451
|
|
452
|
Fällman M, Persson C, Schesser K, Wolf-Watz H. Bidirectional signaling between Yersinia and its target cell. Folia Microbiol (Praha) 1998; 43:263-73. [PMID: 9717253 DOI: 10.1007/bf02818611] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Preventing the early host immune defense allows pathogenic Yersinia to proliferate in lymphatic tissue. This ability depends on signaling that occurs between the bacteria and the host cells. Following intimate contact with the target cell a signal is generated within the bacterium that results in increased expression of virulence-associated proteins that are subsequently delivered into the infected cell. These proteins, designated Yops, interfere with the host-cell signaling pathways that are normally activated to eliminate infectious agents.
Collapse
Affiliation(s)
- M Fällman
- Department of Cell and Molecular Biology, Umeå University, Sweden
| | | | | | | |
Collapse
|
453
|
He SY. Type III protein secretion systems in plant and animal pathogenic bacteria. ANNUAL REVIEW OF PHYTOPATHOLOGY 1998; 36:363-92. [PMID: 15012505 DOI: 10.1146/annurev.phyto.36.1.363] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Among many interesting and sophisticated mechanisms used by bacterial pathogens to subvert eukaryotic hosts is a class of specialized protein secretion systems (known as type III protein secretion systems) that deliver bacterial virulence proteins directly into the host cell. Recent studies have revealed four important features of these secretion systems. First, they are widespread among plant and animal bacterial pathogens, and mutations affecting type III protein secretion often eliminate bacterial virulence completely. Second, at least eight type III secretion components share sequence similarities with those of the flagellar assembly machinery and flagellum-like structures are associated with type III secretion, raising the possibility that these secretion systems are derived from the presumably more ancient flagellar assembly apparatus. Third, type III secretion is activated in vivo upon contact with host cells. Fourth, the type III secretion mechanism is Sec-independent and the effector proteins may possess mRNA-based targeting signals. This review highlights the similarities and differences among type III secretion systems of selected model plant and animal pathogenic bacteria.
Collapse
Affiliation(s)
- S Y He
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, USA.
| |
Collapse
|
454
|
Zatyka M, Thomas CM. Control of genes for conjugative transfer of plasmids and other mobile elements. FEMS Microbiol Rev 1998; 21:291-319. [PMID: 25508777 DOI: 10.1111/j.1574-6976.1998.tb00355.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Conjugative transfer is a primary means of spread of mobile genetic elements (plasmids and transposons) between bacteria.It leads to the dissemination and evolution of the genes (such as those conferring resistance to antibiotics) which are carried by the plasmid. Expression of the plasmid genes needed for conjugative transfer is tightly regulated so as to minimise the burden on the host. For plasmids such as those belonging to the IncP group this results in downregulation of the transfer genes once all bacteria have a functional conjugative apparatus. For F-like plasmids (apart from F itself which is a derepressed mutant) tight control results in very few bacteria having a conjugative apparatus. Chance encounters between the rare transfer-proficient bacteria and a potential recipient initiate a cascade of transfer which can continue until all potential recipients have acquired the plasmid. Other systems express their transfer genes in response to specific stimuli. For the pheromone-responsive plasmids of Enterococcus it is small peptide signals from potential recipients which trigger the conjugative transfer genes. For the Ti plasmids of Agrobacterium it is the presence of wounded plants which are susceptible to infection which stimulates T-DNA transfer to plants. Transfer and integration of T-DNA induces production of opines which the plasmid-positive bacteria can utilise. They multiply and when they reach an appropriate density their plasmid transfer system is switched on to allow transfer of the Ti plasmid to other bacteria. Finally some conjugative transfer systems are induced by the antibiotics to which the elements confer resistance. Understanding these control circuits may help to modify management of microbial communities where plasmid transfer is either desirable or undesirable. z 1998 Published by Elsevier Science B.V.
Collapse
Affiliation(s)
- M Zatyka
- School of Biological Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | |
Collapse
|
455
|
Affiliation(s)
- J E Galán
- Dept of Molecular Genetics and Microbiology, SUNY at Stony Brook 11794-5222, USA.
| |
Collapse
|
456
|
Perret X, Viprey V, Freiberg C, Broughton WJ. Structure and evolution of NGRRS-1, a complex, repeated element in the genome of Rhizobium sp. strain NGR234. J Bacteriol 1997; 179:7488-96. [PMID: 9393715 PMCID: PMC179701 DOI: 10.1128/jb.179.23.7488-7496.1997] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Much of the remarkable ability of Rhizobium sp. strain NGR234 to nodulate at least 110 genera of legumes, as well as the nonlegume Parasponia andersonii, stems from the more than 80 different Nod factors it secretes. Except for nodE, nodG, and nodPQ, which are on the chromosome, most Nod factor biosynthesis genes are dispersed over the 536,165-bp symbiotic plasmid, pNGR234a. Mosaic sequences and insertion sequences (ISs) comprise 18% of pNGR234a. Many of them are clustered, and these IS islands divide the replicon into large blocks of functionally related genes. At 6 kb, NGRRS-1 is a striking example: there is one copy on pNGR234a and three others on the chromosome. DNA sequence comparisons of two NGRRS-1 elements identified three types of IS, NGRIS-2, NGRIS-4, and NGRIS-10. Here we show that all four copies of NGRRS-1 probably originated from transposition of NGRIS-4 into a more ancient IS-like sequence, NGRIS-10. Remarkably, all nine copies of NGRIS-4 have transposed into other ISs. It is unclear whether the accumulation of potentially mutagenic sequences in large clusters is due to the nature of the IS involved or to some selection process. Nevertheless, a direct consequence of the preferential targeting of transposons into such IS islands is to minimize the likelihood of disrupting vital functions.
Collapse
Affiliation(s)
- X Perret
- Laboratoire de Biologie Moleculaire de Plantes Supérieures, University of Geneva, Switzerland
| | | | | | | |
Collapse
|
457
|
Gavini N, Hausman BS, Pulakat L, Schreiner RP, Williamson JA. Identification and mutational analysis of rfbG, the gene encoding CDP-D-glucose-4,6-dehydratase, isolated from free living soil bacterium Azotobacter vinelandii. Biochem Biophys Res Commun 1997; 240:153-61. [PMID: 9367902 DOI: 10.1006/bbrc.1997.7545] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have identified the rfbG from a non-symbiotic and non-pathogenic soil bacterium, Azotobacter vinelandii. The nucleotide sequence analysis of the rfbG revealed an open reading frame that encodes a peptide of 360 amino acids. This deduced peptide shares 57% homology with the RfbG of Synechocystis and 47% homology with the RfbG of Yersinia pseudotuberculosis. The previously identified short-chain dehydrogenases/reductases family signature sequence is conserved in the sequence of the RfbG of A. vinelandii. Southern blotting analysis of A. vinelandii chromosome by probed with 1.1 kb PstI DNA fragment corresponding to rfbG revealed that it is present as single copy on A. vinelandii chromosome. Disrupting the rfbG present on the chromosome of A. vinelandii, by insertion of kanamycin resistance marker via homologous recombination, resulted in drastic changes in the growth characteristics. The rfbG-negative A. vinelandii grown in liquid medium exhibited agglutination that is characteristic of rfb- mutants of other bacteria, suggesting that we have cloned the functional copy of the rfbG of A. vinelandii.
Collapse
Affiliation(s)
- N Gavini
- Department of Biological Sciences, Bowling Green State University, Ohio 43403, USA.
| | | | | | | | | |
Collapse
|
458
|
Rajakumar K, Sasakawa C, Adler B. Use of a novel approach, termed island probing, identifies the Shigella flexneri she pathogenicity island which encodes a homolog of the immunoglobulin A protease-like family of proteins. Infect Immun 1997; 65:4606-14. [PMID: 9353040 PMCID: PMC175661 DOI: 10.1128/iai.65.11.4606-4614.1997] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The she gene of Shigella flexneri 2a, which also harbors the internal enterotoxin genes set1A and set1B (F. R. Noriega, GenBank accession no. U35656, 1995) encodes a homolog of the virulence-related immunoglobulin A (IgA) protease-like family of secreted proteins, Tsh, EspC, SepA, and Hap, from an avian pathogenic Escherichia coli, an enteropathogenic E. coli, S. flexneri 5, and Haemophilus influenzae, respectively. To investigate the possibility that this locus was carried on a larger deletable element, the S. flexneri 2a YSH6000T she gene was insertionally disrupted by allelic exchange using a Tn10-derived tetAR(B) cassette. Then, to detect loss of the she locus, the tetracycline-resistant derivative was plated onto fusaric acid medium to select for tetracycline-sensitive revertants, which were observed to arise at a frequency of 10(-5) to 10(-6). PCR and pulsed-field gel electrophoresis analysis confirmed loss of the she::tetAR(B) locus in six independent tetracycline-sensitive isolates. Sample sequencing over a 25-kb region flanking she identified four insertion sequence-like elements, the group II intron-like sequence Sf.IntA, and the 3' end of a second IgA protease-like homolog, sigA, lying 3.6 kb downstream and in an orientation inverted with respect to she. The deletion was mapped to chromosomal NotI fragment A and determined to have a size of 51 kb. Hybridization with flanking probes confirmed that at least 17.7 kb of the 51-kb deletable element was unique to the seven she+ strains investigated, supporting the conclusion that she lay within a large pathogenicity island. The method described in this study, termed island probing, provides a useful tool to further the study of pathogenicity islands in general. Importantly, this approach could also be of value in constructing safer live attenuated bacterial vaccines.
Collapse
Affiliation(s)
- K Rajakumar
- Department of Microbiology, Monash University, Clayton, Victoria, Australia.
| | | | | |
Collapse
|
459
|
Kiss E, Kondorosi �. Complete sequence of aRhizobium plasmid carrying genes necessary for symbiotic association with the plant host. Bioessays 1997. [DOI: 10.1002/bies.950191003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
460
|
Choudhary M, Mackenzie C, Nereng K, Sodergren E, Weinstock GM, Kaplan S. Low-resolution sequencing of Rhodobacter sphaeroides 2.4.1T: chromosome II is a true chromosome. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 10):3085-3099. [PMID: 9353914 DOI: 10.1099/00221287-143-10-3085] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The photosynthetic bacterium Rhodobacter sphaeroides 2.4.1T has two chromosomes, CI (approximately 3.0 Mb) and CII (approximately 0.9 Mb). In this study a low-redundancy sequencing strategy was adopted to analyse 23 out of 47 cosmids from an ordered CII library. The sum of the lengths of these 23 cosmid inserts was approximately 495 kb, which comprised approximately 417 kb of unique DNA. A total of 1145 sequencing runs was carried out, with each run generating 559 +/- 268 bases of sequence to give approximately 640 kb of total sequence. After editing, approximately 2.8% bases per run were estimated to be ambiguous. After the removal of vector and Escherichia coli sequences, the remaining approximately 565 kb of R. sphaeroides sequences were assembled, generating approximately 291 kb of unique sequences. BLASTX analysis of these unique sequences suggested that approximately 131 kb (45% of the unique sequence) had matches to either known genes, or database ORFs of hypothetical or unknown function (dORFs). A total of 144 strong matches to the database was found; 101 of these matches represented genes encoding a wide variety of functions, e.g. amino acid biosynthesis, photosynthesis, nutrient transport, and various regulatory functions. Two rRNA operons (rrnB and rrnC) and five tRNAs were also identified. The remaining 160 kb of DNA sequence which did not yield database matches was then analysed using CODONPREFERENCE from the GCG package. This analysis suggested that 122 kb (42% of the total unique DNA sequence) could encode putative ORFs (pORFs), with the remaining 38 kb (13%) possibly representing non-coding intergenic DNA. From the data so far obtained, CII does not appear to be specialized for encoding any particular metabolic function, physiological state or growth condition. These data suggest that CII contains genes which are functionally as diverse as those found on any other bacterial chromosome and also contains sequences (pORFs), which may prove to be unique to this organism.
Collapse
Affiliation(s)
- M Choudhary
- Department of Microbiology & The University of Texas Health Science Center, Houston, TX 77225, USA
| | - C Mackenzie
- Department of Microbiology & The University of Texas Health Science Center, Houston, TX 77225, USA
| | - K Nereng
- Department of Microbiology & The University of Texas Health Science Center, Houston, TX 77225, USA
| | - Erica Sodergren
- Molecular Geneticsand Department of Biochemistry & Molecular Biology The University of Texas Health Science Center, Houston, TX 77225, USA
| | - G M Weinstock
- Molecular Geneticsand Department of Biochemistry & Molecular Biology The University of Texas Health Science Center, Houston, TX 77225, USA
- Department of Microbiology & The University of Texas Health Science Center, Houston, TX 77225, USA
| | - S Kaplan
- Department of Microbiology & The University of Texas Health Science Center, Houston, TX 77225, USA
| |
Collapse
|
461
|
Pallen M. Microbial genomics. Trends Microbiol 1997. [DOI: 10.1016/s0966-842x(97)81174-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
462
|
Quesada-Vincens D, Fellay R, Nasim T, Viprey V, Burger U, Prome JC, Broughton WJ, Jabbouri S. Rhizobium sp. strain NGR234 NodZ protein is a fucosyltransferase. J Bacteriol 1997; 179:5087-93. [PMID: 9260950 PMCID: PMC179366 DOI: 10.1128/jb.179.16.5087-5093.1997] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Rhizobium sp. strain NGR234 produces a large family of lipochitooligosaccharide Nod factors carrying specific substituents. Among them are 3-O- (or 4-O-) and 6-O-carbamoyl groups, an N-methyl group, and a 2-O-methylfucose residue which may bear either 3-O-sulfate or 4-O-acetyl substitutions. Investigations on the genetic control of host specificity revealed a number of loci which directly affect Nod factor structure. Here we show that insertion and frameshift mutations in the nodZ gene abolish fucosylation of Nod factors. In vitro assays using GDP-L-fucose as the fucose donor show that fucosyltransferase activity is associated with the nodZ gene product (NodZ). NodZ is located in the soluble protein fraction of NGR234 cells. Together with extra copies of the nodD1 gene, the nodZ gene and its associated nod box were introduced into ANU265, which is NGR234 cured of the symbiotic plasmid. Crude extracts of this transconjugant possess fucosyltransferase activity. Fusion of a His6 tag to the NodZ protein expressed in Escherichia coli yielded a protein able to fucosylate both nonfucosylated NodNGR factors and oligomers of chitin. NodZ is inactive on monomeric N-acetyl-D-glucosamine and on desulfated Rhizobium meliloti Nod factors. Kinetic analyses showed that the NodZ protein is more active on oligomers of chitin than on nonfucosylated NodNGR factors. Pentameric chitin is the preferred substrate. These data suggest that fucosylation occurs before acylation of the Nod factors.
Collapse
|
463
|
|
464
|
|