451
|
Simpson G, Pfeiffer D, Keogh S, Lane B. Describing an Early Social Work Intervention Program for Families after Severe Traumatic Brain Injury. ACTA ACUST UNITED AC 2016; 15:213-233. [DOI: 10.1080/1536710x.2016.1220888] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
452
|
Simpson G, Yuen F. Contemporary Perspectives on Social Work in Acquired Brain Injury: An Introduction. ACTA ACUST UNITED AC 2016; 15:169-178. [PMID: 27715658 DOI: 10.1080/1536710x.2016.1216660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
This special issue of the Journal of Social Work in Disability and Rehabilitation, "Contemporary Perspectives on Social Work in Acquired Brain Injury," has been initiated and coordinated by the International Network of Social Workers in Acquired Brain Injury (INSWABI). In introducing the issue, some space is allocated for providing definitions of traumatic brain injury (TBI) and acquired brain injury (ABI), outlining the epidemiology and global costs, and detailing the impairments and psychosocial impacts for both the person sustaining the injury and his or her family. Finally, an outline of the articles contributing to this special issue are detailed, followed by a brief discussion about the role of the INSWABI network in promoting best practice in social work within this specialty area.
Collapse
Affiliation(s)
- Grahame Simpson
- a Brain Injury Rehabilitation Research Group , Ingham Institute of Applied Medical Research , Sydney , Australia
| | - Francis Yuen
- b Division of Social Work , California State University, Sacramento , Sacramento , California , USA
| |
Collapse
|
453
|
Bolkvadze T, Puhakka N, Pitkänen A. Epileptogenesis after traumatic brain injury in Plaur-deficient mice. Epilepsy Behav 2016; 60:187-196. [PMID: 27208924 DOI: 10.1016/j.yebeh.2016.04.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/17/2016] [Accepted: 04/18/2016] [Indexed: 11/16/2022]
Abstract
Binding of the extracellular matrix proteinase urokinase-type plasminogen activator (uPA) to its receptor, uPAR, regulates tissue remodeling during development and after injury in different organs, including the brain. Accordingly, mutations in the Plaur gene, which encodes uPAR, have been linked to language deficits, autism, and epilepsy, both in mouse and human. Whether uPAR deficiency modulates epileptogenesis and comorbidogenesis after brain injury, however, is unknown. To address this question, we induced traumatic brain injury (TBI) by controlled cortical impact (CCI) in 10 wild-type (Wt-CCI) and 16 Plaur-deficient (uPAR-CCI) mice. Sham-operated mice served as controls (10 Wt-sham, 10 uPAR-sham). During the 4-month follow-up, the mice were neurophenotyped by assessing the somatomotor performance with the composite neuroscore test, emotional learning and memory with fear conditioning to tone and context, and epileptogenesis with videoelectroencephalography monitoring and the pentylenetetrazol (PTZ) seizure susceptibility test. At the end of the testing, the mice were perfused for histology to analyze cortical and hippocampal neurodegeneration and mossy fiber sprouting. Fourteen percent (1/7) of the mice in the Wt-CCI and 0% in the uPAR-CCI groups developed spontaneous seizures (p>0.05; chi-square). Both the Wt-CCI and uPAR-CCI groups showed increased seizure susceptibility in the PTZ test (p<0.05), impaired recovery of motor function (p<0.001), and neurodegeneration in the hippocampus and cortex (p<0.05) compared with the corresponding sham-operated controls. Motor recovery and emotional learning showed a genotype effect, being more impaired in uPAR-CCI than in Wt-CCI mice (p<0.05). The findings of the present study indicate that uPAR deficiency does not increase susceptibility to epileptogenesis after CCI injury but has an unfavorable comorbidity-modifying effect after TBI.
Collapse
Affiliation(s)
- Tamuna Bolkvadze
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FI-70211 Kuopio, Finland
| | - Noora Puhakka
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FI-70211 Kuopio, Finland
| | - Asla Pitkänen
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FI-70211 Kuopio, Finland.
| |
Collapse
|
454
|
Israel I, Ohsiek A, Al-Momani E, Albert-Weissenberger C, Stetter C, Mencl S, Buck AK, Kleinschnitz C, Samnick S, Sirén AL. Combined [(18)F]DPA-714 micro-positron emission tomography and autoradiography imaging of microglia activation after closed head injury in mice. J Neuroinflammation 2016; 13:140. [PMID: 27266706 PMCID: PMC4897946 DOI: 10.1186/s12974-016-0604-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 05/30/2016] [Indexed: 11/27/2022] Open
Abstract
Background Traumatic brain injury (TBI) is a major cause of death and disability. Neuroinflammation contributes to acute damage after TBI and modulates long-term evolution of degenerative and regenerative responses to injury. The aim of the present study was to evaluate the relationship of microglia activation to trauma severity, brain energy metabolism, and cellular reactions to injury in a mouse closed head injury model using combined in vivo PET imaging, ex vivo autoradiography, and immunohistochemistry. Methods A weight-drop closed head injury model was used to produce a mixed diffuse and focal TBI or a purely diffuse mild TBI (mTBI) in C57BL6 mice. Lesion severity was determined by evaluating histological damage and functional outcome using a standardized neuroscore (NSS), gliosis, and axonal injury by immunohistochemistry. Repeated intra-individual in vivo μPET imaging with the specific 18-kDa translocator protein (TSPO) radioligand [18F]DPA-714 was performed on day 1, 7, and 16 and [18F]FDG-μPET imaging for energy metabolism on days 2–5 after trauma using freshly synthesized radiotracers. Immediately after [18F]DPA-714-μPET imaging on days 7 and 16, cellular identity of the [18F]DPA-714 uptake was confirmed by exposing freshly cut cryosections to film autoradiography and successive immunostaining with antibodies against the microglia/macrophage marker IBA-1. Results Functional outcome correlated with focal brain lesions, gliosis, and axonal injury. [18F]DPA-714-μPET showed increased radiotracer uptake in focal brain lesions on days 7 and 16 after TBI and correlated with reduced cerebral [18F]FDG uptake on days 2–5, with functional outcome and number of IBA-1 positive cells on day 7. In autoradiography, [18F]DPA-714 uptake co-localized with areas of IBA1-positive staining and correlated strongly with both NSS and the number of IBA1-positive cells, gliosis, and axonal injury. After mTBI, numbers of IBA-1 positive cells with microglial morphology increased in both brain hemispheres; however, uptake of [18F]DPA-714 was not increased in autoradiography or in μPET imaging. Conclusions [18F]DPA-714 uptake in μPET/autoradiography correlates with trauma severity, brain metabolic deficits, and microglia activation after closed head TBI.
Collapse
Affiliation(s)
- Ina Israel
- Department of Nuclear Medicine, University Hospital Würzburg, 97080, Würzburg, Germany
| | - Andrea Ohsiek
- Experimental Neurosurgery, Department of Neurosurgery, University Hospital Würzburg, 97080, Würzburg, Germany
| | - Ehab Al-Momani
- Department of Nuclear Medicine, University Hospital Würzburg, 97080, Würzburg, Germany
| | - Christiane Albert-Weissenberger
- Experimental Neurosurgery, Department of Neurosurgery, University Hospital Würzburg, 97080, Würzburg, Germany.,Department of Neurology, University Hospital Würzburg, 97080, Würzburg, Germany
| | - Christian Stetter
- Experimental Neurosurgery, Department of Neurosurgery, University Hospital Würzburg, 97080, Würzburg, Germany
| | - Stine Mencl
- Department of Neurology, University Hospital Würzburg, 97080, Würzburg, Germany
| | - Andreas K Buck
- Department of Nuclear Medicine, University Hospital Würzburg, 97080, Würzburg, Germany
| | - Christoph Kleinschnitz
- Department of Neurology, University Hospital Würzburg, 97080, Würzburg, Germany.,Department of Neurology, University Hospital Essen, 45147, Essen, Germany
| | - Samuel Samnick
- Department of Nuclear Medicine, University Hospital Würzburg, 97080, Würzburg, Germany
| | - Anna-Leena Sirén
- Experimental Neurosurgery, Department of Neurosurgery, University Hospital Würzburg, 97080, Würzburg, Germany.
| |
Collapse
|
455
|
Traumatic Brain Injury Guidelines and Outcome: Please Don't Forget Postacute Care! World Neurosurg 2016; 90:657-658. [DOI: 10.1016/j.wneu.2016.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 02/02/2016] [Indexed: 11/21/2022]
|
456
|
Khalin I, Jamari NLA, Razak NBA, Hasain ZB, Nor MABM, Zainudin MHBA, Omar AB, Alyautdin R. A mouse model of weight-drop closed head injury: emphasis on cognitive and neurological deficiency. Neural Regen Res 2016; 11:630-5. [PMID: 27212925 PMCID: PMC4870921 DOI: 10.4103/1673-5374.180749] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability in individuals worldwide. Producing a clinically relevant TBI model in small-sized animals remains fairly challenging. For good screening of potential therapeutics, which are effective in the treatment of TBI, animal models of TBI should be established and standardized. In this study, we established mouse models of closed head injury using the Shohami weight-drop method with some modifications concerning cognitive deficiency assessment and provided a detailed description of the severe TBI animal model. We found that 250 g falling weight from 2 cm height produced severe closed head injury in C57BL/6 male mice. Cognitive disorders in mice with severe closed head injury could be detected using passive avoidance test on day 7 after injury. Findings from this study indicate that weight-drop injury animal models are suitable for further screening of brain neuroprotectants and potentially are similar to those seen in human TBI.
Collapse
Affiliation(s)
- Igor Khalin
- Faculty of Medicine and Defence Health, National Defence University of Malaysia, Kem Sungai Besi, Kuala Lumpur, Malaysia
| | - Nor Laili Azua Jamari
- Chemistry Department, Centre for Defence Foundation Studies, National Defence University of Malaysia, Kem Sungai Besi, Kuala Lumpur, Malaysia
| | - Nadiawati Bt Abdul Razak
- Faculty of Medicine and Defence Health, National Defence University of Malaysia, Kem Sungai Besi, Kuala Lumpur, Malaysia
| | - Zubaidah Bt Hasain
- Faculty of Medicine and Defence Health, National Defence University of Malaysia, Kem Sungai Besi, Kuala Lumpur, Malaysia
| | - Mohd Asri Bin Mohd Nor
- Department of Civil Engineering, Faculty of Engineering, National Defence University of Malaysia, Kem Sungai Besi, Kuala Lumpur, Malaysia
| | - Mohd Hakimi Bin Ahmad Zainudin
- Centre for Research and Innovation Management, National Defence University of Malaysia, Kem Sungai Besi, Kuala Lumpur, Malaysia
| | - Ainsah Bt Omar
- Faculty of Medicine and Defence Health, National Defence University of Malaysia, Kem Sungai Besi, Kuala Lumpur, Malaysia
| | - Renad Alyautdin
- Scientific Centre for Expertise of Medical Application Products, Petrovsky Blvd, Moscow, Russia
| |
Collapse
|
457
|
Ekolle Ndode-Ekane X, Kharatishvili I, Pitkänen A. Unfolded Maps for Quantitative Analysis of Cortical Lesion Location and Extent after Traumatic Brain Injury. J Neurotrauma 2016; 34:459-474. [PMID: 26997032 DOI: 10.1089/neu.2016.4404] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We aimed to generate two-dimensional (2D) unfolded cortical maps from magnetic resonance (MR) images to delineate the location of traumatic brain injury (TBI)-induced cortical damage in functionally diverse cytoarchitectonic areas of the cerebral cortex, and to predict the severity of functional impairment after TBI based on the lesion location and extent. Lateral fluid-percussion injury was induced in adult rats and T2 maps were acquired with magnetic resonance imaging (MRI) at 3 days post-TBI. Somatomotor deficits were assessed based on the composite neuroscore and beam balance test, and spatial learning was assessed in the Morris water maze. Animals were perfused for histology at 13 days post-injury. A 2D template was generated by unfolding the cerebral cortex from 26 sections of the rat brain atlas, covering the lesion extent. Next, 2D unfolded maps were generated from T2 maps and thionin-stained histological sections from the same animals. Unfolding of the T2 maps revealed the lesion core in the auditory, somatosensory, and visual cortices. The unfolded histological lesion at 13 days post-injury was 12% greater than the MRI lesion at 3 days post-TBI, as the lesion area increased laterally and caudally; the larger the MRI lesion area, the larger the histological lesion area. Further, the larger the MRI lesion area in the barrel field of the primary somatosensory cortex (S1BF), upper lip of the primary somatosensory cortex (S1ULp), secondary somatosensory division (S2), and ectorhinal (Ect) and perirhinal (PRh) cortices, the more impaired the performance in the beam balance and Morris water maze tests. Subsequent receiver operating characteristic analysis indicated that severity of the MRI lesion in S1ULp and S2 was a sensitive and specific predictor of poor performance in the beam balance test. Moreover, MRI lesions in the S1ULp, S2, S1BF, and Ect and PRh cortices predicted poor performance in the Morris water maze test. Our findings indicate that 2D-unfolded cortical maps generated from MR images delineate the distribution of cortical lesions in functionally different cytoarchitectonic regions, which can be used to predict the TBI-induced functional impairment.
Collapse
Affiliation(s)
- Xavier Ekolle Ndode-Ekane
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland , Kuopio, Finland
| | - Irina Kharatishvili
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland , Kuopio, Finland
| | - Asla Pitkänen
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland , Kuopio, Finland
| |
Collapse
|
458
|
Jourdan C, Bayen E, Pradat-Diehl P, Ghout I, Darnoux E, Azerad S, Vallat-Azouvi C, Charanton J, Aegerter P, Ruet A, Azouvi P. A comprehensive picture of 4-year outcome of severe brain injuries. Results from the PariS-TBI study. Ann Phys Rehabil Med 2016; 59:100-6. [DOI: 10.1016/j.rehab.2015.10.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 10/27/2015] [Accepted: 10/27/2015] [Indexed: 10/22/2022]
|
459
|
Abstract
Background A blood test for S100B can be used to rule out intracranial complications after minor head injury and thereby reduce the need for computed tomography (CT) examinations. The aim of this study was to investigate the clinical importance of a possible influence of seasonal variation on S100B. Methods The individual seasonal variation of S100B in 69 healthy volunteers living at latitudes with extremely variable seasonal exposure to sunlight was investigated. Results The mean serum concentration of S100B was 13% higher in August than in February, but however, not statistically significant (p = 0.068). A good agreement between summer and winter S100B values was confirmed by Bland-Altman analysis and a significant correlation (r = 0.317, p = 0.008) was shown between summer and winter S100B values. Conclusion This study did not show any clinical importance of seasonal variation of S100B that may influence the decision of CT scanning patients with head injuries.
Collapse
Affiliation(s)
- Anders E Henriksson
- a Department of Laboratory Medicine, Sundsvall County Hospital, and Department of Natural Sciences , Mid Sweden University , Sundsvall , Sweden
| |
Collapse
|
460
|
Abstract
An approach to the initial evaluation, resuscitation, and treatment of the patient with severe traumatic brain injury is presented in terms of the underlying physiology and literature support. The primary importance of rapid and complete systemic resuscitation in terms of the "ABCs" is stressed, with the goal of optimizing cerebral perfusion and preventing secondary insults to the injured brain. The integration of brain-specific treatments and diagnostic maneuvers into resuscitation protocols is discussed, including the role of mannitol and hyperventilation as well as the prioritization of CT imaging of the brain.
Collapse
Affiliation(s)
- R M Chesnut
- Neurosurgery Division, Oregon Health Sciences University, Portland, USA
| |
Collapse
|