451
|
Akuta T, Zaki MH, Yoshitake J, Okamoto T, Akaike T. Nitrative stress through formation of 8-nitroguanosine: insights into microbial pathogenesis. Nitric Oxide 2005; 14:101-8. [PMID: 16309933 DOI: 10.1016/j.niox.2005.10.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Revised: 10/04/2005] [Accepted: 10/18/2005] [Indexed: 11/22/2022]
Abstract
Reactive oxygen and nitrogen species, respectively, mediate oxidative and nitrative stresses by means of oxidation and nitration of various biomolecules including proteins, lipids, and nucleic acids. We have observed nitric oxide (NO)-dependent formation of 8-nitroguanosine and 3-nitrotyrosine during microbial infection, and we determined that both 8-nitroguanosine and 3-nitrotyrosine are useful biomarkers of nitrative stress. Of importance, however, is the great difference in biological characteristics of these two nitrated compounds. 8-Nitroguanosine has unique biochemical and pharmacological properties such as redox activity and mutagenic potential, which 3-nitrotyrosine does not. In this review, we discuss the mechanism of nitrative stress occurring during microbial infections, with special emphasis on biological functions of 8-nitroguanosine formed via NO during the host response to pathogens. These findings provide insights into NO-mediated pathogenesis not only of viral infections but also of many other diseases.
Collapse
Affiliation(s)
- Teruo Akuta
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| | | | | | | | | |
Collapse
|
452
|
Mishina Y, Yang CG, He C. Direct repair of the exocyclic DNA adduct 1,N6-ethenoadenine by the DNA repair AlkB proteins. J Am Chem Soc 2005; 127:14594-5. [PMID: 16231911 PMCID: PMC2432083 DOI: 10.1021/ja055957m] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The exocyclic DNA base adduct 1,N6-ethenoadenine (epsilonA) is directly repaired by the AlkB proteins in vitro.
Collapse
Affiliation(s)
- Yukiko Mishina
- Department of Chemistry, The University of Chicago, Illinois 60637, USA
| | | | | |
Collapse
|
453
|
Wood RD, Mitchell M, Lindahl T. Human DNA repair genes, 2005. Mutat Res 2005; 577:275-83. [PMID: 15922366 DOI: 10.1016/j.mrfmmm.2005.03.007] [Citation(s) in RCA: 332] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2005] [Revised: 03/12/2005] [Accepted: 03/12/2005] [Indexed: 12/14/2022]
Abstract
An updated inventory of about 150 human DNA repair genes is described. The compilation includes genes encoding DNA repair enzymes, some genes associated with cellular responses to DNA damage, and other genes associated with genetic instability or sensitivity to DNA damaging agents. The updated human DNA repair genes table (http://www.cgal.icnet.uk/DNA_Repair_Genes.htmlhttp://www.cgal.icnet.uk/DNA_Repair_Genes.html) is a research and reference tool that directly links to several databases: Gene Cards, Online Mendelian Inheritance in Man, the NCBI MapViewer for chromosome position, and the NCBI Entrez database for the reference nucleotide sequence. This article discusses the approximately 25 genes added, since the original version of the table was first produced in 2001, and some other revisions.
Collapse
Affiliation(s)
- Richard D Wood
- University of Pittsburgh Cancer Institute, Hillman Cancer Center, Research Pavilion, Suite 2.6, 5117 Centre Avenue, Pittsburgh, PA 15213, USA.
| | | | | |
Collapse
|
454
|
Zhang J, Tian Q, Chan SY, Duan W, Zhou S. Insights into oxazaphosphorine resistance and possible approaches to its circumvention. Drug Resist Updat 2005; 8:271-97. [PMID: 16154799 DOI: 10.1016/j.drup.2005.08.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2005] [Revised: 07/29/2005] [Accepted: 08/10/2005] [Indexed: 11/30/2022]
Abstract
The oxazaphosphorines cyclophosphamide, ifosfamide and trofosfamide remain a clinically useful class of anticancer drugs with substantial antitumour activity against a variety of solid tumors and hematological malignancies. A major limitation to their use is tumour resistance, which is due to multiple mechanisms that include increased DNA repair, increased cellular thiol levels, glutathione S-transferase and aldehyde dehydrogenase activities, and altered cell-death response to DNA damage. These mechanisms have been recently re-examined with the aid of sensitive analytical techniques, high-throughput proteomic and genomic approaches, and powerful pharmacogenetic tools. Oxazaphosphorine resistance, together with dose-limiting toxicity (mainly neutropenia and neurotoxicity), significantly hinders chemotherapy in patients, and hence, there is compelling need to find ways to overcome it. Four major approaches are currently being explored in preclinical models, some also in patients: combination with agents that modulate cellular response and disposition of oxazaphosphorines; antisense oligonucleotides directed against specific target genes; introduction of an activating gene (CYP3A4) into tumor tissue; and modification of dosing regimens. Of these approaches, antisense oligonucleotides and gene therapy are perhaps more speculative, requiring detailed safety and efficacy studies in preclinical models and in patients. A fifth approach is the design of novel oxazaphosphorines that have favourable pharmacokinetic and pharmacodynamic properties and are less vulnerable to resistance. Oxazaphosphorines not requiring hepatic CYP-mediated activation (for example, NSC 613060 and mafosfamide) or having additional targets (for example, glufosfamide that also targets glucose transport) have been synthesized and are being evaluated for safety and efficacy. Characterization of the molecular targets associated with oxazaphosphorine resistance may lead to a deeper understanding of the factors critical to the optimal use of these agents in chemotherapy and may allow the development of strategies to overcome resistance.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | | | | | | | | |
Collapse
|
455
|
Lee DH, Jin SG, Cai S, Chen Y, Pfeifer GP, O'Connor TR. Repair of methylation damage in DNA and RNA by mammalian AlkB homologues. J Biol Chem 2005; 280:39448-59. [PMID: 16174769 DOI: 10.1074/jbc.m509881200] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human and Escherichia coli derivatives of AlkB enzymes remove methyl groups from 1-methyladenine and 3-methylcytosine in nucleic acids via an oxidative mechanism that releases the methyl group as formaldehyde. In this report, we demonstrate that the mouse homologues of the alpha-ketoglutarate Fe(II) oxygen-dependent enzymes mAbh2 and Abh3 have activities comparable to those of their human counterparts. The mAbh2 and mAbh3 release modified bases from both DNA and RNA. Comparison of the activities of the homogenous ABH2 and ABH3 enzymes demonstrate that these activities are shared by both sets of enzymes. An assay for the detection of alpha-ketoglutarate Fe(II) dioxygenase activity using an oligodeoxyribonucleotide with a unique modification shows activity for all four enzymes studied and a loss of activity for eight mutant proteins. Steady-state kinetics for removal of methyl groups from DNA substrates indicates that the reactions of the proteins are close to the diffusion limit. Moreover, mAbh2 or mAbh3 activity increases survival in a strain defective in alkB. The mRNAs of AHB2 and ABH3 are expressed most in testis for ABH2 and ABH3, whereas expression of the homologous mouse genes is different. The mAbh3 is strongly expressed in testis, whereas highest expression of mAbh2 is in heart. Other purified human AlkB homologue proteins ABH4, ABH6, and ABH7 do not manifest activity. The demonstration of mAbh2 and mAbh3 activities and their distributions provide data on these mammalian homologues of AlkB that can be used in animal studies.
Collapse
Affiliation(s)
- Dong-Hyun Lee
- Biology Division, Beckman Research Institute, City of Hope National Medical Center, Duarte, California 91010, USA
| | | | | | | | | | | |
Collapse
|
456
|
Lee W, St.Onge RP, Proctor M, Flaherty P, Jordan MI, Arkin AP, Davis RW, Nislow C, Giaever G. Genome-wide requirements for resistance to functionally distinct DNA-damaging agents. PLoS Genet 2005; 1:e24. [PMID: 16121259 PMCID: PMC1189734 DOI: 10.1371/journal.pgen.0010024] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Accepted: 07/01/2005] [Indexed: 11/18/2022] Open
Abstract
The mechanistic and therapeutic differences in the cellular response to DNA-damaging compounds are not completely understood, despite intense study. To expand our knowledge of DNA damage, we assayed the effects of 12 closely related DNA-damaging agents on the complete pool of approximately 4,700 barcoded homozygous deletion strains of Saccharomyces cerevisiae. In our protocol, deletion strains are pooled together and grown competitively in the presence of compound. Relative strain sensitivity is determined by hybridization of PCR-amplified barcodes to an oligonucleotide array carrying the barcode complements. These screens identified genes in well-characterized DNA-damage-response pathways as well as genes whose role in the DNA-damage response had not been previously established. High-throughput individual growth analysis was used to independently confirm microarray results. Each compound produced a unique genome-wide profile. Analysis of these data allowed us to determine the relative importance of DNA-repair modules for resistance to each of the 12 profiled compounds. Clustering the data for 12 distinct compounds uncovered both known and novel functional interactions that comprise the DNA-damage response and allowed us to define the genetic determinants required for repair of interstrand cross-links. Further genetic analysis allowed determination of epistasis for one of these functional groups.
Collapse
Affiliation(s)
- William Lee
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | | | - Michael Proctor
- Department of Biochemistry, Stanford University School of Medicine, Stanford Genome Technology Center, Palo Alto, California, United States of America
| | - Patrick Flaherty
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, California, United States of America
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Michael I Jordan
- Division of Computer Science, Department of Statistics, University of California, Berkeley, California, United States of America
| | - Adam P Arkin
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Howard Hughes Medical Institute, Department of Bioengineering, University of California, Berkeley, California, United States of America
| | - Ronald W Davis
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Biochemistry, Stanford University School of Medicine, Stanford Genome Technology Center, Palo Alto, California, United States of America
| | - Corey Nislow
- Department of Biochemistry, Stanford University School of Medicine, Stanford Genome Technology Center, Palo Alto, California, United States of America
| | - Guri Giaever
- Department of Biochemistry, Stanford University School of Medicine, Stanford Genome Technology Center, Palo Alto, California, United States of America
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
457
|
Bobola MS, Silber JR, Ellenbogen RG, Geyer JR, Blank A, Goff RD. O6-methylguanine-DNA methyltransferase, O6-benzylguanine, and resistance to clinical alkylators in pediatric primary brain tumor cell lines. Clin Cancer Res 2005; 11:2747-55. [PMID: 15814657 DOI: 10.1158/1078-0432.ccr-04-2045] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Primary brain tumors are the leading cause of cancer death in children. Our purpose is (a) to assess the contribution of the DNA repair protein O6-methylguanine-DNA methyltransferase (MGMT) to the resistance of pediatric brain tumor cell lines to clinical alkylating agents and (b) to evaluate variables for maximal potentiation of cell killing by the MGMT inhibitor O6-benzylguanine, currently in clinical trials. Few such data for pediatric glioma lines, particularly those from low-grade tumors, are currently available. EXPERIMENTAL DESIGN We used clonogenic assays of proliferative survival to quantitate cytoxicity of the chloroethylating agent 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) and the methylating agent temozolomide in 11 glioma and five medulloblastoma lines. Twelve lines are newly established and characterized here, nine of them from low-grade gliomas including pilocytic astrocytomas. RESULTS (a) MGMT is a major determinant of BCNU resistance and the predominant determinant of temozolomide resistance in both our glioma and medulloblastoma lines. On average, O(6)-benzylguanine reduced LD10 for BCNU and temozolomide, 2.6- and 26-fold, respectively, in 15 MGMT-expressing lines. (b) O6-Benzylguanine reduced DT (the threshold dose for killing) for BCNU and temozolomide, 3.3- and 138-fold, respectively. DT was decreased from levels higher than, to levels below, clinically achievable plasma doses for both alkylators. (c) Maximal potentiation by O6-benzylguanine required complete and prolonged suppression of MGMT. CONCLUSIONS Our results support the use of O6-benzylguanine to achieve full benefit of alkylating agents, particularly temozolomide, in the chemotherapy of pediatric brain tumors.
Collapse
Affiliation(s)
- Michael S Bobola
- Division of Neurosurgery, Department of Surgery and Hematology/Oncology, Children's Hospital and Regional Medical Center, Seattle, Washington 98105, USA.
| | | | | | | | | | | |
Collapse
|
458
|
Shen J, Terry MB, Gammon MD, Gaudet MM, Teitelbaum SL, Eng SM, Sagiv SK, Neugut AI, Santella RM. MGMT genotype modulates the associations between cigarette smoking, dietary antioxidants and breast cancer risk. Carcinogenesis 2005; 26:2131-7. [PMID: 16014702 DOI: 10.1093/carcin/bgi179] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
O(6)-methylguanine DNA methyl-transferase (MGMT) is the only known critical gene involved in cellular defense against alkylating agents in the DNA direct reversal repair (DRR) pathway. Three single nucleotide polymorphism (SNP) coding for non-conservative amino acid substitutions have been identified [C250T (Leu84Phe), A427G (Ile143Val) and A533G (Lys178Arg)]. To examine the importance of the DRR pathway in risk for breast cancer and the potential interaction with cigarette smoking and dietary antioxidants, we genotyped for these variants using biospecimens from the Long Island Breast Cancer Study Project. Genotyping was performed by a high throughput assay with fluorescence polarization and included 1067 cases and 1110 controls. Overall, there was no main effect between any variant genotype, haplotype or diplotype and breast cancer risk. Heavy smoking (>31 pack-year) significantly increased breast cancer risk for women with the codon 84 variant T-allele [odds ratio, OR = 3.0, 95% confidence interval (95% CI) = 1.4-6.2]. An inverse association between fruits and vegetables consumption and breast cancer risk was observed among women with the wild-type genotype for codon 84 (OR = 0.8, 95% CI = 0.6-0.9 for > or =35 servings of fruits and vegetables per week and CC genotype versus those with <35 servings per week and CC genotype). The association between fruits and vegetables consumption and reduced breast cancer risk was apparent among women with at least one variant allele for codon 143 (OR = 0.6, 95% CI = 0.5-0.9 for > or =35 servings of fruits and vegetables per week and AG or GG genotype versus those with <35 servings per week and AA genotype). Similar patterns were observed for dietary alpha-carotene and supplemental beta-carotene, but not for supplemental vitamins C and E. These data suggest that polymorphisms in MGMT may modulate the inverse association previously observed between fruits and vegetables consumption, dietary antioxidants and breast cancer risk, and support the importance of fruits and vegetables on breast cancer risk reduction.
Collapse
Affiliation(s)
- Jing Shen
- Department of Environmental Health Sciences, Columbia University, New York, NY 10032, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
459
|
Calmann MA, Evans JE, Marinus MG. MutS inhibits RecA-mediated strand transfer with methylated DNA substrates. Nucleic Acids Res 2005; 33:3591-7. [PMID: 15972855 PMCID: PMC1157099 DOI: 10.1093/nar/gki673] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
DNA mismatch repair (MMR) sensitizes human and Escherichia coli dam cells to the cytotoxic action of N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) while abrogation of such repair results in drug resistance. In DNA methylated by MNNG, MMR action is the result of MutS recognition of O6-methylguanine base pairs. MutS and Ada methyltransferase compete for the MNNG-induced O6-methylguanine residues, and MMR-induced cytotoxicity is abrogated when Ada is present at higher concentrations than normal. To test the hypothesis that MMR sensitization is due to decreased recombinational repair, we used a RecA-mediated strand exchange assay between homologous phiX174 substrate molecules, one of which was methylated with MNNG. MutS inhibited strand transfer on such substrates in a concentration-dependent manner and its inhibitory effect was enhanced by MutL. There was no effect of these proteins on RecA activity with unmethylated substrates. We quantified the number of O6-methylguanine residues in methylated DNA by HPLC-MS/MS and 5–10 of these residues in phiX174 DNA (5386 bp) were sufficient to block the RecA reaction in the presence of MutS and MutL. These results are consistent with a model in which methylated DNA is perceived by the cell as homeologous and prevented from recombining with homologous DNA by the MMR system.
Collapse
Affiliation(s)
| | | | - M. G. Marinus
- To whom correspondence should be addressed. Tel: +1 508 856 3330; Fax: +1 508 856 3036;
| |
Collapse
|
460
|
Vodicka PE, Linhart I, Novak J, Koskinen M, Vodickova L, Hemminki K. 7-Alkylguanine adduct levels in urine, lungs and liver of mice exposed to styrene by inhalation. Toxicol Appl Pharmacol 2005; 210:1-8. [PMID: 15949832 DOI: 10.1016/j.taap.2005.04.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2005] [Revised: 04/13/2005] [Accepted: 04/22/2005] [Indexed: 10/25/2022]
Abstract
This study describes urinary excretion of two nucleobase adducts derived from styrene 7,8-oxide (SO), i.e., 7-(2-hydroxy-1-phenylethyl)guanine (N7alphaG) and 7-(2-hydroxy-2-phenylethyl)guanine (N7betaG), as well as a formation of N7-SO-guanine adducts in lungs and liver of two month old male NMRI mice exposed to styrene by inhalation in a 3-week subacute study. Strikingly higher excretion of both isomeric nucleobase adducts in the first day of exposure was recorded, while the daily excretion of nucleobase adducts in following time intervals reached the steady-state level at 4.32+1.14 and 6.91+1.17 pmol/animal for lower and higher styrene exposure, respectively. beta-SO-guanine DNA adducts in lungs increased with exposure in a linear way (F=13.7 for linearity and 0.17 for non-linearity, respectively), reaching at the 21st day the level of 23.0 adducts/10(8) normal nucleotides, i.e., 0.74 fmol/microg DNA of 7-alkylguanine DNA adducts for the concentration of 1500 mg/m3, while no 7-SO-guanine DNA adducts were detected in the liver after 21 days of inhalation exposure to both of styrene concentrations. A comparison of 7-alkylguanines excreted in urine with 7-SO-guanines in lungs (after correction for depurination and for missing alpha-isomers) revealed that persisting 7-SO-guanine DNA adducts in lungs account for about 0.5% of the total alkylation at N7 of guanine. The total styrene-specific 7-guanine alkylation accounts for about 1.0x10(-5)% of the total styrene uptake, while N1-adenine alkylation contributes to this percentage only negligibly.
Collapse
Affiliation(s)
- Pavel Erik Vodicka
- Institute of Experimental Medicine, Academy of Sciences of Czech Republic, Videnská 1083, 14 220 Prague 4, Czech Republic.
| | | | | | | | | | | |
Collapse
|
461
|
Bioinformatic mapping of AlkB homology domains in viruses. BMC Genomics 2005; 6:1. [PMID: 15627404 PMCID: PMC544882 DOI: 10.1186/1471-2164-6-1] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2004] [Accepted: 01/03/2005] [Indexed: 12/25/2022] Open
Abstract
Background AlkB-like proteins are members of the 2-oxoglutarate- and Fe(II)-dependent oxygenase superfamily. In Escherichia coli the protein protects RNA and DNA against damage from methylating agents. 1-methyladenine and 3-methylcytosine are repaired by oxidative demethylation and direct reversal of the methylated base back to its unmethylated form. Genes for AlkB homologues are widespread in nature, and Eukaryotes often have several genes coding for AlkB-like proteins. Similar domains have also been observed in certain plant viruses. The function of the viral domain is unknown, but it has been suggested that it may be involved in protecting the virus against the post-transcriptional gene silencing (PTGS) system found in plants. We wanted to do a phylogenomic mapping of viral AlkB-like domains as a basis for analysing functional aspects of these domains, because this could have some relevance for understanding possible alternative roles of AlkB homologues e.g. in Eukaryotes. Results Profile-based searches of protein sequence libraries showed that AlkB-like domains are found in at least 22 different single-stranded RNA positive-strand plant viruses, but mainly in a subgroup of the Flexiviridae family. Sequence analysis indicated that the AlkB domains probably are functionally conserved, and that they most likely have been integrated relatively recently into several viral genomes at geographically distinct locations. This pattern seems to be more consistent with increased environmental pressure, e.g. from methylating pesticides, than with interaction with the PTGS system. Conclusions The AlkB domain found in viral genomes is most likely a conventional DNA/RNA repair domain that protects the viral RNA genome against methylating compounds from the environment.
Collapse
|
462
|
Laudermilch CL, Holladay SD, Sponenberg DP, Saunders GK, Ward DL, Prater MR. Placental improvement and reduced distal limb defects by maternal interferon-γ injection in methylnitrosourea-exposed mice. ACTA ACUST UNITED AC 2005; 73:597-604. [PMID: 16080182 DOI: 10.1002/bdra.20176] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Methylnitrosourea (MNU), an alkylating agent derived from creatinine metabolism, is cytotoxic, genotoxic, and mutagenic. Mid-gestational exposure to MNU leads to distal limb defects in mice. Previous studies have shown that nonspecific maternal immune stimulation protects against MNU-induced teratogenesis. A role for immune-mediated placental improvement in this effect remains uncertain. METHODS The immune system of timed-pregnant C57BL/6N and CD-1 mice was stimulated by GD 7 intraperitoneal (IP) injection with the cytokine interferon-gamma (IFN-gamma). A teratogenic dose of MNU was then administered by IP injection on the morning of GD 9 to disrupt distal limb formation. Fetal limb length, body length, digital deformities, and placental integrity were evaluated on GD 14. RESULTS The incidence of syndactyly, polydactyly, and interdigital webbing in MNU-exposed mice was decreased by maternal IFN-gamma treatment. In C57BL/6N mice, these defects were reduced by 47, 100, and 63%, respectively, as compared to previous reports on CD-1 mice, by 39, 71, and 20%, respectively. Administration of IFN-gamma significantly diminished MNU-induced endothelial and trophoblast placental damage in both strains of mice. CONCLUSIONS These findings support a possible link between maternal immunity, placental integrity, and fetal distal limb development. Further, these results suggest that IFN-gamma might act through placental improvement to indirectly protect against MNU-induced fetal limb malformations.
Collapse
MESH Headings
- Abnormalities, Drug-Induced/embryology
- Abnormalities, Drug-Induced/etiology
- Abnormalities, Drug-Induced/immunology
- Abnormalities, Drug-Induced/prevention & control
- Adjuvants, Immunologic/administration & dosage
- Adjuvants, Immunologic/therapeutic use
- Animals
- Endothelial Cells/drug effects
- Endothelial Cells/immunology
- Endothelial Cells/pathology
- Female
- Gestational Age
- Immune System/drug effects
- Injections, Intraperitoneal
- Interferon-gamma/administration & dosage
- Interferon-gamma/immunology
- Interferon-gamma/therapeutic use
- Lower Extremity Deformities, Congenital/chemically induced
- Lower Extremity Deformities, Congenital/immunology
- Lower Extremity Deformities, Congenital/prevention & control
- Maternal-Fetal Exchange
- Methylnitrosourea/toxicity
- Mice
- Mice, Inbred C57BL
- Mice, Inbred Strains
- Placenta/immunology
- Pregnancy
- Random Allocation
- Teratogens/toxicity
- Time Factors
- Trophoblasts/drug effects
- Trophoblasts/immunology
- Trophoblasts/pathology
Collapse
Affiliation(s)
- Chelsea Lee Laudermilch
- Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Department of Biomedical Sciences and Pathobiology, Blacksburg, VA 24061, USA
| | | | | | | | | | | |
Collapse
|