452
|
Shoemaker A. Learning from cancer to promote weight loss. Sci Transl Med 2017. [DOI: 10.1126/scitranslmed.aao6131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Growth differentiation factor 15 suppresses appetite and promotes weight loss by activating a receptor expressed in two brain regions.
Collapse
Affiliation(s)
- Ashley Shoemaker
- Pediatric Endocrinology and Diabetes, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| |
Collapse
|
453
|
Perea D, Guiu J, Hudry B, Konstantinidou C, Milona A, Hadjieconomou D, Carroll T, Hoyer N, Natarajan D, Kallijärvi J, Walker JA, Soba P, Thapar N, Burns AJ, Jensen KB, Miguel-Aliaga I. Ret receptor tyrosine kinase sustains proliferation and tissue maturation in intestinal epithelia. EMBO J 2017; 36:3029-3045. [PMID: 28899900 PMCID: PMC5641678 DOI: 10.15252/embj.201696247] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 07/26/2017] [Accepted: 07/28/2017] [Indexed: 01/25/2023] Open
Abstract
Expression of the Ret receptor tyrosine kinase is a defining feature of enteric neurons. Its importance is underscored by the effects of its mutation in Hirschsprung disease, leading to absence of gut innervation and severe gastrointestinal symptoms. We report a new and physiologically significant site of Ret expression in the intestine: the intestinal epithelium. Experiments in Drosophila indicate that Ret is expressed both by enteric neurons and adult intestinal epithelial progenitors, which require Ret to sustain their proliferation. Mechanistically, Ret is engaged in a positive feedback loop with Wnt/Wingless signalling, modulated by Src and Fak kinases. We find that Ret is also expressed by the developing intestinal epithelium of mice, where its expression is maintained into the adult stage in a subset of enteroendocrine/enterochromaffin cells. Mouse organoid experiments point to an intrinsic role for Ret in promoting epithelial maturation and regulating Wnt signalling. Our findings reveal evolutionary conservation of the positive Ret/Wnt signalling feedback in both developmental and homeostatic contexts. They also suggest an epithelial contribution to Ret loss‐of‐function disorders such as Hirschsprung disease.
Collapse
Affiliation(s)
- Daniel Perea
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Jordi Guiu
- BRIC-Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen N, Denmark
| | - Bruno Hudry
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | | | - Alexandra Milona
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Dafni Hadjieconomou
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Thomas Carroll
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Nina Hoyer
- Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf (UKE), University of Hamburg, Hamburg, Germany
| | - Dipa Natarajan
- Stem Cells and Regenerative Medicine, UCL Institute of Child Health, London, UK
| | - Jukka Kallijärvi
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - James A Walker
- Center for Human Genetic Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Peter Soba
- Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf (UKE), University of Hamburg, Hamburg, Germany
| | - Nikhil Thapar
- Stem Cells and Regenerative Medicine, UCL Institute of Child Health, London, UK
| | - Alan J Burns
- Stem Cells and Regenerative Medicine, UCL Institute of Child Health, London, UK
| | - Kim B Jensen
- BRIC-Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen N, Denmark.,The Danish Stem Cell Center (Danstem), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Irene Miguel-Aliaga
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| |
Collapse
|