancer 2020; 67 Suppl 3:e28324. [PMID: 32614139 DOI: 10.1002/pbc.28324] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/25/2020] [Accepted: 03/22/2020] [Indexed: 12/20/2022]
Abstract
Traditional and complementary medicine (T&CM) strategies are commonly used by pediatric cancer patients. Nutritional approaches to T&CM include bioactive compounds, supplements, and herbs as well as dietary approaches. Pediatric cancer patients and their families commonly request and use nutritional T&CM strategies. We review the potential risks and benefits of nutritional T&CM use in pediatric cancer care and provide an overview of some commonly used and requested supplements, including probiotics, antioxidants, cannabinoids, vitamins, turmeric, mistletoe, Carica papaya, and others. We also discuss the role of specific diets such as the ketogenic diet, caloric restriction diets, whole-food diets, and immune modulating diets. There is a growing body of evidence to support the use of some T&CM agents for the supportive care of children with cancer. However, further study is needed into these agents and approaches. Open communication with families about T&CM use is critical.
Collapse
Affiliation(s)
- Caroline Diorio
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Kara M Kelly
- Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | | | - Elena J Ladas
- Division of Pediatric Hematology/Oncology/Stem Cell Transplant, Columbia University Medical Center, New York, New York
| | - Stacey Marjerrison
- Division of Pediatric Hematology/Oncology, McMaster Children's Hospital, Hamilton, Ontario, L8N 3Z5, Canada
| |
Collapse
|
32
|
Abstract
Immunotherapies have drastically improved clinical outcomes in a wide range of malignancies. Nevertheless, patient responses remain highly variable, and reliable biomarkers that predict responses accurately are not yet fully understood. Compelling evidence from preclinical studies and observational data from clinical cohorts have shown that commensal microorganisms that reside in the human gastrointestinal tract, collectively termed the ‘microbiome’, can actively modify responses to chemotherapeutic agents and immunotherapies by influencing host immunosurveillance. Notably, microbial correlates are largely context specific, and response signatures may vary by patient population, geographic location and type of anticancer treatment. Therefore, the incongruence of beneficial microbiome signatures across studies, along with an emerging understanding of the mechanisms underlying the interactions between the microbiome, metabolome and host immune system, highlight a critical need for additional comprehensive and standardized multi-omics studies. Future research should consider key host factors, such as diet and use of medication, in both preclinical animal models and large-scale, multicenter clinical trials. In addition, there is a strong rationale to evaluate the microbiome as a tumor-extrinsic biomarker of clinical outcomes and to test the therapeutic potential of derived microbial products (e.g. defined microbial consortia), with the eventual goal of improving the efficacy of existing anticancer treatments. This review discusses the importance of the microbiome from the perspective of cancer immunotherapies, and outlines future steps that may contribute to wide-ranging clinical and translational benefits that may improve the health and quality of life of patients with cancer. The gut microbiome impacts the outcomes of cancer treatment by influencing host immunosurveillance. Modulation of microbiota represents a novel therapeutic strategy to improve responses. Incongruent beneficial bacterial signatures complicate the design of modulators. Reverse translation processes can be used to characterize candidate bacteria. Rationally designed microbial consortia catalyze transition to a healthy ecology.
Collapse
|
33
|
Huang RY, Raymond Herr D, Moochhala S. Manipulation of Alcohol and Short-Chain Fatty Acids in the Metabolome of Commensal and Virulent Klebsiella pneumoniae by Linolenic Acid. Microorganisms 2020; 8:microorganisms8050773. [PMID: 32455676 PMCID: PMC7285277 DOI: 10.3390/microorganisms8050773] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 12/23/2022] Open
Abstract
Endogenous alcohol produced by the gut microbiome is transported via the bloodstream to the liver for detoxification. Gut dysbiosis can result in chronic excess alcohol production that contributes to the development of hepatic steatosis. The aim of this study was to examine whether linolenic acid can manipulate the production of harmful alcohol and beneficial short-chain fatty acids (SCFAs) in the metabolome of commensal Klebsiella pneumoniae (K. pneumoniae) and the virulent K. pneumoniae K1 serotype. Glucose fermentation by the K. pneumoniae K1 serotype yielded increased production of alcohol and decreased SCFAs (especially acetate and propionate) compared to those of commensal K. pneumoniae. However, the use of linolenic acid instead of glucose significantly reduced alcohol and increased SCFAs in the fermentation media of the K. pneumoniae K1 serotype. The work highlights the value of shaping the microbial metabolome using linolenic acid, which can potentially regulate the gut–liver axis for the prevention and treatment of alcohol-induced liver diseases.
Collapse
Affiliation(s)
- Ryan Yuki Huang
- Canyon Crest Academy, San Diego, CA 92130, USA;
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, CA 92093, USA
| | - Deron Raymond Herr
- Department of Pharmacology, National University of Singapore, Singapore 117600, Singapore;
| | - Shabbir Moochhala
- Department of Pharmacology, National University of Singapore, Singapore 117600, Singapore;
- Correspondence: ; Tel.: +65-8511-0112
| |
Collapse
|
34
|
Kumar R, Sood U, Gupta V, Singh M, Scaria J, Lal R. Recent Advancements in the Development of Modern Probiotics for Restoring Human Gut Microbiome Dysbiosis. Indian J Microbiol 2020; 60:12-25. [PMID: 32089570 PMCID: PMC7000592 DOI: 10.1007/s12088-019-00808-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 05/17/2019] [Indexed: 12/17/2022] Open
Abstract
A healthy gut is predominantly occupied by bacteria which play a vital role in nutrition and health. Any change in normal gut homeostasis imposes gut dysbiosis. So far, efforts have been made to mitigate the gastrointestinal symptoms using modern day probiotics. The majority of the probiotics strains used currently belong to the genera Lactobacillus, Clostridium, Bifidobacterium and Streptococcus. Recent advancements in culturomics by implementing newer techniques coupled with the use of gnotobiotic animal models provide a subtle ground to develop novel host specific probiotics therapies. In this review article, the recent advances in the development of microbe-based therapies which can now be implemented to treat a wide spectrum of diseases have been discussed. However, these probiotics are not classified as drugs and there is a lack of stringent law enforcement to protect the end users against the pseudo-probiotic products. While modern probiotics hold strong promise for the future, more rigorous regulations are needed to develop genuine probiotic products and characterize novel probiotics using the latest research and technology. This article also highlights the possibility of reducing antibiotic usage by utilizing probiotics developed using the latest concepts of syn and ecobiotics.
Collapse
Affiliation(s)
- Roshan Kumar
- PhiXGen Private Limited, Gurugram, Haryana 122001 India
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD USA
- South Dakota Centre for Biologics Research and Commercialization, Brookings, SD USA
| | - Utkarsh Sood
- PhiXGen Private Limited, Gurugram, Haryana 122001 India
- Department of Zoology, University of Delhi, Delhi, 110007 India
| | - Vipin Gupta
- PhiXGen Private Limited, Gurugram, Haryana 122001 India
- Department of Zoology, University of Delhi, Delhi, 110007 India
| | - Mona Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, Delhi 110067 India
| | - Joy Scaria
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD USA
- South Dakota Centre for Biologics Research and Commercialization, Brookings, SD USA
| | - Rup Lal
- PhiXGen Private Limited, Gurugram, Haryana 122001 India
- Department of Zoology, University of Delhi, Delhi, 110007 India
| |
Collapse
|
35
|
张 汉, 高 杰, 何 肖, 龚 泽, 万 宇, 胡 彤, 李 煜, 曹 虹. [The postbiotic HM0539 from Lactobacillus rhamnosus GG prevents intestinal infection by enterohemorrhagic E. coli O157: H7 in mice]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:211-218. [PMID: 32376527 PMCID: PMC7086141 DOI: 10.12122/j.issn.1673-4254.2020.02.12] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To assess the protective effect of the novel postbiotic HM0539 from Lactobacillus rhamnosus GG against intestinal infection by enterohemorrhagic E. coli O157: H7. METHODS We performed adhesion and invasion experiments to evaluate whether HM0539 could block E. coli O157: H7 adhesion to HT-29 cells. The expressions of mucin2 and the tight junction proteins ZO-1 and Occludin in HM0539-treated HT-29 cells were analyzed using immunofluorescence assay and Western blotting. Animal experiments were conducted in mice to observe the survival rate and changes in body weight, intestinal morphology and the intestinal barrier function after the challenge and HM0539 treatment. RESULTS HM0539 significantly inhibited the adhesion and invasion of E. coli O157: H7 to HT-29 cells in a dose-dependent manner. HM0539 treatment 4 h prior to E. coli O157: H7 challenge significantly lowered the adhesion and invasion rates of bacteria as compared with the treatment administered at the same time of challenge (P < 0.05). E. coli O157: H7-induced down-regulation of mucin2 and tight junction proteins in HT-29 cells was obviously alleviated by HM0539 treatment of (P < 0.05). In the animal experiment, HM0539 treatment significantly inhibited body weight loss (P < 0.05), alleviated jejunal injury, and inhibited E. coli O157: H7-induced destruction of jejunal goblet cells in the challenged mice (P < 0.05). HM0539 also significantly up-regulated the expression of mucin2 and ZO-1 proteins in the jejunum of E. coli O157:H7-infected mice (P < 0.05). CONCLUSIONS HM0539 not only inhibits the adhesion and invasion of E. coli O157: H7 to HT-29 cells, but also enhances the resistance against E. coli O157: H7 infection in mice by attenuating the destruction of mucin and tight junction proteins.
Collapse
Affiliation(s)
- 汉运 张
- />南方医科大学公共卫生学院//广东省热带病研究重点实验室,微生物学系,广东 广州 510515Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - 杰 高
- />南方医科大学公共卫生学院//广东省热带病研究重点实验室,微生物学系,广东 广州 510515Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - 肖龙 何
- />南方医科大学公共卫生学院//广东省热带病研究重点实验室,微生物学系,广东 广州 510515Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - 泽龙 龚
- />南方医科大学公共卫生学院//广东省热带病研究重点实验室,微生物学系,广东 广州 510515Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - 宇 万
- />南方医科大学公共卫生学院//广东省热带病研究重点实验室,微生物学系,广东 广州 510515Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - 彤彤 胡
- />南方医科大学公共卫生学院//广东省热带病研究重点实验室,微生物学系,广东 广州 510515Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - 煜彬 李
- />南方医科大学公共卫生学院//广东省热带病研究重点实验室,微生物学系,广东 广州 510515Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - 虹 曹
- />南方医科大学公共卫生学院//广东省热带病研究重点实验室,微生物学系,广东 广州 510515Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
36
|
Abstract
Cardiovascular diseases (CVD) are the major health issue of modernized society with a high mortality rate. Lifestyle, genetic makeup, and diet are some of the major influencing factors associated with CVD. The dyslipidemia is one such factor related to the development of several CVD. Many studies proved that the consumption of probiotics confers several health benefits. Several studies reported the evaluation of the cholesterol-lowering ability of probiotics (probiotics that showed positive effect in vitro and in vivo studies) in human volunteers. The current review summarizes the outcomes of human studies on the cholesterol-lowering property of probiotics. Probiotic consumption significantly improved the health status of hypercholesteremic patients by reducing the low-density lipoprotein cholesterol, total cholesterol, triglyceride levels, and increased the high-density lipoprotein cholesterol. The probiotic supplementation improved the lipid profile of diabetic patients, and obese people as well. However, not all probiotic interventions are effective against dyslipidemia. The results are controversial and depend on several factors such as probiotic strain, dose, duration of the treatment, lifestyle changes, etc. This literature survey indorses additional studies on the cholesterol-lowering property of probiotics, which could help to reduce the risk of CVD and other dyslipidemia associated health issues.
Collapse
|
37
|
Showalter K, Hoffmann A, DeCredico N, Thakrar A, Arroyo E, Goldberg I, Hinchcliff M. Complementary therapies for patients with systemic sclerosis. JOURNAL OF SCLERODERMA AND RELATED DISORDERS 2019; 4:187-199. [PMID: 35382503 PMCID: PMC8922560 DOI: 10.1177/2397198319833503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/27/2019] [Indexed: 11/16/2022]
Abstract
Patients with systemic sclerosis often seek information regarding complementary and nutrition-based therapy. Some study results have shown that vitamins D and E, probiotics, turmeric, l-arginine, essential fatty acids, broccoli, biofeedback, and acupuncture may be beneficial in systemic sclerosis care. However, large randomized clinical trials have not been conducted. This review summarizes current data regarding various complementary therapies in systemic sclerosis and concludes with recommendations.
Collapse
Affiliation(s)
- Kimberly Showalter
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Division of Rheumatology, Hospital for Special Surgery, New York, NY, USA
| | - Aileen Hoffmann
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Nicole DeCredico
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Anjali Thakrar
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Esperanza Arroyo
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Isaac Goldberg
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Monique Hinchcliff
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Medicine, Section of Rheumatology, Allergy and Clinical Immunology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
38
|
Metabolomic profiling of oxalate-degrading probiotic Lactobacillus acidophilus and Lactobacillus gasseri. PLoS One 2019; 14:e0222393. [PMID: 31545840 PMCID: PMC6756784 DOI: 10.1371/journal.pone.0222393] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 08/28/2019] [Indexed: 12/12/2022] Open
Abstract
Oxalate, a ubiquitous compound in many plant-based foods, is absorbed through the intestine and precipitates with calcium in the kidneys to form stones. Over 80% of diagnosed kidney stones are found to be calcium oxalate. People who form these stones often experience a high rate of recurrence and treatment options remain limited despite decades of dedicated research. Recently, the intestinal microbiome has become a new focus for novel therapies. Studies have shown that select species of Lactobacillus, the most commonly included genus in modern probiotic supplements, can degrade oxalate in vitro and even decrease urinary oxalate in animal models of Primary Hyperoxaluria. Although the purported health benefits of Lactobacillus probiotics vary significantly between species, there is supporting evidence for their potential use as probiotics for oxalate diseases. Defining the unique metabolic properties of Lactobacillus is essential to define how these bacteria interact with the host intestine and influence overall health. We addressed this need by characterizing and comparing the metabolome and lipidome of the oxalate-degrading Lactobacillus acidophilus and Lactobacillus gasseri using ultra-high-performance liquid chromatography-high resolution mass spectrometry. We report many species-specific differences in the metabolic profiles of these Lactobacillus species and discuss potential probiotic relevance and function resulting from their differential expression. Also described is our validation of the oxalate-degrading ability of Lactobacillus acidophilus and Lactobacillus gasseri, even in the presence of other preferred carbon sources, measuring in vitro 14C-oxalate consumption via liquid scintillation counting.
Collapse
|
39
|
Tendencies and Challenges in Worldwide Scientific Research on Probiotics. Probiotics Antimicrob Proteins 2019; 12:785-797. [DOI: 10.1007/s12602-019-09591-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
40
|
Abid MB, Koh CJ. Probiotics in health and disease: fooling Mother Nature? Infection 2019; 47:911-917. [PMID: 31478123 DOI: 10.1007/s15010-019-01351-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/20/2019] [Indexed: 12/11/2022]
Abstract
Probiotics are ubiquitous, consumption by the general public is common, and the dogma remains that they are beneficial for general and gut health. However, evolving evidence suggests a potentially "harmful" impact of many commercially available probiotics. There is also significant variability in formulations that leads to a lack of a universally acceptable definition of probiotics. In this perspective, we review the flaws with definition, relevant observational and randomized studies that showed both positive and negative impacts on health and disease, unbiased interpretation of key trials, emerging evidence from microbiome and immuno-oncological studies, and impact on systemic immunity. We propose that caution be exercised prior to endorsements of their illness-directed consumption and rampant general usage. As a deeper understanding of the human microbiome accrues and our ability to manipulate this complex ecosystem improves, the probiotic of tomorrow might be the precision tool that deals with diseases on a broad front. Gut microbiome, akin to fingerprints, is indigenous to an individual and 'one size fits all' prescription strategy should be discouraged until a more universally acceptable 'favorable taxa' or a 'personalized probiotic,' to complement an individual's native microbiota, gets fashioned.
Collapse
Affiliation(s)
- Muhammad Bilal Abid
- Divisions of Hematology/Oncology & Infectious Diseases, Department of Medicine, Medical College of Wisconsin, Hub for Collaborative Medicine, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| | - Calvin J Koh
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Hospital, Singapore, Singapore
| |
Collapse
|
41
|
Kolady DE, Kattelmann K, Scaria J. Effects of health-related claims on millennials’ willingness to pay for probiotics in the U.S.: Implications for regulation. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
42
|
Abstract
Probiotic bacteria have been used as a health-promoting factor for a very long time. Nowadays, products containing probiotic bacteria are becoming more and more popular on the market. The term probiotics refers to the products belonging to the following groups: probiotic drugs (medicinal products – live biotherapeutic products for human use), medical devices, probiotic foods (e.g. foods, food ingredients, dietary supplements or food for special medical purposes), directly fed microorganisms (for animal use) and designer probiotics (genetically modified probiotics). Safety assessment of bacterial strains used as probiotics should be carefully studied. Even though probiotic bacteria have the generally recognized as safe (GRAS status), there are several reports about side effects triggered by the presence of these organisms. Microorganisms used as probiotics may cause systemic infections, stimulate the immune system, disturb metabolism and participate in horizontal gene transfer.
Collapse
Affiliation(s)
- Anna Zawistowska-Rojek
- Department of Antibiotics and Microbiology, National Medicines Institute, Warsaw, Poland ; Department of Pharmaceutical Microbiology, Medical University of Warsaw, Warsaw, Poland
| | - Stefan Tyski
- Department of Antibiotics and Microbiology, National Medicines Institute, Warsaw, Poland ; Department of Pharmaceutical Microbiology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
43
|
Cui Y, Märtlbauer E, Dietrich R, Luo H, Ding S, Zhu K. Multifaceted toxin profile, an approach toward a better understanding of probiotic Bacillus cereus. Crit Rev Toxicol 2019; 49:342-356. [PMID: 31116061 DOI: 10.1080/10408444.2019.1609410] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Strains of the Bacillus cereus group have been widely used as probiotics for human beings, food animals, plants, and environmental remediation. Paradoxically, B. cereus is responsible for both gastrointestinal and nongastrointestinal syndromes and represents an important opportunistic food-borne pathogen. Toxicity assessment is a fundamental issue to evaluate safety of probiotics. Here, we summarize the state of our current knowledge about the toxins of B. cereus sensu lato to be considered for safety assessment of probiotic candidates. Surfactin-like emetic toxin (cereulide) and various enterotoxins including nonhemolytic enterotoxin, hemolysin BL, and cytotoxin K are responsible for food poisoning outbreaks characterized by emesis and diarrhea. In addition, other factors, such as hemolysin II, Certhrax, immune inhibitor A1, and sphingomyelinase, contribute to toxicity and overall virulence of B. cereus.
Collapse
Affiliation(s)
- Yifang Cui
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University , Beijing , China.,State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University , Beijing , China
| | - Erwin Märtlbauer
- Department of Veterinary Sciences, Ludwig-Maximilians-University Munich , Oberschleißheim , Germany
| | - Richard Dietrich
- Department of Veterinary Sciences, Ludwig-Maximilians-University Munich , Oberschleißheim , Germany
| | - Hailing Luo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University , Beijing , China
| | - Shuangyang Ding
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University , Beijing , China
| | - Kui Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University , Beijing , China.,National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University , Beijing , China
| |
Collapse
|
44
|
Celandroni F, Vecchione A, Cara A, Mazzantini D, Lupetti A, Ghelardi E. Identification of Bacillus species: Implication on the quality of probiotic formulations. PLoS One 2019; 14:e0217021. [PMID: 31107885 PMCID: PMC6527297 DOI: 10.1371/journal.pone.0217021] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/02/2019] [Indexed: 11/26/2022] Open
Abstract
Spores of several Bacillus species have long history of consumption and safe use as probiotics and a variety of formulations containing these organisms are available in the global market. Considering the difficulties in the identification of Bacillus species and the poor microbiological quality of many probiotic formulations, we used three up-to-date methodological approaches for analyzing the content of ten formulations marketed in Italy and labeled to contain Bacillus spores. We compared the performance of biochemical tests based on the BCL Vitek2 card and MALDI-TOF mass spectrometry, using 16S rDNA sequencing as the reference technique. The BCL card performed well in identifying all Bacillus probiotic strains as well as the Bruker’s MALDI Biotyper. Nevertheless, the MALDI score values were sometimes lower than those indicated by the manufacturer for correct species identification. Contaminant bacteria (Lysinibacillus fusiformis, Acinetobacter baumannii, Bacillus cereus, Brevibacillus choshinensis, Bacillus licheniformis, Bacillus badius) were detected in some formulations. Characterization of the B. cereus contaminant showed the potential pathogenicity of this strain. Microbial enumeration performed by the plate count method revealed that the number of viable cells contained in many of the analyzed products differed from the labeled amount. Overall, our data show that only two of the ten analyzed formulations qualitatively and quantitatively respect what is on the label. Since probiotic properties are most often strain specific, molecular typing of isolates of the two most common Bacillus species, B. clausii and B. coagulans, was also performed. In conclusion, the majority of the analyzed products do not comply with quality requirements, most likely leading to reduced/absent efficacy of the preparation and representing a potential infective risk for consumers.
Collapse
Affiliation(s)
- Francesco Celandroni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Alessandra Vecchione
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Alice Cara
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Diletta Mazzantini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Antonella Lupetti
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Emilia Ghelardi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
- Research Center Nutraceuticals and Food for Health-Nutrafood, University of Pisa, Pisa, Italy
- * E-mail:
| |
Collapse
|
45
|
Aldawsari FS, Bin Helel BS, Al shehry YM, Alharbi YT, Al Abudahash M. Probiotics and Their Quality-Related Concerns: Highlights From the Saudi Arabian Market. Ther Innov Regul Sci 2019. [DOI: 10.1177/2168479019841024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
46
|
Helmink BA, Khan MAW, Hermann A, Gopalakrishnan V, Wargo JA. The microbiome, cancer, and cancer therapy. Nat Med 2019; 25:377-388. [DOI: 10.1038/s41591-019-0377-7] [Citation(s) in RCA: 459] [Impact Index Per Article: 91.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 01/28/2019] [Indexed: 02/07/2023]
|
47
|
Sheoran P, Tiwari SK. Enterocin LD3 fromEnterococcus hiraeLD3 causing efflux of intracellular ions and UV‐absorbing materials in Gram‐negative bacteria. J Appl Microbiol 2019; 126:1059-1069. [DOI: 10.1111/jam.14203] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Poonam Sheoran
- Department of Genetics Maharshi Dayanand University Rohtak Haryana India
| | | |
Collapse
|
48
|
Agyei D, Owusu-Kwarteng J, Akabanda F, Akomea-Frempong S. Indigenous African fermented dairy products: Processing technology, microbiology and health benefits. Crit Rev Food Sci Nutr 2019; 60:991-1006. [DOI: 10.1080/10408398.2018.1555133] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Dominic Agyei
- Department of Food Science, University of Otago, Dunedin, New Zealand
| | - James Owusu-Kwarteng
- Department of Food Science and Technology, University of Energy and Natural Resources, Sunyani, Ghana
| | - Fortune Akabanda
- Department of Applied Biology, University for Development Studies, Navrongo, Ghana
| | - Samuel Akomea-Frempong
- Department of Food Science and Technology, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| |
Collapse
|
49
|
Sulik-Tyszka B, Snarski E, Niedźwiedzka M, Augustyniak M, Myhre TN, Kacprzyk A, Swoboda-Kopeć E, Roszkowska M, Dwilewicz-Trojaczek J, Jędrzejczak WW, Wróblewska M. Experience with Saccharomyces boulardii Probiotic in Oncohaematological Patients. Probiotics Antimicrob Proteins 2019; 10:350-355. [PMID: 28948565 PMCID: PMC5973998 DOI: 10.1007/s12602-017-9332-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Very few reports have been published to date on the bloodstream infections caused by Saccharomyces spp. in oncohaematological patients, and there are no guidelines on the use of this probiotic microorganism in this population. We describe the use of probiotic preparation containing Saccharomyces boulardii in a large group of oncohaematological patients. We retrospectively analysed the data from 32,000 patient hospitalisations at the haematological centre during 2011–2013 (including 196 haematopoietic stem cell transplant recipients) in a tertiary care university-affiliated hospital. During the study period, 2270 doses of Saccharomyces boulardii probiotic were administered to the oncohaematological patients. In total, 2816 mycological cultures were performed, out of which 772 (27.4%) were positive, with 52 indicating digestive tract colonisation by Saccharomyces spp., mainly in patients with acute myeloid leukaemia (AML), myelodysplastic syndrome (MDS) or multiple myeloma (MM). While colonised, they were hospitalised for 1683 days and 416 microbiological cultures of their clinical samples were performed. In the studied group of patients, there were six blood cultures positive for fungi; however, they comprised Candida species: two C. glabrata, one C. albicans, one C. krusei, one C. tropicalis and one C. parapsilosis. There was no blood culture positive for Saccharomyces spp. Our study indicates that despite colonisation of many oncohaematological patients with Saccharomyces spp., there were no cases of fungal sepsis caused by this species.
Collapse
Affiliation(s)
- Beata Sulik-Tyszka
- Department of Microbiology, Central Clinical Hospital in Warsaw, Warsaw, Poland
| | - Emilian Snarski
- Department of Haematology, Oncology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Magda Niedźwiedzka
- Department of Haematology, Oncology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Małgorzata Augustyniak
- Department of Haematology, Oncology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Thorvald Nilsen Myhre
- Department of Haematology, Oncology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Anna Kacprzyk
- Department of Haematology, Oncology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Ewa Swoboda-Kopeć
- Department of Microbiology, Central Clinical Hospital in Warsaw, Warsaw, Poland
| | - Marta Roszkowska
- Hospital Pharmacy, Central Clinical Hospital in Warsaw, Warsaw, Poland
| | | | | | - Marta Wróblewska
- Department of Microbiology, Central Clinical Hospital in Warsaw, Warsaw, Poland. .,Department of Dental Microbiology, Medical University of Warsaw, 1a Banacha Street, 02-097, Warsaw, Poland.
| |
Collapse
|
50
|
Grover S, Patil A, Kaur A, Garg G. Probiotics: A Potential Immunotherapeutic Approach for the Treatment of Schizophrenia. J Pharm Bioallied Sci 2019; 11:321-327. [PMID: 31619913 PMCID: PMC6791081 DOI: 10.4103/jpbs.jpbs_47_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Probiotics are in use for physiological boosting, health supplement, and for treatment since historical time. Recently, the to-and-fro pathways linking the gut with the brain, explaining the indirect communication via modulation of immune function and levels of various neurotransmitters, have been discovered, but how precisely these modulations alter the levels of neurotransmitters contributing to the cognitive and other symptom improvements in patients with schizophrenia remains a new arena of research for psychiatry and psychology professionals. The germ-free mice experiments have been the game changer in the mechanistic exploration. The antimicrobial usage alters the local gut flora and hence is associated with psychiatric side effects that strengthen the association further. The changes in the genetics of these bacteria with different types of diet and its correlation with neurotransmitters production capacity and the psyche of the individual are indeed an emerging field for schizophrenia research. Redressal of issues such as manufacturing, the shelf life of probiotics, and stability of probiotics in the gut milieu, in the presence of food, secretions, and exact volume needed for particular age group will help in refining the dose duration of probiotic therapy. Clinical trials are underway for evaluating safety and efficacy in schizophrenia. The gut microorganism transplant and pharmacovigilance of probiotics are important areas yet to be addressed accurately. This paper elucidates the pathways, clinical studies, availability of probiotics in the Indian market with their composition, regulatory issues in India about the probiotic use, and future of probiotic research in schizophrenia.
Collapse
Affiliation(s)
- Sandeep Grover
- Department of Psychiatry, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Amol Patil
- Department of Pharmacology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Anit Kaur
- Department of Paediatrics, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Gaurav Garg
- Department of Pharmacology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| |
Collapse
|