451
|
Wilson DN, Schluenzen F, Harms JM, Yoshida T, Ohkubo T, Albrecht R, Buerger J, Kobayashi Y, Fucini P. X-ray crystallography study on ribosome recycling: the mechanism of binding and action of RRF on the 50S ribosomal subunit. EMBO J 2004; 24:251-60. [PMID: 15616575 PMCID: PMC545814 DOI: 10.1038/sj.emboj.7600525] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2004] [Accepted: 11/26/2004] [Indexed: 11/09/2022] Open
Abstract
This study presents the crystal structure of domain I of the Escherichia coli ribosome recycling factor (RRF) bound to the Deinococcus radiodurans 50S subunit. The orientation of RRF is consistent with the position determined on a 70S-RRF complex by cryoelectron microscopy (cryo-EM). Alignment, however, requires a rotation of 7 degrees and a shift of the cryo-EM RRF by a complete turn of an alpha-helix, redefining the contacts established with ribosomal components. At 3.3 A resolution, RRF is seen to interact exclusively with ribosomal elements associated with tRNA binding and/or translocation. Furthermore, these results now provide a high-resolution structural description of the conformational changes that were suspected to occur on the 70S-RRF complex, which has implications for the synergistic action of RRF with elongation factor G (EF-G). Specifically, the tip of the universal bridge element H69 is shifted by 20 A toward h44 of the 30S subunit, suggesting that RRF primes the intersubunit bridge B2a for the action of EF-G. Collectively, our data enable a model to be proposed for the dual action of EF-G and RRF during ribosome recycling.
Collapse
Affiliation(s)
- Daniel N Wilson
- Max-Planck-Institute for Molecular Genetics, Berlin, Germany
- These authors contributed equally to this work
| | - Frank Schluenzen
- Max-Planck-Institute for Molecular Genetics, Berlin, Germany
- These authors contributed equally to this work
- Max-Planck-Institute for Molecular Genetics, Ihnestr. 73, Berlin 14195, Germany. Tel.: +49 (0) 40 8998 2809; Fax: +49 (0) 40 8971 6848; E-mail:
| | - Joerg M Harms
- Riboworld.com, Hamburg, Germany
- These authors contributed equally to this work
| | - Takuya Yoshida
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Tadayasu Ohkubo
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Renate Albrecht
- Max-Planck-Institute for Molecular Genetics, Berlin, Germany
| | - Joerg Buerger
- Max-Planck-Institute for Molecular Genetics, Berlin, Germany
| | - Yuji Kobayashi
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Paola Fucini
- Max-Planck-Institute for Molecular Genetics, Berlin, Germany
- Max-Planck-Institute for Molecular Genetics, Ihnestr. 73, Berlin 14195, Germany. Tel.: +49 (0) 30 8413 1691; Fax: +49 (0) 30 8413 1690; E-mail:
| |
Collapse
|
452
|
Abstract
RNA is structurally very flexible, which provides the basis for its functional diversity. An RNA molecule can often adopt different conformations, which enables the regulation of its function through folding. Proteins help RNAs reach their functionally active conformation by increasing their structural stability or by chaperoning the folding process. Large, dynamic RNA-protein complexes, such as the ribosome or the spliceosome, require numerous proteins that coordinate conformational switches of the RNA components during assembly and during their respective activities.
Collapse
Affiliation(s)
- Renée Schroeder
- Max F. Perutz Laboratories, Department of Microbiology and Genetics, University of Vienna, Austria.
| | | | | |
Collapse
|
453
|
Huggins W, Wollenzien P. A 16S rRNA-tRNA product containing a nucleotide phototrimer and specific for tRNA in the P/E hybrid state in the Escherichia coli ribosome. Nucleic Acids Res 2004; 32:6548-56. [PMID: 15598826 PMCID: PMC545443 DOI: 10.1093/nar/gkh1001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2004] [Revised: 11/26/2004] [Accepted: 11/26/2004] [Indexed: 11/13/2022] Open
Abstract
Ribosome complexes containing deacyl-tRNA1(Val) or biotinylvalyl-tRNA1(Val) and an mRNA analog have been irradiated with wavelengths specific for activation of the cmo5U nucleoside at position 34 in the tRNA1(Val) anticodon loop. The major product for both types of tRNA is the cross-link between 16S rRNA (C1400) and the tRNA (cmo5U34) characterized already by Ofengand and his collaborators [Prince et al. (1982) Proc. Natl Acad. Sci. USA, 79, 5450-5454]. However, in complexes containing deacyl-tRNA1(Val), an additional product is separated by denaturing PAGE and this is shown to involve C1400 and m5C967 of 16S rRNA and cmo5U34 of the tRNA. Puromycin treatment of the biotinylvalyl-tRNA1(Val) -70S complex followed by irradiation, results in the appearance of the unusual photoproduct, which indicates an immediate change in the tRNA interaction with the ribosome after peptide transfer. These results indicate an altered interaction between the tRNA anticodon and the 30S subunit for the tRNA in the P/E hybrid state compared with its interaction in the classic P/P state.
Collapse
MESH Headings
- Base Sequence
- Binding Sites
- Escherichia coli/genetics
- Kinetics
- Light
- Molecular Sequence Data
- Nucleotides/analysis
- Puromycin/pharmacology
- RNA, Bacterial/chemistry
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/metabolism
- RNA, Transfer, Amino Acyl/chemistry
- RNA, Transfer, Amino Acyl/metabolism
- RNA, Transfer, Val/chemistry
- RNA, Transfer, Val/metabolism
- Ribosomes/chemistry
- Ribosomes/metabolism
- Ribosomes/radiation effects
- Transcription, Genetic
Collapse
Affiliation(s)
- Wayne Huggins
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695-7622, USA
| | | |
Collapse
|
454
|
Peske F, Savelsbergh A, Katunin VI, Rodnina MV, Wintermeyer W. Conformational changes of the small ribosomal subunit during elongation factor G-dependent tRNA-mRNA translocation. J Mol Biol 2004; 343:1183-94. [PMID: 15491605 DOI: 10.1016/j.jmb.2004.08.097] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2004] [Revised: 08/29/2004] [Accepted: 08/30/2004] [Indexed: 10/26/2022]
Abstract
Translocation, a coordinated movement of two tRNAs together with mRNA on the ribosome, is catalyzed by elongation factor G (EF-G). The reaction is accompanied by conformational rearrangements of the ribosome that are, as yet, not well characterized. Here, we analyze those rearrangements by restricting the conformational flexibility of the ribosome by antibiotics binding to specific sites of the ribosome. Paromomycin (Par), viomycin (Vio), spectinomycin (Spc), and hygromycin B (HygB) inhibited the tRNA-mRNA movement, while the other partial reactions of translocation, including the unlocking rearrangement of the ribosome that precedes tRNA-mRNA movement, were not affected. The functional cycle of EF-G, i.e. binding of EF-G.GTP to the ribosome, GTP hydrolysis, Pi release, and dissociation of EF-G.GDP from the ribosome, was not affected either, indicating that EF-G turnover is not coupled directly to tRNA-mRNA movement. The inhibition of translocation by Par and Vio is attributed to the stabilization of tRNA binding in the A site, whereas Spc and HygB had a direct inhibitory effect on tRNA-mRNA movement. Streptomycin (Str) had essentially no effect on translocation, although it caused a large increase in tRNA affinity to the A site. These results suggest that conformational changes in the vicinity of the decoding region at the binding sites of Spc and HygB are important for tRNA-mRNA movement, whereas Str seems to stabilize a conformation of the ribosome that is prone to rapid translocation, thereby compensating the effect on tRNA affinity.
Collapse
Affiliation(s)
- Frank Peske
- Institute of Molecular Biology, University of Witten/Herdecke, 58448 Witten, Germany
| | | | | | | | | |
Collapse
|
455
|
Semrad K, Green R, Schroeder R. RNA chaperone activity of large ribosomal subunit proteins from Escherichia coli. RNA (NEW YORK, N.Y.) 2004; 10:1855-60. [PMID: 15525706 PMCID: PMC1370674 DOI: 10.1261/rna.7121704] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2004] [Accepted: 09/13/2004] [Indexed: 05/18/2023]
Abstract
The ribosome is a highly dynamic ribonucleoprotein machine. During assembly and during translation the ribosomal RNAs must routinely be prevented from falling into kinetic folding traps. Stable occupation of these trapped states may be prevented by proteins with RNA chaperone activity. Here, ribosomal proteins from the large (50S) ribosome subunit of Escherichia coli were tested for RNA chaperone activity in an in vitro trans splicing assay. Nearly a third of the 34 large ribosomal subunit proteins displayed RNA chaperone activity. We discuss a possible role of this function during ribosome assembly and during translation.
Collapse
Affiliation(s)
- Katharina Semrad
- Max F Perutz Laboratories, Institute of Microbiology and Genetics, Dr. Bohrgasse 9/4, 1030 Vienna, Austria.
| | | | | |
Collapse
|
456
|
Elf J, Ehrenberg M. Near-critical behavior of aminoacyl-tRNA pools in E. coli at rate-limiting supply of amino acids. Biophys J 2004; 88:132-46. [PMID: 15501947 PMCID: PMC1304992 DOI: 10.1529/biophysj.104.051383] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The rates of consumption of different amino acids in protein synthesis are in general stoichiometrically coupled with coefficients determined by codon usage frequencies on translating ribosomes. We show that when the rates of synthesis of two or more amino acids are limiting for protein synthesis and exactly matching their coupled rates of consumption on translating ribosomes, the pools of aminoacyl-tRNAs in ternary complex with elongation factor Tu and GTP are hypersensitive to a variation in the rate of amino acid supply. This high sensitivity makes a macroscopic analysis inconclusive, because it is accompanied by almost free and anticorrelated diffusion in copy numbers of ternary complexes. This near-critical behavior is relevant for balanced growth of Escherichia coli cells in media that lack amino acids and for adaptation of E. coli cells after downshifts from amino-acid-containing to amino-acid-lacking growth media. The theoretical results are used to discuss transcriptional control of amino acid synthesis during multiple amino acid limitation, the recovery of E. coli cells after nutritional downshifts and to propose a robust mechanism for the regulation of RelA-dependent synthesis of the global effector molecule ppGpp.
Collapse
Affiliation(s)
- Johan Elf
- Department of Cell & Molecular Biology, BMC, Uppsala University, S-751 24 Uppsala, Sweden
| | | |
Collapse
|
457
|
Spahn CMT, Jan E, Mulder A, Grassucci RA, Sarnow P, Frank J. Cryo-EM visualization of a viral internal ribosome entry site bound to human ribosomes: the IRES functions as an RNA-based translation factor. Cell 2004; 118:465-75. [PMID: 15315759 DOI: 10.1016/j.cell.2004.08.001] [Citation(s) in RCA: 204] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2004] [Revised: 06/22/2004] [Accepted: 06/23/2004] [Indexed: 01/28/2023]
Abstract
Internal initiation of protein synthesis in eukaryotes is accomplished by recruitment of ribosomes to structured internal ribosome entry sites (IRESs), which are located in certain viral and cellular messenger RNAs. An IRES element in cricket paralysis virus (CrPV) can directly assemble 80S ribosomes in the absence of canonical initiation factors and initiator tRNA. Here we present cryo-EM structures of the CrPV IRES bound to the human ribosomal 40S subunit and to the 80S ribosome. The CrPV IRES adopts a defined, elongate structure within the ribosomal intersubunit space and forms specific contacts with components of the ribosomal A, P, and E sites. Conformational changes in the ribosome as well as within the IRES itself show that CrPV IRES actively manipulates the ribosome. CrPV-like IRES elements seem to act as RNA-based translation factors.
Collapse
Affiliation(s)
- Christian M T Spahn
- Howard Hughes Medical Institute, Health Research Inc. at, Albany, NY 10012, USA
| | | | | | | | | | | |
Collapse
|
458
|
Orlova EV, Saibil HR. Structure determination of macromolecular assemblies by single-particle analysis of cryo-electron micrographs. Curr Opin Struct Biol 2004; 14:584-90. [PMID: 15465319 DOI: 10.1016/j.sbi.2004.08.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A new generation of electron microscopes equipped with field emission gun electron sources and the ability to image molecules in their native environment at liquid nitrogen or helium temperatures has enabled the analysis of macromolecular structures at medium resolution (approximately 10 angstroms) and in different conformational states. The amalgamation of electron microscopy and X-ray crystallographic approaches makes it possible to solve structures in the 100-1000 angstroms size range, advancing our understanding of the function of complex assemblies. Many new structures have been solved during the past two years, including one of the smallest complexes to be determined by single-particle cryo-electron microscopy, the transferrin receptor-transferrin complex. Other notable results include the near atomic level resolution structure of the nicotinic acetylcholine receptor in helical arrays and an icosahedral virus structure with an asymmetric polymerase resolved.
Collapse
Affiliation(s)
- Elena V Orlova
- School of Crystallography, Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK
| | | |
Collapse
|
459
|
Trylska J, Konecny R, Tama F, Brooks CL, McCammon JA. Ribosome motions modulate electrostatic properties. Biopolymers 2004; 74:423-31. [PMID: 15274086 DOI: 10.1002/bip.20093] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The electrostatic properties of the 70S ribosome of Thermus thermophilus were studied qualitatively by solving the Poisson-Boltzmann (PB) equation in aqueous solution and with physiological ionic strength. The electrostatic potential was calculated for conformations of the ribosome derived by recent normal mode analysis (Tama, F., et al. Proc Natl Acad Sci USA 2003 100, 9319-9323) of the ratchet-like reorganization that occurs during translocation (Frank, J.; Agrawal, R. K. Nature 2000 406, 318-322). To solve the PB equation, effective parameters (charges and radii), applicable to a highly charged backbone model of the ribosome, were developed. Regions of positive potential were found at the binding site of the elongation factors G and Tu, as well as where the release factors bind. Large positive potential areas are especially pronounced around the L11 and L6 proteins. The region around the L1 protein is also positively charged, supporting the idea that L1 may interact with the E-site tRNA during its release from the ribosome after translocation. Functional rearrangement of the ribosome leads to electrostatic changes which may help the translocation of the tRNAs during the elongation stage.
Collapse
Affiliation(s)
- Joanna Trylska
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0365, USA.
| | | | | | | | | |
Collapse
|
460
|
Blanchard SC, Kim HD, Gonzalez RL, Puglisi JD, Chu S. tRNA dynamics on the ribosome during translation. Proc Natl Acad Sci U S A 2004; 101:12893-8. [PMID: 15317937 PMCID: PMC516491 DOI: 10.1073/pnas.0403884101] [Citation(s) in RCA: 367] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Using single-molecule fluorescence spectroscopy, time-resolved conformational changes between fluorescently labeled tRNA have been characterized within surface-immobilized ribosomes proceeding through a complete cycle of translation elongation. Fluorescence resonance energy transfer was used to observe aminoacyl-tRNA (aa-tRNA) stably accommodating into the aminoacyl site (A site) of the ribosome via a multistep, elongation factor-Tu dependent process. Subsequently, tRNA molecules, bound at the peptidyl site and A site, fluctuate between two configurations assigned as classical and hybrid states. The lifetime of classical and hybrid states, measured for complexes carrying aa-tRNA and peptidyl-tRNA at the A site, shows that peptide bond formation decreases the lifetime of the classical-state tRNA configuration by approximately 6-fold. These data suggest that the growing peptide chain plays a role in modulating fluctuations between hybrid and classical states. Single-molecule fluorescence resonance energy transfer was also used to observe aa-tRNA accommodation coupled with elongation factor G-mediated translocation. Dynamic rearrangements in tRNA configuration are also observed subsequent to the translocation reaction. This work underscores the importance of dynamics in ribosome function and demonstrates single-particle enzymology in a system of more than two components.
Collapse
Affiliation(s)
- Scott C Blanchard
- Department of Physics and Applied Physics, Stanford University, Stanford, CA 94305-4060, USA
| | | | | | | | | |
Collapse
|
461
|
Klein DJ, Moore PB, Steitz TA. The roles of ribosomal proteins in the structure assembly, and evolution of the large ribosomal subunit. J Mol Biol 2004; 340:141-77. [PMID: 15184028 DOI: 10.1016/j.jmb.2004.03.076] [Citation(s) in RCA: 351] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2003] [Revised: 03/16/2004] [Accepted: 03/23/2004] [Indexed: 11/21/2022]
Abstract
The structures of ribosomal proteins and their interactions with RNA have been examined in the refined crystal structure of the Haloarcula marismortui large ribosomal subunit. The protein structures fall into six groups based on their topology. The 50S subunit proteins function primarily to stabilize inter-domain interactions that are necessary to maintain the subunit's structural integrity. An extraordinary variety of protein-RNA interactions is observed. Electrostatic interactions between numerous arginine and lysine residues, particularly those in tail extensions, and the phosphate groups of the RNA backbone mediate many protein-RNA contacts. Base recognition occurs via both the minor groove and widened major groove of RNA helices, as well as through hydrophobic binding pockets that capture bulged nucleotides and through insertion of amino acid residues into hydrophobic crevices in the RNA. Primary binding sites on contiguous RNA are identified for 20 of the 50S ribosomal proteins, which along with few large protein-protein interfaces, suggest the order of assembly for some proteins and that the protein extensions fold cooperatively with RNA. The structure supports the hypothesis of co-transcriptional assembly, centered around L24 in domain I. Finally, comparing the structures and locations of the 50S ribosomal proteins from H.marismortui and D.radiodurans revealed striking examples of molecular mimicry. These comparisons illustrate that identical RNA structures can be stabilized by unrelated proteins.
Collapse
Affiliation(s)
- D J Klein
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | | | | |
Collapse
|
462
|
Abstract
Emerging methods in cryo-electron microscopy allow determination of the three-dimensional architectures of objects ranging in size from small proteins to large eukaryotic cells, spanning a size range of more than 12 orders of magnitude. Advances in determining structures by "single particle" microscopy and by "electron tomography" provide exciting opportunities to describe the structures of subcellular assemblies that are either too large or too heterogeneous to be investigated by conventional crystallographic methods. Here, we review selected aspects of progress in structure determination by cryo-electron microscopy at molecular resolution, with a particular emphasis on topics at the interface of single particle and tomographic approaches. The rapid pace of development in this field suggests that comprehensive descriptions of the structures of whole cells and organelles in terms of the spatial arrangements of their molecular components may soon become routine.
Collapse
Affiliation(s)
- Sriram Subramaniam
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
463
|
Bélanger F, Gagnon MG, Steinberg SV, Cunningham PR, Brakier-Gingras L. Study of the Functional Interaction of the 900 Tetraloop of 16S Ribosomal RNA with Helix 24 within the Bacterial Ribosome. J Mol Biol 2004; 338:683-93. [PMID: 15099737 DOI: 10.1016/j.jmb.2004.03.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2003] [Revised: 03/08/2004] [Accepted: 03/10/2004] [Indexed: 10/26/2022]
Abstract
The 900 tetraloop that caps helix 27 of 16S ribosomal RNA (rRNA) is amongst the most conserved regions of rRNA. This tetraloop forms a GNRA motif that docks into the minor groove of three base-pairs at the bottom of helix 24 of 16S rRNA in the 30S subunit. Both the tetraloop and its receptor in helix 24 contact the 23S rRNA, forming the intersubunit bridge B2c. Here, we investigated the interaction between the 900 tetraloop and its receptor by genetic complementation. We used a specialized ribosome system in combination with an in vivo instant evolution approach to select mutations in helix 24 compensating for a mutation in the 900 tetraloop (A900G) that severely decreases ribosomal activity, impairing subunit association and translational fidelity. We selected two mutants where the G769-C810 base-pair of helix 24 was substituted with either U-A or C x A. When these mutations in helix 24 were investigated in the context of a wild-type 900 tetraloop, the C x A but not the U-A mutation severely impaired ribosome activity, interfering with subunit association and decreasing translational fidelity. In the presence of the A900G mutation, both mutations in helix 24 increased the ribosome activity to the same extent. Subunit association and translational fidelity were increased to the same level. Computer modeling was used to analyze the effect of the mutations in helix 24 on the interaction between the tetraloop and its receptor. This study demonstrates the functional importance of the interaction between the 900 tetraloop and helix 24.
Collapse
Affiliation(s)
- François Bélanger
- Département de Biochimie, Université de Montréal, Montréal, Qué., Canada H3T 1J4
| | | | | | | | | |
Collapse
|
464
|
Sagar MB, Lucast L, Doudna JA. Conserved but nonessential interaction of SRP RNA with translation factor EF-G. RNA (NEW YORK, N.Y.) 2004; 10:772-8. [PMID: 15100432 PMCID: PMC1370567 DOI: 10.1261/rna.5266504] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
4.5S RNA is essential for viability of Escherichia coli, and forms a key component of the signal recognition particle (SRP), a ubiquitous ribonucleoprotein complex responsible for cotranslational targeting of secretory proteins. 4.5S RNA also binds independently to elongation factor G (EF-G), a five-domain GTPase that catalyzes the translocation step during protein biosynthesis on the ribosome. Point mutations in EF-G suppress deleterious effects of 4.5S RNA depletion, as do mutations in the EF-G binding site within ribosomal RNA, suggesting that 4.5S RNA might play a critical role in ribosome function in addition to its role in SRP. Here we show that 4.5S RNA and EF-G form a phylogenetically conserved, low-affinity but highly specific complex involving sequence elements required for 4.5S binding to its cognate SRP protein, Ffh. Mutational analysis indicates that the same molecular structure of 4.5S RNA is recognized in each case. Surprisingly, however, the suppressor mutant forms of EF-G bind very weakly or undetectably to 4.5S RNA, implying that cells can survive 4.5S RNA depletion by decreasing the affinity between 4.5S RNA and the translational machinery. These data suggest that SRP function is the essential role of 4.5S RNA in bacteria.
Collapse
Affiliation(s)
- Madi Bidya Sagar
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA
| | | | | |
Collapse
|
465
|
Wilson KS, Nechifor R. Interactions of translational factor EF-G with the bacterial ribosome before and after mRNA translocation. J Mol Biol 2004; 337:15-30. [PMID: 15001349 DOI: 10.1016/j.jmb.2004.01.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2003] [Revised: 01/13/2004] [Accepted: 01/13/2004] [Indexed: 11/19/2022]
Abstract
A conserved translation factor, known as EF-G in bacteria, promotes the translocation of tRNA and mRNA in the ribosome during protein synthesis. Here, EF-G.ribosome complexes in two intermediate states, before and after mRNA translocation, have been probed with hydroxyl radicals generated from free Fe(II)-EDTA. Before mRNA translocation and GTP hydrolysis, EF-G protected a limited set of nucleotides in both subunits of the ribosome from cleavage by hydroxyl radicals. In this state, an extensive set of nucleotides, in the platform and head domains of the 30S subunit and in the L7/L12 stalk region of the 50S subunit, became more exposed to hydroxyl radical attack, suggestive of conformational changes in these domains. Following mRNA translocation, EF-G protected a larger set of nucleotides (23S rRNA helices H43, H44, H89, and H95; 16S rRNA helices h5 and h15). No nucleotide with enhanced reactivity to hydroxyl radicals was detected in this latter state. Both before and after mRNA translocation, EF-G protected identical nucleotides in h5 and h15 of the 30S subunit. These results suggest that h5 and h15 may remain associated with EF-G during the dynamic course of the translocation mechanism. Nucleotides in H43 and H44 of the 50S subunit were protected only after translocation and GTP hydrolysis, suggesting that these helices interact dynamically with EF-G. The effects in H95 suggest that EF-G interacts weakly with H95 before mRNA translocation and strongly and more extensively with this helix following mRNA translocation.
Collapse
MESH Headings
- Active Transport, Cell Nucleus/physiology
- Bacterial Proteins/chemistry
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Base Sequence
- Guanosine Triphosphate/metabolism
- Hydroxyl Radical/metabolism
- Macromolecular Substances
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- Peptide Chain Elongation, Translational
- Peptide Elongation Factor G/chemistry
- Peptide Elongation Factor G/genetics
- Peptide Elongation Factor G/metabolism
- Protein Biosynthesis
- Protein Conformation
- Protein Subunits/metabolism
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 23S/metabolism
- Ribosomes/genetics
- Ribosomes/metabolism
Collapse
Affiliation(s)
- Kevin S Wilson
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7.
| | | |
Collapse
|
466
|
Gilbert RJC, Fucini P, Connell S, Fuller SD, Nierhaus KH, Robinson CV, Dobson CM, Stuart DI. Three-Dimensional Structures of Translating Ribosomes by Cryo-EM. Mol Cell 2004; 14:57-66. [PMID: 15068803 DOI: 10.1016/s1097-2765(04)00163-7] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2003] [Revised: 02/06/2004] [Accepted: 02/17/2004] [Indexed: 10/26/2022]
Abstract
Cryo-electron microscopy and image reconstruction techniques have been used to obtain three-dimensional maps for E. coli ribosomes stalled following translation of three representative proteins. Comparisons of these electron density maps, at resolutions of between 13 and 16 A, with that of a nontranslating ribosome pinpoint specific structural differences in stalled ribosomes and identify additional material, including tRNAs and mRNA. In addition, the tunnel through the large subunit, the anticipated exit route of newly synthesized proteins, is partially occluded in all the stalled ribosome structures. This observation suggests that significant segments of the nascent polypeptide chains examined here could be located within an expanded tunnel, perhaps in a rudimentary globular conformation. Such behavior could be an important aspect of the folding of at least some proteins in the cellular environment.
Collapse
Affiliation(s)
- Robert J C Gilbert
- Max Planck Institut für Molekulare Genetik, AG Ribosomen, Ihnestrasse 73, 14195 Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
467
|
Maiväli U, Remme J. Definition of bases in 23S rRNA essential for ribosomal subunit association. RNA (NEW YORK, N.Y.) 2004; 10:600-4. [PMID: 15037769 PMCID: PMC1370550 DOI: 10.1261/rna.5220504] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2003] [Accepted: 01/09/2004] [Indexed: 05/20/2023]
Abstract
The ribosome is a two-subunit molecular machine, sporting a working cycle that involves coordinated movements of the subunits. Recent structural studies of the 70S ribosome describe a rather large number of intersubunit contacts, some of which are dynamic during translocation. We set out to determine which intersubunit contacts are functionally indispensable for the association of ribosome subunits by using a modification interference approach. Modification of the N-1 position of A715, A1912, or A1918 in Escherichia coli 50S subunits is strongly detrimental to 70S ribosome formation. This result points to 23S rRNA helices 34 and 69, and thus bridges B2a and B4, as essential for ensuring stability of the 70S ribosome.
Collapse
Affiliation(s)
- Ulo Maiväli
- Department of Molecular Biology, Tartu University, Tartu, Estonia
| | | |
Collapse
|
468
|
Dinos G, Wilson DN, Teraoka Y, Szaflarski W, Fucini P, Kalpaxis D, Nierhaus KH. Dissecting the ribosomal inhibition mechanisms of edeine and pactamycin: the universally conserved residues G693 and C795 regulate P-site RNA binding. Mol Cell 2004; 13:113-24. [PMID: 14731399 DOI: 10.1016/s1097-2765(04)00002-4] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The crystal structures of the universal translation-initiation inhibitors edeine and pactamycin bound to ribosomal 30S subunit have revealed that edeine induces base pairing of G693:C795, residues that constitute the pactamycin binding site. Here, we show that base pair formation by addition of edeine inhibits tRNA binding to the P site by preventing codon-anticodon interaction and that addition of pactamycin, which rebreaks the base pair, can relieve this inhibition. In addition, edeine induces translational misreading in the A site, at levels comparable to those induced by the classic misreading antibiotic streptomycin. Binding of pactamycin between residues G693 and C795 strongly inhibits translocation with a surprising tRNA specificity but has no effect on translation initiation, suggesting that reclassification of this antibiotic is necessary. Collectively, these results suggest that the universally conserved G693:C795 residues regulate tRNA binding at the P site of the ribosome and influence translocation efficiency.
Collapse
Affiliation(s)
- George Dinos
- Department of Biochemistry, School of Medicine, University of Patras, 26500 Patras, Greece
| | | | | | | | | | | | | |
Collapse
|
469
|
Domain movements of elongation factor eEF2 and the eukaryotic 80S ribosome facilitate tRNA translocation. EMBO J 2004; 23:1008-19. [PMID: 14976550 DOI: 10.1038/sj.emboj.7600102] [Citation(s) in RCA: 318] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2003] [Accepted: 01/08/2004] [Indexed: 11/09/2022] Open
Abstract
An 11.7-A-resolution cryo-EM map of the yeast 80S.eEF2 complex in the presence of the antibiotic sordarin was interpreted in molecular terms, revealing large conformational changes within eEF2 and the 80S ribosome, including a rearrangement of the functionally important ribosomal intersubunit bridges. Sordarin positions domain III of eEF2 so that it can interact with the sarcin-ricin loop of 25S rRNA and protein rpS23 (S12p). This particular conformation explains the inhibitory action of sordarin and suggests that eEF2 is stalled on the 80S ribosome in a conformation that has similarities with the GTPase activation state. A ratchet-like subunit rearrangement (RSR) occurs in the 80S.eEF2.sordarin complex that, in contrast to Escherichia coli 70S ribosomes, is also present in vacant 80S ribosomes. A model is suggested, according to which the RSR is part of a mechanism for moving the tRNAs during the translocation reaction.
Collapse
|
470
|
Bocharov EV, Sobol AG, Pavlov KV, Korzhnev DM, Jaravine VA, Gudkov AT, Arseniev AS. From structure and dynamics of protein L7/L12 to molecular switching in ribosome. J Biol Chem 2004; 279:17697-706. [PMID: 14960595 DOI: 10.1074/jbc.m313384200] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Based on the (1)H-(15)N NMR spectroscopy data, the three-dimensional structure and internal dynamic properties of ribosomal protein L7 from Escherichia coli were derived. The structure of L7 dimer in solution can be described as a set of three distinct domains, tumbling rather independently and linked via flexible hinge regions. The dimeric N-terminal domain (residues 1-32) consists of two antiparallel alpha-alpha-hairpins forming a symmetrical four-helical bundle, whereas the two identical C-terminal domains (residues 52-120) adopt a compact alpha/beta-fold. There is an indirect evidence of the existence of transitory helical structures at least in the first part (residues 33-43) of the hinge region. Combining structural data for the ribosomal protein L7/L12 from NMR spectroscopy and x-ray crystallography, it was suggested that its hinge region acts as a molecular switch, initiating "ratchet-like" motions of the L7/L12 stalk with respect to the ribosomal surface in response to elongation factor binding and GTP hydrolysis. This hypothesis allows an explanation of events observed during the translation cycle and provides useful insights into the role of protein L7/L12 in the functioning of the ribosome.
Collapse
Affiliation(s)
- Eduard V Bocharov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, 16/10, Moscow 117997, Russia
| | | | | | | | | | | | | |
Collapse
|
471
|
Haebel PW, Gutmann S, Ban N. Dial tm for rescue: tmRNA engages ribosomes stalled on defective mRNAs. Curr Opin Struct Biol 2004; 14:58-65. [PMID: 15102450 DOI: 10.1016/j.sbi.2004.01.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Ribosomes translate genetic information encoded by mRNAs into protein chains with high fidelity. Truncated mRNAs lacking a stop codon will cause the synthesis of incomplete peptide chains and stall translating ribosomes. In bacteria, a ribonucleoprotein complex composed of tmRNA, a molecule that combines the functions of tRNAs and mRNAs, and small protein B (SmpB) rescues stalled ribosomes. The SmpB-tmRNA complex binds to the stalled ribosome, allowing translation to resume at a short internal tmRNA open reading frame that encodes a protein degradation tag. The aberrant protein is released when the ribosome reaches the stop codon at the end of the tmRNA open reading frame and the fused peptide tag targets it for degradation by cellular proteases. The recently determined NMR structures of SmpB, the crystal structure of the SmpB-tmRNA complex and the cryo-EM structure of the SmpB-tmRNA-EF-Tu-ribosome complex have provided first detailed insights into the intricate mechanisms involved in ribosome rescue.
Collapse
Affiliation(s)
- Peter W Haebel
- Institute for Pharmaceutical Chemistry, Philipps University Marburg, Germany
| | | | | |
Collapse
|
472
|
Herr AJ, Wills NM, Nelson CC, Gesteland RF, Atkins JF. Factors that influence selection of coding resumption sites in translational bypassing: minimal conventional peptidyl-tRNA:mRNA pairing can suffice. J Biol Chem 2004; 279:11081-7. [PMID: 14707145 DOI: 10.1074/jbc.m311491200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This study investigates bypassing initiated from codons immediately 5' of a stop codon. The mRNA slips and is scanned by the peptidyl-tRNA for a suitable landing site, and standard decoding resumes at the next 3' codon. This work shows that landing sites with potentially strong base pairing between the peptidyl-tRNA anticodon and mRNA are preferred, but sites with little or no potential for Watson-Crick or wobble base pairing can also be utilized. These results have implications for re-pairing in ribosomal frameshifting. Shine-Dalgarno sequences in the mRNA can alter the distribution of landing sites observed. The bacteriophage T4 gene 60 nascent peptide, known to influence take-off in its native context, imposes stringent P-site pairing requirements, thereby limiting the number of suitable landing sites.
Collapse
Affiliation(s)
- Alan J Herr
- Department of Human Genetics, University of Utah, Salt Lake City, Utah 84112-5330
| | | | | | | | | |
Collapse
|
473
|
Sharma D, Southworth DR, Green R. EF-G-independent reactivity of a pre-translocation-state ribosome complex with the aminoacyl tRNA substrate puromycin supports an intermediate (hybrid) state of tRNA binding. RNA (NEW YORK, N.Y.) 2004; 10:102-13. [PMID: 14681589 PMCID: PMC1370522 DOI: 10.1261/rna.5148704] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Following peptide-bond formation, the mRNA:tRNA complex must be translocated within the ribosomal cavity before the next aminoacyl tRNA can be accommodated in the A site. Previous studies suggested that following peptide-bond formation and prior to EF-G recognition, the tRNAs occupy an intermediate (hybrid) state of binding where the acceptor ends of the tRNAs are shifted to their next sites of occupancy (the E and P sites) on the large ribosomal subunit, but where their anticodon ends (and associated mRNA) remain fixed in their prepeptidyl transferase binding states (the P and A sites) on the small subunit. Here we show that pre-translocation-state ribosomes carrying a dipeptidyl-tRNA substrate efficiently react with the minimal A-site substrate puromycin and that following this reaction, the pre-translocation-state bound deacylated tRNA:mRNA complex remains untranslocated. These data establish that pre-translocation-state ribosomes must sample or reside in an intermediate state of tRNA binding independent of the action of EF-G.
Collapse
Affiliation(s)
- Divya Sharma
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
474
|
Rodriguez-Correa D, Dahlberg AE. Genetic evidence against the 16S ribosomal RNA helix 27 conformational switch model. RNA (NEW YORK, N.Y.) 2004; 10:28-33. [PMID: 14681582 PMCID: PMC1370515 DOI: 10.1261/rna.5172104] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2003] [Accepted: 09/29/2003] [Indexed: 05/18/2023]
Abstract
A mechanistic understanding of ribosome function demands knowledge of the conformational changes that occur during protein synthesis. One current model proposes a conformational switch in Helix 27 (H27) of 16S rRNA involved in the decoding of mRNA. This model was based on the behavior of mutations in the 912 region of H27 of Escherichia coli 16S rRNA, which were predicted to stabilize the helix in either of two alternative conformations. This interpretation was supported by evidence from both genetics and structural biochemistry. However, recently published X-ray crystallographic structures of the Thermus thermophilus 30S subunit at different stages of tRNA selection have raised doubts regarding the validity of this model. We have therefore revisited the model genetically by constructing a H27 quadruple mutation (C912G, C910G, G885C, and G887C), which would create multiple mismatches in the proposed alternative conformation without perturbing the native H27 conformation seen in the crystal structures. Inconsistent with the H27 switch model, cells containing pure populations of quadruple mutant ribosomes grow at essentially wild-type rates. The mutants used to construct the H27 switch model all carried A2058G in 23S rRNA and C1192U in 16S rRNA as selectable markers. The quadruple mutant carrying these additional marker mutations is deleterious, and we conclude that they have a synergistic effect when combined with other mutations and are not phenotypically silent. Their presence confounded the interpretation of the original mutant phenotypes and, in light of the viability of the quadruple mutant, we conclude that the genetic evidence no longer supports the model.
Collapse
MESH Headings
- Anti-Bacterial Agents/pharmacology
- Crystallography, X-Ray
- Erythromycin/pharmacology
- Escherichia coli
- Models, Genetic
- Mutagenesis/drug effects
- Mutation
- Nucleic Acid Conformation/drug effects
- Phenotype
- Protein Conformation/drug effects
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/drug effects
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 23S/genetics
- Ribosomes/chemistry
- Ribosomes/genetics
- Spectinomycin/pharmacology
Collapse
Affiliation(s)
- Daniel Rodriguez-Correa
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | | |
Collapse
|
475
|
Jan E, Kinzy TG, Sarnow P. Divergent tRNA-like element supports initiation, elongation, and termination of protein biosynthesis. Proc Natl Acad Sci U S A 2003; 100:15410-5. [PMID: 14673072 PMCID: PMC307581 DOI: 10.1073/pnas.2535183100] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The cricket paralysis virus internal ribosome entry site (IRES) can, in the absence of canonical initiation factors and initiator tRNA (Met-tRNAi), occupy the ribosomal P-site and assemble 80S ribosomes. Here we show that the IRES assembles mRNA-80S ribosome complexes by recruitment of 60S subunits to preformed IRES-40S complexes. Addition of eukaryotic elongation factors eEF1A and eEF2 and aminoacylated elongator tRNAs resulted in the synthesis of peptides, implying that the IRES RNA itself mimics the function of Met-tRNAi in the P-site to trigger the first translocation step without peptide bond formation. IRES-80S complexes that contained a stop codon in the A-site recruited eukaryotic release factor eRF1, resulting in ribosome rearrangements in a surprisingly eEF2-dependent manner. Thus, this P-site-occupying IRES directs the assembly of 80S ribosomes, sets the translational reading frame, and mimics the functions of both Met-tRNAi and peptidyl tRNA to support elongation and termination.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Codon, Terminator/genetics
- Genes, Reporter
- Luciferases/genetics
- Peptide Chain Elongation, Translational
- Peptide Chain Initiation, Translational
- Peptide Chain Termination, Translational
- Peptides/chemistry
- Peptides/metabolism
- Protein Biosynthesis
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- RNA, Transfer, Amino Acyl/genetics
- RNA, Transfer, Amino Acyl/metabolism
- Ribosomes/chemistry
- Ribosomes/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Eric Jan
- Department of Microbiology and Immunology, Stanford University School of Medicine, 299 Campus Drive, Stanford, CA 94305, USA
| | | | | |
Collapse
|
476
|
Abstract
The recently solved X-ray crystal structures of the ribosome have provided opportunities for studying the molecular basis of translation with a variety of methods including cryo-electron microscopy. The recently solved X-ray crystal structures of the ribosome have provided opportunities for studying the molecular basis of translation with a variety of methods including cryo-electron microscopy - where maps give the first glimpses of ribosomal evolution - and fluorescence spectroscopy techniques.
Collapse
Affiliation(s)
- Joachim Frank
- Howard Hughes Medical Institute, Health Research, Inc, at the Wadsworth Center and Department of Biomedical Sciences, State University of New York at Albany, Empire State Plaza, Albany, NY 12201-0509, USA.
| |
Collapse
|
477
|
Gabashvili IS, Whirl-Carrillo M, Bada M, Banatao DR, Altman RB. Ribosomal dynamics inferred from variations in experimental measurements. RNA (NEW YORK, N.Y.) 2003; 9:1301-7. [PMID: 14561879 PMCID: PMC1287051 DOI: 10.1261/rna.5141503] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2003] [Accepted: 08/15/2003] [Indexed: 05/18/2023]
Abstract
The crystal structures of the ribosome reveal remarkable complexity and provide a starting set of snapshots with which to understand the dynamics of translation. To augment the static crystallographic models with dynamic information present in crosslink, footprint, and cleavage data, we examined 2691 proximity measurements and focused on the subset that was apparently incompatible with >40 published crystal structures. The measurements from this subset generally involve regions of the structure that are functionally conserved and structurally flexible. Local movements in the crystallographic states of the ribosome that would satisfy biochemical proximity measurements show coherent patterns suggesting alternative conformations of the ribosome. Three different types of data obtained for the two subunits display similar "mismatching" patterns, suggesting that the signals are robust and real. In particular, there is an indication of coherent motion in the decoding region within the 30S subunit and central protuberance and surrounding areas of the 50S subunit. Directions of rearrangements fluctuate around the proposed path of tRNA translocation and the plane parallel to the interface of the two subunits. Our results demonstrate that systematic combination and analysis of noisy, apparently incompatible data sources can provide biologically useful signals about structural dynamics.
Collapse
Affiliation(s)
- Irene S Gabashvili
- Department of Genetics and Section on Medical Informatics, Stanford University, Stanford, California 94305-5479, USA
| | | | | | | | | |
Collapse
|
478
|
Abstract
Rapid protein synthesis in bacteria requires the G proteins IF2, EF-Tu, EF-G, and RF3. These factors catalyze all major steps of mRNA translation in a GTP-dependent manner. Here, it is shown how the position of peptidyl-tRNA in the ribosome and presence of its peptide control the binding and GTPase activity of these translation factors. The results explain how idling GTPase activity and negative interference between different translation factors are avoided and suggest that hybrid sites for tRNA on the ribosome play essential roles in translocation of tRNAs, recycling of class 1 release factors by RF3, and recycling of ribosomes back to a new round of initiation. We also propose a model for translocation of tRNAs in two separate steps, which clarifies the roles of EF-G.GTP and GTP hydrolysis in this process.
Collapse
Affiliation(s)
- Andrey V Zavialov
- Department of Cell and Molecular Biology, BMC, Uppsala University, Box 596, S-75124 Uppsala, Sweden.
| | | |
Collapse
|