451
|
Baritaki S, de Bree E, Chatzaki E, Pothoulakis C. Chronic Stress, Inflammation, and Colon Cancer: A CRH System-Driven Molecular Crosstalk. J Clin Med 2019; 8:E1669. [PMID: 31614860 PMCID: PMC6833069 DOI: 10.3390/jcm8101669] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/08/2019] [Accepted: 10/11/2019] [Indexed: 12/12/2022] Open
Abstract
Chronic stress is thought to be involved in the occurrence and progression of multiple diseases, via mechanisms that still remain largely unknown. Interestingly, key regulators of the stress response, such as members of the corticotropin-releasing-hormone (CRH) family of neuropeptides and receptors, are now known to be implicated in the regulation of chronic inflammation, one of the predisposing factors for oncogenesis and disease progression. However, an interrelationship between stress, inflammation, and malignancy, at least at the molecular level, still remains unclear. Here, we attempt to summarize the current knowledge that supports the inseparable link between chronic stress, inflammation, and colorectal cancer (CRC), by modulation of a cascade of molecular signaling pathways, which are under the regulation of CRH-family members expressed in the brain and periphery. The understanding of the molecular basis of the link among these processes may provide a step forward towards personalized medicine in terms of CRC diagnosis, prognosis and therapeutic targeting.
Collapse
Affiliation(s)
- Stavroula Baritaki
- Division of Surgery, School of Medicine, University of Crete, Heraklion, 71500 Crete, Greece.
| | - Eelco de Bree
- Division of Surgery, School of Medicine, University of Crete, Heraklion, 71500 Crete, Greece.
| | - Ekaterini Chatzaki
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece.
| | - Charalabos Pothoulakis
- IBD Center, Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA 10833, USA.
| |
Collapse
|
452
|
Oka A, Mishima Y, Liu B, Herzog JW, Steinbach EC, Kobayashi T, Plevy SE, Sartor RB. Phosphoinositide 3-Kinase P110δ-Signaling Is Critical for Microbiota-Activated IL-10 Production by B Cells that Regulate Intestinal Inflammation. Cells 2019; 8:E1121. [PMID: 31546615 PMCID: PMC6829312 DOI: 10.3390/cells8101121] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 12/15/2022] Open
Abstract
The phosphoinositide 3-kinase catalytic subunit p110δ (PI3Kδ) gene maps to a human inflammatory bowel diseases (IBD) susceptibility locus, and genetic deletion of PI3Kδ signaling causes spontaneous colitis in mice. However, little is known regarding the role of PI3Kδ on IL-10-producing B cells that help regulate mucosal inflammation in IBD. We investigated the role of PI3Kδ signaling in B cell production of IL-10, following stimulation by resident bacteria and B cell regulatory function against colitis. In vitro, B cells from PI3KδD910A/D910A mice or wild-type B cells treated with PI3K specific inhibitors secreted significantly less IL-10 with greater IL-12p40 following bacterial stimulation. These B cells failed to suppress inflammatory cytokines by co-cultured microbiota-activated macrophages or CD4+ T cells. In vivo, co-transferred wild-type B cells ameliorated T cell-mediated colitis, while PI3KδD910A/D910A B cells did not confer protection from mucosal inflammation. These results indicate that PI3Kδ-signaling mediates regulatory B cell immune differentiation when stimulated with resident microbiota or their components, and is critical for induction and regulatory function of IL-10-producing B cells in intestinal homeostasis and inflammation.
Collapse
Affiliation(s)
- Akihiko Oka
- Center for Gastrointestinal Biology and Disease, Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Department of Internal Medicine II, Shimane University Faculty of Medicine, Izumo, Shimane 693-8501, Japan.
| | - Yoshiyuki Mishima
- Center for Gastrointestinal Biology and Disease, Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Department of Internal Medicine II, Shimane University Faculty of Medicine, Izumo, Shimane 693-8501, Japan.
| | - Bo Liu
- Center for Gastrointestinal Biology and Disease, Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Jeremy W Herzog
- Center for Gastrointestinal Biology and Disease, Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Erin C Steinbach
- Center for Gastrointestinal Biology and Disease, Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA.
| | - Taku Kobayashi
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Center for Advanced IBD Research and Treatment, Kitasato University Kitasato Institute Hospital, Minato-ku, Tokyo 108-8642, Japan.
| | - Scott E Plevy
- Center for Gastrointestinal Biology and Disease, Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Synlogic Therapeutics, Boston, MA 02139, USA.
| | - R Balfour Sartor
- Center for Gastrointestinal Biology and Disease, Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
453
|
Preventative delivery of IL-35 by Lactococcus lactis ameliorates DSS-induced colitis in mice. Appl Microbiol Biotechnol 2019; 103:7931-7941. [PMID: 31456001 DOI: 10.1007/s00253-019-10094-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/04/2019] [Accepted: 08/08/2019] [Indexed: 02/06/2023]
Abstract
Ulcerative colitis (UC) is one of the two major forms of inflammatory bowel disease (IBD) characterized by superficial mucosal inflammation, rectal bleeding, diarrhea, and abdominal pain. Anti-inflammatory and immunosuppressive drugs have been used in the therapy of human UC. Interleukin (IL)-35, which functions as an anti-inflammatory cytokine, has been shown to play a potential therapeutic role in a UC-like mouse colitis induced by dextran sodium sulfate (DSS). However, the contribution of IL-35 via oral administration to colitis prevention has not been determined. In order to explore its preventative potentiality, a dairy Lactococcus lactis NZ9000 strain was engineered to express murine IL-35 (NZ9000/IL-35), and this recombinant bacteria was applied to prevent and limit the development of DSS-induced mouse colitis. We found that oral administration of NZ9000/IL-35 induced the accumulation of IL-35 in the gut lumen of normal mice. When administrated preventatively, NZ9000/IL-35-gavaged mice exhibited decreased weight loss, DAI score, colon shortening as well as colitis-associated histopathological changes in colon, indicating that the oral administration of NZ9000/35 contributed to the suppression of DSS-induced colitis progression. Moreover, much less Th17 cells and higher level of Treg cells in lamina propria, as well as increased colon and serum levels of IL-10 with a concomitant reduced pro-inflammatory cytokines, IL-6, IL-17A, IFN-γ, and TNF-α were apparently regulated by NZ9000/IL-35 in colitis mice. Together, we put forward direct evidence pinpointing the effectiveness of NZ9000/IL-35 in preventing UC-like mouse colitis, implying a potential candidate of this recombinant Lactococcus lactis that prevent the progression of IBD.
Collapse
|