1
|
Rodríguez-García M, Burgos-Molina AM, González-Vidal A, Sendra-Portero F, Bernal M, Ruiz-Gómez MJ. Molecular mechanisms of radiation resistance in colorectal cancer: in silico identification of AURKA, BIRC5 and PLK1 proteins as potential biomarkers. Int J Radiat Biol 2025:1-13. [PMID: 40293443 DOI: 10.1080/09553002.2025.2496079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 03/20/2025] [Accepted: 04/10/2025] [Indexed: 04/30/2025]
Abstract
PURPOSE The development of radiation resistance by tumor cells severely affects the survival of colorectal cancer patients. The aim of this work is to study the molecular mechanisms involved in the resistance to radiotherapy treatment in colorectal cancer and the identification of key genes as possible biomarkers. METHODS Data mining was performed in PubMed with the keywords 'colorectal neoplasms', 'radiotherapy', and 'resistance', generating a total of 242 articles in which a series of inclusion and exclusion criteria were applied to select the articles of interest. Then, an in-silico analysis of the selected genes was performed with the bioinformatic tools: GeneCodis, Metascape, KEGG, REACTOME, STRING, STITCH, CHEA3, DGIdb, CTD, and GEPIA. RESULTS Different mechanisms and genes involved in radiation resistance were described. These are related to evasion of apoptosis, cell cycle dysregulation, epithelial-mesenchymal transition, and repair of DNA breaks, with the last one being the most relevant and influential. The In-silico study carried out with 21 genes involved in radiation resistance showed the implication of FoxO signaling and EGFR tyrosine kinase inhibitor resistance as the most enriched pathways. In addition, the study identified the key proteins AURKA, BIRC5, and PLK1, showing multiple interacting chemicals and drugs; such as tamoxifen, omacetaxine mepesuccinate, and hydroxyzine pamoate, among others. CONCLUSION The identification of multiple transcription factors that regulate the expression of these key genes as well as the validation in patient samples where higher expression is observed in tumor patients, conserved across tumor stages I-IV, suggests their potential as possible biomarkers.
Collapse
Affiliation(s)
| | - Antonio M Burgos-Molina
- Departamento de Especialidades Quirúrgicas, Bioquímica e Inmunología, Universidad de Málaga, Málaga, España
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, España
| | - Alejandro González-Vidal
- Departamento de Radiología y Medicina Física, Universidad de Málaga, Málaga, España
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, España
| | - Francisco Sendra-Portero
- Departamento de Radiología y Medicina Física, Universidad de Málaga, Málaga, España
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, España
| | - Manuel Bernal
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, España
- Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Málaga, España
| | - Miguel J Ruiz-Gómez
- Departamento de Radiología y Medicina Física, Universidad de Málaga, Málaga, España
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, España
| |
Collapse
|
2
|
Xing L, Yang X, Bai J, Zhong C, Cai J, Dan Q, Ji Y, Xu B, Yu K, Chen X, Qi Y, Li L, Chen Y, Shuai X, Cheng G, Liu L, Zheng T. Use of UMFNPs/Ce6@MBs in multimodal imaging-guided sono-photodynamic combination therapy for hepatocellular carcinoma. Biomater Sci 2024; 13:179-192. [PMID: 39506528 DOI: 10.1039/d4bm00613e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Early diagnosis of liver cancer and appropriate treatment options are critical for obtaining a good prognosis. However, due to technical limitations, it is difficult to make an early and accurate diagnosis of liver cancer, and the traditional imaging model is relatively simple. Therefore, we synthesized multifunctional diagnostic/therapeutic nanoparticles, UMFNPs/Ce6@MBs, loaded with ultra-small manganese ferrite nanoparticles (UMFNPs) and chlorin e6 (Ce6). This nanoplatform can take full advantage of hypoxia, acidic pH (acidosis) and increased levels of reactive oxygen species (e.g. H2O2) in the tumor microenvironment (TME). Specific imaging and drug release can also enhance tumor therapy by modulating the hypoxic state of the TME to achieve the combined effect of sonodynamic therapy and photodynamic therapy (SPDT). In addition, the prepared UMFNPs/Ce6@MBs have H2O2 and pH-sensitive biodegradability and can release UMFNPs and photosensitizer Ce6 in the TME while producing O2 and Mn2+. The obtained Mn2+ ion nanoparticles can be used for T1 magnetic resonance imaging of tumor-bearing mice, and the released Ce6 can provide fluorescence imaging function at the same time. Because UMFNPs/Ce6@MB ultrasonic microbubbles show good ultrasonic imaging results, UMFNPs/Ce6@MBs can simultaneously provide multi-modal imaging functions for magnetic resonance imaging (MRI), ultrasound and fluorescence imaging. In conclusion, UMFNPs/Ce6@MBs realize the synergistic treatment of SDT and PDT under multi-mode near-infrared fluorescence imaging and CEUS monitoring, demonstrating its great potential in tumor precision medicine.
Collapse
Affiliation(s)
- Lijun Xing
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Institute of Ultrasonic Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, Guangdong, P. R. China.
- Department of Hubei University of Medicine, Wuhan 430000, Hubei, P. R. China
| | - Xiaoting Yang
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Institute of Ultrasonic Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, Guangdong, P. R. China.
| | - Jianhua Bai
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Institute of Ultrasonic Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, Guangdong, P. R. China.
| | - Chunting Zhong
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Institute of Ultrasonic Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, Guangdong, P. R. China.
| | - Jing Cai
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510000, Guangdong, P.R. China
| | - Qing Dan
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Institute of Ultrasonic Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, Guangdong, P. R. China.
| | - Yiran Ji
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Institute of Ultrasonic Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, Guangdong, P. R. China.
| | - Bingxuan Xu
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Institute of Ultrasonic Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, Guangdong, P. R. China.
| | - Keyan Yu
- Department of Medical Imaging, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong, P. R. China.
| | - Xiaoyu Chen
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Institute of Ultrasonic Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, Guangdong, P. R. China.
| | - Yulong Qi
- Department of Medical Imaging, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong, P. R. China.
| | - Li Li
- Department of Medical Imaging, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou 510000, China
| | - Yun Chen
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Institute of Ultrasonic Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, Guangdong, P. R. China.
| | - Xintao Shuai
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, Guangdong, P. R. China.
| | - Guanxun Cheng
- Department of Medical Imaging, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong, P. R. China.
| | - Li Liu
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Institute of Ultrasonic Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, Guangdong, P. R. China.
| | - Tingting Zheng
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Institute of Ultrasonic Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, Guangdong, P. R. China.
| |
Collapse
|
3
|
Liao QQ, Zhu ZF, Zhu KW, Yang Z, Liu GL, Li XQ, Ge R, Xu HZ, Jiang X, Tang YF, Chen Y, Yu ZL, Liao ZZ, Huang SY, Qiu Y, Zhao BJ, Fu YF, Qin D. Symptoms can predict COVID-19 pneumonia in patients infected with SARS-CoV-2 Omicron variants. Sci Rep 2024; 14:30037. [PMID: 39627318 PMCID: PMC11615324 DOI: 10.1038/s41598-024-81156-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/25/2024] [Indexed: 12/06/2024] Open
Abstract
Pneumonia is a key criterion for the severity of COVID-19. Whether COVID-19 symptoms are indicators of pneumonia in patients infected with SARS-CoV-2 Omicron variants is unclear. 6200 non-hospitalized patients with COVID-19 from three sites in three hospitals were divided into three cohorts: Cohort 1 (n = 1971, Outpatient Department), Cohort 2 (n = 1073, Emergency Department), and Cohort 3 (n = 3156, Fever Clinic). The association of COVID-19 symptoms with pneumonia in the patients were analysed. In Cohort 1, dry cough, expectoration, fever, muscle or body aches, sore throat, headache or dizziness, shortness of breath, and difficulty breathing were associated with pneumonia. For Cohort 2, expectoration, fatigue, congestion or runny nose, sore throat, headache or dizziness, chills, chest stuffiness, shortness of breath, and difficulty breathing were related to pneumonia. With Cohort 3, dry cough, expectoration, vomiting, chest stuffiness, shortness of breath, and difficulty breathing had associations with pneumonia. Moreover, duration of symptoms > 7 days was associated with pneumonia in all three cohorts. In the study, expectoration, shortness of breath, difficulty breathing, and duration of symptoms > 7 days were useful predictors of COVID-19 pneumonia in the patients infected with SARS-CoV-2 Omicron variants. Among these predictors, shortness of breath and difficulty breathing were high-risk early-warning factors for pneumonia, and duration of symptoms > 7 days was also a high-risk factor for pneumonia.
Collapse
Affiliation(s)
- Qian-Qian Liao
- Department of Pharmacy, People's Hospital of Guilin, No.12, Civilization Road, Xiangshan District, Guilin, 541002, China
| | - Ze-Feng Zhu
- Department of Pharmacy, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Ke-Wei Zhu
- Office of Pharmacovigilance, GuangZhou BaiYunShan Pharmaceutical Holdings CO.,LTD. BaiYunShan Pharmaceutical General Factory, No. 88, Yunxiang Road, Tonghe Street Baiyun District, Guangzhou, 510515, Guangdong Province, China.
| | - Zhe Yang
- Medical Department, North China Medical and Health Group Xingtai General Hospital, Xingtai, China
| | - Gui-Li Liu
- Department of Geriatrics, People's Hospital of Guilin, Guilin, China
| | - Xiang-Qing Li
- Center of Data, People's Hospital of Guilin, Guilin, China
| | - Run Ge
- Department of General Medicine, People's Hospital of Guilin, Guilin, China
| | - Hong-Zhen Xu
- Department of Pharmacy, People's Hospital of Guilin, No.12, Civilization Road, Xiangshan District, Guilin, 541002, China
| | - Xuan Jiang
- Department of Hospital-Acquired Infection Control , People's Hospital of Guilin, Guilin, China
| | - Yan-Feng Tang
- Department of General Medicine, People's Hospital of Guilin, Guilin, China
| | - Yan Chen
- Department of Pharmacy, People's Hospital of Guilin, No.12, Civilization Road, Xiangshan District, Guilin, 541002, China
| | - Zhi-Ling Yu
- Department of Pharmacy, People's Hospital of Guilin, No.12, Civilization Road, Xiangshan District, Guilin, 541002, China
| | - Zeng-Zhen Liao
- Department of Pharmacy, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Shao-Yuan Huang
- Office of Drug Clinical Trial Institutions, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Yue Qiu
- College of Pharmacy, Guilin Medical University, Guilin, China
| | - Bin-Jing Zhao
- College of Pharmacy, Guilin Medical University, Guilin, China
| | - Yong-Fei Fu
- College of Pharmacy, Guilin Medical University, Guilin, China
| | - Dong Qin
- Department of Pharmacy, People's Hospital of Guilin, No.12, Civilization Road, Xiangshan District, Guilin, 541002, China.
| |
Collapse
|
4
|
Zhao Y, Zhao L, Jin H, Xie Y, Chen L, Zhang W, Dong L, Zhang L, Huang Y, Wan K, Yang Q, Wang S. Plasma methylated GNB4 and Riplet as a novel dual-marker panel for the detection of hepatocellular carcinoma. Epigenetics 2024; 19:2299044. [PMID: 38154055 PMCID: PMC10761049 DOI: 10.1080/15592294.2023.2299044] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023] Open
Abstract
Early detection of hepatocellular carcinoma (HCC) can greatly improve the survival rate of patients. We aimed to develop a novel marker panel based on cell-free DNA (cfDNA) methylation for the detection of HCC. The differentially methylated CpG sites (DMCs) specific for HCC blood diagnosis were selected from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, then validated by the whole genome bisulphite sequencing (WGBS) of 12 paired HCC and paracancerous tissues. The clinical performance of the panel was evaluated using tissue samples [32 HCC, chronic liver disease (CLD), and healthy individuals] and plasma cohorts (173 HCC, 199 CLD, and 98 healthy individuals). The combination of G protein subunit beta 4 (GNB4) and Riplet had the optimal area under the curve (AUC) in seven candidates through TCGA, GEO, and WGBS analyses. In tissue validation, the GNB4 and Riplet showed an AUC of 100% with a sensitivity and specificity of 100% for detecting any-stage HCC. In plasma, it demonstrated a high sensitivity of 84.39% at 91.92% specificity, with an AUC of 92.51% for detecting any-stage HCC. The dual-marker panel had a higher sensitivity of 78.26% for stage I HCC than alpha-fetoprotein (AFP) of 47.83%, and a high sensitivity of 70.27% for detecting a single tumour (size ≤3 cm). In conclusion, we developed a novel dual-marker panel that demonstrates high accuracy in detecting HCC, surpassing the performance of AFP testing.
Collapse
Affiliation(s)
- Yanteng Zhao
- Department of Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lei Zhao
- Plastic maxillofacial surgery, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi, China
| | - Huifang Jin
- Department of Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ying Xie
- Department of Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Liyinghui Chen
- Department of Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wei Zhang
- Research and development department, Wuhan Ammunition Life-tech Company, Ltd., Wuhan, Hubei, China
| | - Lanlan Dong
- Research and development department, Wuhan Ammunition Life-tech Company, Ltd., Wuhan, Hubei, China
| | - Lianglu Zhang
- Research and development department, Wuhan Ammunition Life-tech Company, Ltd., Wuhan, Hubei, China
| | - Yue Huang
- Research and development department, Wuhan Ammunition Life-tech Company, Ltd., Wuhan, Hubei, China
| | - Kangkang Wan
- Research and development department, Wuhan Ammunition Life-tech Company, Ltd., Wuhan, Hubei, China
| | - Qiankun Yang
- Department of Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shaochi Wang
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
5
|
Xing L, Chen Y, Zheng T. Research progress of nanoparticles in diagnosis and treatment of hepatocellular carcinoma. Open Life Sci 2024; 19:20220932. [PMID: 39220591 PMCID: PMC11365471 DOI: 10.1515/biol-2022-0932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 09/04/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is among the most common malignant liver tumors. Despite progress in anticancer drugs and surgical approaches, early detection of HCC remains challenging, often leading to late-stage diagnosis where rapid disease progression precludes surgical intervention, leaving chemotherapy as the only option. However, the systemic toxicity, low bioavailability, and significant adverse effects of chemotherapy drugs often lead to resistance, rendering treatments ineffective for many patients. This article outlines how nanoparticles, following functional modification, offer high sensitivity, reduced drug toxicity, and extended duration of action, enabling precise targeting of drugs to HCC tissues. Combined with other therapeutic modalities and imaging techniques, this significantly enhances the diagnosis, treatment, and long-term prognosis of HCC. The advent of nanomedicine provides new methodologies and strategies for the precise diagnosis and integrated treatment of HCC.
Collapse
Affiliation(s)
- Lijun Xing
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Hubei University of Medicine, Institute of Ultrasonic Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, P. R. China
| | - Yun Chen
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Institute of Ultrasonic Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, P. R. China
| | - Tingting Zheng
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Institute of Ultrasonic Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, P. R. China
| |
Collapse
|
6
|
Naganuma H, Ishida H, Nagai H, Uno A. Contrast-Enhanced Sonography of the Liver: How to Avoid Artifacts. Diagnostics (Basel) 2024; 14:1817. [PMID: 39202305 PMCID: PMC11353835 DOI: 10.3390/diagnostics14161817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Contrast-enhanced sonography (CEUS) is a very important diagnostic imaging tool in clinical settings. However, it is associated with possible artifacts, such as B-mode US-related artifacts. Sufficient knowledge of US physics and these artifacts is indispensable to avoid the misinterpretation of CEUS images. This review aims to explain the basic physics of CEUS and the associated artifacts and to provide some examples to avoid them. This review includes problems related to the frame rate, scanning modes, and various artifacts encountered in daily CEUS examinations. Artifacts in CEUS can be divided into two groups: (1) B-mode US-related artifacts, which form the background of the CEUS image, and (2) artifacts that are specifically related to the CEUS method. The former includes refraction, reflection, reverberation (multiple reflections), attenuation, mirror image, and range-ambiguity artifacts. In the former case, the knowledge of B-mode US is sufficient to read the displayed artifactual image. Thus, in this group, the most useful artifact avoidance strategy is to use the reference B-mode image, which allows for a simultaneous comparison between the CEUS and B-mode images. In the latter case, CEUS-specific artifacts include microbubble destruction artifacts, prolonged heterogeneous accumulation artifacts, and CEUS-related posterior echo enhancement; these require an understanding of the mechanism of their appearance in CEUS images for correct image interpretation. Thus, in this group, the most useful artifact avoidance strategy is to confirm the phenomenon's instability by changing the examination conditions, including the frequency, depth, and other parameters.
Collapse
Affiliation(s)
- Hiroko Naganuma
- Department of Gastroenterology, Yokote Municipal Hospital, Yokote 013-8602, Japan
| | - Hideaki Ishida
- Department of Gastroenterology, Akita Red Cross Hospital, Akita 010-1495, Japan;
| | - Hiroshi Nagai
- New Generation Imaging Laboratory, Tokyo 168-0065, Japan;
| | - Atushi Uno
- Department of Gastroenterology, Ohmori Municipal Hospital, Yokote 013-0525, Japan;
| |
Collapse
|
7
|
Qahwaji R, Ashankyty I, Sannan NS, Hazzazi MS, Basabrain AA, Mobashir M. Pharmacogenomics: A Genetic Approach to Drug Development and Therapy. Pharmaceuticals (Basel) 2024; 17:940. [PMID: 39065790 PMCID: PMC11279827 DOI: 10.3390/ph17070940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
The majority of the well-known pharmacogenomics research used in the medical sciences contributes to our understanding of medication interactions. It has a significant impact on treatment and drug development. The broad use of pharmacogenomics is required for the progress of therapy. The main focus is on how genes and an intricate gene system affect the body's reaction to medications. Novel biomarkers that help identify a patient group that is more or less likely to respond to a certain medication have been discovered as a result of recent developments in the field of clinical therapeutics. It aims to improve customized therapy by giving the appropriate drug at the right dose at the right time and making sure that the right prescriptions are issued. A combination of genetic, environmental, and patient variables that impact the pharmacokinetics and/or pharmacodynamics of medications results in interindividual variance in drug response. Drug development, illness susceptibility, and treatment efficacy are all impacted by pharmacogenomics. The purpose of this work is to give a review that might serve as a foundation for the creation of new pharmacogenomics applications, techniques, or strategies.
Collapse
Affiliation(s)
- Rowaid Qahwaji
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 22254, Saudi Arabia; (R.Q.); (I.A.); (M.S.H.); (A.A.B.)
- Hematology Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ibraheem Ashankyty
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 22254, Saudi Arabia; (R.Q.); (I.A.); (M.S.H.); (A.A.B.)
| | - Naif S. Sannan
- College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Ar Rimayah, Riyadh 14611, Saudi Arabia;
- King Abdullah International Medical Research Center, Jeddah 22384, Saudi Arabia
| | - Mohannad S. Hazzazi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 22254, Saudi Arabia; (R.Q.); (I.A.); (M.S.H.); (A.A.B.)
- Hematology Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ammar A. Basabrain
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 22254, Saudi Arabia; (R.Q.); (I.A.); (M.S.H.); (A.A.B.)
- Hematology Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammad Mobashir
- Department of Biomedical Laboratory Science, Faculty of Natural Sciences, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| |
Collapse
|
8
|
Wally SF, Albalawi AA, Al Madshush AM, Aljohani M, Alshehri AJ, Alamrani FM, Alyahya M, Aljohani FS, Modrba AY, Albalawi RH, Abo Draa O. Updates on the Diagnostic Use of Ultrasonography Augmented With Perfluorobutane Contrast in Hepatocellular Carcinoma: A Meta-Analysis. Cureus 2024; 16:e60891. [PMID: 38910635 PMCID: PMC11193104 DOI: 10.7759/cureus.60891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2024] [Indexed: 06/25/2024] Open
Abstract
To investigate the diagnostic accuracy of contrast-enhanced ultrasound (CEUS) in the diagnosis of primary hepatocellular carcinoma (HCC), a thorough search was conducted for pertinent literature using PubMed, SCOPUS, Web of Science, Science Direct, and Wiley Library. This was a meta-analysis of diagnostic test accuracy. MetaDiSc 1.4 was used for all analyses and assessed statistical heterogeneity with the I2 index and the chi-square test. The random-effects model was applied where there was considerable heterogeneity. Using the eight elements of the Newcastle-Ottawa Scale (NOS) for cohort and case-control studies, we assessed the quality of the included studies. Our results included nine studies with a total of 2598 patients, and 1607 (61.8%) were males. The pooled overall sensitivity of perfluorobutane with CEUS was 85.6% (95% CI 0.832, -0.878, and P=0.000) and specificity was 91.5% (95% CI 0.899, -0.930, and P=0.000) with significant inter heterogeneity between studies (I2=94.3% and 95.7%), respectively. The pooled positive likelihood ratio was 12.42 (4.59 to 33.61, P=0.000). Our analysis revealed a symmetric summary receiver operating characteristic (SROC) curve and seven of the included studies are near the top left corner of the graph, indicating that this test has a high diagnostic value. The results showed that CEUS augmented with perfluorobutane contrast had good diagnostic accuracy (sensitivity and specificity) for primary HCC. Further real-world data studies are needed to confirm the good diagnosis accuracy of perfluorobutane CEUS in primary HCC.
Collapse
|