451
|
Abstract
Bone turnover, in which cells of the osteoclast lineage resorb bone and cells of the osteoblast lineage deposit bone, normally occurs in a highly regulated manner throughout life. Perturbations to these processes underlie skeletal disorders, such as osteoporosis, which are common, chronic and disabling, and increase with age. On the basis of empirical observations or on understanding of the endocrinology of the skeleton, excellent bone-resorption inhibitors, but few anabolic agents, have been developed as therapeutics for skeletal disorders. However, powerful new genomic and genetic tools are uncovering new loci that regulate the activity of both osteoclasts and osteoblasts, and these hold great promise for future drug development.
Collapse
Affiliation(s)
- David Goltzman
- Department of Medicine, McGill University and McGill University Health Centre, 687 Pine Avenue, West Montreal, Quebec, Canada H3A 1A1.
| |
Collapse
|
452
|
Ikeda T, Zhang J, Chano T, Mabuchi A, Fukuda A, Kawaguchi H, Nakamura K, Ikegawa S. Identification and characterization of the human long form of Sox5 (L-SOX5) gene. Gene 2002; 298:59-68. [PMID: 12406576 DOI: 10.1016/s0378-1119(02)00927-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The Sox (Sry-type HMG box) group of transcription factors, which is defined by a high-mobility group (HMG) DNA-binding domain, is categorized into six subfamilies. Sox5 and Sox6 belong to the group D subfamily, which is characterized by conserved N-terminal domains including a leucine-zipper, a coiled-coil domain and a Q-box. Group D Sox genes are expressed as long and short transcripts that exhibit differential expression patterns. In mouse, the long form of Sox5, L-Sox5, is co-expressed and interacts with Sox6; together, these two proteins appear to play a key role in chondrogenesis and myogenesis. In humans, however, only the short form of Sox5 has previously been identified. To gain insight into Sox5 function, we have identified and characterized human L-SOX5. The human L-SOX5 cDNA encodes a 763-amino-acid protein that is 416 residues longer than the short form and contains all of the characteristic motifs of group D Sox proteins. The predicted L-SOX5 protein shares 97% amino acid identity with its mouse counterpart and 59% identity with human SOX6. The L-SOX5 gene contains 18 exons and shows similar genomic structure to SOX6. We have identified two transcription start sites in L-SOX5 and multiple alternatively spliced mRNA variants that are distinct from the short form. Unlike the short form, which shows testis-specific expression, L-SOX5 is expressed in multiple tissues. Like SOX6, L-SOX5 shows strong expression in chondrocytes and striated muscles, indicating a likely role in human cartilage and muscle development.
Collapse
Affiliation(s)
- Toshiyuki Ikeda
- Laboratory for Bone and Joint Diseases, SNP Research Center, RIKEN (The Institute of Physical and Chemical Research), c/o Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | | | | | | | |
Collapse
|
453
|
Zeng L, Kempf H, Murtaugh LC, Sato ME, Lassar AB. Shh establishes an Nkx3.2/Sox9 autoregulatory loop that is maintained by BMP signals to induce somitic chondrogenesis. Genes Dev 2002; 16:1990-2005. [PMID: 12154128 PMCID: PMC186419 DOI: 10.1101/gad.1008002] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Prior work has established that transient Shh signals from the notochord and floor plate confer a competence in somitic tissue for subsequent BMP signals to induce chondrogenesis. We have therefore proposed that Shh induces a factor(s) that renders somitic cells competent to chondrify in response to subsequent BMP signals. Recently, we have shown that forced expression of Nkx3.2, a transcriptional repressor induced by Shh, is able to confer chondrogenic competence in somites. In this work, we show that administration of Shh or forced Nkx3.2 expression induces the expression of the transcription factor Sox9 in the somitic tissue. Forced expression of Sox9 can, in turn, induce robust chondrogenesis in somitic mesoderm, provided that BMP signals are present. We have found that in the presence of BMP signals, Sox9 and Nkx3.2 induce each other's expression. Thus, Nkx3.2 may promote axial chondrogenesis by derepressing the expression of Sox9 in somitic mesoderm. Furthermore, forced expression of either Sox9 or Nkx3.2 not only activates expression of cartilage-specific genes in somitic mesoderm, but also promotes the proliferation and survival of the induced chondrocytes in the presence of BMP signals. However, unlike Nkx3.2, Sox9 is able to induce de novo cartilage formation in non-cartilage-forming tissues. Our findings suggest that Shh and BMP signals work in sequence to establish a positive regulatory loop between Sox9 and Nkx3.2, and that Sox9 can subsequently initiate the chondrocyte differentiation program in a variety of cellular environments.
Collapse
Affiliation(s)
- Li Zeng
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
454
|
Weston AD, Chandraratna RAS, Torchia J, Underhill TM. Requirement for RAR-mediated gene repression in skeletal progenitor differentiation. J Cell Biol 2002; 158:39-51. [PMID: 12105181 PMCID: PMC2173026 DOI: 10.1083/jcb.200112029] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chondrogenesis is a multistep process culminating in the establishment of a precisely patterned template for bone formation. Previously, we identified a loss in retinoid receptor-mediated signaling as being necessary and sufficient for expression of the chondroblast phenotype (Weston et al., 2000. J. Cell Biol. 148:679-690). Here we demonstrate a close association between retinoic acid receptor (RAR) activity and the transcriptional activity of Sox9, a transcription factor required for cartilage formation. Specifically, inhibition of RAR-mediated signaling in primary cultures of mouse limb mesenchyme results in increased Sox9 expression and activity. This induction is attenuated by the histone deacetylase inhibitor, trichostatin A, and by coexpression of a dominant negative nuclear receptor corepressor-1, indicating an unexpected requirement for RAR-mediated repression in skeletal progenitor differentiation. Inhibition of RAR activity results in activation of the p38 mitogen-activated protein kinase (MAPK) and protein kinase A (PKA) pathways, indicating their potential role in the regulation of chondrogenesis by RAR repression. Accordingly, activation of RAR signaling, which attenuates differentiation, can be rescued by activation of p38 MAPK or PKA. In summary, these findings demonstrate a novel role for active RAR-mediated gene repression in chondrogenesis and establish a hierarchical network whereby RAR-mediated signaling functions upstream of the p38 MAPK and PKA signaling pathways to regulate emergence of the chondroblast phenotype.
Collapse
Affiliation(s)
- Andrea D Weston
- Department of Physiology, The University of Western Ontario, London, Ontario, Canada N6A 5C1
| | | | | | | |
Collapse
|
455
|
Abstract
The skeleton in vertebrates is composed of bone and cartilage, which contains three specific types: osteoblasts and osteoclasts in bone and chondrocytes in cartilage. Like other cell types in the body, skeletal cell differentiation is controlled by multiple transcription factors at various stages of their development. Cbfa1 and Osx, a newly identified zinc-finger containing protein, are osteoblast-specific transcription factors. Loss of function of either one of them leads to absence of bone in mammals. Here, we discuss transcription factors involved in controlling the differentiation of osteoclasts, such as Pu.1 and nuclear factor (NF)-kappaB, and chondrocytes, such as Sox proteins. Finally, recent progress in identifying mutations in transcription factors affecting skeletal patterning and development is also described.
Collapse
Affiliation(s)
- Xiangli Yang
- Dept of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, S930, Houston, TX 77030, USA
| | | |
Collapse
|
456
|
Narahara M, Yamada A, Hamada-Kanazawa M, Kawai Y, Miyake M. cDNA cloning of the Sry-related gene Sox6 from rat with tissue-specific expression. Biol Pharm Bull 2002; 25:705-9. [PMID: 12081133 DOI: 10.1248/bpb.25.705] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A cDNA encoding rat homologue of the previously characterized mouse Sox6 was isolated by a polymerase chain reaction (PCR) cloning strategy. Comparison of this eDNA with homologous mouse, human and rainbow trout cDNA exhibited an overall amino acid sequence identity of 99.6, 89.3 and 76.3% respectively. The leucine-zipper and HMG-box motif were almost completely conserved between these homologues. The expression of Sox6 was determined in rat by Northern hybridization and Real-time quantitative reverse transcription (RT)-PCR. rSox6 (rat Sox6) was specifically expressed in the neonatal brain and adult testis with Northern blotting. Real-time quantitative RT-PCR for the determination of Sox6 mRNA was examined. The rSox6 was expressed in the neonatal brain and adult testis as well as by Northern blotting and also expressed in the adult eyeball and slightly in the ovary.
Collapse
|
457
|
Kanai-Azuma M, Kanai Y, Gad JM, Tajima Y, Taya C, Kurohmaru M, Sanai Y, Yonekawa H, Yazaki K, Tam PPL, Hayashi Y. Depletion of definitive gut endoderm in Sox17-null mutant mice. Development 2002; 129:2367-79. [PMID: 11973269 DOI: 10.1242/dev.129.10.2367] [Citation(s) in RCA: 489] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In the mouse, the definitive endoderm is derived from the epiblast during gastrulation, and, at the early organogenesis stage, forms the primitive gut tube, which gives rise to the digestive tract, liver, pancreas and associated visceral organs. The transcription factors, Sox17 (a Sry-related HMG box factor) and its upstream factors, Mixer (homeobox factor) and Casanova (a novel Sox factor), have been shown to function as endoderm determinants in Xenopus and zebrafish, respectively. However, whether the mammalian orthologues of these genes are also involved with endoderm formation is not known. We show that Sox17–/– mutant embryos are deficient of gut endoderm. The earliest recognisable defect is the reduced occupancy by the definitive endoderm in the posterior and lateral region of the prospective mid- and hindgut of the headfold-stage embryo. The prospective foregut develops properly until the late neural plate stage. Thereafter, elevated levels of apoptosis lead to a reduction in the population of the definitive endoderm in the foregut. In addition, the mid- and hindgut tissues fail to expand. These are accompanied by the replacement of the definitive endoderm in the lateral region of the entire length of the embryonic gut by cells that resemble the visceral endoderm. In the chimeras, although Sox17-null ES cells can contribute unrestrictedly to ectodermal and mesodermal tissues, few of them could colonise the foregut endoderm and they are completely excluded from the mid- and hindgut endoderm. Our findings indicate an important role of Sox17 in endoderm development in the mouse, highlighting the idea that the molecular mechanism for endoderm formation is likely to be conserved among vertebrates.
Collapse
Affiliation(s)
- Masami Kanai-Azuma
- Department of Veterinary Anatomy, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
458
|
Robledo RF, Rajan L, Li X, Lufkin T. The Dlx5 and Dlx6 homeobox genes are essential for craniofacial, axial, and appendicular skeletal development. Genes Dev 2002; 16:1089-101. [PMID: 12000792 PMCID: PMC186247 DOI: 10.1101/gad.988402] [Citation(s) in RCA: 317] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2002] [Accepted: 03/27/2002] [Indexed: 11/24/2022]
Abstract
Dlx homeobox genes are mammalian homologs of the Drosophila Distal-less (Dll) gene. The Dlx/Dll gene family is of ancient origin and appears to play a role in appendage development in essentially all species in which it has been identified. In Drosophila, Dll is expressed in the distal portion of the developing appendages and is critical for the development of distal structures. In addition, human Dlx5 and Dlx6 homeobox genes have been identified as possible candidate genes for the autosomal dominant form of the split-hand/split-foot malformation (SHFM), a heterogeneous limb disorder characterized by missing central digits and claw-like distal extremities. Targeted inactivation of Dlx5 and Dlx6 genes in mice results in severe craniofacial, axial, and appendicular skeletal abnormalities, leading to perinatal lethality. For the first time, Dlx/Dll gene products are shown to be critical regulators of mammalian limb development, as combined loss-of-function mutations phenocopy SHFM. Furthermore, spatiotemporal-specific transgenic overexpression of Dlx5, in the apical ectodermal ridge of Dlx5/6 null mice can fully rescue Dlx/Dll function in limb outgrowth.
Collapse
Affiliation(s)
- Raymond F Robledo
- Brookdale Center for Developmental and Molecular Biology, Mount Sinai School of Medicine, New York, NY 10029-6574, USA
| | | | | | | |
Collapse
|
459
|
Abstract
In the last ten years, we have made considerable progress in our genetic and molecular understanding of all aspects of skeletal development, chondrogenesis, joint formation, and osteogenesis. This review addresses the role of the principal growth factors and transcription factors affecting these different processes and presents, in several cases, the genetic cascade leading to cell differentiation.
Collapse
Affiliation(s)
- Gerard Karsenty
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| | | |
Collapse
|
460
|
Ohe K, Lalli E, Sassone-Corsi P. A direct role of SRY and SOX proteins in pre-mRNA splicing. Proc Natl Acad Sci U S A 2002; 99:1146-1151. [PMID: 11818535 PMCID: PMC122158 DOI: 10.1073/pnas.022645899] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2001] [Accepted: 12/03/2001] [Indexed: 01/08/2023] Open
Abstract
The mammalian testis determining factor SRY and its related Sox factors are critical developmental regulators. They share significant similarity in their high mobility group (HMG) domain and display discrete patterns of tissue-specific expression. Here we show that SRY and the Sox protein SOX6 colocalize with splicing factors in the nucleus and are dynamically redistributed following the blockage of splicing in living cells. Anti-SOX6 antibodies supershift the spliceosomal complex from assembled splicing reactions and inhibit splicing in vitro of multiple pre-mRNA substrates. Most importantly, SOX6-depleted nuclear extracts have impaired splicing activity, which is efficiently restored by addition of the recombinant SOX6 HMG domain and also by recombinant SRY and the SOX9 HMG domain. These results reveal an unexpected biological function of the SRY, SOX6, and SOX9 gene products and provide a functional link to the biochemical mechanisms operating in mammalian sex determination and in other developmental processes regulated by Sox genes.
Collapse
Affiliation(s)
- Kenji Ohe
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Université Louis Pasteur, B.P. 163, 67404 Illkirch-Strasbourg, France
| | | | | |
Collapse
|
461
|
Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR, de Crombrugghe B. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 2002; 108:17-29. [PMID: 11792318 DOI: 10.1016/s0092-8674(01)00622-5] [Citation(s) in RCA: 2664] [Impact Index Per Article: 115.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have identified a novel zinc finger-containing transcription factor, called Osterix (Osx), that is specifically expressed in all developing bones. In Osx null mice, no bone formation occurs. In endochondral skeletal elements of Osx null mice, mesenchymal cells, together with osteoclasts and blood vessels, invade the mineralized cartilage matrix. However, the mesenchymal cells do not deposit bone matrix. Similarly, cells in the periosteum and in the condensed mesenchyme of membranous skeletal elements cannot differentiate into osteoblasts. These cells do, however, express Runx2/Cbfa1, another transcription factor required for bone formation. In contrast, Osx is not expressed in Runx2/Cbfa1 null mice. Thus, Osx acts downstream of Runx2/Cbfa1. Because Osx null preosteoblasts express typical chondrocyte marker genes, we propose that Runx2/Cbfa1-expressing preosteoblasts are still bipotential cells.
Collapse
Affiliation(s)
- Kazuhisa Nakashima
- Department of Molecular Genetics and Program in Genes and Development, M. D. Anderson Cancer Center, University of Texas, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
462
|
Hermanns P, Lee B. Transcriptional dysregulation in skeletal malformation syndromes. ACTA ACUST UNITED AC 2002. [DOI: 10.1002/ajmg.10231] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
463
|
|
464
|
de Crombrugghe B, Lefebvre V, Nakashima K. Regulatory mechanisms in the pathways of cartilage and bone formation. Curr Opin Cell Biol 2001; 13:721-7. [PMID: 11698188 DOI: 10.1016/s0955-0674(00)00276-3] [Citation(s) in RCA: 337] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Three transcription factors of the Sox family have essential roles in different steps of the chondrocyte differentiation pathway. Because the transcription factor Cbfa1, which is needed for osteoblast differentiation, also stimulates hypertrophic chondrocyte maturation, it links the chondrocyte and osteoblast differentiation pathways in endochondral bone formation. Signaling molecules, including Indian Hedgehog, PTHrP and FGFs, also establish essential links either between these pathways, between steps in these pathways or between signaling molecules and transcription factors, so that a more comprehensive view of endochondral bone formation is emerging.
Collapse
Affiliation(s)
- B de Crombrugghe
- The University of Texas M.D. Anderson Cancer Center, Department of Molecular Genetics, 1515 Holcombe Boulevard, Box #11, Houston, Texas 77030, USA.
| | | | | |
Collapse
|