1
|
|
Mohammed BT. Identification and bioinformatic analysis of invA gene of Salmonella in free range chicken. BRAZ J BIOL 2024;84. [DOI: 10.1590/1519-6984.263363] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 11/22/2022] Open
Abstract
Abstract Salmonella is a serious cause of the health issues in human and animal worldwide. Salmonella has been isolated from different biological samples and it considers as the key role in induction of inflammation of gastrointestinal tract which in turn cause diarrhoea in different species. To further understand the involvement of Salmonella in contaminating and infecting fresh eggs and meat of free-range chicken. This study aimed to establish the microbiological and molecular detections of Salmonella in the cloaca of the free-range chicken and to identify predicted biological functions using Kyoto Encyclopedia of Gene and Genomic (KEGG) pathways and protein-protein interaction. Cloacal swabs were collected from free range chicken raised in the local farm in Duhok city. The isolates were cultured and biochemical test performed using XLD and TSI, respectively. Molecular detection and functional annotation of invA gene was carried out using Conventional PCR and bioinformatics approaches. The present study found that Salmonella was detected in 36 out of 86 samples using microbiological methods. To confirm these findings, invA gene was utilised and 9 out of 36 Salmonella isolates have shown a positive signal of invA by agarose gel. In addition, bioinformatic analysis revealed that invA gene was mainly associated with bacterial secretion processes as well as their KEGG terms and Protein-Protein Interaction were involved in bacterial invasion and secretion pathways. These findings suggested that invA gene plays important role in regulating colonization and invasion processes of Salmonella within the gut host in the free range chicken.
Collapse
|
2
|
|
Nofal A, Azzazy M, Ayyad S, Abdelsalm E, Abousekken MS, Tammam O. Evaluation of the brown alga, Sargassum muticum extract as an antimicrobial and feeding additives. BRAZ J BIOL 2024;84. [DOI: 10.1590/1519-6984.259721] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] Open
Abstract
Abstract Plant disease administration is difficult due to the nature of phytopathogens. Biological control is a safe method to avoid the problems related to fungal diseases affecting crop productivity and some human pathogenic bacteria. For that, the antimicrobial activity of the seaweed Sargassum muticum methanol and water extracts were investigated against human bacterial pathogens and fungal plant pathogens. By using 70 percent methanol, the seaweed powder was extracted, feeding additives assay, ultrastructure (TEM). Results revealed significant inhibition of S. muticum methanol extract against Salmonella typhi (25.66 mm), Escherichia coli (24.33 mm), Staphylococcus aureus (22.33 mm) and Bacillus subtilis. (19.66 mm), some fungal phytopathogens significantly inhibited Fusarium moniliforme (30.33mm), Pythium ultimum (26.33 mm), Aspergillus flavus (24.36mm), and Macrophomina phaseolina (22.66mm). Phytochemical investigation of S. muticum extract showed the presence of phenolic and flavonoid compounds. Results suggested that there is an appreciable level of antioxidant potential in S. muticum (79.86%) DPPH scavenging activity. Ultrastructural studies of Fusarium moniliforme hypha grown on a medium containing S. muticum extract at concentration 300mg/ml showed a thickening cell wall, disintegration of cytoplasm, large lipid bodies and vacuoles. In conclusion, our study revealed The antibacterial activity of S. muticum extract significantly against some Gram positive, Gram negative bacteria and antifungal activity against some phytopathogenic and some mycotoxin producer fungi. Flavonoids, phenolic play an important role as antioxidants and antimicrobial properties. Such study revealed that S. muticum methanol extract could be used as ecofriendly biocontrol for phytopathogenic fungi and feeding additives to protect livestock products.
Collapse
|
3
|
|
Alexandre S, Abdula ZK, Carreira R, Santos S. Positive coproculture in newborn. Pediatric Oncall 2024;21. [DOI: 10.7199/ped.oncall.2024.41] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 11/11/2022]
|
4
|
|
Panarelli NC. Infectious Diseases of the Gastrointestinal Tract. Gastrointestinal and Liver Pathology 2024. [DOI: 10.1016/b978-0-323-52794-1.00009-2] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 01/21/2023]
|
5
|
|
Awan UA, Khattak AA, Haq M, Saadia Z, Marwat M, Khalid S, Kamran S, Haseeb A, Ahmed B, Irfani MA, Nadeem MF, Javed F. Frequency, distribution and determinants of Helicobacter pylori infection in adults and adolescents with gastric symptoms: cross-sectional epidemiological inquiry in district Haripur, Pakistan. BRAZ J BIOL 2024;84. [DOI: 10.1590/1519-6984.248913] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 12/25/2022] Open
Abstract
Abstract Helicobacter pylori (HP) is a vital element in the etiology of peptic ulcers and gastric cancer. This research aimed to determine the frequency, distribution, and determinants of HP infection in adults and adolescents with gastric symptoms in district Haripur, Khyber Pakhtunkhwa, Pakistan. This cross-sectional study was performed from June 2018 to June 2020 at the Medical Laboratory Technology Department, The University of Haripur, Pakistan. Presence of HP was a research variable, while sex, age groups, education status, overcrowding, dining habits, milk intake, drinking water source and animal contact were grouping variables. Immuno-chromatographic technique (ICT) was used to for serological detection of HP antibodies. All variables were represented by frequency and percentage with 95%CI. Prevalence of HP and its distribution by eight socio-demographic variables was testified by the chi-square goodness-of-fit test while association was testified by chi-square test of association. Out of total 1160 cases, 557 (48%) were positive for HP. Population prevalence was higher in men, in the age group 20-40 years, illiterate, family size ≤ 10 persons, taking restaurant food, using tetra pack, using municipal water, and having animal contact. The observed prevalence of HP was similar to its expected prevalence in the population. The observed distribution of HP in the sample was different from its expected distribution in population by eight socio-demographic variables. Presence of HP was associated with all eight socio-demographic variables besides age groups.
Collapse
|
6
|
|
Ferreira LM, Sáfadi T, Ferreira JL. K-mer applied in Mycobacterium tuberculosis genome cluster analysis. BRAZ J BIOL 2024;84. [DOI: 10.1590/1519-6984.258258] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] Open
Abstract
Abstract According to studies carried out, approximately 10 million people developed tuberculosis in 2018. Of this total, 1.5 million people died from the disease. To study the behavior of the genome sequences of Mycobacterium tuberculosis (MTB), the bacterium responsible for the development of tuberculosis (TB), an analysis was performed using k-mers (DNA word frequency). The k values ranged from 1 to 10, because the analysis was performed on the full length of the sequences, where each sequence is composed of approximately 4 million base pairs, k values above 10, the analysis is interrupted, as consequence of the program's capacity. The aim of this work was to verify the formation of the phylogenetic tree in each k-mer analyzed. The results showed the formation of distinct groups in some k-mers analyzed, taking into account the threshold line. However, in all groups, the multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains remained together and separated from the other strains.
Collapse
|
7
|
|
Firdessa Fite R, Bechi Genzano C, Mallone R, Creusot RJ. Epitope-based precision immunotherapy of Type 1 diabetes. Hum Vaccin Immunother 2023;19:2154098. [PMID: 36656048 DOI: 10.1080/21645515.2022.2154098] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 01/20/2023] Open
Abstract
Antigen-specific immunotherapies (ASITs) address important clinical needs in treating autoimmune diseases. However, Type 1 diabetes is a heterogeneous disease wherein patient characteristics influence responsiveness to ASITs. Targeting not only disease-relevant T cell populations, but also specific groups of patients using precision medicine is a new goal toward achieving effective treatment. HLA-restricted peptides provide advantages over protein as antigens, however, methods for profiling antigen-specific T cells need to improve in sensitivity, depth, and throughput to facilitate epitope selection. Delivery approaches are highly diverse, illustrating the many ways relevant antigen-presenting cell populations and anatomical locations can be targeted for tolerance induction. The role of persistence of antigen presentation in promoting durable antigen-specific tolerance requires further investigation. Based on the outcome of ASIT trials, the field is moving toward using patient-specific variations to improve efficacy, but challenges still lie on the path to delivering more effective and safer treatment to the T1D patient population.
Collapse
|
8
|
|
Hammitt LL, Quinn D, Janczewska E, Pasquel FJ, Tytus R, Reddy KR, Abarca K, Khaertynova IM, Dagan R, Dawson R, McCauley J, Shekar T, Fu W, Pedley A, Sterling T, Tamms G, Musey L, Buchwald UK. Phase 3 trial to evaluate the safety, tolerability, and immunogenicity of V114, a 15-valent pneumococcal conjugate vaccine, followed by 23-valent pneumococcal polysaccharide vaccine 6 months later, in at-risk adults 18-49 years of age (PNEU-DAY): A subgroup analysis by baseline risk factors. Hum Vaccin Immunother 2023;19:2177066. [PMID: 36864601 DOI: 10.1080/21645515.2023.2177066] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/04/2023] Open
Abstract
Immunocompetent adults with certain medical and behavioral factors are at increased risk of pneumococcal disease. In some countries, sequential vaccination with 13-valent pneumococcal conjugate vaccine (PCV13) followed by 23-valent pneumococcal polysaccharide vaccine (PPSV23) is recommended for at-risk adults. This subgroup analysis from a phase 3 study evaluated the safety, tolerability, and immunogenicity of sequential administration of either V114 (a 15-valent PCV containing serotypes 1, 3, 4, 5, 6A, 6B, 7F, 9V, 14, 18C, 19A, 19F, 22F, 23F, and 33F) or PCV13, followed 6 months later by PPSV23, in immunocompetent adults 18-49 years of age with pre-defined risk factors for pneumococcal disease. Safety and immunogenicity post-vaccination were analyzed by type and baseline number of risk factors for pneumococcal disease (1 and ≥2 risk factors). This analysis included 1,131 participants randomized 3:1 to receive either V114 or PCV13, followed by PPSV23. The majority (73.1%) of participants had at least one risk factor. Safety and tolerability profiles of V114 and PCV13 were similar across risk factor groups. V114 administered either alone or sequentially with PPSV23 6 months later was immunogenic for all 15 serotypes, including those not contained in PCV13, regardless of the number of baseline risk factors. V114 has the potential to broaden serotype coverage for at-risk adults.
Collapse
|
9
|
|
Ishihara Y, Kuroki H, Hidaka H, Iwai K, Wan K, Shirakawa M, Sawata M. Safety and immunogenicity of a 15-valent pneumococcal conjugate vaccine in Japanese healthy infants: A Phase I study (V114-028). Hum Vaccin Immunother 2023;19:2180973. [PMID: 36882898 DOI: 10.1080/21645515.2023.2180973] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/09/2023] Open
Abstract
This Phase I study evaluated the safety, tolerability, and immunogenicity of V114, a 15-valent pneumococcal conjugate vaccine (PCV), via subcutaneous (SC) or intramuscular (IM) administration, in healthy Japanese infants 3 months of age. A total of 133 participants were randomized to receive four doses (3 + 1 regimen) of V114-SC (n = 44), V114-IM (n = 45), or 13-valent PCV (PCV13)-SC (n = 44) at 3, 4, 5, and 12-15 months of age. Diphtheria, tetanus, and pertussis-inactivated poliovirus (DTaP-IPV) vaccine was administered concomitantly at all vaccination visits. The primary objective was to assess the safety and tolerability of V114-SC and V114-IM. Secondary objectives were to assess the immunogenicity of PCV and DTaP-IPV at 1-month post-dose 3 (PD3). On days 1-14 following each vaccination, the proportions of participants with systemic adverse events (AEs) were comparable across interventions, whereas injection-site AEs were higher with V114-SC (100.0%) and PCV13-SC (100.0%) than with V114-IM (88.9%). Most AEs were mild or moderate in severity and no vaccine-related serious AEs or deaths were reported. Serotype-specific immunoglobulin G (IgG) response rates at 1-month PD3 were comparable across groups for most shared serotypes between V114 and PCV13. For additional V114 serotypes 22F and 33F, IgG response rates were higher with V114-SC and V114-IM than with PCV13-SC. DTaP-IPV antibody response rates at 1-month PD3 for V114-SC and V114-IM were comparable with PCV13-SC. Findings suggest that vaccination with V114-SC or V114-IM in healthy Japanese infants is generally well tolerated and immunogenic.
Collapse
|
10
|
|
Romano PS, Akematsu T, Besteiro S, Bindschedler A, Carruthers VB, Chahine Z, Coppens I, Descoteaux A, Lopes Alberto Duque T, He CY, Heussler V, Le Roch KG, Li F, Perrone Bezerra de Menezes J, Menna-barreto RFS, Mottram JC, Schmuckli-maurer J, Turk B, Tavares Veras PS, Salassa BN, Vanrell MC. Autophagy in protists and their hosts: When, how and why? Autophagy Reports 2023;2. [DOI: 10.1080/27694127.2022.2149211] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/12/2023]
|
11
|
|
Oyeagu CE, Mlambo V, Lewu FB. Histomorphometric traits, microbiota, nutrient digestibility, growth performance, carcass traits and meat quality parameters of chickens fed diets supplemented with different levels of Bacillus protease. J APPL ANIM RES 2023;51:137-155. [DOI: 10.1080/09712119.2022.2161552] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 02/04/2023] Open
|
12
|
|
Almiman B. Glimpse into phytopathogenic fungal species in Al Baha Province, Saudi Arabia; identification from molecular and morphological characteristics. J TAIBAH UNIV SCI 2023;17. [DOI: 10.1080/16583655.2022.2164458] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 02/22/2023] Open
|
13
|
|
Chwastowski J, Wójcik K, Kołoczek H, Oszczęda Z, Khachatryan K, Tomasik P. Effect of water treatment with low-temperature and low-pressure glow plasma of low frequency on the growth of selected microorganisms. INT J FOOD PROP 2023;26:502-510. [DOI: 10.1080/10942912.2023.2169708] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 01/28/2023] Open
|
14
|
|
Román E, Prieto D, Hidalgo-Vico S, Alonso-Monge R, Pla J. The defective gut colonization of Candida albicans hog1 MAPK mutants is restored by overexpressing the transcriptional regulator of the white opaque transition WOR1. Virulence 2023;14:2174294. [PMID: 36760104 DOI: 10.1080/21505594.2023.2174294] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 02/11/2023] Open
Abstract
The transcriptional master regulator of the white opaque transition of Candida albicans WOR1 is important for the adaptation to the commensal lifestyle in the mammalian gut, a major source of invasive candidiasis. We have generated cells that overproduce Wor1 in mutants defective in the Hog1 MAP kinase, defective in several stress responses and unable to colonize the mice gut. WOR1 overexpression allows hog1 to be established as a commensal in the murine gut in a commensalism model and even compete with wild-type C. albicans cells for establishment. This increased fitness correlates with an enhanced ability to adhere to biotic surfaces as well as increased proteinase and phospholipase production and a decrease in filamentation in vitro. We also show that hog1 WOR1OE are avirulent in a systemic candidiasis model in mice.
Collapse
|
15
|
|
Zhu Z, Xie X, Yu H, Jia W, Shan B, Huang B, Qu F, Niu S, Lv J, Gao Q, Qian F, Tian X, Zhai Y, Wen Y, Yang C, Zhu J, Tang Y, Chen L, Du H. Epidemiological characteristics and molecular features of carbapenem-resistant Enterobacter strains in China: a multicenter genomic study. Emerg Microbes Infect 2023;12:2148562. [PMID: 36382635 DOI: 10.1080/22221751.2022.2148562] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 11/17/2022]
Abstract
Epidemiological characteristics and molecular features of carbapenem-resistant Enterobacter (CR-Ent) species remain unclear in China. In this study, we performed a genomic study on 92 isolates from Enterobacter-caused infections from a multicenter study in China. Whole genome sequencing (WGS) was used to determine the genome sequence of 92 non-duplicated CR-Ent strains collected from multiple tertiary health centres. The precise species of Enterobacter strains were identified by average nucleotide identity (ANI) and in silico DNA-DNA hybridization (isDDH). Molecular features of high-risk CR-Ent sequence type (ST) lineages and carbapenemase-encoding plasmids were determined. The result revealed that the most common human-source CR-Ent species in China was E. xiangfangensis (66/92, 71.93%), and the proportion of carbapenemase-producing Enterobacter (CP-Ent) in CR-Ent was high (72/92, 78.26%) in comparison to other global regions. Furthermore, ST171 and ST116 E. xiangfangensis were the major lineages of CP-Ent strains, and ST171 E. xiangfangensis was more likely to cause infections in older patients. Genomic analysis also highlighted the likelihood of intra-hospital/inter-hospital clonal transmission of ST171 and ST116 E. xiangfangensis. In addition, the blaNDM-harbouring IncX3-type plasmid was identified as the prevalent carbapenemase-encoding plasmid carried by CR-Ent strains, and was experimentally confirmed to be able to self-transfer with high frequency. This study detailed the genomic and clinical characteristics of CR-Ent in China in the form of multicenter for the first time. The high risk of carbapenemase-producing ST171 and ST116 E. xiangfangensis, and the blaNDM-harbouring IncX3-type plasmid were detected and emphasized.
Collapse
|
16
|
|
A J, S S S, K S, T S M. Extracellular vesicles in bacterial and fungal diseases - Pathogenesis to diagnostic biomarkers. Virulence 2023;14:2180934. [PMID: 36794396 DOI: 10.1080/21505594.2023.2180934] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/17/2023] Open
Abstract
Intercellular communication among microbes plays an important role in disease exacerbation. Recent advances have described small vesicles, termed as "extracellular vesicles" (EVs), previously disregarded as "cellular dust" to be vital in the intracellular and intercellular communication in host-microbe interactions. These signals have been known to initiate host damage and transfer of a variety of cargo including proteins, lipid particles, DNA, mRNA, and miRNAs. Microbial EVs, referred to generally as "membrane vesicles" (MVs), play a key role in disease exacerbation suggesting their importance in pathogenicity. Host EVs help coordinate antimicrobial responses and prime the immune cells for pathogen attack. Hence EVs with their central role in microbe-host communication, may serve as important diagnostic biomarkers of microbial pathogenesis. In this review, we summarize current research regarding the roles of EVs as markers of microbial pathogenesis with specific focus on their interaction with host immune defence and their potential as diagnostic biomarkers in disease conditions.
Collapse
|
17
|
|
Huhndorf M, Juhasz J, Wattjes MP, Schilling A, Schob S, Kaden I, Klaß G, Tappe D. Magnetic resonance imaging of human variegated squirrel bornavirus 1 (VSBV-1) encephalitis reveals diagnostic pattern indistinguishable from Borna disease virus 1 (BoDV-1) encephalitis but typical for bornaviruses. Emerg Microbes Infect 2023;12:2179348. [PMID: 36757188 DOI: 10.1080/22221751.2023.2179348] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 02/10/2023]
Abstract
Human bornavirus encephalitis is an emerging disease caused by the variegated squirrel bornavirus 1 (VSBV-1) and the Borna disease virus 1 (BoDV-1). While characteristic brain magnetic resonance imaging (MRI) changes have been described for BoDV-1 encephalitis, only scarce diagnostic data in VSBV-1 encephalitis exist. We systematically analysed brain MRI scans from all known VSBV-1 encephalitis patients. Initial and follow-up scans demonstrated characteristic T2 hyperintense lesions in the limbic system and the basal ganglia, followed by the brainstem. No involvement of the cerebellar cortex was seen. Deep white matter affection occurred in a later stage of the disease. Strict symmetry of pathologic changes was seen in 62%. T2 hyperintense areas were often associated with low T1 signal intensity and with mass effect. Sinusitis in three patients on the first MRI and an early involvement of the limbic system suggest an olfactory route of VSBV-1 entry. The viral spread could occur per continuitatem to adjacent anatomical brain regions or along specific neural tracts to more distant brain regions. The number and extent of lesions did not correlate with the length of patients' survivals. The overall pattern closely resembles that described for BoDV-1 encephalitis. The exact bornavirus species can thus not be deduced from imaging results alone, and molecular testing and serology should be performed to confirm the causative bornavirus. As VSBV-1 is likely of tropical origin, and MRI investigations are increasingly available globally, imaging techniques might be helpful to facilitate an early presumptive diagnosis of VSBV-1 encephalitis when molecular and/or serological testing is not available.
Collapse
|
18
|
|
Xiao Y, Han W, Wang B, Xu Y, Zhao H, Wang X, Rao L, Zhang J, Shen L, Zhou H, Hu L, Shi J, Yu J, Guo Y, Xia H, Yu F. Phylogenetic analysis and virulence characteristics of methicillin-resistant Staphylococcus aureus ST764-SCCmec II: an emerging hypervirulent clone ST764-t1084 in China. Emerg Microbes Infect 2023;12:2165969. [PMID: 36628606 DOI: 10.1080/22221751.2023.2165969] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 01/12/2023]
Abstract
Previous studies have shown that the increased prevalent ST764 clone in China, Japan, and other Asian areas. However, the knowledge of the genetic features and virulence characteristics of methicillin-resistant Staphylococcus aureus (MRSA) ST764 in China is still limited. In this study, we identified 52 ST764-SCCmec type II isolates collected from five cities in China between 2014 and 2021. Whole genome sequencing showed that the most common staphylococcal protein A (spa) types of ST764 in China were t002 (55.78%) and t1084 (40.38%). Virulence assays showed that ST764-t1084 isolates had high haemolytic activity and α-toxin levels. Of the critical regulatory factors affecting α-toxin production, only the SaeRS was highly expressed in ST764-t1084 isolates. Mouse abscess model indicated that the virulence of ST764-t1084 isolates was comparable to that of S. aureus USA300-LAC famous for its hypervirulence. Interestingly, ST764-t002 isolates exhibited stronger biofilm formation and cell adhesion capacities than ST764-t1084 isolates. This seems to explain why ST764-t002 subclone has become more prevalent in China in recent years. Phylogenetic analysis suggested that all ST764 isolates from China in Clade III were closely related to KUN1163 (an isolate from Japan). Notably, genomic analysis revealed that the 52 ST764 isolates did not carry arginine catabolic mobile element (ACME), which differed from ST764 isolates in Japan. Additionally, most ST764 isolates (69.23%) harboured an obvious deletion of approximately 5 kb in the SCCmec II cassette region compared to KUN1163. Our findings shed light on the potential global transmission and genotypic as well as phenotypic characteristics of ST764 lineage.
Collapse
|
19
|
|
Raynes JM, Young PG, Lorenz N, Loh JMS, McGregor R, Baker EN, Proft T, Moreland NJ. Identification of an immunodominant region on a group A Streptococcus T-antigen reveals temperature-dependent motion in pili. Virulence 2023;14:2180228. [PMID: 36809931 DOI: 10.1080/21505594.2023.2180228] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 02/24/2023] Open
Abstract
Group A Streptococcus (GAS) is a globally important pathogen causing a broad range of human diseases. GAS pili are elongated proteins with a backbone comprised repeating T-antigen subunits, which extend from the cell surface and have important roles in adhesion and establishing infection. No GAS vaccines are currently available, but T-antigen-based candidates are in pre-clinical development. This study investigated antibody-T-antigen interactions to gain molecular insight into functional antibody responses to GAS pili. Large, chimeric mouse/human Fab-phage libraries generated from mice vaccinated with the complete T18.1 pilus were screened against recombinant T18.1, a representative two-domain T-antigen. Of the two Fab identified for further characterization, one (designated E3) was cross-reactive and also recognized T3.2 and T13, while the other (H3) was type-specific reacting with only T18.1/T18.2 within a T-antigen panel representative of the major GAS T-types. The epitopes for the two Fab, determined by x-ray crystallography and peptide tiling, overlapped and mapped to the N-terminal region of the T18.1 N-domain. This region is predicted to be buried in the polymerized pilus by the C-domain of the next T-antigen subunit. However, flow cytometry and opsonophagocytic assays showed that these epitopes were accessible in the polymerized pilus at 37°C, though not at lower temperature. This suggests that there is motion within the pilus at physiological temperature, with structural analysis of a covalently linked T18.1 dimer indicating "knee-joint" like bending occurs between T-antigen subunits to expose this immunodominant region. This temperature dependent, mechanistic flexing provides new insight into how antibodies interact with T-antigens during infection.
Collapse
|
20
|
|
Ning Y, Xiao M, Perlin DS, Zhao Y, Lu M, Li Y, Luo Z, Dai R, Li S, Xu J, Liu L, He H, Liu Y, Li F, Guo Y, Chen Z, Xu Y, Sun T, Zhang L. Decreased echinocandin susceptibility in Candida parapsilosis causing candidemia and emergence of a pan-echinocandin resistant case in China. Emerg Microbes Infect 2023;12:2153086. [PMID: 36440795 DOI: 10.1080/22221751.2022.2153086] [Cited by in Crossref: 2] [Cited by in RCA: 1] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 11/29/2022]
Abstract
Candida parapsilosis is becoming a predominant non-albicans cause of invasive candidiasis (IC). Echinocandins are the preferred choice for IC treatment and prophylaxis. Resistance to echinocandins in C. parapsilosis has emerged in several countries, but little is known about the susceptibility profile in China or about mechanisms of resistance. Here, we investigated the echinocandin susceptibilities of 2523 C. parapsilosis isolates collected from China and further explored the resistance mechanism among echinocandin-resistant isolates. Anidulafungin exhibited the highest MICs (MIC50/90, 1 and 2 µg/mL; GM, 0.948 µg/mL), while caspofungin showed better activity (0.5 and 1 µg/mL; 0.498 µg/mL). Significantly higher echinocandin MICs were observed among blood-derived isolates compared to others, especially for caspofungin (GM, 1.348 µg/mL vs 0.478 µg/mL). Isolates from ICU and surgical wards also showed higher MICs. Twenty isolates showed intermediate phenotypes for at least one echinocandin. One was resistant to all three echinocandins, fluconazole and voriconazole, which caused breakthrough IC during long-term exposure to micafungin. WGS revealed this isolate carried a mutation S656P in hotspot1 region of Fks1. Bioinformatics analyses suggested that this mutation might lead to an altered protein conformation. CRISPR Cas9-mediated introduction of this mutation into a susceptible reference C. parapsilosis strain increased MICs of all echinocandins 64-fold, with similar results found in the subspecies, C. orthopsilosis and C. metapsilosis. This is the first report of a multi-azole resistant and pan-echinocandin resistant C. parapsilosis isolate, and the identification of a FKS1S656P conferring pan-echinocandin resistance. Our study underscores the necessity of rigorous management of antifungal use and of monitoring for antifungal susceptibility.
Collapse
|
21
|
|
Guillén N. Pathogenicity and virulence of Entamoeba histolytica, the agent of amoebiasis. Virulence 2023;14:2158656. [PMID: 36519347 DOI: 10.1080/21505594.2022.2158656] [Cited by in Crossref: 1] [Cited by in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 12/23/2022] Open
Abstract
The amoeba parasite Entamoeba histolytica is the causative agent of human amebiasis, an enteropathic disease affecting millions of people worldwide. This ancient protozoan is an elementary example of how parasites evolve with humans, e.g. taking advantage of multiple mechanisms to evade immune responses, interacting with microbiota for nutritional and protective needs, utilizing host resources for growth, division, and encystation. These skills of E. histolytica perpetuate the species and incidence of infection. However, in 10% of infected cases, the parasite turns into a pathogen; the host-parasite equilibrium is then disorganized, and the simple lifecycle based on two cell forms, trophozoites and cysts, becomes unbalanced. Trophozoites acquire a virulent phenotype which, when non-controlled, leads to intestinal invasion with the onset of amoebiasis symptoms. Virulent E. histolytica must cross mucus, epithelium, connective tissue and possibly blood. This highly mobile parasite faces various stresses and a powerful host immune response, with oxidative stress being a challenge for its survival. New emerging research avenues and omics technologies target gene regulation to determine human or parasitic factors activated upon infection, their role in virulence activation, and in pathogenesis; this research bears in mind that E. histolytica is a resident of the complex intestinal ecosystem. The goal is to eradicate amoebiasis from the planet, but the parasitic life of E. histolytica is ancient and complex and will likely continue to evolve with humans. Advances in these topics are summarized here.
Collapse
|
22
|
|
Plotniece A, Sobolev A, Supuran CT, Carta F, Björkling F, Franzyk H, Yli-Kauhaluoma J, Augustyns K, Cos P, De Vooght L, Govaerts M, Aizawa J, Tammela P, Žalubovskis R. Selected strategies to fight pathogenic bacteria. J Enzyme Inhib Med Chem 2023;38:2155816. [PMID: 36629427 DOI: 10.1080/14756366.2022.2155816] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 01/12/2023] Open
Abstract
Natural products and analogues are a source of antibacterial drug discovery. Considering drug resistance levels emerging for antibiotics, identification of bacterial metalloenzymes and the synthesis of selective inhibitors are interesting for antibacterial agent development. Peptide nucleic acids are attractive antisense and antigene agents representing a novel strategy to target pathogens due to their unique mechanism of action. Antisense inhibition and development of antisense peptide nucleic acids is a new approach to antibacterial agents. Due to the increased resistance of biofilms to antibiotics, alternative therapeutic options are necessary. To develop antimicrobial strategies, optimised in vitro and in vivo models are needed. In vivo models to study biofilm-related respiratory infections, device-related infections: ventilator-associated pneumonia, tissue-related infections: chronic infection models based on alginate or agar beads, methods to battle biofilm-related infections are discussed. Drug delivery in case of antibacterials often is a serious issue therefore this review includes overview of drug delivery nanosystems.
Collapse
|
23
|
|
Bellavita R, Falanga A, Merlino F, D'Auria G, Molfetta N, Saviano A, Maione F, Galdiero U, Catania MR, Galdiero S, Grieco P, Roscetto E, Falcigno L, Buommino E. Unveiling the mechanism of action of acylated temporin L analogues against multidrug-resistant Candida albicans. J Enzyme Inhib Med Chem 2023;38:36-50. [PMID: 36305289 DOI: 10.1080/14756366.2022.2134359] [Cited by in Crossref: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 10/31/2022] Open
Abstract
The increasing resistance of fungi to conventional antifungal drugs has prompted worldwide the search for new compounds. In this work, we investigated the antifungal properties of acylated Temporin L derivatives, Pent-1B and Dec-1B, against Candida albicans, including the multidrug-resistant strains. Acylated peptides resulted to be active both on reference and clinical strains with MIC values ranging from 6.5 to 26 µM, and they did not show cytotoxicity on human keratinocytes. In addition, we also observed a synergistic or additive effect with voriconazole for peptides Dec-1B and Pent-1B through the checkerboard assay on voriconazole-resistant Candida strains. Moreover, fluorescence-based assays, NMR spectroscopy, and confocal microscopy elucidated a potential membrane-active mechanism, consisting of an initial electrostatic interaction of acylated peptides with fungal membrane, followed by aggregation and insertion into the lipid bilayer and causing membrane perturbation probably through a carpeting effect.
Collapse
|
24
|
|
Diaz A, Dixit AR, Khodadad CL, Hummerick ME, Justiano-Velez YA, Li W, O'Rourke A. Biofilm formation is correlated with low nutrient and simulated microgravity conditions in a Burkholderia isolate from the ISS water processor assembly. Biofilm 2023;5:100110. [PMID: 36922940 DOI: 10.1016/j.bioflm.2023.100110] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/05/2023] Open
Abstract
The International Space Station (ISS) Water Processor Assembly (WPA) experiences intermittent dormancy in the WPA wastewater tank during water recycling events which promotes biofilm formation within the system. In this work we aimed to gain a deeper understanding of the impact of nutrient limitation on bacterial growth and biofilm formation under microgravity in support of biofilm mitigation efforts in exploration water recovery systems. A representative species of bacteria that is commonly cultured from the ISS WPA was cultured in an WPA influent water ersatz formulation tailored for microbiological studies. An isolate of Burkholderia contaminans was cultured under a simulated microgravity (SμG) treatment in a vertically rotating high-aspect rotating vessel (HARV) to create the low shear modeled microgravity (LSMMG) environment on a rotating wall vessel (RWV), with a rotating control (R) in the horizontal plane at the predetermined optimal rotation per minute (rpm) speed of 20. Over the course of the growth curve, the bacterial culture in ersatz media was harvested for bacterial counts, and transcriptomic and nutrient content analyses. The cultures under SμG treatment showed a transcriptomic signature indicative of nutrient stress and biofilm formation as compared to the R control treatment. Further analysis of the WPA ersatz over the course of the growth curve suggests that the essential nutrients of the media were consumed faster in the early stages of growth for the SμG treatment and thus approached a nutrient limited growth condition earlier than in the R control culture. The observed limited nutrient response may serve as one element to explain a moderate enhancement of adherent biofilm formation in the SμG treatment after 24 h. While nutrients levels can be modulated, one implication of this investigation is that biofilm mitigation in the ISS environment could benefit from methods such as mixing or the maintenance of minimum flow within a dormant water system in order to force convection and offset the response of microbes to the secondary effects of microgravity.
Collapse
|
25
|
|
Tewes F, Lamy B, Laroche J, Lamarche I, Marchand S. PK-PD Evaluation of Inhaled Microparticles loaded with Ciprofloxacin-Copper complex in a Rat Model of Chronic Pseudomonas aeruginosa Lung Infection. Int J Pharm X 2023;5:100178. [PMID: 36970713 DOI: 10.1016/j.ijpx.2023.100178] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 03/29/2023] Open
Abstract
The potential gain in efficacy of pulmonary administration over IV administration of some antibiotics such as ciprofloxacin (CIP) may be limited by the short residence time of the drug at the site of infection after nebulization. Complexation of CIP with copper reduced its apparent permeability in vitro through a Calu-3 cell monolayer and greatly increased its pulmonary residence time after aerosolisation in healthy rats. Chronic P. aeruginosa lung infections in cystic fibrosis patients result in airway and alveolar inflammation that may increase the permeability of inhaled antibiotics and alter their fate in the lung after inhalation compared to what was seen in healthy conditions. The objective of this study was to compare the pharmacokinetics and efficacy of CIP-Cu2+ complex-loaded microparticles administered by pulmonary route with a CIP solution administered by IV to model rats with chronic lung infection. After a single pulmonary administration of microparticles loaded with CIP-Cu2+ complex, pulmonary exposure to CIP was increased 2077-fold compared to IV administration of CIP solution. This single lung administration significantly reduced the lung burden of P. aeruginosa expressed as CFU/lung measured 24 h after administration by 10-fold while IV administration of the same dose of CIP was ineffective compared to the untreated control. This better efficacy of inhaled microparticles loaded with CIP-Cu2+ complex compared with CIP solution can be attributed to the higher pulmonary exposure to CIP obtained with inhaled CIP-Cu2+ complex-loaded microparticles than that obtained with IV solution.
Collapse
|
26
|
|
Hascelik G, Soyletir G, Gulay Z, Sancak B, Yaman A, Gurler N, Aydemir SS, Bayramoglu G, Aydin F, Cekin Y, Birinci A, Ozakin C, Akpolat N, Ozhak Baysan B, Gultekin M, Zer Y, Sanal L, Arabaci C, Ay Altintop Y, Ozturk C, Ceyhan M. Serotype distribution of Streptococcus pneumoniae and pneumococcal vaccine coverage in adults in Turkey between 2015 and 2018. Ann Med 2023;55:266-75. [PMID: 36579976 DOI: 10.1080/07853890.2022.2160877] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE To evaluate the serotype distribution and antibiotic resistance in pneumococcal infections in adults and to provide a perspective regarding serotype coverage of both current and future pneumococcal vaccines. PATIENTS AND METHODS This passive surveillance study was conducted with the Streptococcus pneumoniae strains isolated from the specimens of patients with pneumonia (materials isolated from bronchoalveolar lavage), bacteraemia, meningitis, pleuritis and peritonitis between 2015 and 2018. Serogrouping and serotyping were performed by latex particle agglutination and by conventional Quellung reaction using commercial type-specific antisera, respectively. The strains were analysed for penicillin, cefotaxime, erythromycin and moxifloxacin susceptibilities by E-test. RESULTS In the whole study group (410 samples from adults aged ≥18 years), the most frequent serotypes were 3 (14.1%), 19 F (12%) and 1 (9.3%). The vaccine coverage for PCV13, PCV15, PCV20 and PPV23 was 63.9%, 66.6%, 74.1% and 75.9%, respectively, in all isolates. Penicillin non-susceptibility in invasive pneumococcal disease (IPD) was 70.8% and 57.1% in the patients aged <65 and ≥65 years, respectively. About 21.1% and 4.3% of the patients with and without IPD had cefotaxime resistance. Non-susceptibility to erythromycin and moxifloxacin was 38.2% and 1.2%, respectively. CONCLUSIONS The results revealed that novel PCV vaccines may provide improved coverage as compared with the currently available vaccine, PCV13. The significant antibiotic resistance rates imply the need to extend the serotype coverage of the vaccines. Continuing the surveillance in pneumococcal diseases is critical to explore the serotype distribution and incidence changes of IPD cases in the population and to inform policy makers to make necessary improvements in the national immunization programmes.Key messagesThis multicentre study demonstrated the most recent serotype distribution and antibiotic resistance in adult population in Turkey.Shifting from PCV13 to novel conjugated vaccines will significantly increase the coverage.Continuing the surveillance in pneumococcal diseases is critical to explore the serotype distribution changes and the incidence of cases with invasive pneumococcal disease in the population.
Collapse
|
27
|
|
Amaral TDS, Alves CMDS, Rezende FR, Caetano KAA, Tipple AFV. Evaluación serológica y vacuna para la hepatitis B entre Agentes Comunitarios de Salud. Rev Lat Am Enfermagem 2023;31. [DOI: 10.1590/1518-8345.6107.3764] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/04/2023] Open
Abstract
Resumen Objetivo: identificar la situación de la vacunación y serología contra la hepatitis B entre agentes comunitarios de la salud, vacunar contra el virus de la hepatitis B y evaluar la respuesta inmunológica de los agentes susceptibles. Método: fase I, estudio transversal y descriptivo, entre agentes comunitarios de la salud de una capital de la región centro oeste, por medio de cuestionario autoadministrado, verificación del carné de vacunación y extracción de sangre para comprobar los marcadores serológicos para la hepatitis B. Fase II, estudio de cohorte realizado en trabajadores vacunados no inmunes e identificados en la Fase I; estos recibieron una dosis de la vacuna (dosis de desafío) y realizaron el test serológico. Resultados: participaron del estudio 109 agentes. La mayoría tenía registro de vacunación (97; 89,0%) y de cobertura de vacunación (75; 77,3%); el marcador anti-HBs (Anticuerpos contra el virus de la hepatitis B) aislado fue detectado en 78 (71,6%) de los agentes. La prevalencia de exposición al virus de la hepatitis B fue de 8,2%. De los diez agentes vacunados no inmunes, después de la dosis desafío, uno permaneció susceptible. Conclusión: a pesar de que la mayoría de los trabajadores estaban vacunados y presentaron respuesta inmunológica para la hepatitis B, la susceptibilidad, después de la dosis desafío, fue identificada. Por tanto, es necesario que exista un programa de vigilancia de la situación de vacunación y estado serológico para este virus, para promover la seguridad de estos trabajadores.
Collapse
|
28
|
|
Ke CL, Lew SQ, Hsieh Y, Chang SC, Lin CH. Convergent and divergent roles of the glucose-responsive kinase SNF4 in Candida tropicalis. Virulence 2023;14:2175914. [PMID: 36745535 DOI: 10.1080/21505594.2023.2175914] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 02/07/2023] Open
Abstract
The sucrose non-fermenting 1 (SNF1) complex is a heterotrimeric protein kinase complex that is an ortholog of the mammalian AMPK complex and is evolutionally conserved in most eukaryotes. This complex contains a catalytic subunit (Snf1), a regulatory subunit (Snf4) and a scaffolding subunit (Sip1/Sip2/Gal73) in budding yeast. Although the function of AMPK has been well studied in Saccharomyces cerevisiae and Candida albicans, the role of AMPK in Candida tropicalis has never been investigated. In this study, we focused on SNF4 in C. tropicalis as this fungus cannot produce a snf1Δ mutant. We demonstrated that C. tropicalis SNF4 shares similar roles in glucose derepression and is necessary for cell wall integrity and virulence. The expression of both SNF1 and SNF4 was significantly induced when glucose was limited. Furthermore, snf4Δ strains exhibited high sensitivity to many surface-perturbing agents because the strains contained lower levels of glucan, chitin and mannan. Interestingly, in contrast to C. albicans sak1Δ and snf4Δ, C. tropicalis snf4Δ exhibited phenotypes for cell aggregation and pseudohypha production. These data indicate that SNF4 performs convergent and divergent roles in C. tropicalis and possibly other unknown roles in the C. tropicalis SNF1-SNF4 AMPK pathway.
Collapse
|
29
|
|
He M, Zhang L, Hu H, Liu X, Zhang C, Xin Y, Liu B, Chen Z, Xu K, Liu Y. Complete genome sequencing and comparative genomic analyses of a new spotted-fever Rickettsia heilongjiangensis strain B8. Emerg Microbes Infect 2023;12:2153085. [PMID: 36440590 DOI: 10.1080/22221751.2022.2153085] [Cited by in Crossref: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 11/29/2022]
Abstract
Rickettsia heilongjiangensis, a tick-borne obligate intracellular bacterium and causative agent of spotted fever in China, has attracted increasing concern regarding its capability in causing human rickettsiosis. Here, we conducted a genomic analysis of a new R. heilongjiangensis strain B8 (B8) isolated from the serum of a patient who had been bitten by a Haemaphysalis longicornis tick in Anhui Province, China. The present study sought to identify exclusive genes that might be associated with the pathogenicity of B8 using comparative genomics. Specifically, the sequences of B8 were assembled into one circular chromosome of 1,275,081 bp and predicted to contain 1447 genes. Comparative genome analyses were performed based on the genome of B8 and 28 spotted fever group (SFG) rickettsial genomes deposited in NCBI. Phylogenomic analyses indicated the B8 strain was clustered within the R. heilongjiangensis species; however, a sum of 112 and 119 B8-unique genes was identified when compared with R. heilongjiangensis and R. japonica strains, respectively. Functional annotation analyses revealed that these B8-unique genes were mainly annotated to defence mechanisms, lipid transport and metabolism, cell wall/membrane/envelope biogenesis. These data indicate B8 rather represents a previously undescribed human-pathogenic SFG rickettsia lineage, which may be an intermediate lineage of R. heilongjiangensis and R. japonica. Overall, this study isolated a new strain of R. heilongjiangensis in East-Central China for the first time, and provided potential B8-unique genetic loci that could be used for the discrimination of B8 from other R. heilongjiangensis and closely related SFG Rickettsial strains.
Collapse
|
30
|
|
Rahlwes KC, Dias BRS, Campos PC, Alvarez-Arguedas S, Shiloh MU. Pathogenicity and virulence of Mycobacterium tuberculosis. Virulence 2023;14:2150449. [PMID: 36419223 DOI: 10.1080/21505594.2022.2150449] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 11/27/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis, an infectious disease with one of the highest morbidity and mortality rates worldwide. Leveraging its highly evolved repertoire of non-protein and protein virulence factors, Mtb invades through the airway, subverts host immunity, establishes its survival niche, and ultimately escapes in the setting of active disease to initiate another round of infection in a naive host. In this review, we will provide a concise synopsis of the infectious life cycle of Mtb and its clinical and epidemiologic significance. We will also take stock of its virulence factors and pathogenic mechanisms that modulate host immunity and facilitate its spread. Developing a greater understanding of the interface between Mtb virulence factors and host defences will enable progress toward improved vaccines and therapeutics to prevent and treat tuberculosis.
Collapse
|
31
|
|
Giacobbe DR, Di Pilato V, Karaiskos I, Giani T, Marchese A, Rossolini GM, Bassetti M. Treatment and diagnosis of severe KPC-producing Klebsiella pneumoniae infections: a perspective on what has changed over last decades. Ann Med 2023;55:101-13. [PMID: 36856521 DOI: 10.1080/07853890.2022.2152484] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 03/02/2023] Open
Abstract
Antimicrobial resistance is a global health threat. Among Gram-negative bacteria, resistance to carbapenems, a class of β-lactam antibiotics, is usually a proxy for difficult-to-treat resistance, since carbapenem-resistant organisms are often resistant to many classes of antibiotics. Carbapenem resistance in the Gram-negative pathogen Klebsiella pneumoniae is mostly due to the production of carbapenemases, enzymes able to hydrolyze carbapenems, and K. pneumoniae carbapenemase (KPC)-type enzymes are overall the most prevalent carbapenemases in K. pneumoniae. In the last decade, the management of severe infections due to KPC-producing K. pneumoniae (KPC-Kp) in humans has presented many peculiar challenges to clinicians worldwide. In this perspective, we discuss how the treatment of severe KPC-Kp infections has evolved over the last decades, guided by the accumulating evidence from clinical studies, and how recent advances in diagnostics have allowed to anticipate identification of KPC-Kp in infected patients.KEY MESSAGESIn the last decade, the management of severe infections due to KPC-Kp has presented many peculiar challenges to clinicians worldwideFollowing the introduction in clinical practice of novel β-lactam/β-lactamase inhibitor combinations and novel β-lactams active against KPC-producing bacteria, the management of severe KPC-Kp infections has witnessed a remarkable evolutionTreatment of severe KPC-Kp infections is a highly dynamic process, in which the wise use of novel antimicrobials should be accompanied by a continuous refinement based on evolving clinical evidence and laboratory diagnostics.
Collapse
|
32
|
|
Buddle JE, Fagan RP. Pathogenicity and virulence of Clostridioides difficile. Virulence 2023;14:2150452. [PMID: 36419222 DOI: 10.1080/21505594.2022.2150452] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 11/25/2022] Open
Abstract
Clostridioides difficile is the most common cause of nosocomial antibiotic-associated diarrhea, and is responsible for a spectrum of diseases characterized by high levels of recurrence, morbidity, and mortality. Treatment is complex, since antibiotics constitute both the main treatment and the major risk factor for infection. Worryingly, resistance to multiple antibiotics is becoming increasingly widespread, leading to the classification of this pathogen as an urgent threat to global health. As a consummate opportunist, C. difficile is well equipped for promoting disease, owing to its arsenal of virulence factors: transmission of this anaerobe is highly efficient due to the formation of robust endospores, and an array of adhesins promote gut colonization. C. difficile produces multiple toxins acting upon gut epithelia, resulting in manifestations typical of diarrheal disease, and severe inflammation in a subset of patients. This review focuses on such virulence factors, as well as the importance of antimicrobial resistance and genome plasticity in enabling pathogenesis and persistence of this important pathogen.
Collapse
|
33
|
|
Wan LY, Huang HH, Zhen C, Chen SY, Song B, Cao WJ, Shen LL, Zhou MJ, Zhang XC, Xu R, Fan X, Zhang JY, Shi M, Zhang C, Jiao YM, Song JW, Wang FS. Distinct inflammation-related proteins associated with T cell immune recovery during chronic HIV-1 infection. Emerg Microbes Infect 2023;12:2150566. [PMID: 36408648 DOI: 10.1080/22221751.2022.2150566] [Cited by in Crossref: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 11/22/2022]
Abstract
Chronic inflammation and T cell dysregulation persist in individuals infected with human immunodeficiency virus type 1 (HIV-1), even after successful antiretroviral treatment. The mechanism involved is not fully understood. Here, we used Olink proteomics to comprehensively analyze the aberrant inflammation-related proteins (IRPs) in chronic HIV-1-infected individuals, including in 24 treatment-naïve individuals, 33 immunological responders, and 38 immunological non-responders. T cell dysfunction was evaluated as T cell exhaustion, activation, and differentiation using flow cytometry. We identified a cluster of IRPs (cluster 7), including CXCL11, CXCL9, TNF, CXCL10, and IL18, which was closely associated with T cell dysregulation during chronic HIV-1 infection. Interestingly, IRPs in cluster 5, including ST1A1, CASP8, SIRT2, AXIN1, STAMBP, CD40, and IL7, were negatively correlated with the HIV-1 reservoir size. We also identified a combination of CDCP1, CXCL11, CST5, SLAMF1, TRANCE, and CD5, which may be useful for distinguishing immunological responders and immunological non-responders. In conclusion, the distinct inflammatory milieu is closely associated with immune restoration of T cells, and our results provide insight into immune dysregulation during chronic HIV-1 infection.
Collapse
|
34
|
|
Liu R, Xu H, Zhao J, Hu X, Wu L, Qiao J, Ge H, Guo X, Gou J, Zheng B. Emergence of mcr-8.2-harboring hypervirulent ST412 Klebsiella pneumoniae strain from pediatric sepsis: A comparative genomic survey. Virulence 2023;14:233-45. [PMID: 36529894 DOI: 10.1080/21505594.2022.2158980] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 12/23/2022] Open
Abstract
Emerging mobile colistin resistance (mcr) genes pose a significant threat to public health for colistin was used as the last resort to treat multidrug-resistant (MDR) pathogenic bacterial infections. Hypervirulent Klebsiella pneumoniae (hvKP) is a clinically significant pathogen resulting in highly invasive infections, often complicated by devastating dissemination. Worryingly, the untreatable and severe infections caused by mcr-harbouring hvKP leave the selection of antibiotics for clinical anti-infective treatment in a dilemma. Herein, we screened 3,461 isolates from a tertiary teaching hospital from November 2018 to March 2021, and an mcr-8.2-harbouring hvKP FAHZZU2591 with a conjugative plasmid was identified from paediatric sepsis. This is the first report of MCR-8-producing hvKP from paediatric sepsis to our best knowledge. The susceptibility, genetic features, and plasmid profiles of the isolate were investigated. Further, we assessed the virulence potential of FAHZZU2591 and verified its pathogenicity and invasive capacity using a mouse model. The phylogenetic analysis of mcr-8-bearing K. pneumoniae revealed that China is the predominant reservoir of the mcr-8 gene, and the clinic is the primary source. Our work highlights the risk for the spread of mcr-positive hvKP in clinical, especially in paediatric sepsis, and the persistent surveillance of colistin-resistance hvKP is urgent.
Collapse
|
35
|
|
Shih LJ, Yang CC, Liao MT, Lu KC, Hu WC, Lin CP. An important call: Suggestion of using IL-10 as therapeutic agent for COVID-19 with ARDS and other complications. Virulence 2023;14:2190650. [PMID: 36914565 DOI: 10.1080/21505594.2023.2190650] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/15/2023] Open
Abstract
The global coronavirus disease 2019 (COVID-19) pandemic has a detrimental impact on public health. COVID-19 usually manifests as pneumonia, which can progress into acute respiratory distress syndrome (ARDS) related to uncontrolled TH17 immune reaction. Currently, there is no effective therapeutic agent to manage COVID-19 with complications. The currently available anti-viral drug remdesivir has an effectiveness of 30% in SARS-CoV-2-induced severe complications. Thus, there is a need to identify effective agents to treat COVID-19 and the associated acute lung injury and other complications. The host immunological pathway against this virus typically involves the THαβ immune response. THαβ immunity is triggered by type 1 interferon and interleukin-27 (IL-27), and the main effector cells of the THαβ immune response are IL10-CD4 T cells, CD8 T cells, NK cells, and IgG1-producing B cells. In particular, IL-10 exerts a potent immunomodulatory or anti-inflammatory effect and is an anti-fibrotic agent for pulmonary fibrosis. Concurrently, IL-10 can ameliorate acute lung injury or ARDS, especially those caused by viruses. Owing to its anti-viral activity and anti-pro-inflammatory effects, in this review, IL-10 is suggested as a possible treatment agent for COVID-19.
Collapse
|
36
|
|
Walker IS, Rogerson SJ. Pathogenicity and virulence of malaria: Sticky problems and tricky solutions. Virulence 2023;14:2150456. [PMID: 36419237 DOI: 10.1080/21505594.2022.2150456] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 11/25/2022] Open
Abstract
Infections with Plasmodium falciparum and Plasmodium vivax cause over 600,000 deaths each year, concentrated in Africa and in young children, but much of the world's population remain at risk of infection. In this article, we review the latest developments in the immunogenicity and pathogenesis of malaria, with a particular focus on P. falciparum, the leading malaria killer. Pathogenic factors include parasite-derived toxins and variant surface antigens on infected erythrocytes that mediate sequestration in the deep vasculature. Host response to parasite toxins and to variant antigens is an important determinant of disease severity. Understanding how parasites sequester, and how antibody to variant antigens could prevent sequestration, may lead to new approaches to treat and prevent disease. Difficulties in malaria diagnosis, drug resistance, and specific challenges of treating P. vivax pose challenges to malaria elimination, but vaccines and other preventive strategies may offer improved disease control.
Collapse
|
37
|
|
Chahi K, Collienne C, Anantharajah A, Rodriguez-Villalobos H, Hantson P. Bordetella hinzii bacteremia in a patient with SARS-CoV-2 infection. Emerg Microbes Infect 2023;12:2147276. [PMID: 36367206 DOI: 10.1080/22221751.2022.2147276] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 11/13/2022]
|
38
|
|
Yan K, Wang X, Liu Z, Bo Z, Zhang C, Guo M, Zhang X, Wu Y. QX-type infectious bronchitis virus infection in roosters can seriously injure the reproductive system and cause sex hormone secretion disorder. Virulence 2023;14:2185380. [PMID: 36883685 DOI: 10.1080/21505594.2023.2185380] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/09/2023] Open
Abstract
Since its discovery, QX-type avian infectious bronchitis virus (IBV) has rapidly spread worldwide and become the most prevalent dominant genotype in Asia and Europe. Currently, although the pathogenicity of QX-type IBV in the reproductive system of hens is widely and deeply understood, its pathogenicity in the reproductive system of roosters remains largely unknown. In this study, 30-week-old specific pathogen-free (SPF) roosters were used to investigate the pathogenicity of QX-type IBV in the reproductive system after infection. The results showed that QX-type IBV infection caused abnormal testicular morphology, moderate atrophy and obvious dilatation of seminiferous tubules, and produced intense inflammation and obvious pathological injuries in the ductus deferens of infected chickens. Immunohistochemistry results showed that QX-type IBV can replicate in spermatogenic cells at various stages and in the mucous layer of the ductus deferens. Further studies showed that QX-type IBV infection affects plasma levels of testosterone, luteinizing hormone, and follicle-stimulating hormone as well as causes changes in transcription levels of their receptors in the testis. Furthermore, the transcription levels of StAR, P450scc, 3βHSD and 17βHSD4 also changed during testosterone synthesis after QX-type IBV infection, indicating that the virus can directly affect steroidogenesis. Finally, we found that QX-type IBV infection leads to extensive germ cell apoptosis in the testis. Collectively, our results suggest that QX-type IBV replicates in the testis and ductus deferens, causing severe tissue damage and disruption of reproductive hormone secretion. These adverse events eventually lead to mass germ cell apoptosis in the testis, affecting the reproductive function of roosters.
Collapse
|
39
|
|
Amaral TDS, Alves CMDS, Rezende FR, Caetano KAA, Tipple AFV. Avaliação sorológica e vacinal para hepatite B entre Agentes Comunitários de Saúde. Rev Lat Am Enfermagem 2023;31. [DOI: 10.1590/1518-8345.6107.3766] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/04/2023] Open
Abstract
Resumo Objetivo: identificar a situação vacinal e sorológica contra hepatite B entre agentes comunitários de saúde; vacinar contra o vírus da hepatite B e avaliar a resposta imunológica dos agentes susceptíveis. Método: fase I, estudo transversal e descritivo, entre agentes comunitários de saúde de uma capital da região Centro-oeste, por meio de questionário autoaplicável, conferência do cartão vacinal e coleta de sangue para testagem dos marcadores sorológicos para hepatite B. Fase II, estudo de coorte realizado em trabalhadores vacinados não imunes e identificados na fase I. Estes receberam uma dose da vacina (dose desafio) e teste sorológico. Resultados: participaram do estudo 109 agentes. A maioria tinha registro de vacinação (97; 89,0%) e completude vacinal (75; 77,3%), já o marcador anti-HBs (anticorpos contra o vírus da hepatite B) isolado foi detectado em 78 (71,6%) agentes. A prevalência de exposição ao vírus da hepatite B foi de 8,2%. Dos dez agentes vacinados não imunes, após a dose desafio, um permaneceu susceptível. Conclusão: apesar da maioria dos trabalhadores estarem vacinados e apresentarem resposta imunológica para hepatite B, a suscetibilidade após a dose desafio foi identificada. Portanto, é necessário que haja um programa de vigilância da situação vacinal e estado sorológico para este vírus, para promover a segurança destes trabalhadores.
Collapse
|
40
|
|
Li F, Du L, Zhen H, Li M, An S, Fan W, Yan Y, Zhao M, Han X, Li Z, Yang H, Zhang C, Guo C, Zhen Q. Follow-up outcomes of asymptomatic brucellosis: a systematic review and meta-analysis. Emerg Microbes Infect 2023;12:2185464. [PMID: 36849445 DOI: 10.1080/22221751.2023.2185464] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/01/2023]
Abstract
Balancing the potentially serious outcomes of asymptomatic brucellosis and "waiting" for treatment in clinical practice is an urgent issue. Therefore, we assessed the follow-up outcomes and epidemiological characteristics of asymptomatic brucellosis in the absence of treatment to provide evidence-based clinical clues. We searched eight databases in which 3610 studies from 1990 to 2021 were related to the follow-up outcomes of asymptomatic brucellosis. Thirteen studies, involving 107 cases, were finally included. Regarding the follow-up outcomes, we examined the presence or absence of symptoms and decreased serum agglutination test (SAT) titre. During the 0.5-18 months follow-up period, the pooled prevalence of appearing symptomatic was 15.4% (95% CI 2.1%-34.3%), cases that remained asymptomatic were 40.3% (95% CI 16.6%-65.8%), and decreased SAT titre was observed in 36.5% (95% CI 11.6%-66.1%). Subgroup analysis indicated that the pooled prevalence of appearing symptomatic with follow-up times of less than 6 months, 6-12 months, and 12-18 months was 11.5%, 26.4%, and 47.6%, respectively. The student subgroup had a higher prevalence of symptoms (46.6%) than the occupational and family populations. In conclusion, asymptomatic brucellosis has a high likelihood of appearing symptomatic and its severity may be underestimated. Active screening of occupational and family populations should be enhanced, and special attention should be paid to high-titre students for early intervention, if necessary. Additionally, future prospective, long-term, and large-sample follow-up studies are essential.
Collapse
|
41
|
|
Farman MR, Petráčková D, Kumar D, Držmíšek J, Saha A, Čurnová I, Čapek J, Hejnarová V, Amman F, Hofacker I, Večerek B. Avirulent phenotype promotes Bordetella pertussis adaptation to the intramacrophage environment. Emerg Microbes Infect 2023;12:e2146536. [PMID: 36357372 DOI: 10.1080/22221751.2022.2146536] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 11/13/2022]
Abstract
Bordetella pertussis, the causative agent of whooping cough, is an extracellular, strictly human pathogen. However, it has been shown that B. pertussis cells can escape phagocytic killing and survive in macrophages upon internalization. Our time-resolved RNA-seq data suggest that B. pertussis efficiently adapts to the intramacrophage environment and responds to host bactericidal activities. We show that this adaptive response is multifaceted and, surprisingly, related to the BvgAS two-component system, a master regulator of virulence. Our results show that the expression of this regulatory circuit is downregulated upon internalization. Moreover, we demonstrate that the switch to the avirulent Bvg- phase augments a very complex process based on the adjustment of central and energy metabolism, cell wall reinforcement, maintenance of appropriate redox and metal homeostasis, and repair of damaged macromolecules. Nevertheless, not all observed effects could be simply attributed to the transition to Bvg- phase, suggesting that additional regulators are involved in the adaptation to the intramacrophage environment. Interestingly, a large number of genes required for the metabolism of sulphur were strongly modulated within macrophages. In particular, the mutant lacking two genes encoding cysteine dioxygenases displayed strongly attenuated cytotoxicity toward THP-1 cells. Collectively, our results suggest that intracellular B. pertussis cells have adopted the Bvg- mode to acclimate to the intramacrophage environment and respond to antimicrobial activities elicited by THP-1 cells. Therefore, we hypothesize that the avirulent phase represents an authentic phenotype of internalized B. pertussis cells.
Collapse
|
42
|
|
Earle K, Valero C, Conn DP, Vere G, Cook PC, Bromley MJ, Bowyer P, Gago S. Pathogenicity and virulence of Aspergillus fumigatus. Virulence 2023;14:2172264. [PMID: 36752587 DOI: 10.1080/21505594.2023.2172264] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/09/2023] Open
Abstract
Pulmonary infections caused by the mould pathogen Aspergillus fumigatus are a major cause of morbidity and mortality globally. Compromised lung defences arising from immunosuppression, chronic respiratory conditions or more recently, concomitant viral or bacterial pulmonary infections are recognised risks factors for the development of pulmonary aspergillosis. In this review, we will summarise our current knowledge of the mechanistic basis of pulmonary aspergillosis with a focus on emerging at-risk populations.
Collapse
|
43
|
|
Zhao C, Liu R, Zhou Y, Zheng R, Shen Y, Wen B, Zhang B, Che J. Ignored roles of gases in digestive diseases. Biomedical Technology 2023;3:1-10. [DOI: 10.1016/j.bmt.2022.11.014] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 01/23/2023]
|
44
|
|
Shi R, Dan B, Lü L. Bioactive effects advances of natural polysaccharides. Journal of Future Foods 2023;3:234-239. [DOI: 10.1016/j.jfutfo.2023.02.005] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/11/2023]
|
45
|
|
Koizumi H, Fujii W, Sanjoba C, Goto Y. BAFF induces CXCR5 expression during B cell differentiation in bone marrow. Biochem Biophys Rep 2023;34:101451. [PMID: 36926279 DOI: 10.1016/j.bbrep.2023.101451] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/09/2023] Open
Abstract
B cell activating factor (BAFF) plays an important role in antibody production through differentiation and maturation of B cells mainly in secondary lymphoid organs. On the other hand, the role of BAFF in the bone marrow, the primary lymphoid organ of B cell development, has not been well elucidated. Here, effects of BAFF in bone marrow B cell development were examined by using BAFF-deficient mice. When mRNA expression levels of B cell differentiation markers including Cd19, Bcl2, Igμ, Il7r and Cxcr5 were compared between bone marrow of wild-type and BAFF-KO mice, a lower level of Cxcr5 expression was found in the KO mice. Additionally, protein expression of CXCR5 on IgM+ cells in the bone marrow was decreased by BAFF deficiency. In vitro studies also confirmed the effect of BAFF on CXCR5 by IgM+ cells; culturing bone marrow cells from BAFF-KO mice with BAFF in vitro increased the proportion of CXCR5+ cells in IgM+ cells compared with non-treated bone marrow cells. In addition, BAFF synergized with TNF-α and IL-6 to increase the expression of CXCR5+ on IgM+ cells. The BAFF-mediated up-regulation of CXCR5 expression was reproduced by using CD19+ cells purified from BAFF-KO bone marrow cells, suggesting that BAFF directly affects B-lineage cells in bone marrow to promote CXCR5 expression. Together, this study suggests that BAFF has an important role in B cell differentiation in bone marrow by directly inducing CXCR5 expression which affect their migration to secondary lymphoid organs.
Collapse
|
46
|
|
Zeng P, Zhang P, Yi L, Wong KY, Chen S, Chan KF, Leung SSY. A novel ESKAPE-sensitive peptide with enhanced stability and its application in controlling multiple bacterial contaminations in chilled fresh pork. Food Chem 2023;413:135647. [PMID: 36796263 DOI: 10.1016/j.foodchem.2023.135647] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/11/2023]
Abstract
The co-existence of various pathogenic bacteria on the surface of pork products exacerbates difficulties in food safety control. Developing broad-spectrum and stable antibacterial agents that are not antibiotics is an unmet need. To address this issue, all l-arginine residues of a reported peptide (IIRR)4-NH2 (zp80) were substituted with the corresponding D enantiomers. This novel peptide (IIrr)4-NH2 (zp80r) was expected to maintain favourable bioactivity against ESKAPE strains and have enhanced proteolytic stability compared with zp80. In a series of experiments, zp80r maintained favourable bioactivities against starvation-induced persisters. Electron microscopy and fluorescent dye assays were used to verify the antibacterial mechanism of zp80r. Importantly, zp80r reduced bacterial colonies in chilled fresh pork contaminated with multiple bacterial species. This newly designed peptide is a potential antibacterial candidate to combat problematic foodborne pathogens during storage of pork.
Collapse
|
47
|
|
Kim JW, Lee KJ. Development of a Single-nucleotide Polymorphism Genotyping Assay for the Rapid Detection of Vancomycin-intermediate Resistance in Staphylococcus aureus Epidemic Lineage ST5. Ann Lab Med 2023;43:355-63. [PMID: 36843404 DOI: 10.3343/alm.2023.43.4.355] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/28/2023] Open
Abstract
Background Vancomycin is a treatment option for patients with severe methicillin-resistant Staphylococcus aureus (MRSA) infection. Unfortunately, reduced susceptibility to vancomycin in S. aureus is becoming increasingly common. We developed a method for the rapid and accurate diagnosis of vancomycin-intermediate resistant S. aureus (VISA). Methods We performed a microbial genome-wide association study to discriminate between VISA and vancomycin-susceptible S. aureus (VSSA) using 42 whole-genome sequences. A TaqMan single-nucleotide polymorphism (SNP) genotyping assay was developed to detect target SNPs in VISA strains. Results Four SNPs in the VISA strains resulting in nonsynonymous amino-acid substitutions were associated with reduced susceptibility to vancomycin: SA_RS01235 (G203S), SA_RS09725 (V171A), SA_RS12250 (I48F), and SA_RS12550 (G478A). These four SNPs were mainly detected in the typical hospital-associated sequence type (ST)5 clonal lineage. The TaqMan assay successfully detected all four SNPs using as little as 0.2 ng DNA per reaction. Using 10 VSSA and VISA clinical strains each, we validated that the assay accurately discriminates between VISA and VSSA. Conclusions The TaqMan SNP genotyping assay targeting four SNPs may be an alternative to current standard methods for the rapid detection of vancomycin-intermediate resistance in S. aureus epidemic lineage ST5.
Collapse
|
48
|
|
Hu Y, Zhang H, Wang S, Cao L, Zhou F, Jing Y, Su J. Bone/cartilage organoid on-chip: Construction strategy and application. Bioact Mater 2023;25:29-41. [DOI: 10.1016/j.bioactmat.2023.01.016] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 01/21/2023] Open
|
49
|
|
Didara Z, Reithofer F, Zöttl K, Jürets A, Kiss I, Witte A, Klein R. Inhibition of adenovirus replication by CRISPR-Cas9-mediated targeting of the viral E1A gene. Mol Ther Nucleic Acids 2023;32:48-60. [PMID: 36950281 DOI: 10.1016/j.omtn.2023.02.033] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/06/2023] Open
Abstract
DNA-targeting CRISPR-Cas systems are able to cleave dsDNA in mammalian cells. Accordingly, they have been employed to target the genomes of dsDNA viruses, mostly when present in cells in a non-replicative state with low copy numbers. However, the sheer amount of viral DNA produced within a very short time by certain lytically replicating viruses potentially brings the capacities of CRISPR-Cas systems to their limits. The accessibility of viral DNA replication sites, short time of accessibility of the DNA before encapsidation, or its complexation with shielding proteins are further potential hurdles. Adenoviruses are fast-replicating dsDNA viruses for which no approved antiviral therapy currently exists. We evaluated the potency of CRISPR-Cas9 in inhibiting the replication of human adenovirus 5 in vitro by targeting its master regulator E1A with a set of guide RNAs and observed a decrease in infectious virus particles by up to three orders of magnitude. Target DNA cleavage also negatively impacted the amount of viral DNA accumulated during the infection cycle. This outcome was mainly caused by specific deletions, inversions, and duplications occurring between target sites, which abolished most E1A functions in most cases. Additionally, we compared two strategies for multiplex gRNA expression and obtained comparable results.
Collapse
|
50
|
|
Sagna A, Nair RVR, Hulyalkar N, Rajasekharan S, Nair VTG, Sivakumar KC, Suja SR, Baby S, Sreekumar E. Ethyl palmitate, an anti-chikungunya virus principle from Sauropus androgynus, a medicinal plant used to alleviate fever in ethnomedicine. J Ethnopharmacol 2023;309:116366. [PMID: 36914036 DOI: 10.1016/j.jep.2023.116366] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sauropus androgynus is a medicinal shrub used for the treatment of fever in ethnomedical traditions in various Southeast Asian countries. AIM OF THE STUDY This study was aimed to identify antiviral principles from S. androgynus against Chikungunya virus (CHIKV), a major mosquito-borne pathogen that re-emerged in the last decade, and to unravel their mechanism of action. MATERIALS AND METHODS Hydroalcoholic extract of S. androgynus leaves was screened for anti-CHIKV activity using cytopathic effect (CPE) reduction assay. The extract was subjected to activity guided isolation and the resultant pure molecule was characterized by GC-MS, Co-GC and Co-HPTLC. The isolated molecule was further evaluated for its effect by plaque reduction assay, Western blot and immunofluorescence assays. In silico docking with CHIKV envelope proteins and molecular dynamics simulation (MD) analyses were used to elucidate its possible mechanism of action. RESULTS S. androgynus hydroalcoholic extract showed promising anti-CHIKV activity and its active component, obtained by activity guided isolation, was identified as ethyl palmitate (EP), a fatty acid ester. At 1 μg/mL, EP led to 100% inhibition of CPE and a significant 3 log10 reduction in CHIKV replication in Vero cells at 48 h post-infection. EP was highly potent with an EC50 of 0.0019 μg/mL (0.0068 μM) and a very high selectivity index. EP treatment significantly reduced viral protein expression, and time of addition studies revealed that it acts at the stage of viral entry. A strong binding to the viral envelope protein E1 homotrimer during entry, thus preventing viral fusion, was identified as a possible mechanism by which EP imparts its antiviral effect. CONCLUSIONS S. androgynus contains EP as a potent antiviral principle against CHIKV. This justifies the use of the plant against febrile infections, possibly caused by viruses, in various ethnomedical systems. Our results also prompt more studies on fatty acids and their derivatives against viral diseases.
Collapse
|