451
|
Ausió J, Paz AMD, Esteller M. MeCP2: the long trip from a chromatin protein to neurological disorders. Trends Mol Med 2014; 20:487-98. [DOI: 10.1016/j.molmed.2014.03.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 03/12/2014] [Accepted: 03/14/2014] [Indexed: 12/13/2022]
|
452
|
Bellini E, Pavesi G, Barbiero I, Bergo A, Chandola C, Nawaz MS, Rusconi L, Stefanelli G, Strollo M, Valente MM, Kilstrup-Nielsen C, Landsberger N. MeCP2 post-translational modifications: a mechanism to control its involvement in synaptic plasticity and homeostasis? Front Cell Neurosci 2014; 8:236. [PMID: 25165434 PMCID: PMC4131190 DOI: 10.3389/fncel.2014.00236] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 07/27/2014] [Indexed: 12/02/2022] Open
Abstract
Although Rett syndrome (RTT) represents one of the most frequent forms of severe intellectual disability in females worldwide, we still have an inadequate knowledge of the many roles played by MeCP2 (whose mutations are responsible for most cases of RTT) and their relevance for RTT pathobiology. Several studies support a role of MeCP2 in the regulation of synaptic plasticity and homeostasis. At the molecular level, MeCP2 is described as a repressor capable of inhibiting gene transcription through chromatin compaction. Indeed, it interacts with several chromatin remodeling factors, such as HDAC-containing complexes and ATRX. Other studies have inferred that MeCP2 functions also as an activator; a role in regulating mRNA splicing and in modulating protein synthesis has also been proposed. Further, MeCP2 avidly binds both 5-methyl- and 5-hydroxymethyl-cytosine. Recent evidence suggests that it is the highly disorganized structure of MeCP2, together with its post-translational modifications (PTMs) that generate and regulate this functional versatility. Indeed, several reports have demonstrated that differential phosphorylation of MeCP2 is a key mechanism by which the methyl binding protein modulates its affinity for its partners, gene expression and cellular adaptations to stimuli and neuronal plasticity. As logic consequence, generation of phospho-defective Mecp2 knock-in mice has permitted associating alterations in neuronal morphology, circuit formation, and mouse behavioral phenotypes with specific phosphorylation events. MeCP2 undergoes various other PTMs, including acetylation, ubiquitination and sumoylation, whose functional roles remain largely unexplored. These results, together with the genome-wide distribution of MeCP2 and its capability to substitute histone H1, recall the complex regulation of histones and suggest the relevance of quickly gaining a deeper comprehension of MeCP2 PTMs, the respective writers and readers and the consequent functional outcomes.
Collapse
Affiliation(s)
- Elisa Bellini
- Division of Neuroscience, San Raffaele Rett Research Center, San Raffaele Scientific Institute Milan, Italy
| | - Giulio Pavesi
- Department of Biosciences, University of Milan Milan, Italy
| | - Isabella Barbiero
- Section of Biomedical Research, Laboratory of Genetic and Epigenetic Control of Gene Expression, Department of Theoretic and Applied Sciences, University of Insubria Busto Arsizio, Italy
| | - Anna Bergo
- Section of Biomedical Research, Laboratory of Genetic and Epigenetic Control of Gene Expression, Department of Theoretic and Applied Sciences, University of Insubria Busto Arsizio, Italy
| | - Chetan Chandola
- Section of Biomedical Research, Laboratory of Genetic and Epigenetic Control of Gene Expression, Department of Theoretic and Applied Sciences, University of Insubria Busto Arsizio, Italy
| | - Mohammad S Nawaz
- Section of Biomedical Research, Laboratory of Genetic and Epigenetic Control of Gene Expression, Department of Theoretic and Applied Sciences, University of Insubria Busto Arsizio, Italy
| | - Laura Rusconi
- Section of Biomedical Research, Laboratory of Genetic and Epigenetic Control of Gene Expression, Department of Theoretic and Applied Sciences, University of Insubria Busto Arsizio, Italy
| | - Gilda Stefanelli
- Section of Biomedical Research, Laboratory of Genetic and Epigenetic Control of Gene Expression, Department of Theoretic and Applied Sciences, University of Insubria Busto Arsizio, Italy
| | - Marta Strollo
- Section of Biomedical Research, Laboratory of Genetic and Epigenetic Control of Gene Expression, Department of Theoretic and Applied Sciences, University of Insubria Busto Arsizio, Italy
| | - Maria M Valente
- Division of Neuroscience, San Raffaele Rett Research Center, San Raffaele Scientific Institute Milan, Italy
| | - Charlotte Kilstrup-Nielsen
- Section of Biomedical Research, Laboratory of Genetic and Epigenetic Control of Gene Expression, Department of Theoretic and Applied Sciences, University of Insubria Busto Arsizio, Italy
| | - Nicoletta Landsberger
- Division of Neuroscience, San Raffaele Rett Research Center, San Raffaele Scientific Institute Milan, Italy ; Section of Biomedical Research, Laboratory of Genetic and Epigenetic Control of Gene Expression, Department of Theoretic and Applied Sciences, University of Insubria Busto Arsizio, Italy
| |
Collapse
|
453
|
Cheng TL, Qiu Z. MeCP2: multifaceted roles in gene regulation and neural development. Neurosci Bull 2014; 30:601-9. [PMID: 25082535 DOI: 10.1007/s12264-014-1452-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 06/22/2014] [Indexed: 11/27/2022] Open
Abstract
Methyl-CpG-binding protein 2 (MeCP2) is a classic methylated-DNA-binding protein, dysfunctions of which lead to various neurodevelopmental disorders such as Rett syndrome and autism spectrum disorder. Initially recognized as a transcriptional repressor, MeCP2 has been studied extensively and its functions have been expanded dramatically in the past two decades. Recently, it was found to be involved in gene regulation at the post-transcriptional level. MeCP2 represses nuclear microRNA processing by interacting directly with the Drosha/DGCR8 complex. In addition to its multifaceted functions, MeCP2 is remarkably modulated by posttranslational modifications such as phosphorylation, SUMOylation, and acetylation, providing more regulatory dimensions to its functions. The role of MeCP2 in the central nervous system has been studied extensively, from neurons to glia. Future investigations combining molecular, cellular, and physiological methods are necessary for defining the roles of MeCP2 in the brain and developing efficient treatments for MeCP2-related brain disorders.
Collapse
Affiliation(s)
- Tian-Lin Cheng
- Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China,
| | | |
Collapse
|
454
|
Abstract
Rett syndrome (RTT) is a severe and progressive neurological disorder, which mainly affects young females. Mutations of the methyl-CpG binding protein 2 (MECP2) gene are the most prevalent cause of classical RTT cases. MECP2 mutations or altered expression are also associated with a spectrum of neurodevelopmental disorders such as autism spectrum disorders with recent links to fetal alcohol spectrum disorders. Collectively, MeCP2 relation to these neurodevelopmental disorders highlights the importance of understanding the molecular mechanisms by which MeCP2 impacts brain development, mental conditions, and compromised brain function. Since MECP2 mutations were discovered to be the primary cause of RTT, a significant progress has been made in the MeCP2 research, with respect to the expression, function and regulation of MeCP2 in the brain and its contribution in RTT pathogenesis. To date, there have been intensive efforts in designing effective therapeutic strategies for RTT benefiting from mouse models and cells collected from RTT patients. Despite significant progress in MeCP2 research over the last few decades, there is still a knowledge gap between the in vitro and in vivo research findings and translating these findings into effective therapeutic interventions in human RTT patients. In this review, we will provide a synopsis of Rett syndrome as a severe neurological disorder and will discuss the role of MeCP2 in RTT pathophysiology.
Collapse
|
455
|
Saab BJ, Mansuy IM. Neuroepigenetics of memory formation and impairment: the role of microRNAs. Neuropharmacology 2014; 80:61-9. [PMID: 24486712 DOI: 10.1016/j.neuropharm.2014.01.026] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 01/19/2014] [Accepted: 01/20/2014] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) are a class of short non-coding RNAs that primarily regulate protein synthesis through reversible translational repression or mRNA degradation. MiRNAs can act by translational control of transcription factors or via direct action on the chromatin, and thereby contribute to the non-genetic control of gene-environment interactions. MiRNAs that regulate components of pathways required for learning and memory further modulate the influence of epigenetics on cognition in the normal and diseased brain. This review summarizes recent data exemplifying the known roles of miRNAs in memory formation in different model organisms, and describes how neuronal plasticity regulates miRNA biogenesis, activity and degradation. It also examines the relevance of miRNAs for memory impairment in human, using recent clinical observations related to neurodevelopmental and neurodegenerative diseases, and discusses the potential mechanisms by which these miRNAs may contribute to memory disorders.
Collapse
Affiliation(s)
- Bechara J Saab
- Brain Research Institute, Neuroscience Center Zürich, Faculty of Medicine of the University of Zürich and Department of Health Sciences and Technology of the Swiss Federal Institute of Technology, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Isabelle M Mansuy
- Brain Research Institute, Neuroscience Center Zürich, Faculty of Medicine of the University of Zürich and Department of Health Sciences and Technology of the Swiss Federal Institute of Technology, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland.
| |
Collapse
|