451
|
Abstract
Autophagy, or autophagocytosis, is a selective intracellular degradative process involving the cell's own lysosomal apparatus. An essential component in cell development, homeostasis, repair and resistance to stress, autophagy may result in either cell death or survival. The targeted region of the cell is sequestered within a membrane structure, the autophagosome, for regulation of the catabolic process. A key factor in both autophagosome formation and autophagosome maturation is a protein encoded by the ultraviolet irradiation resistance-associated gene (UVRAG). Conversely, the serine/threonine-specific protein kinase B (PKB, also known as Akt), which regulates survival in various cancers, inhibits autophagy through mTOR activation. We found that Akt1 may also directly inhibit autophagy by down-regulating UVRAG both in a 293T transient transfection system and breast cancer cells stably expressing Akt1. The UVRAG with mutations at putative Akt1-phosphorylation sites were still inhibited by Akt1, and dominant-negative Akt1 also inhibited UVRAG expression, suggesting that Akt1 down-regulates UVRAG by a kinase activity-independent mechanism. We showed that Akt1 overexpression in MDA-MB-231 breast cancer cells down-regulated UVRAG transcription. Cells over-expressing Akt1 were more resistant than control cells to ultraviolet light-induced autophagy and exhibited the associated reduction in cell viability. Levels of the autophagosome indicator protein LC3B-II and mRFP-GFP-LC3 were reduced in cells that over-expressing Akt1. Inhibiting Akt1 by siRNA or reintroducing UVRAG gene rescued the level of LC3B-II in UV-irradiation. Altogether, these data suggest that Akt1 may inhibit autophagy by decreasing UVRAG expression, which also sensitizes cancer cells to UV irradiation.
Collapse
|
452
|
Pilli M, Arko-Mensah J, Ponpuak M, Roberts E, Master S, Mandell MA, Dupont N, Ornatowski W, Jiang S, Bradfute SB, Bruun JA, Hansen TE, Johansen T, Deretic V. TBK-1 promotes autophagy-mediated antimicrobial defense by controlling autophagosome maturation. Immunity 2012; 37:223-34. [PMID: 22921120 DOI: 10.1016/j.immuni.2012.04.015] [Citation(s) in RCA: 521] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 02/04/2012] [Accepted: 04/27/2012] [Indexed: 02/07/2023]
Abstract
Autophagy is a fundamental biological process of the eukaryotic cell contributing to diverse cellular and physiological functions including cell-autonomous defense against intracellular pathogens. Here, we screened the Rab family of membrane trafficking regulators for effects on autophagic elimination of Mycobacterium tuberculosis var. bovis BCG and found that Rab8b and its downstream interacting partner, innate immunity regulator TBK-1, are required for autophagic elimination of mycobacteria in macrophages. TBK-1 was necessary for autophagic maturation. TBK-1 coordinated assembly and function of the autophagic machinery and phosphorylated the autophagic adaptor p62 (sequestosome 1) on Ser-403, a residue essential for its role in autophagic clearance. A key proinflammatory cytokine, IL-1β, induced autophagy leading to autophagic killing of mycobacteria in macrophages, and this IL-1β activity was dependent on TBK-1. Thus, TBK-1 is a key regulator of immunological autophagy and is responsible for the maturation of autophagosomes into lytic bactericidal organelles.
Collapse
Affiliation(s)
- Manohar Pilli
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
453
|
Tang SW, Ducroux A, Jeang KT, Neuveut C. Impact of cellular autophagy on viruses: Insights from hepatitis B virus and human retroviruses. J Biomed Sci 2012; 19:92. [PMID: 23110561 PMCID: PMC3495035 DOI: 10.1186/1423-0127-19-92] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 10/12/2012] [Indexed: 02/07/2023] Open
Abstract
Autophagy is a protein degradative process important for normal cellular metabolism. It is apparently used also by cells to eliminate invading pathogens. Interestingly, many pathogens have learned to subvert the cell’s autophagic process. Here, we review the interactions between viruses and cells in regards to cellular autophagy. Using findings from hepatitis B virus and human retroviruses, HIV-1 and HTLV-1, we discuss mechanisms used by viruses to usurp cellular autophagy in ways that benefit viral replication.
Collapse
Affiliation(s)
- Sai-Wen Tang
- Molecular Virology Section, Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892-0460, USA
| | | | | | | |
Collapse
|
454
|
Russo R, Berliocchi L, Adornetto A, Amantea D, Nucci C, Tassorelli C, Morrone LA, Bagetta G, Corasaniti MT. In search of new targets for retinal neuroprotection: is there a role for autophagy? Curr Opin Pharmacol 2012; 13:72-7. [PMID: 23036350 DOI: 10.1016/j.coph.2012.09.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Revised: 09/07/2012] [Accepted: 09/10/2012] [Indexed: 01/09/2023]
Abstract
Autophagy is a highly conserved catabolic pathway in which proteins and organelles are engulfed by vacuoles that are targeted to lysosomes for degradation. Defects in the autophagic machinery have been described in several neurodegenerative diseases uncovering the tight dependency of neuronal survival on the efficiency of the autophagic process. Despite the large amount of literature investigating autophagy in a number of pathological conditions our knowledge of its role in glaucoma neurodegeneration is just beginning. However, recent experimental data revealing that autophagy modulation occurs in retinal ganglion cells (RGCs) under glaucoma-related stressing conditions support the hypothesis that dysfunctional autophagy might underlie the process leading to RGC death. Although our understanding of the role of autophagy in glaucoma is still developing, there is the possibility that neuroprotection may be achieved by modulating autophagy. This would be a promising approach as it could lead to the much-sought development of alternative therapeutic strategies to prevent visual loss in glaucoma.
Collapse
Affiliation(s)
- Rossella Russo
- Department of Pharmacobiology, University of Calabria, Arcavacata di Rende, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
455
|
Patel AS, Morse D, Choi AMK. Regulation and functional significance of autophagy in respiratory cell biology and disease. Am J Respir Cell Mol Biol 2012; 48:1-9. [PMID: 22984088 DOI: 10.1165/rcmb.2012-0282tr] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Autophagy is a homeostatic process common to all eukaryotic cells that serves to degrade intracellular components. Among three classes of autophagy, macroautophagy is best understood, and is the subject of this Review. The function of autophagy is multifaceted, and includes removal of long-lived proteins and damaged or unneeded organelles, recycling of intracellular components for nutrients, and defense against pathogens. This process has been extensively studied in yeast, and understanding of its functional significance in human disease is also increasing. This Review explores the basic machinery and regulation of autophagy in mammalian systems, methods employed to measure autophagic activity, and then focuses on recent discoveries about the functional significance of autophagy in respiratory diseases, including chronic obstructive pulmonary disease, cystic fibrosis, tuberculosis, idiopathic pulmonary fibrosis, pulmonary arterial hypertension, acute lung injury, and lymphangioleiomyomatosis.
Collapse
Affiliation(s)
- Avignat S Patel
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
456
|
Lavallard VJ, Meijer AJ, Codogno P, Gual P. Autophagy, signaling and obesity. Pharmacol Res 2012; 66:513-25. [PMID: 22982482 DOI: 10.1016/j.phrs.2012.09.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 09/04/2012] [Indexed: 12/28/2022]
Abstract
Autophagy is a cellular pathway crucial for development, differentiation, survival and homeostasis. Autophagy can provide protection against aging and a number of pathologies such as cancer, neurodegeneration, cardiac disease and infection. Recent studies have reported new functions of autophagy in the regulation of cellular processes such as lipid metabolism and insulin sensitivity. Important links between the regulation of autophagy and obesity including food intake, adipose tissue development, β cell function, insulin sensitivity and hepatic steatosis exist. This review will provide insight into the current understanding of autophagy, its regulation, and its role in the complications associated with obesity.
Collapse
Affiliation(s)
- Vanessa J Lavallard
- INSERM, U1065, Equipe 8 «Complications hépatiques de l'obésité», Nice, France
| | | | | | | |
Collapse
|
457
|
Neuronal autophagy in cerebral ischemia. Neurosci Bull 2012; 28:658-66. [PMID: 22968594 DOI: 10.1007/s12264-012-1268-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 03/08/2012] [Indexed: 01/09/2023] Open
Abstract
Autophagy has evolved as a conserved process for the bulk degradation and recycling of cytosolic components, such as long-lived proteins and organelles. In neurons, autophagy is important for homeostasis and protein quality control and is maintained at relatively low levels under normal conditions, while it is upregulated in response to pathophysiological conditions, such as cerebral ischemic injury. However, the role of autophagy is more complex. It depends on age or brain maturity, region, severity of insult, and the stage of ischemia. Whether autophagy plays a beneficial or a detrimental role in cerebral ischemia depends on various pathological conditions. In this review, we elucidate the role of neuronal autophagy in cerebral ischemia.
Collapse
|
458
|
Colecchia D, Strambi A, Sanzone S, Iavarone C, Rossi M, Dall'Armi C, Piccioni F, Verrotti di Pianella A, Chiariello M. MAPK15/ERK8 stimulates autophagy by interacting with LC3 and GABARAP proteins. Autophagy 2012; 8:1724-40. [PMID: 22948227 PMCID: PMC3541284 DOI: 10.4161/auto.21857] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Macroautophagy (hereafter referred to as autophagy) is an evolutionarily conserved catabolic process necessary for normal recycling of cellular constituents and for appropriate response to cellular stress. Although several genes belonging to the core molecular machinery involved in autophagosome formation have been discovered, relatively little is known about the nature of signaling networks controlling autophagy upon intracellular or extracellular stimuli. We discovered ATG8-like proteins (MAP1LC3B, GABARAP and GABARAPL1) as novel interactors of MAPK15/ERK8, a MAP kinase involved in cell proliferation and transformation. Based on the role of these proteins in the autophagic process, we demonstrated that MAPK15 is indeed localized to autophagic compartments and increased, in a kinase-dependent fashion, ATG8-like proteins lipidation, autophagosome formation and SQSTM1 degradation, while decreasing LC3B inhibitory phosphorylation. Interestingly, we also identified a conserved LC3-interacting region (LIR) in MAPK15 responsible for its interaction with ATG8-like proteins, for its localization to autophagic structures and, consequently, for stimulation of the formation of these compartments. Furthermore, we reveal that MAPK15 activity was induced in response to serum and amino-acid starvation and that this stimulus, in turn, required endogenous MAPK15 expression to induce the autophagic process. Altogether, these results suggested a new function for MAPK15 as a regulator of autophagy, acting through interaction with ATG8 family proteins. Also, based on the key role of this process in several human diseases, these results supported the use of this MAP kinase as a potential novel therapeutic target.
Collapse
Affiliation(s)
- David Colecchia
- Istituto Toscano Tumori-Core Research Laboratory, Signal Transduction Unit, AOU Senese, Siena, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
459
|
Abstract
SIGNIFICANCE Study over the past decade has revealed the critical role of autophagy in homeostatic and stress cell signaling. Autophagy is an intracellular process whereby double-membrane structures termed autophagosomes deliver cellular components to lysosomes for their degradation. RECENT ADVANCES Targets of specific autophagy range from proteins to protein aggregates to organelles and intracellular pathogens. Accordingly, autophagy fulfills numerous physiological roles and its deregulation can underlie disease. CRITICAL ISSUES Although autophagy is orchestrated by common core machinery, the discovery of distinct and highly varied autophagic programs reveals autophagy as a heterogeneous phenomenon, capable of specificity. FUTURE DIRECTIONS Here the molecular mechanisms of mammalian autophagy are reviewed, including recent advances in unraveling of its machinery, specificity, and regulation. With our increasing knowledge of autophagy mechanisms and signaling roles, we begin to work towards a systems understanding of autophagy.
Collapse
Affiliation(s)
- Anne Hamacher-Brady
- Division of Theoretical Bioinformatics, German Cancer Research Center and BioQuant, Heidelberg, Germany.
| |
Collapse
|
460
|
Foot-and-mouth disease virus nonstructural protein 2C interacts with Beclin1, modulating virus replication. J Virol 2012; 86:12080-90. [PMID: 22933281 DOI: 10.1128/jvi.01610-12] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV), the causative agent of foot-and-mouth disease, is an Apthovirus within the Picornaviridae family. Replication of the virus occurs in association with replication complexes that are formed by host cell membrane rearrangements. The largest viral protein in the replication complex, 2C, is thought to have multiple roles during virus replication. However, studies examining the function of FMDV 2C have been rather limited. To better understand the role of 2C in the process of virus replication, we used a yeast two-hybrid approach to identify host proteins that interact with 2C. We report here that cellular Beclin1 is a specific host binding partner for 2C. Beclin1 is a regulator of the autophagy pathway, a metabolic pathway required for efficient FMDV replication. The 2C-Beclin1 interaction was further confirmed by coimmunoprecipitation and confocal microscopy to actually occur in FMDV-infected cells. Overexpression of either Beclin1 or Bcl-2, another important autophagy factor, strongly affects virus yield in cell culture. The fusion of lysosomes to autophagosomes containing viral proteins is not seen during FMDV infection, a process that is stimulated by Beclin1; however, in FMDV-infected cells overexpressing Beclin1 this fusion occurs, suggesting that 2C would bind to Beclin1 to prevent the fusion of lysosomes to autophagosomes, allowing for virus survival. Using reverse genetics, we demonstrate here that modifications to the amino acids in 2C that are critical for interaction with Beclin1 are also critical for virus growth. These results suggest that interaction between FMDV 2C and host protein Beclin1 could be essential for virus replication.
Collapse
|
461
|
Autophagy and transporter-based multi-drug resistance. Cells 2012; 1:558-75. [PMID: 24710490 PMCID: PMC3901113 DOI: 10.3390/cells1030558] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Revised: 08/11/2012] [Accepted: 08/16/2012] [Indexed: 12/19/2022] Open
Abstract
All the therapeutic strategies for treating cancers aim at killing the cancer cells via apoptosis (programmed cell death type I). Defective apoptosis endow tumor cells with survival. The cell can respond to such defects with autophagy. Autophagy is a cellular process by which cytoplasmic material is either degraded to maintain homeostasis or recycled for energy and nutrients in starvation. A plethora of evidence has shown that the role of autophagy in tumors is complex. A lot of effort is needed to underline the functional status of autophagy in tumor progression and treatment, and elucidate how to tweak autophagy to treat cancer. Furthermore, during the treatment of cancer, the limitation for the cure rate and survival is the phenomenon of multi drug resistance (MDR). The development of MDR is an intricate process that could be regulated by drug transporters, enzymes, anti-apoptotic genes or DNA repair mechanisms. Reports have shown that autophagy has a dual role in MDR. Furthermore, it has been reported that activation of a death pathway may overcome MDR, thus pointing the importance of other death pathways to regulate tumor cell progression and growth. Therefore, in this review we will discuss the role of autophagy in MDR tumors and a possible link amongst these phenomena.
Collapse
|
462
|
Abstract
Macroautophagy (hereafter referred to as autophagy) is a tightly regulated intracellular catabolic pathway involving the lysosomal degradation of cytoplasmic organelles and proteins. Central to this process is the formation of the autophagosome, a double membrane-bound vesicle, which is responsible for the delivery of cytoplasmic cargo to the lysosomes. Autophagy levels are constantly changing, allowing adaptation to both immediate and long-term needs of the cell, underlining why tight control of this process is essential in order to prevent the development of pathological disorders. Substantial progress has recently contributed to our understanding of the molecular mechanisms of the autophagy machinery, yet several gaps remain in our knowledge of this process. The discovery of microRNAs (miRNAs) established a new paradigm of post-transcriptional gene regulation and during the past decade these small non-coding RNAs have been closely linked to virtually all known fundamental biological pathways. Deregulation of miRNAs can contribute to the development of human diseases, including cancer, where they can function as bona fide oncogenes or tumor suppressors. In this review, we highlight recent advances linking miRNAs to regulation of the autophagy pathway. This regulation occurs both through specific core pathway components as well as through less well-defined mechanisms. Although this field is still in its infancy, we are beginning to understand the potential implications of these initial findings, both from a pathological perspective, but also from a therapeutic view, where miRNAs can be harnessed experimentally to alter autophagy levels in human tumors, affecting parameters such as tumor survival and treatment sensitivity.
Collapse
Affiliation(s)
- Lisa B Frankel
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
463
|
Peng C, Ye J, Yan S, Kong S, Shen Y, Li C, Li Q, Zheng Y, Deng K, Xu T, Tao W. Ablation of vacuole protein sorting 18 (Vps18) gene leads to neurodegeneration and impaired neuronal migration by disrupting multiple vesicle transport pathways to lysosomes. J Biol Chem 2012; 287:32861-73. [PMID: 22854957 PMCID: PMC3463306 DOI: 10.1074/jbc.m112.384305] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Intracellular vesicle transport pathways are critical for neuronal survival and central nervous system development. The Vps-C complex regulates multiple vesicle transport pathways to the lysosome in lower organisms. However, little is known regarding its physiological function in mammals. We deleted Vps18, a central member of Vps-C core complex, in neural cells by generating Vps18(F/F); Nestin-Cre mice (Vps18 conditional knock-out mice). These mice displayed severe neurodegeneration and neuronal migration defects. Mechanistic studies revealed that Vps18 deficiency caused neurodegeneration by blocking multiple vesicle transport pathways to the lysosome, including autophagy, endocytosis, and biosynthetic pathways. Our study also showed that ablation of Vps18 resulted in up-regulation of β1 integrin in mouse brain probably due to lysosome dysfunction but had no effects on the reelin pathway, expression of N-cadherin, or activation of JNK, which are implicated in the regulation of neuronal migration. Finally, we demonstrated that knocking down β1 integrin partially rescued the migration defects, suggesting that Vps18 deficiency-mediated up-regulation of β1 integrin may contribute to the defect of neuronal migration in the Vps18-deficient brain. Our results demonstrate important roles of Vps18 in neuron survival and migration, which are disrupted in multiple neural disorders.
Collapse
Affiliation(s)
- Chao Peng
- Institute of Developmental Biology and Molecular Medicine, Fudan University, Shanghai 200433, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
464
|
Runkle KB, Meyerkord CL, Desai NV, Takahashi Y, Wang HG. Bif-1 suppresses breast cancer cell migration by promoting EGFR endocytic degradation. Cancer Biol Ther 2012; 13:956-66. [PMID: 22785202 DOI: 10.4161/cbt.20951] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Dysregulation of EGFR expression and signaling is well documented to contribute to disease progression and metastasis in many types of cancer including breast cancer. EGF-stimulated EGFR activation leads to receptor internalization and endocytic degradation to control EGFR-mediated signaling. This process is frequently deregulated in cancer cells, leading to increased EGFR expression and mitogenic signaling. Here, we demonstrate that Bif-1, a tumor suppressor, plays a role in EGFR endocytic degradation and chemotactic migration in MDA-MB-231 breast cancer cells. Our data reveal that suppression of Bif-1 expression delays EGFR degradation and sustains Erk1/2 activation in response to EGF stimulation. Mechanistically, loss of Bif-1 sequesters internalized EGF in Rab5-positive endosomes and delays EGFR trafficking to lysosomes. Recruitment of Rab7 to EGF-positive vesicles and the activation of Rab7 are impaired in Bif-1 knockdown cells. Additionally, intracellular pH and the localization of acidic vesicles are altered by suppression of Bif-1. Furthermore, inhibition of Bif-1 increases chemotactic cell migration in response to EGF or serum, which correlates with prolonged cytoskeletal reorganization. Importantly, the effect of Bif-1 on EGF-induced cell migration is abolished by gefitinib, an EGFR-specific inhibitor. Taken together, these data suggest a novel function for Bif-1 as a suppressor of breast cancer cell migration by promoting EGFR degradation through the regulation of endosome maturation.
Collapse
Affiliation(s)
- Kristin B Runkle
- Department of Pharmacology and Penn State Hershey Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | | | | | | | | |
Collapse
|
465
|
Abstract
Stressors ranging from nutrient deprivation to immune signaling can induce the degradation of cytoplasmic material by a process known as autophagy. Increasingly, research on autophagy has begun to focus on its role in inflammation and the immune response. Autophagy acts as an immune effector that mediates pathogen clearance. The roles of autophagy bridge both the innate and adaptive immune systems and include functions in thymic selection, antigen presentation, promotion of lymphocyte homeostasis and survival, and regulation of cytokine production. In this review, we discuss the mechanisms by which autophagy is regulated, as well as the functions of autophagy and autophagy proteins in immunity and inflammation.
Collapse
Affiliation(s)
- Petric Kuballa
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts 02142, USA.
| | | | | | | |
Collapse
|
466
|
Kim HJ, Zhong Q, Sheng ZH, Yoshimori T, Liang C, Jung JU. Beclin-1-interacting autophagy protein Atg14L targets the SNARE-associated protein Snapin to coordinate endocytic trafficking. J Cell Sci 2012; 125:4740-50. [PMID: 22797916 DOI: 10.1242/jcs.100339] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a highly regulated membrane remodeling process that allows the lysosome-mediated degradation of cytoplasmic entities by sequestrating them in double-membrane autophagosomes. Autophagy is hence highly intertwined with the endocytic trafficking pathway, sharing similar molecular machinery. Atg14L, also known as Beclin 1-associated autophagy-related key regulator (Barkor), directly interacts with Beclin 1 through its coiled-coil domain and enhances phosphatidylinositol 3-phosphate kinase class III (PI3KC3) activity to induce autophagosome membrane nucleation, highlighting its essential role in the early stage of mammalian autophagy. Here, we report a novel function of Atg14L in the endocytic trafficking pathway wherein Atg14L binds to and colocalizes with the fusogenic SNARE effector protein Snapin to facilitate endosome maturation. Atg14L specifically binds to Snapin and this interaction effectively facilitates endosomal maturation without affecting autophagic cargo degradation. Consequently, atg14l knockdown significantly delayed the late stage of endocytic trafficking, as evidenced by the retarded kinetics of internalized surface receptor degradation. This phenotype was effectively complemented by wild-type Atg14L or Beclin 1-binding mutant, but not by its Snapin-binding mutant. Taken together, our study demonstrates that Atg14L functions as a multivalent trafficking effector that regulates endosome maturation as well as autophagosome formation, reflecting the complexity of the crosstalk between autophagic and endocytic vesicle trafficking in higher eukaryotes.
Collapse
Affiliation(s)
- Hee Jin Kim
- Department of Molecular Microbiology and Immunology, University of Southern California, Keck School of Medicine, Los Angeles, CA 90033, USA
| | | | | | | | | | | |
Collapse
|
467
|
Yang CS, Lee JS, Rodgers M, Min CK, Lee JY, Kim HJ, Lee KH, Kim CJ, Oh B, Zandi E, Yue Z, Kramnik I, Liang C, Jung JU. Autophagy protein Rubicon mediates phagocytic NADPH oxidase activation in response to microbial infection or TLR stimulation. Cell Host Microbe 2012; 11:264-76. [PMID: 22423966 DOI: 10.1016/j.chom.2012.01.018] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 10/26/2011] [Accepted: 01/30/2012] [Indexed: 10/28/2022]
Abstract
Phagocytosis and autophagy are two important and related arms of the host's first-line defense against microbial invasion. Rubicon is a RUN domain containing cysteine-rich protein that functions as part of a Beclin-1-Vps34-containing autophagy complex. We report that Rubicon is also an essential, positive regulator of the NADPH oxidase complex. Upon microbial infection or Toll-like-receptor 2 (TLR2) activation, Rubicon interacts with the p22phox subunit of the NADPH oxidase complex, facilitating its phagosomal trafficking to induce a burst of reactive oxygen species (ROS) and inflammatory cytokines. Consequently, ectopic expression or depletion of Rubicon profoundly affected ROS, inflammatory cytokine production, and subsequent antimicrobial activity. Rubicon's actions in autophagy and in the NADPH oxidase complex are functionally and genetically separable, indicating that Rubicon functions in two ancient innate immune machineries, autophagy and phagocytosis, depending on the environmental stimulus. Rubicon may thus be pivotal to generating an optimal intracellular immune response against microbial infection.
Collapse
Affiliation(s)
- Chul-Su Yang
- Department of Molecular Microbiology and Immunology, University of Southern California, Keck School of Medicine, Harlyne J. Norris Cancer Research Tower, Los Angeles, California 90033, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
468
|
Viscomi MT, D’Amelio M. The “Janus-Faced Role” of Autophagy in Neuronal Sickness: Focus on Neurodegeneration. Mol Neurobiol 2012; 46:513-21. [DOI: 10.1007/s12035-012-8296-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 06/21/2012] [Indexed: 12/13/2022]
|
469
|
Luo S, Garcia-Arencibia M, Zhao R, Puri C, Toh PPC, Sadiq O, Rubinsztein DC. Bim inhibits autophagy by recruiting Beclin 1 to microtubules. Mol Cell 2012; 47:359-70. [PMID: 22742832 PMCID: PMC3419265 DOI: 10.1016/j.molcel.2012.05.040] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 04/19/2012] [Accepted: 05/17/2012] [Indexed: 12/23/2022]
Abstract
Bim is a proapoptotic BH3-only Bcl-2 family member. In response to death stimuli, Bim dissociates from the dynein light chain 1 (DYNLL1/LC8), where it is inactive, and can then initiate Bax/Bak-mediated mitochondria-dependent apoptosis. We found that Bim depletion increases autophagosome synthesis in cells and in vivo, and this effect is inhibited by overexpression of cell death-deficient Bim. Bim inhibits autophagy by interacting with Beclin 1, an autophagy regulator, and this interaction is facilitated by LC8. Bim bridges the Beclin 1-LC8 interaction and thereby inhibits autophagy by mislocalizing Beclin 1 to the dynein motor complex. Starvation, an autophagic stimulus, induces Bim phosphorylation, which abrogates LC8 binding to Bim, leading to dissociation of Bim and Beclin 1. Our data suggest that Bim switches locations between apoptosis-inactive/autophagy-inhibitory and apoptosis-active/autophagy-permissive sites.
Collapse
Affiliation(s)
- Shouqing Luo
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | | | | | | | | | | | | |
Collapse
|
470
|
Abstract
Autophagy is a self-degradation system of cellular components through an autophagosomal-lysosomal pathway. Over the last 15 yr, yeast genetic screens led to the identification of a number of genes involved in the autophagic pathway. Most of these autophagy genes are present in higher eukaryotes and regulate autophagy process for cell survival and homeostasis. Significant progress has recently been made to better understand the molecular mechanisms of the autophagy machinery. Especially, autophagy process, including the regulation of autophagy induction through mTOR and the nucleation and elongation in autophagosome formation through class III phosphatidylinositol 3-kinase complex and ubiquitin-like conjugation systems, became evident. While many unanswered questions remain to be answered, here, we summarize the recent process of autophagy with emphasis on molecules and their protein complexes along with advanced molecular mechanisms that regulate the autophagy machinery.
Collapse
Affiliation(s)
- Jong Ok Pyo
- School of Biological Science/Bio-MAX Institute, Seoul National University, Seoul 151-747, Korea
| | | | | |
Collapse
|
471
|
Agola JO, Hong L, Surviladze Z, Ursu O, Waller A, Strouse JJ, Simpson DS, Schroeder CE, Oprea TI, Golden JE, Aubé J, Buranda T, Sklar LA, Wandinger-Ness A. A competitive nucleotide binding inhibitor: in vitro characterization of Rab7 GTPase inhibition. ACS Chem Biol 2012; 7:1095-108. [PMID: 22486388 DOI: 10.1021/cb3001099] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Mapping the functionality of GTPases through small molecule inhibitors represents an underexplored area in large part due to the lack of suitable compounds. Here we report on the small chemical molecule 2-(benzoylcarbamothioylamino)-5,5-dimethyl-4,7-dihydrothieno[2,3-c]pyran-3-carboxylic acid (PubChem CID 1067700) as an inhibitor of nucleotide binding by Ras-related GTPases. The mechanism of action of this pan-GTPase inhibitor was characterized in the context of the Rab7 GTPase as there are no known inhibitors of Rab GTPases. Bead-based flow cytometry established that CID 1067700 has significant inhibitory potency on Rab7 nucleotide binding with nanomolar inhibitor (K(i)) values and an inhibitory response of ≥97% for BODIPY-GTP and BODIPY-GDP binding. Other tested GTPases exhibited significantly lower responses. The compound behaves as a competitive inhibitor of Rab7 nucleotide binding based on both equilibrium binding and dissociation assays. Molecular docking analyses are compatible with CID 1067700 fitting into the nucleotide binding pocket of the GTP-conformer of Rab7. On the GDP-conformer, the molecule has greater solvent exposure and significantly less protein interaction relative to GDP, offering a molecular rationale for the experimental results. Structural features pertinent to CID 1067700 inhibitory activity have been identified through initial structure-activity analyses and identified a molecular scaffold that may serve in the generation of more selective probes for Rab7 and other GTPases. Taken together, our study has identified the first competitive GTPase inhibitor and demonstrated the potential utility of the compound for dissecting the enzymology of the Rab7 GTPase, as well as serving as a model for other small molecular weight GTPase inhibitors.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Denise S. Simpson
- University of Kansas Specialized Chemistry Center, Lawrence, Kansas 66047,
United States
| | - Chad E. Schroeder
- University of Kansas Specialized Chemistry Center, Lawrence, Kansas 66047,
United States
| | | | - Jennifer E. Golden
- University of Kansas Specialized Chemistry Center, Lawrence, Kansas 66047,
United States
| | - Jeffrey Aubé
- University of Kansas Specialized Chemistry Center, Lawrence, Kansas 66047,
United States
- Department of Medicinal
Chemistry, University of Kansas, Lawrence,
Kansas 66047, United
States
| | | | | | | |
Collapse
|
472
|
Peng C, Yan S, Ye J, Shen L, Xu T, Tao W. Vps18 deficiency inhibits dendritogenesis in Purkinje cells by blocking the lysosomal degradation of Lysyl Oxidase. Biochem Biophys Res Commun 2012; 423:715-20. [PMID: 22699122 DOI: 10.1016/j.bbrc.2012.06.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 06/05/2012] [Indexed: 11/15/2022]
Abstract
Dendrite development occupies a central position in the formation of nervous system. However, whether lysosomal degradative function is required for dendritogenesis of neurons remains unknown. We have recently demonstrated the critical role of Vps18 in the lysosomal degradation pathway in mice. Here, we report that Vps18 deficiency severely blocks the dendrite development of Pukinje cells but not cerebral cortical neurons. Furthermore, we also demonstrate that the lysyl oxidase (Lox) protein is degraded through lysosome and accumulated in the Vps18 deficient cerebellum but not in cerebral cortices. Our results suggest that lysosome regulates dendritogenesis of Purkinje cells though degrading Lox.
Collapse
Affiliation(s)
- Chao Peng
- Institute of Developmental Biology and Molecular Medicine, Fudan University, Shanghai 200433, China
| | | | | | | | | | | |
Collapse
|
473
|
|
474
|
Sirois I, Groleau J, Pallet N, Brassard N, Hamelin K, Londono I, Pshezhetsky AV, Bendayan M, Hébert MJ. Caspase activation regulates the extracellular export of autophagic vacuoles. Autophagy 2012; 8:927-37. [PMID: 22692030 DOI: 10.4161/auto.19768] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The endothelium plays a central role in the regulation of vascular wall cellularity and tone by secreting an array of mediators of importance in intercellular communication. Nutrient deprivation of human endothelial cells (EC) evokes unconventional forms of secretion leading to the release of nanovesicles distinct from apoptotic bodies and bearing markers of multivesicular bodies (MVB). Nutrient deficiency is also a potent inducer of autophagy and vesicular transport pathways can be assisted by autophagy. Nutrient deficiency induced a significant and rapid increase in autophagic features, as imaged by electron microscopy and immunoblotting analysis of LC3-II/LC3-I ratios. Increased autophagic flux was confirmed by exposing serum-starved cells to bafilomycin A 1. Induction of autophagy was followed by indices of an apoptotic response, as assessed by microscopy and poly (ADP-ribose) polymerase cleavage in absence of cell membrane permeabilization indicative of necrosis. Pan-caspase inhibition with ZVAD-FMK did not prevent the development of autophagy but negatively impacted autophagic vacuole (AV) maturation. Adopting a multidimensional proteomics approach with validation by immunoblotting, we determined that nutrient-deprived EC released AV components (LC3I, LC3-II, ATG16L1 and LAMP2) whereas pan-caspase inhibition with ZVAD-FMK blocked AV release. Similarly, nutrient deprivation in aortic murine EC isolated from CASP3/caspase 3-deficient mice induced an autophagic response in absence of apoptosis and failed to prompt LC3 release. Collectively, the present results demonstrate the release of autophagic components by nutrient-deprived apoptotic human cells in absence of cell membrane permeabilization. These results also identify caspase-3 as a novel regulator of AV release.
Collapse
Affiliation(s)
- Isabelle Sirois
- Research Centre, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
475
|
Deficiency of ATP13A2 leads to lysosomal dysfunction, α-synuclein accumulation, and neurotoxicity. J Neurosci 2012; 32:4240-6. [PMID: 22442086 DOI: 10.1523/jneurosci.5575-11.2012] [Citation(s) in RCA: 230] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The autophagy-lysosomal pathway plays an important role in the clearance of long-lived proteins and dysfunctional organelles. Lysosomal dysfunction has been implicated in several neurodegenerative disorders including Parkinson's disease and related synucleinopathies that are characterized by accumulations of α-synuclein in Lewy bodies. Recent identification of mutations in genes linked to lysosomal function and neurodegeneration has offered a unique opportunity to directly examine the role of lysosomes in disease pathogenesis. Mutations in lysosomal membrane protein ATP13A2 (PARK9) cause familial Kufor-Rakeb syndrome characterized by early-onset parkinsonism, pyramidal degeneration and dementia. While previous data suggested a role of ATP13A2 in α-synuclein misfolding and toxicity, the mechanistic link has not been established. Here we report that loss of ATP13A2 in human fibroblasts from patients with Kufor-Rakeb syndrome or in mouse primary neurons leads to impaired lysosomal degradation capacity. This lysosomal dysfunction results in accumulation of α-synuclein and toxicity in primary cortical neurons. Importantly, silencing of endogenous α-synuclein attenuated the toxicity in ATP13A2-depleted neurons, suggesting that loss of ATP13A2 mediates neurotoxicity at least in part via the accumulation of α-synuclein. Our findings implicate lysosomal dysfunction in the pathogenesis of Kufor-Rakeb syndrome and suggest that upregulation of lysosomal function and downregulation of α-synuclein represent important therapeutic strategies for this disorder.
Collapse
|
476
|
Autophagy: more than a nonselective pathway. Int J Cell Biol 2012; 2012:219625. [PMID: 22666256 PMCID: PMC3362037 DOI: 10.1155/2012/219625] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 02/07/2012] [Indexed: 12/11/2022] Open
Abstract
Autophagy is a catabolic pathway conserved among eukaryotes that allows cells to rapidly eliminate large unwanted structures such as aberrant protein aggregates, superfluous or damaged organelles, and invading pathogens. The hallmark of this transport pathway is the sequestration of the cargoes that have to be degraded in the lysosomes by double-membrane vesicles called autophagosomes. The key actors mediating the biogenesis of these carriers are the autophagy-related genes (ATGs). For a long time, it was assumed that autophagy is a bulk process. Recent studies, however, have highlighted the capacity of this pathway to exclusively eliminate specific structures and thus better fulfil the catabolic necessities of the cell. We are just starting to unveil the regulation and mechanism of these selective types of autophagy, but what it is already clearly emerging is that structures targeted to destruction are accurately enwrapped by autophagosomes through the action of specific receptors and adaptors. In this paper, we will briefly discuss the impact that the selective types of autophagy have had on our understanding of autophagy.
Collapse
|
477
|
Abstract
Autophagy is an evolutionarily conserved catabolic pathway that has multiple roles in carcinogenesis and cancer therapy. It can inhibit the initiation of tumorigenesis through limiting cytoplasmic damage, genomic instability and inflammation, and the loss of certain autophagy genes can lead to cancer. Conversely, autophagy can also assist cells in dealing with stressful metabolic environments, thereby promoting cancer cell survival. In fact, some cancers rely on autophagy to survive and progress. Furthermore, tumour cells can exploit autophagy to cope with the cytotoxicity of certain anticancer drugs. By contrast, it appears that certain therapeutics require autophagy for the effective killing of cancer cells. Despite these dichotomies, it is clear that autophagy has an important, if complex, role in cancer. This is further exemplified by the fact that autophagy is connected with major cancer networks, including those driven by p53, mammalian target of rapamycin (mTOR), RAS and glutamine metabolism. In this Commentary, we highlight recent advances in our understanding of the role that autophagy has in cancer and discuss current strategies for targeting autophagy for therapeutic gain.
Collapse
Affiliation(s)
- Emma Y Liu
- Tumour Cell Death Laboratory, Beatson Institute for Cancer Research, Garscube Estate, Glasgow, UK
| | | |
Collapse
|
478
|
Ras-related tumorigenesis is suppressed by BNIP3-mediated autophagy through inhibition of cell proliferation. Neoplasia 2012; 13:1171-82. [PMID: 22241963 DOI: 10.1593/neo.11888] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 11/07/2011] [Accepted: 11/12/2011] [Indexed: 12/19/2022] Open
Abstract
Autophagy plays diverse roles in Ras-related tumorigenesis. H-ras(val12) induces autophagy through multiple signaling pathways including Raf-1/ERK pathway, and various ERK downstream molecules of autophagy have been reported. In this study, Bcl-2/adenovirus E1B 19-kDa-interacting protein 3 (BNIP3) is identified as a downstream transducer of the Ras/Raf/ERK signaling pathway to induce autophagy. BNIP3 was upregulated by H-ras(val12) at the transcriptional level to compete with Beclin 1 for binding with Bcl-2. H-ras(val12)-induced autophagy suppresses cell proliferation demonstrated both in vitro and in vivo by expression of ectopic BNIP3, Atg5, or interference RNA of BNIP3 (siBNIP3) and Atg5 (shAtg5) using mouse NIH3T3 and embryo fibroblast cells. H-ras(val12) induces different autophagic responses depending on the duration of Ras overexpression. After a short time (48 hours) of Ras overexpression, autophagy inhibits cell proliferation. In contrast, a longer time (2 weeks) of Ras overexpression, cell proliferation was enhanced by autophagy. Furthermore, overexpression of mutant Ras, BNIP3, and LC3-II was detected in bladder cancer T24 cells and the tumor parts of 75% of bladder cancer specimens indicating a positive correlation between autophagy and tumorigenesis. Taken together, our mouse model demonstrates a balance between BNIP3-mediated autophagy and H-ras(val12)-induced tumor formation and reveals that H-ras(val12) induces autophagy in a BNIP3-dependent manner, and the threshold of autophagy plays a decisive role in H-ras(val12)-induced tumorigenesis. Our findings combined with others' reports suggest a new therapeutic strategy against Ras-related tumorigenesis by negative or positive regulation of autophagic activity, which is determined by the level of autophagy and tumor progression stages.
Collapse
|
479
|
Abrahamsen H, Stenmark H, Platta HW. Ubiquitination and phosphorylation of Beclin 1 and its binding partners: Tuning class III phosphatidylinositol 3-kinase activity and tumor suppression. FEBS Lett 2012; 586:1584-91. [PMID: 22673570 DOI: 10.1016/j.febslet.2012.04.046] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 04/23/2012] [Accepted: 04/23/2012] [Indexed: 12/19/2022]
Abstract
The class III phosphatidylinositol 3-kinase (PI3K-III) complex and its phosphorylated lipid product phosphatidylinositol 3-phosphate (PtdIns3P) control the three topologically related membrane-involution processes autophagy, endocytosis, and cytokinesis. The activity of the catalytic unit of PI3K-III complex, the Vacuolar sorting protein 34 (VPS34), depends on the membrane targeting unit Vacuolar sorting protein 15 (VPS15), and the tumor suppressor protein Beclin 1. It is established that the overall activity of VPS34 is positively regulated by Beclin 1, whose positive influence is further controlled through the association with a set of Beclin1 interacting components, which stimulate or inhibit VPS34. The interaction between Beclin 1 and Beclin 1-associated components are controllable and is regulated by phosphorylation in a context-dependent manner. Here, we focus on an emerging concept whereby the activity of the PI3K-III complex is controlled by ubiquitination of Beclin 1 or Beclin 1-associated molecules. In summary, at least three different ubiquitin ligases can affect the positive regulatory function of Beclin 1 towards VPS34, suggesting that ubiquitination is an important and physiologically relevant event in tuning the tumor suppressor function of Beclin 1.
Collapse
Affiliation(s)
- Hilde Abrahamsen
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, 0310 Oslo, Norway.
| | | | | |
Collapse
|
480
|
Zhao Z, Oh S, Li D, Ni D, Pirooz SD, Lee JH, Yang S, Lee JY, Ghozalli I, Costanzo V, Stark JM, Liang C. A dual role for UVRAG in maintaining chromosomal stability independent of autophagy. Dev Cell 2012; 22:1001-16. [PMID: 22542840 DOI: 10.1016/j.devcel.2011.12.027] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 02/09/2012] [Accepted: 03/26/2012] [Indexed: 01/07/2023]
Abstract
Autophagy defects have recently been associated with chromosomal instability, a hallmark of human cancer. However, the functional specificity and mechanism of action of autophagy-related factors in genome stability remain elusive. Here we report that UVRAG, an autophagic tumor suppressor, plays a dual role in chromosomal stability, surprisingly independent of autophagy. We establish that UVRAG promotes DNA double-strand-break repair by directly binding and activating DNA-PK in nonhomologous end joining. Disruption of UVRAG increases genetic instability and sensitivity of cells to irradiation. Furthermore, UVRAG was also found to be localized at centrosomes and physically associated with CEP63, an integral component of centrosomes. Disruption of the association of UVRAG with centrosomes causes centrosome instability and aneuploidy. UVRAG thus represents an autophagy-related molecular factor that also has a convergent role in patrolling both the structural integrity and proper segregation of chromosomes, which may confer autophagy-independent tumor suppressor activity.
Collapse
Affiliation(s)
- Zhen Zhao
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
481
|
Drosophila Golgi membrane protein Ema promotes autophagosomal growth and function. Proc Natl Acad Sci U S A 2012; 109:E1072-81. [PMID: 22493244 DOI: 10.1073/pnas.1120320109] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Autophagy is a self-degradative process in which cellular material is enclosed within autophagosomes and trafficked to lysosomes for degradation. Autophagosomal biogenesis is well described; however mechanisms controlling the growth and ultimate size of autophagosomes are unclear. Here we demonstrate that the Drosophila membrane protein Ema is required for the growth of autophagosomes. In an ema mutant, autophagosomes form in response to starvation and developmental cues, and these autophagosomes can mature into autolysosomes; however the autophagosomes are very small, and autophagy is impaired. In fat body cells, Ema localizes to the Golgi complex and is recruited to the membrane of autophagosomes in response to starvation. The Drosophila Golgi protein Lva also is recruited to the periphery of autophagosomes in response to starvation, and this recruitment requires ema. Therefore, we propose that Golgi is a membrane source for autophagosomal growth and that Ema facilitates this process. Clec16A, the human ortholog of Ema, is a candidate autoimmune susceptibility locus. Expression of Clec16A can rescue the autophagosome size defect in the ema mutant, suggesting that regulation of autophagosome morphogenesis may be a fundamental function of this gene family.
Collapse
|
482
|
Mintern JD, Villadangos JA. Autophagy and mechanisms of effective immunity. Front Immunol 2012; 3:60. [PMID: 22566941 PMCID: PMC3342370 DOI: 10.3389/fimmu.2012.00060] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 03/08/2012] [Indexed: 01/27/2023] Open
Abstract
Macroautophagy (autophagy) is a cellular pathway facilitating several critical functions. First, autophagy is a major pathway of degradation. It enables elimination of microbes that have invaded intracellular compartments. In addition, it promotes degradation of damaged cellular content, thereby acting to limit inflammatory signals. Second, autophagy is a major trafficking pathway, shuttling content between the cytosol and the lysosomal compartment. Given these two key roles, autophagy can have significant and sometimes unexpected consequences on mechanisms that initiate robust immunity. Here, we will discuss the impact of autophagy on pathways of innate and adaptive immune responses including microbe elimination, inflammatory cytokine production, antigen processing and T and B lymphocyte immunity.
Collapse
Affiliation(s)
- Justine D Mintern
- Department of Biochemistry and Molecular Biology, The University of Melbourne Parkville, VIC, Australia
| | | |
Collapse
|
483
|
WU P, XU CM. Advances in Relationship Between Class Ⅲ PI3K Complex and Autophagy*. PROG BIOCHEM BIOPHYS 2012. [DOI: 10.3724/sp.j.1206.2011.00387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
484
|
Mijaljica D, Prescott M, Devenish RJ. The intriguing life of autophagosomes. Int J Mol Sci 2012; 13:3618-3635. [PMID: 22489171 PMCID: PMC3317731 DOI: 10.3390/ijms13033618] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 03/02/2012] [Accepted: 03/07/2012] [Indexed: 12/14/2022] Open
Abstract
Autophagosomes are double-membrane vesicles characteristic of macroautophagy, a degradative pathway for cytoplasmic material and organelles terminating in the lysosomal or vacuole compartment for mammals and yeast, respectively. This highly dynamic, multi-step process requires significant membrane reorganization events at different stages of the macroautophagic process. Such events include exchange and flow of lipids and proteins between membranes and vesicles (e.g., during initiation and growth of the phagophore), vesicular positioning and trafficking within the cell (e.g., autophagosome location and movement) and fusion of autophagosomes with the boundary membranes of the degradative compartment. Here, we review current knowledge on the contribution of different organelles to the formation of autophagosomes, their trafficking and fate within the cell. We will consider some of the unresolved questions related to the molecular mechanisms that regulate the "life and death" of the autophagosome.
Collapse
Affiliation(s)
- Dalibor Mijaljica
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton campus, Victoria 3800, Australia; E-Mails: (D.M.); (M.P.)
| | - Mark Prescott
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton campus, Victoria 3800, Australia; E-Mails: (D.M.); (M.P.)
| | - Rodney J. Devenish
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton campus, Victoria 3800, Australia; E-Mails: (D.M.); (M.P.)
| |
Collapse
|
485
|
Chen D, Fan W, Lu Y, Ding X, Chen S, Zhong Q. A mammalian autophagosome maturation mechanism mediated by TECPR1 and the Atg12-Atg5 conjugate. Mol Cell 2012; 45:629-41. [PMID: 22342342 DOI: 10.1016/j.molcel.2011.12.036] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 10/03/2011] [Accepted: 12/22/2011] [Indexed: 11/16/2022]
Abstract
Autophagy is a major catabolic pathway in eukaryotes associated with a broad spectrum of human diseases. In autophagy, autophagosomes carrying cellular cargoes fuse with lysosomes for degradation. However, the molecular mechanism underlying autophagosome maturation is largely unknown. Here we report that TECPR1 binds to the Atg12-Atg5 conjugate and phosphatidylinositol 3-phosphate (PtdIns[3]P) to promote autophagosome-lysosome fusion. TECPR1 and Atg16 form mutually exclusive complexes with the Atg12-Atg5 conjugate, and TECPR1 binds PtdIns(3)P upon association with the Atg12-Atg5 conjugate. Strikingly, TECPR1 localizes to and recruits Atg5 to autolysosome membrane. Consequently, elimination of TECPR1 leads to accumulation of autophagosomes and blocks autophagic degradation of LC3-II and p62. Finally, autophagosome maturation marked by GFP-mRFP-LC3 is defective in TECPR1-deficient cells. Thus, we propose that the concerted interactions among TECPR1, Atg12-Atg5, and PtdIns(3)P provide the fusion specificity between autophagosomes and lysosomes and that the assembly of this complex initiates the autophagosome maturation process.
Collapse
Affiliation(s)
- Dandan Chen
- Division of Biochemistry, Biophysics, and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | | | | | | |
Collapse
|
486
|
Bolt AM, Klimecki WT. Autophagy in toxicology: self-consumption in times of stress and plenty. J Appl Toxicol 2012; 32:465-79. [PMID: 22334383 DOI: 10.1002/jat.1787] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 11/11/2011] [Indexed: 12/22/2022]
Abstract
Autophagy is a critical cellular process orchestrating the lysosomal degradation of cellular components in order to maintain cellular homeostasis and respond to cellular stress. A growing research effort over the last decade has proven autophagy to be essential for constitutive protein and organelle turnover, for embryonic/neonatal survival and for cell survival during conditions of environmental stress. Emphasizing its biological importance, dysfunctional autophagy contributes to a diverse set of human diseases. Cellular stress induced by xenobiotic exposure typifies environmental stress, and can result in the induction of autophagy as a cytoprotective mechanism. An increasing number of xenobiotics are notable for their ability to modulate the induction or the rate of autophagy. The role of autophagy in normal cellular homeostasis, the intricate relationship between cellular stress and the induction of autophagy, and the identification of specific xenobiotics capable of modulating autophagy, point to the importance of the autophagic process in toxicology. This review will summarize the importance of autophagy and its role in cellular response to stress, including examples in which consideration of autophagy has contributed to a more complete understanding of toxicant-perturbed systems.
Collapse
Affiliation(s)
- Alicia M Bolt
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85724, USA.
| | | |
Collapse
|
487
|
Autophagy and apoptosis interplay during follicular atresia in fish ovary: a morphological and immunocytochemical study. Cell Tissue Res 2012; 347:467-78. [DOI: 10.1007/s00441-012-1327-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 01/11/2012] [Indexed: 11/30/2022]
|
488
|
Li X, He L, Che KH, Funderburk SF, Pan L, Pan N, Zhang M, Yue Z, Zhao Y. Imperfect interface of Beclin1 coiled-coil domain regulates homodimer and heterodimer formation with Atg14L and UVRAG. Nat Commun 2012; 3:662. [PMID: 22314358 PMCID: PMC3293417 DOI: 10.1038/ncomms1648] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 12/14/2011] [Indexed: 12/18/2022] Open
Abstract
Beclin 1 is a core component of the Class III Phosphatidylinositol 3-Kinase VPS34 complex. The coiled coil domain of Beclin 1 serves as an interaction platform for assembly of distinct Atg14L- and UVRAG-containing complexes to modulate VPS34 activity. Here we report the crystal structure of the coiled coil domain that forms an antiparallel dimer and is rendered metastable by a series of 'imperfect' a-d' pairings at its coiled coil interface. Atg14L and UVRAG promote the transition of metastable homodimeric Beclin 1 to heterodimeric Beclin1-Atg14L/UVRAG assembly. Beclin 1 mutants with their 'imperfect' a-d' pairings modified to enhance self-interaction, show distinctively altered interactions with Atg14L or UVRAG. These results suggest that specific utilization of the dimer interface and modulation of the homodimer-heterodimer transition by Beclin 1-interacting partners may underlie the molecular mechanism that controls the formation of various Beclin1-VPS34 subcomplexes to exert their effect on an array of VPS34-related activities, including autophagy.
Collapse
Affiliation(s)
- Xiaohua Li
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chirosciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
489
|
Kung CP, Budina A, Balaburski G, Bergenstock MK, Murphy M. Autophagy in tumor suppression and cancer therapy. Crit Rev Eukaryot Gene Expr 2012; 21:71-100. [PMID: 21967333 DOI: 10.1615/critreveukargeneexpr.v21.i1.50] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Autophagy is a stress-induced cell survival program whereby cells under metabolic, proteotoxic, or other stress remove dysfunctional organelles and/or misfolded/polyubiquitylated proteins by shuttling them via specialized structures called autophagosomes to the lysosome for degradation. The end result is the release of free amino acids and metabolites for use in cell survival. For tumor cells, autophagy is a double-edged sword: autophagy genes are frequently mono-allelically deleted, silenced, or mutated in human tumors, resulting in an environment of increased oxidative stress that is conducive to DNA damage, genomic instability, and tumor progression. As such, autophagy is tumor suppressive. In contrast, it is important to note that although tumor cells have reduced levels of autophagy, they do not eliminate this pathway completely. Furthermore, the exposure of tumor cells to an environment of increased metabolic and other stresses renders them reliant on basal autophagy for survival. Therefore, autophagy inhibition is an active avenue for the identification of novel anti-cancer therapies. Not surprisingly, the field of autophagy and cancer has experienced an explosion of research in the past 10 years. This review covers the basic mechanisms of autophagy, discusses its role in tumor suppression and cancer therapy, and posits emerging questions for the future.
Collapse
Affiliation(s)
- Che-Pei Kung
- Program in Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | | | | | | | |
Collapse
|
490
|
Abounit K, Scarabelli TM, McCauley RB. Autophagy in mammalian cells. World J Biol Chem 2012; 3:1-6. [PMID: 22312452 PMCID: PMC3272585 DOI: 10.4331/wjbc.v3.i1.1] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 08/22/2011] [Accepted: 08/29/2011] [Indexed: 02/05/2023] Open
Abstract
Autophagy is a regulated process for the degradation of cellular components that has been well conserved in eukaryotic cells. The discovery of autophagy-regulating proteins in yeast has been important in understanding this process. Although many parallels exist between fungi and mammals in the regulation and execution of autophagy, there are some important differences. The pre-autophagosomal structure found in yeast has not been identified in mammals, and it seems that there may be multiple origins for autophagosomes, including endoplasmic reticulum, plasma membrane and mitochondrial outer membrane. The maturation of the phagophore is largely dependent on 5'-AMP activated protein kinase and other factors that lead to the dephosphorylation of mammalian target of rapamycin. Once the process is initiated, the mammalian phagophore elongates and matures into an autophagosome by processes that are similar to those in yeast. Cargo selection is dependent on the ubiquitin conjugation of protein aggregates and organelles and recognition of these conjugates by autophagosomal receptors. Lysosomal degradation of cargo produces metabolites that can be recycled during stress. Autophagy is an important cellular safeguard during starvation in all eukaryotes; however, it may have more complicated, tissue specific roles in mammals. With certain exceptions, autophagy seems to be cytoprotective, and defects in the process have been associated with human disease.
Collapse
Affiliation(s)
- Kadija Abounit
- Kadija Abounit, Tiziano M Scarabelli, Roy B McCauley, Department of Pharmacology, School of Medicine, Wayne State University, Detroit , MI 48201, United States
| | | | | |
Collapse
|
491
|
Zullo AJ, Lee S. Mycobacterial induction of autophagy varies by species and occurs independently of mammalian target of rapamycin inhibition. J Biol Chem 2012; 287:12668-78. [PMID: 22275355 DOI: 10.1074/jbc.m111.320135] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The interaction of host cells with mycobacteria is complex and can lead to multiple outcomes ranging from bacterial clearance to latent infection. Although many factors are involved, the mammalian autophagy pathway is recognized as a determinant that can influence the course of infection. Intervention aimed at utilizing autophagy to clear infection requires an examination of the autophagy and signal transduction induced by mycobacteria under native conditions. With both pathogenic and non-pathogenic mycobacteria, we show that infection correlates with an increase in the mammalian target of rapamycin (mTOR) activity indicating that autophagy induction by mycobacteria occurs in an mTOR-independent manner. Analysis of Mycobacterium smegmatis and Mycobacterium bovis bacille Calmette-Guérin (BCG), which respectively induce high and low autophagy responses, indicates that lipid material is capable of inducing both autophagy and mTOR signaling. Although mycobacterial infection potently induces mTOR activity, we confirm that bacterial viability can be reduced by rapamycin treatment. In addition, our work demonstrates that BCG can reduce autophagy responses to M. smegmatis suggesting that specific mechanisms are used by BCG to minimize host cell autophagy. We conclude that autophagy induction and mTOR signaling take place concurrently during mycobacterial infection and that host autophagy responses to any given mycobacterium stem from multiple factors, including the presence of activating macromolecules and inhibitory mechanisms.
Collapse
Affiliation(s)
- Alfred J Zullo
- Human Vaccine Institute and Department of Medicine, Duke University, Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
492
|
Starr T, Child R, Wehrly TD, Hansen B, Hwang S, López-Otin C, Virgin HW, Celli J. Selective subversion of autophagy complexes facilitates completion of the Brucella intracellular cycle. Cell Host Microbe 2012; 11:33-45. [PMID: 22264511 PMCID: PMC3266535 DOI: 10.1016/j.chom.2011.12.002] [Citation(s) in RCA: 248] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 10/26/2011] [Accepted: 12/01/2011] [Indexed: 12/22/2022]
Abstract
Autophagy is a cellular degradation process that can capture and eliminate intracellular microbes by delivering them to lysosomes for destruction. However, pathogens have evolved mechanisms to subvert this process. The intracellular bacterium Brucella abortus ensures its survival by forming the Brucella-containing vacuole (BCV), which traffics from the endocytic compartment to the endoplasmic reticulum (ER), where the bacterium proliferates. We show that Brucella replication in the ER is followed by BCV conversion into a compartment with autophagic features (aBCV). While Brucella trafficking to the ER was unaffected in autophagy-deficient cells, aBCV formation required the autophagy-initiation proteins ULK1, Beclin 1, and ATG14L and PI3-kinase activity. However, aBCV formation was independent of the autophagy-elongation proteins ATG5, ATG16L1, ATG4B, ATG7, and LC3B. Furthermore, aBCVs were required to complete the intracellular Brucella lifecycle and for cell-to-cell spreading, demonstrating that Brucella selectively co-opts autophagy-initiation complexes to subvert host clearance and promote infection.
Collapse
Affiliation(s)
- Tregei Starr
- Laboratory of Intracellular Parasites National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Robert Child
- Laboratory of Intracellular Parasites National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Tara D. Wehrly
- Laboratory of Intracellular Parasites National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Bryan Hansen
- Electron Microscopy Unit, Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Seungmin Hwang
- Department of Pathology and Immunology and Midwest Regional Center of Excellence for Biodefense and Emerging infectious Diseases Research, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Carlos López-Otin
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Herbert W. Virgin
- Department of Pathology and Immunology and Midwest Regional Center of Excellence for Biodefense and Emerging infectious Diseases Research, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Jean Celli
- Laboratory of Intracellular Parasites National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| |
Collapse
|
493
|
Identification of an AAA ATPase VPS4B-dependent pathway that modulates epidermal growth factor receptor abundance and signaling during hypoxia. Mol Cell Biol 2012; 32:1124-38. [PMID: 22252323 DOI: 10.1128/mcb.06053-11] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
VPS4B, an AAA ATPase (ATPase associated with various cellular activities), participates in vesicular trafficking and autophagosome maturation in mammalian cells. In solid tumors, hypoxia is a common feature and an indicator of poor treatment outcome. Our studies demonstrate that exogenous or endogenous (assessed with anchorage-independent three-dimensional multicellular spheroid culture) hypoxia induces VPS4B downregulation by the ubiquitin-proteasome system. Inhibition of VPS4B function by short hairpin VPS4B (sh-VPS4B) or expression of dominant negative VPS4B(E235Q) promotes anchorage-independent breast cancer cell growth and resistance to gefitinib, U0126, and genotoxicity. Biochemically, hyperactivation of epidermal growth factor receptor (EGFR), a receptor tyrosine kinase essential for cell proliferation and survival, accompanied by increased EGFR accumulation and altered intracellular compartmentalization, is observed in cells with compromised VPS4B. Furthermore, enhanced FOS/JUN induction and AP-1 promoter activation are noted in EGF-treated cells with VPS4B knockdown. However, VPS4B depletion does not affect EGFRvIII stability or its associated signaling. An inverse correlation between VPS4B expression and EGFR abundance is observed in breast tumors, and high-grade or recurrent breast carcinomas exhibit lower VPS4B expression. Together, our findings highlight a potentially critical role of VPS4B downregulation or chronic-hypoxia-induced VPS4B degradation in promoting tumor progression, unveiling a nongenomic mechanism for EGFR overproduction in human breast cancer.
Collapse
|
494
|
Lebovitz CB, Bortnik SB, Gorski SM. Here, there be dragons: charting autophagy-related alterations in human tumors. Clin Cancer Res 2012; 18:1214-26. [PMID: 22253413 DOI: 10.1158/1078-0432.ccr-11-2465] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Macroautophagy (or autophagy) is a catabolic cellular process that is both homeostatic and stress adaptive. Normal cells rely on basal levels of autophagy to maintain cellular integrity (via turnover of long-lived proteins and damaged organelles) and increased levels of autophagy to buoy cell survival during various metabolic stresses (via nutrient and energy provision through lysosomal degradation of cytoplasmic components). Autophagy can function in both tumor suppression and tumor progression, and is under investigation in clinical trials as a novel target for anticancer therapy. However, its role in cancer pathogenesis has yet to be fully explored. In particular, it remains unknown whether in vitro observations will be applicable to human cancer patients. Another outstanding question is whether there exists tumor-specific selection for alterations in autophagy function. In this review, we survey reported mutations in autophagy genes and key autophagy regulators identified in human tumor samples and summarize the literature regarding expression levels of autophagy genes and proteins in various cancer tissues. Although it is too early to draw inferences from this collection of in vivo studies of autophagy-related alterations in human cancers, their results highlight the challenges that must be overcome before we can accurately assess the scope of autophagy's predicted role in tumorigenesis.
Collapse
Affiliation(s)
- Chandra B Lebovitz
- Genome Sciences Centre, BC Cancer Agency, University of British Columbia, Vancouver, Canada
| | | | | |
Collapse
|
495
|
Wang WY, Zhang L, Xing S, Ma Z, Liu J, Gu H, Qin G, Qu LJ. Arabidopsis AtVPS15 plays essential roles in pollen germination possibly by interacting with AtVPS34. J Genet Genomics 2012; 39:81-92. [PMID: 22361507 DOI: 10.1016/j.jgg.2012.01.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 01/04/2012] [Accepted: 01/05/2012] [Indexed: 10/14/2022]
Abstract
VPS15 protein is a component of the phosphatidylinositol 3-kinase complex which plays a pivotal role in the development of yeast and mammalian cells. The knowledge about the function of its homologue in plants remains limited. Here we report that AtVPS15, a homologue of yeast VPS15p in Arabidopsis, plays an essential role in pollen germination. Homozygous T-DNA insertion mutants of AtVPS15 could not be obtained from the progenies of self-pollinated heterozygous mutants. Reciprocal crosses between atvps15 mutants and wild-type Arabidopsis revealed that the T-DNA insertion was not able to be transmitted by male gametophytes. DAPI staining, Alexander's stain and scanning electron microscopic analysis showed that atvps15 heterozygous plants produced pollen grains that were morphologically indistinguishable from wild-type pollen, whereas in vitro germination experiments revealed that germination of the pollen grains was defective. GUS staining analysis of transgenic plants expressing the GUS reporter gene driven by the AtVPS15 promoter showed that AtVPS15 was mainly expressed in pollen grains. Finally, DUALmembrane yeast two-hybrid analysis demonstrated that AtVPS15 might interact directly with AtVPS34. These results suggest that AtVPS15 is very important for pollen germination, possibly through modulation of the activity of PI3-kinase.
Collapse
Affiliation(s)
- Wei-Ying Wang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | | | | | | | | | | | |
Collapse
|
496
|
Lipids in autophagy: constituents, signaling molecules and cargo with relevance to disease. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:1133-45. [PMID: 22269166 DOI: 10.1016/j.bbalip.2012.01.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 12/29/2011] [Accepted: 01/02/2012] [Indexed: 01/12/2023]
Abstract
The balance between protein and lipid biosynthesis and their eventual degradation is a critical component of cellular health. Autophagy, the catabolic process by which cytoplasmic material becomes degraded in lysosomes, can be induced by various physiological stimuli to maintain cellular homeostasis. Autophagy was for a long time considered a non-selective bulk process, but recent data have shown that unwanted components such as aberrant protein aggregates, dysfunctional organelles and invading pathogens can be selectively eliminated by autophagy. Recently, also intracellular lipid droplets were described as specific autophagic cargo, indicating that autophagy plays a role in lipid metabolism and storage (Singh et al., 2009 [1]). Moreover, over the past several years, it has become increasingly evident that lipids and lipid-modifying enzymes play important roles in the autophagy process itself, both at the level of regulation of autophagy and as membrane constituents required for formation of autophagic vesicles. In this review, we will discuss the interplay between lipids and autophagy, as well as the role of lipid-binding proteins in autophagy. We also comment on the possible implications of this mutual interaction in the context of disease. This article is part of a Special Issue entitled Lipids and Vesicular Transport.
Collapse
|
497
|
An CH, Kim YR, Kim HS, Kim SS, Yoo NJ, Lee SH. Frameshift mutations of vacuolar protein sorting genes in gastric and colorectal cancers with microsatellite instability. Hum Pathol 2012; 43:40-7. [DOI: 10.1016/j.humpath.2010.03.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2010] [Revised: 03/04/2010] [Accepted: 03/17/2010] [Indexed: 11/29/2022]
|
498
|
Harris H, Rubinsztein DC. Control of autophagy as a therapy for neurodegenerative disease. Nat Rev Neurol 2011; 8:108-17. [PMID: 22187000 DOI: 10.1038/nrneurol.2011.200] [Citation(s) in RCA: 359] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Autophagy is an intracellular degradation process that clears long-lived proteins and organelles from the cytoplasm. It involves the formation of double-membraned structures called autophagosomes that can engulf portions of cytoplasm containing oligomeric protein complexes and organelles, such as mitochondria. Autophagosomes fuse with lysosomes and their contents then are degraded. Failure of autophagy in neurons can result in the accumulation of aggregate-prone proteins and neurodegeneration. Pharmacological induction of autophagy can enhance the clearance of intracytoplasmic aggregate-prone proteins, such as mutant forms of huntingtin, and ameliorate pathology in cell and animal models of neurodegenerative diseases. In this Review, the autophagic machinery and the signaling pathways that regulate the induction of autophagy are described. The ways in which dysfunctions at multiple stages in the autophagic pathways contribute to numerous neurological disorders are highlighted through the use of examples of Mendelian and complex conditions, including Alzheimer disease, Parkinson disease and forms of motor neuron disease. The different ways in which autophagic pathways might be manipulated for the therapeutic benefit of patients with neurodegenerative disorders are also considered.
Collapse
Affiliation(s)
- Harry Harris
- Department of Medical Genetics, Cambridge Institute for Medical Research, Wellcome Trust/Medical Research Council Building, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0XY, UK
| | | |
Collapse
|
499
|
Michaud M, Martins I, Sukkurwala AQ, Adjemian S, Ma Y, Pellegatti P, Shen S, Kepp O, Scoazec M, Mignot G, Rello-Varona S, Tailler M, Menger L, Vacchelli E, Galluzzi L, Ghiringhelli F, di Virgilio F, Zitvogel L, Kroemer G. Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 2011; 334:1573-7. [PMID: 22174255 DOI: 10.1126/science.1208347] [Citation(s) in RCA: 1074] [Impact Index Per Article: 76.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Antineoplastic chemotherapies are particularly efficient when they elicit immunogenic cell death, thus provoking an anticancer immune response. Here we demonstrate that autophagy, which is often disabled in cancer, is dispensable for chemotherapy-induced cell death but required for its immunogenicity. In response to chemotherapy, autophagy-competent, but not autophagy-deficient, cancers attracted dendritic cells and T lymphocytes into the tumor bed. Suppression of autophagy inhibited the release of adenosine triphosphate (ATP) from dying tumor cells. Conversely, inhibition of extracellular ATP-degrading enzymes increased pericellular ATP in autophagy-deficient tumors, reestablished the recruitment of immune cells, and restored chemotherapeutic responses but only in immunocompetent hosts. Thus, autophagy is essential for the immunogenic release of ATP from dying cells, and increased extracellular ATP concentrations improve the efficacy of antineoplastic chemotherapies when autophagy is disabled.
Collapse
|
500
|
Host cell autophagy in immune response to zoonotic infections. Clin Dev Immunol 2011; 2012:910525. [PMID: 22110539 PMCID: PMC3205612 DOI: 10.1155/2012/910525] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2011] [Accepted: 09/26/2011] [Indexed: 12/15/2022]
Abstract
Autophagy is a fundamental homeostatic process in which cytoplasmic targets are sequestered within double-membraned autophagosomes and subsequently delivered to lysosomes for degradation. Accumulating evidence supports the pivotal role of autophagy in host defense against intracellular pathogens implicating both innate and adaptive immunity. Many of these pathogens cause common zoonotic infections worldwide. The induction of the autophagic machinery by innate immune receptors signaling, such as TLRs, NOD1/2, and p62/SQSTM1 in antigen-presenting cells results in inhibition of survival and elimination of invading pathogens. Furthermore, Th1 cytokines induce the autophagic process, whereas autophagy also contributes to antigen processing and MHC class II presentation, linking innate to adaptive immunity. However, several pathogens have developed strategies to avoid autophagy or exploit autophagic machinery to their advantage. This paper focuses on the role of host cell autophagy in the regulation of immune response against intracellular pathogens, emphasizing on selected bacterial and protozoan zoonoses.
Collapse
|