451
|
Kim BG, Gao MQ, Choi YP, Kang S, Park HR, Kang KS, Cho NH. Invasive breast cancer induces laminin-332 upregulation and integrin β4 neoexpression in myofibroblasts to confer an anoikis-resistant phenotype during tissue remodeling. Breast Cancer Res 2012; 14:R88. [PMID: 22673183 PMCID: PMC3446351 DOI: 10.1186/bcr3203] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 05/10/2012] [Accepted: 06/06/2012] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Although development of anoikis-resistant myofibroblasts during tissue remodeling is known to be associated with tumor invasion, the mechanism by which myofibroblasts become resistant to anoikis is unknown. We previously demonstrated laminin-332 upregulation in the fibrosis around invasive ductal carcinoma (IDC). Because laminin-332 promotes cell survival through binding to integrins, we hypothesized that invasive breast cancer cells confer an anoikis-resistant phenotype on myofibroblasts by upregulating laminin-332 expression during tissue remodeling. Here, we demonstrate that invasive breast cancer cells induce laminin-332 upregulation and integrin β4 neoexpression in myofibroblasts to confer an anoikis-resistant phenotype. METHODS Three types of fibroblasts were isolated from the tumor burden, the fibrosis, and normal tissue of patients with early stage IDC (less than 10 mm diameter), designated cancer-associated fibroblasts (CAFs), interface fibroblasts (InFs), and normal breast fibroblasts (NBFs), respectively. To investigate direct and indirect crosstalk with tumor cells, fibroblasts were co-cultured with invasive MDA-MB-231 or noninvasive MCF7 cells or in conditioned medium. Anoikis resistance of fibroblasts was measured by cell viability and caspase-3 activity after incubation on poly-HEMA coated plates for 72 hours. Involvement of laminin-332/integrin α3β1 or α6β4 signaling in anoikis resistance was confirmed by treatment with purified laminin-332 or blocking antibodies against laminin-332, integrin β1, or integrin β4. RESULTS MDA-MB-231 cells induced laminin-332 upregulation and integrin β4 neoexpression in fibroblasts, leading to anoikis resistance. InFs showed a higher endogenous level of laminin-332 than did CAFs and NBFs. After stimulation with MDA-MB-231-conditioned medium, laminin-332 expression of InFs was dramatically increased and maintained under anoikis conditions. Laminin-332 upregulation was also observed in CAFs and NBFs, but at a lower level than in InFs. Laminin-332 induced Akt (Ser473) phosphorylation by binding to integrin α3β1. Integrin β4 neoexpression induced laminin-332-independent Rac1 activation and promoted anoikis resistance in fibroblasts approximately twofold more effectively than did laminin-332, regardless of the type of fibroblast. In addition, integrin β4 expression suppressed fibroblast aggregation in conditions of anoikis. CONCLUSION Invasive breast cancer cells confer an anoikis-resistant phenotype on myofibroblasts during tissue remodeling by inducing laminin-332 upregulation and integrin β4 neoexpression. Interface fibroblasts appear to be the primary myofibroblasts that interact with invasive tumor cells during tissue remodeling.
Collapse
Affiliation(s)
- Baek Gil Kim
- Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, 134 Sinchon-dong, Seodaemun-gu, Seoul, 120-752, South Korea
| | - Ming-Qing Gao
- Severance Biomedical Science Institute (SBSI), Yonsei University College of Medicine, 134 Sinchon-dong, Seodaemun-gu, Seoul, 120-752, South Korea
| | - Yoon Pyo Choi
- Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, 134 Sinchon-dong, Seodaemun-gu, Seoul, 120-752, South Korea
| | - Suki Kang
- Department of Pathology, Yonsei University College of Medicine, 134 Sinchon-dong, Seodaemun-gu, Seoul, 120-752, South Korea
- Global 5-5-10 System Biology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, South Korea
| | - Haeng Ran Park
- Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, 134 Sinchon-dong, Seodaemun-gu, Seoul, 120-752, South Korea
| | - Kyu Sub Kang
- Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, 134 Sinchon-dong, Seodaemun-gu, Seoul, 120-752, South Korea
| | - Nam Hoon Cho
- Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, 134 Sinchon-dong, Seodaemun-gu, Seoul, 120-752, South Korea
- Severance Biomedical Science Institute (SBSI), Yonsei University College of Medicine, 134 Sinchon-dong, Seodaemun-gu, Seoul, 120-752, South Korea
- Department of Pathology, Yonsei University College of Medicine, 134 Sinchon-dong, Seodaemun-gu, Seoul, 120-752, South Korea
- Global 5-5-10 System Biology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, South Korea
| |
Collapse
|
452
|
|
453
|
Giannoni E, Parri M, Chiarugi P. EMT and oxidative stress: a bidirectional interplay affecting tumor malignancy. Antioxid Redox Signal 2012; 16:1248-63. [PMID: 21929373 DOI: 10.1089/ars.2011.4280] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
SIGNIFICANCE Epithelial-mesenchymal transition (EMT) is emerging as a driving force in tumor progression, enabling cancer cells to evade their "homeland" and to colonize remote locations. In this review, we focus on the emerging views dealing with a redox control of EMT and with the importance of a pro-oxidant environment, both in cancer and stromal cells, to attain an improvement in tumor malignancy. RECENT ADVANCES The variety of signals able to promote EMT is large and continuously growing, ranging from soluble factors to components of the extracellular matrix. Compelling evidence highlights reactive oxygen species (ROS) as crucial conspirators in EMT engagement. CRITICAL ISSUES Tumor microenvironment exploits a fascinating role in ensuring EMT outcome within the primary tumor, granting for the achievement of an essential selective advantage for cancer cells. Cancer-associated fibroblasts, macrophages, and hypoxia are major players in this scenario, exerting a propelling role for EMT, as well as for invasiveness, stemness, and dissemination of metastatic cells. FUTURE DIRECTIONS Future research focused on EMT should address some key points that are still unclear. They include: i) the role of the reverse phenomenon (i.e., mesenchymal-epithelial transition) that is likely regulated in the final stages of tumor progression, or that of mesenchymal-amoeboid transition, a plasticity program of cancer cells, which often follows EMT and offers a further metastatic advantage, and ii) the molecular basis of the correlation between stemness, EMT and ROS content.
Collapse
Affiliation(s)
- Elisa Giannoni
- Department of Biochemical Sciences, University of Florence, Tuscany Tumor Institute, and Center for Research, Transfer and High Education DenoTHE, Florence, Italy.
| | | | | |
Collapse
|
454
|
Hägglöf C, Bergh A. The stroma-a key regulator in prostate function and malignancy. Cancers (Basel) 2012; 4:531-48. [PMID: 24213323 PMCID: PMC3712705 DOI: 10.3390/cancers4020531] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 05/20/2012] [Accepted: 05/21/2012] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer is a very common and highly unpredictable form of cancer. Whereas many prostate cancers are slow growing and could be left without treatment, others are very aggressive. Additionally, today there is no curative treatment for prostate cancer patients with local or distant metastasis. Identification of new, improved prognostic and diagnostic biomarkers for prostate cancer and the finding of better treatment strategies for metastatic prostate cancer is therefore highly warranted. Interactions between epithelium and stroma are known to be important already during prostate development and this interplay is critical also in development, progression of primary tumors and growth of metastases. It is therefore reasonable to expect that future biomarkers and therapeutic targets can be identified in the prostate tumor and metastasis stroma and this possibility should be further explored.
Collapse
Affiliation(s)
- Christina Hägglöf
- Department of Medical Biosciences, Pathology, Umeå University, Umeå 90185, Sweden.
| | | |
Collapse
|
455
|
Multifaceted tumor stromal fibroblasts. CANCER MICROENVIRONMENT 2012; 5:187-93. [PMID: 22627670 DOI: 10.1007/s12307-012-0109-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 04/25/2012] [Indexed: 01/01/2023]
Abstract
Tumors are highly complex tissues composed of neoplastic cells and different kinds of stromal cells. Tumor stromal cells, especially fibroblasts, play important roles during the multistep development of tumors. In this review, the two-faced characteristics of tumor stromal fibroblasts are discussed in the light of our current knowledge. For one thing, fibroblasts act as an "inflammation regulator" by secretion of cytokines and regulation of tumor immunity; for another, they act as a "damage healer" for cure of wounds by remodeling extracellular matrix or taking a part in the "foreign body reaction". Since the properties of fibroblasts are complicated, both aspects of fibroblasts for tumor development should be considered carefully in clinical studies to target cancer-associated fibroblasts.
Collapse
|
456
|
Abstract
Tumor initiation, growth, invasion, and metastasis occur as a consequence of a complex interplay between the host environment and cancer cells. Fibroblasts are now recognized as a key host cell type involved in host-cancer signaling. This review discusses some recent studies that highlight the roles of fibroblasts in tumor initiation, early progression, invasion, and metastasis. Some clinical studies describing the prognostic significance of fibroblast-derived markers and signatures are also discussed.
Collapse
Affiliation(s)
- Carina Strell
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Helene Rundqvist
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Arne Östman
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
457
|
Horimoto Y, Polanska UM, Takahashi Y, Orimo A. Emerging roles of the tumor-associated stroma in promoting tumor metastasis. Cell Adh Migr 2012; 6:193-202. [PMID: 22568980 DOI: 10.4161/cam.20631] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The stroma in human carcinomas consists of extracellular matrix and various types of non-carcinoma cells, mainly leukocytes, endothelial cells, fibroblasts, myofibroblasts and bone marrow-derived progenitors. The tumor-associated stroma actively supports tumor growth by stimulating neo-angiogenesis, as well as proliferation and invasion of apposed carcinoma cells. It has long been accepted that alterations within carcinoma cells mediate metastasis in a cell-autonomous fashion. Recent studies have, however, suggested an additional notion that cancer cells instigate local and systemic changes in the tumor microenvironment and contribute to niche formation for metastasis. Research, aiming to establish the roles of the tumor-associated stroma in facilitating the spread of carcinoma cells into distant organs, has provided an abundance of data and greater knowledge of the biology of metastatic carcinoma cells and associated stromal cells. This has stimulated further advances in the development of novel therapeutic approaches targeting tumor metastasis.
Collapse
Affiliation(s)
- Yoshiya Horimoto
- Atopy Research Centre, Juntendo University School of Medicine, Tokyo, Japan
| | | | | | | |
Collapse
|
458
|
Matsumura Y, Ishii G, Aokage K, Kuwata T, Hishida T, Yoshida J, Nishimura M, Nagai K, Ochiai A. Morphophenotypic characteristics of intralymphatic cancer and stromal cells susceptible to lymphogenic metastasis. Cancer Sci 2012; 103:1342-7. [PMID: 22429811 DOI: 10.1111/j.1349-7006.2012.02275.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 03/02/2012] [Accepted: 03/12/2012] [Indexed: 01/06/2023] Open
Abstract
The intravessel microenvironment has significant effects on cancer metastasis. The aim of the present study was to determine how the morphologic and immunophenotypic features of cancer cells and infiltrating stromal cells within the permeated lymphatic vessels are associated with lymphogenic metastasis. A total of 137 primary lung adenocarcinoma patients with extratumoral lymphatic permeations were examined. Morphologically, the floating cancer nests within the permeated lymphatic vessels were divided into two types: Type A, consisting of a single large cancer nest; and Type B, consisting of multiple small cancer nests. We compared the clinicopathologic characteristics and the immunophenotypes of the cancer cells and infiltrating stromal cells between the Type A and Type B nests. Eleven of 54 Type A patients (20%) had intrapulmonary metastases, compared with 36 of 83 Type B patients (43%; P = 0.006). Immunohistochemically, Type B cancer cells expressed significantly higher levels of CD44 than Type A cancer cells (mean scoresAUTHOR: Scores - what is this score? Is it the number of cells expressing CD44 or the concentration of CD44 or some other type of scoring system? 43.0 vs 20.5, respectively) and E-cadherin (60.5 vs 31.5, respectively), but lower levels of Geminin (11.9% vs 20.3%, respectively) and cleaved caspase 3 (2.4% vs 7.8%AUTHOR: 11.9% vs 20.3%, respectively) and cleaved caspase 3 (2.4% vs 7.8%, - what do the percentages here refer to? The number of cells expressing geminin and caspase 3? The levels of these factors? Please clarify., respectively). Moreover, a significantly larger number of CD204-positive macrophages were present within the cancer-permeated lymphatic vessels in Type B patients than in Type A patients (mean number 9.5 vs 4.6, respectively). The present study reveals that intralymphatic cancer cell and stromal cell phenotypes are susceptible to lymphogenic metastasis, suggesting that lymphogenic metastasis may be affected by the intralymphatic microenvironment they create.
Collapse
Affiliation(s)
- Yuki Matsumura
- Pathology Division, Research Center for Innovative Oncology, Chiba, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
459
|
Duyverman AMMJ, Steller EJA, Fukumura D, Jain RK, Duda DG. Studying primary tumor-associated fibroblast involvement in cancer metastasis in mice. Nat Protoc 2012; 7:756-62. [PMID: 22441294 DOI: 10.1038/nprot.2012.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Stromal cells have been studied extensively in the primary tumor microenvironment. In addition, mesenchymal stromal cells may participate in several steps of the metastatic cascade. Studying this interaction requires methods to distinguish and target stromal cells originating from the primary tumor versus their counterparts in the metastatic site. Here we illustrate a model of human tumor stromal cell-mouse cancer cell coimplantation. This model can be used to selectively deplete human stromal cells (using diphtheria toxin, DT) without affecting mouse cancer cells or host-derived stromal cells. Establishment of novel genetic models (e.g., transgenic expression of the DT receptor in specific cells) may eventually allow analogous models using syngeneic cells. Studying the role of stromal cells in metastasis using the model outlined above may take 8 weeks.
Collapse
Affiliation(s)
- Annique M M J Duyverman
- Edwin L. Steele Laboratory for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital (MGH) and Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | |
Collapse
|
460
|
Duyverman AMMJ, Kohno M, Roberge S, Fukumura D, Duda DG, Jain RK. An isolated tumor perfusion model in mice. Nat Protoc 2012; 7:749-55. [PMID: 22441293 DOI: 10.1038/nprot.2012.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The role of stromal cells in the tumor microenvironment has been extensively characterized. We and others have shown that stromal cells may participate in several steps of the metastatic cascade. This protocol describes an isolated tumor perfusion model that enables studies of cancer and stromal cell shedding. It could also be used to study the effects of therapies interfering with the shedding of tumor cells or fragments, circulating (stem) cells or biomarkers. Primary tumors are grown in a microenvironment in which stromal cells express GFP ubiquitously. Tumors are implanted orthotopically or can be implanted ectopically. As a result, all tumor-associated stromal cells express GFP. This technique can be used to detect and study the role of stromal cells in tumor fragments within the circulation in mice. Studying the role of stromal cells in circulating tumor fragments using this model may take 2-10 weeks, depending on the growth rate of the primary tumor.
Collapse
Affiliation(s)
- Annique M M J Duyverman
- Edwin L. Steele Laboratory for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital (MGH) and Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
461
|
Duyverman AMMJ, Kohno M, Duda DG, Jain RK, Fukumura D. A transient parabiosis skin transplantation model in mice. Nat Protoc 2012; 7:763-70. [PMID: 22441295 DOI: 10.1038/nprot.2012.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Parabiosis-conjoined surgery to provide a shared circulation between two mice-has been previously developed to study the hematopoietic system. This protocol describes the use of parabiosis for efficient transplantation of skin from a transgenic to a wild-type mouse. It can be used to study the role of stromal cells in a spontaneous model of distant cancer dissemination (metastasis). We have recently shown that primary tumor-derived stromal cells may facilitate metastasis by providing a provisional stroma at the secondary site. Studying the role of primary tumor-derived stroma cells requires methods for distinguishing and targeting stromal cells originating from the primary tumor versus their counterparts in the metastatic site. Parabiosis may also be used, taking advantage of the shared circulation between the parabiosed mice, to study tumor metastasis from one parabiont to another, or to investigate the role of circulating inflammatory cells or stem cells. Studying the role of stromal cells in metastasis using this model typically takes up to 11 weeks.
Collapse
Affiliation(s)
- Annique M M J Duyverman
- Edwin L. Steele Laboratory for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital (MGH) and Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | |
Collapse
|
462
|
Hanahan D, Coussens LM. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 2012; 21:309-22. [PMID: 22439926 DOI: 10.1016/j.ccr.2012.02.022] [Citation(s) in RCA: 3212] [Impact Index Per Article: 247.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Indexed: 12/13/2022]
Abstract
Mutationally corrupted cancer (stem) cells are the driving force of tumor development and progression. Yet, these transformed cells cannot do it alone. Assemblages of ostensibly normal tissue and bone marrow-derived (stromal) cells are recruited to constitute tumorigenic microenvironments. Most of the hallmarks of cancer are enabled and sustained to varying degrees through contributions from repertoires of stromal cell types and distinctive subcell types. Their contributory functions to hallmark capabilities are increasingly well understood, as are the reciprocal communications with neoplastic cancer cells that mediate their recruitment, activation, programming, and persistence. This enhanced understanding presents interesting new targets for anticancer therapy.
Collapse
Affiliation(s)
- Douglas Hanahan
- The Swiss Institute for Experimental Cancer Research, School of Life Sciences, Swiss Federal Institute of Technology Lausanne, CH-1015 Lausanne, Switzerland.
| | | |
Collapse
|
463
|
Hinz B, Phan SH, Thannickal VJ, Prunotto M, Desmoulière A, Varga J, De Wever O, Mareel M, Gabbiani G. Recent developments in myofibroblast biology: paradigms for connective tissue remodeling. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:1340-55. [PMID: 22387320 DOI: 10.1016/j.ajpath.2012.02.004] [Citation(s) in RCA: 963] [Impact Index Per Article: 74.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/19/2012] [Indexed: 02/07/2023]
Abstract
The discovery of the myofibroblast has opened new perspectives for the comprehension of the biological mechanisms involved in wound healing and fibrotic diseases. In recent years, many advances have been made in understanding important aspects of myofibroblast basic biological characteristics. This review summarizes such advances in several fields, such as the following: i) force production by the myofibroblast and mechanisms of connective tissue remodeling; ii) factors controlling the expression of α-smooth muscle actin, the most used marker of myofibroblastic phenotype and, more important, involved in force generation by the myofibroblast; and iii) factors affecting genesis of the myofibroblast and its differentiation from precursor cells, in particular epigenetic factors, such as DNA methylation, microRNAs, and histone modification. We also review the origin and the specific features of the myofibroblast in diverse fibrotic lesions, such as systemic sclerosis; kidney, liver, and lung fibrosis; and the stromal reaction to certain epithelial tumors. Finally, we summarize the emerging strategies for influencing myofibroblast behavior in vitro and in vivo, with the ultimate goal of an effective therapeutic approach for myofibroblast-dependent diseases.
Collapse
Affiliation(s)
- Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
464
|
Current World Literature. Curr Opin Support Palliat Care 2012; 6:109-25. [DOI: 10.1097/spc.0b013e328350f70c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
465
|
Amoh Y, Hamada Y, Katsuoka K, Hoffman RM. In vivo imaging of nuclear-cytoplasmic deformation and partition during cancer cell death due to immune rejection. J Cell Biochem 2012; 113:465-72. [PMID: 21938737 DOI: 10.1002/jcb.23370] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this report, we investigated the in vivo cell biology of cancer cells during immune rejection. The use of nestin-driven green fluorescent protein (ND-GFP) transgenic mice as hosts, in which nascent blood vessels express GFP, and implanted dual-color mouse mammary tumor 060562 (MMT) cells, in which the cytoplasm expresses red fluorescent protein (RFP) and the nuclei express GFP, allowed very important novel observations of angiogenesis and subcellular death pathways during immune rejection of a tumor. Nascent blood vessels did not form in the initially-growing mouse mammary tumor in ND-GFP immunocompetent mice. In contrast, in ND-GFP immunodeficient nude mice, numerous GFP-expressing nascent blood vessels grew into the tumor. The results suggest that insufficient nascent tumor angiogenesis was important in tumor rejection. During immune rejection, the cancer cells deformed their cytoplasm and nuclei, which were readily imaged by RFP and GFP, respectively. The nuclear membrane of the cancer cells ruptured, and chromatin extruded during partition of cytoplasm and nuclei. T lymphocytes infiltrated into the initially-growing tumor in the nestin-GFP transgenic immunocompetent mice. The cytotoxic role of the sensitized T lymphocytes was confirmed in vitro when they were co-cultured with MMT cells. The CD8a-positive lymphocytes attached to the cancer cells and caused nuclear condensation, deformation, and partition from their cytoplasm, similar to what occurred in vivo. The color-coded subcellular fluorescence-imaging model of immune rejection of cancer cells can provide a comprehensive system for further testing of immune-based treatment for cancer.
Collapse
MESH Headings
- Animals
- Cell Death
- Cell Nucleus/metabolism
- Cell Nucleus Shape
- Cytoplasm/metabolism
- Female
- Graft Rejection/immunology
- Graft Rejection/pathology
- Green Fluorescent Proteins/biosynthesis
- Green Fluorescent Proteins/genetics
- Histones/biosynthesis
- Histones/genetics
- Intermediate Filament Proteins/genetics
- Luminescent Proteins/biosynthesis
- Luminescent Proteins/genetics
- Lymphocytes/immunology
- Mammary Neoplasms, Experimental/blood supply
- Mammary Neoplasms, Experimental/immunology
- Mammary Neoplasms, Experimental/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Nude
- Mice, Transgenic
- Microscopy, Fluorescence
- Neoplasm Transplantation
- Neovascularization, Pathologic/immunology
- Nerve Tissue Proteins/genetics
- Nestin
- Promoter Regions, Genetic
- Recombinant Fusion Proteins/biosynthesis
- Recombinant Fusion Proteins/genetics
- Tumor Cells, Cultured
- Red Fluorescent Protein
Collapse
Affiliation(s)
- Yasuyuki Amoh
- AntiCancer, Inc., 7917 Ostrow Street, San Diego, California 92111, USA
| | | | | | | |
Collapse
|
466
|
Hendrix A, Gespach C, Bracke M, De Wever O. The tumor ecosystem regulates the roads for invasion and metastasis. Clin Res Hepatol Gastroenterol 2011; 35:714-9. [PMID: 21676670 DOI: 10.1016/j.clinre.2011.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 05/03/2011] [Accepted: 05/09/2011] [Indexed: 02/04/2023]
Abstract
Invasive cancer cells traffic from the primary tumor ecosystem to distant metastatic sites. Experimental data are reviewed with a focus on cross-signaling between cancer cells and host cells such as myofibroblasts and mesenchymal stem cells. Invasion-associated cellular activities, namely vesicle exocytosis and epithelial to mesenchymal transition, depend on complex networks of signal transduction pathways including activation of tyrosine kinases, the Rab, Rac and Rho family of small GTPases and cadherin signaling. As clinical validation, some cell types or molecules implicated in invasion-associated activities may serve as prognostic/predictive biomarker or as target for patient-tailored therapy.
Collapse
Affiliation(s)
- An Hendrix
- Laboratory of experimental cancer research, department of radiation oncology and experimental cancer research, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | | | | | | |
Collapse
|
467
|
Soto AM, Sonnenschein C. The tissue organization field theory of cancer: a testable replacement for the somatic mutation theory. Bioessays 2011; 33:332-40. [PMID: 21503935 DOI: 10.1002/bies.201100025] [Citation(s) in RCA: 203] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The somatic mutation theory (SMT) of cancer has been and remains the prevalent theory attempting to explain how neoplasms arise and progress. This theory proposes that cancer is a clonal, cell-based disease, and implicitly assumes that quiescence is the default state of cells in multicellular organisms. The SMT has not been rigorously tested, and several lines of evidence raise questions that are not addressed by this theory. Herein, we propose experimental strategies that may validate the SMT. We also call attention to an alternative theory of carcinogenesis, the tissue organization field theory (TOFT), which posits that cancer is a tissue-based disease and that proliferation is the default state of all cells. Based on epistemological and experimental evidence, we argue that the TOFT compellingly explains carcinogenesis, while placing it within an evolutionarily relevant context.
Collapse
Affiliation(s)
- Ana M Soto
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine, Boston, MA, USA
| | | |
Collapse
|
468
|
Goldenberg DM, Zagzag D, Heselmeyer-Haddad KM, Berroa Garcia LY, Ried T, Loo M, Chang CH, Gold DV. Horizontal transmission and retention of malignancy, as well as functional human genes, after spontaneous fusion of human glioblastoma and hamster host cells in vivo. Int J Cancer 2011; 131:49-58. [PMID: 21796629 DOI: 10.1002/ijc.26327] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 07/14/2011] [Indexed: 02/06/2023]
Abstract
Cell fusion in vitro has been used to study cancer, gene mapping and regulation, and the production of antibodies via hybridomas. However, in-vivo heterosynkaryon formation by cell-cell fusion has received less attention. This investigation describes the spontaneous fusion of a human glioblastoma with normal hamster cells after xenogeneic transplantation, resulting in malignant cells that express both human and hamster genes and gene products, and retention of glioblastoma traits with an enhanced ability to metastasize. Three of 7 human genes found showed translation of their proteins during serial propagation in vivo or in vitro for years; namely, CD74, CXCR4 and PLAGL2, each implicated with malignancy or glioblastoma. This supports the thesis that genetic hybridization of cancer and normal cells can transmit malignancy and also, as first described herein, regulatory genes involved in the tumor's organotypic morphology. Evidence also is increasing that even cell-free human cancer DNA can induce malignancy and transfer genetic information to normal cells. Hence, we posit that the transfer of genetic information between tumor and stromal cells, whether by cell-cell fusion or other mechanisms, is implicated in the progression of malignancy, and may further define the crosstalk between cancer cells and their stromal neighbors.
Collapse
Affiliation(s)
- David M Goldenberg
- Garden State Cancer Center, Center for Molecular Medicine and Immunology, Morris Plains, NJ, USA.
| | | | | | | | | | | | | | | |
Collapse
|
469
|
Arvatz G, Shafat I, Levy-Adam F, Ilan N, Vlodavsky I. The heparanase system and tumor metastasis: is heparanase the seed and soil? Cancer Metastasis Rev 2011; 30:253-68. [PMID: 21308479 DOI: 10.1007/s10555-011-9288-x] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tumor metastasis, the leading cause of cancer patients' death, is still insufficiently understood. While concepts and mechanisms of tumor metastasis are evolving, it is widely accepted that cancer metastasis is accompanied by orchestrated proteolytic activity executed by array of proteases. While matrix metalloproteinases (MMPs) attracted much attention, other proteases constitute the tumor milieu, of which a large family consists of cysteine proteases named cathepsins. Like MMPs, some cathepsins are often upregulated in cancer and, once secreted or localized to the cell surface, can degrade components of the extracellular matrix. In addition, cathepsin L is held responsible for processing and activation of heparanase, an endo-β-glucuronidase capable of cleaving heparan sulfate side chains of heparan sulfate proteoglycans, activity that is strongly implicated in cell dissemination associated with tumor metastasis, angiogenesis, and inflammation. In this review, we discuss recent progress in heparanase research focusing on heparanase-related molecules namely, cathepsin L and heparanase 2 (Hpa2), a heparanase homolog.
Collapse
Affiliation(s)
- Gil Arvatz
- Cancer and Vascular Biology Research Center, Bruce Rappaport Faculty of Medicine, Technion, P. O. Box 9649, Haifa, 31096, Israel
| | | | | | | | | |
Collapse
|
470
|
Abstract
All human cells, including cancer cells, need oxygen and nutrients to survive. A widely used strategy to combat cancer is therefore the starvation of tumor cells by cutting off the blood supply of tumors. Clinical experience indeed shows that tumor progression can be delayed by anti-angiogenic agents. However, emerging evidence indicates that in certain experimental conditions, hypoxia as a result of pruning of the tumor microvasculature can promote tumor invasion and metastasis, although these findings are contextual and debated. Genetic studies in mice unveiled that vascular-targeting strategies that avoid aggravation of tumor hypoxia or even promote tumor oxygenation might prevent such an invasive metastatic switch. In this article, we will discuss the emerging link between hypoxia signaling and the various steps of metastasis.
Collapse
|
471
|
Díez-Torre A, Silván U, Moreno P, Gumucio J, Aréchaga J. Peritubular myoid cell-derived factors and its potential role in the progression of testicular germ cell tumours. ACTA ACUST UNITED AC 2011; 34:e252-64; discussion e264-5. [DOI: 10.1111/j.1365-2605.2011.01168.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
472
|
van Zijl F, Krupitza G, Mikulits W. Initial steps of metastasis: cell invasion and endothelial transmigration. Mutat Res 2011; 728:23-34. [PMID: 21605699 PMCID: PMC4028085 DOI: 10.1016/j.mrrev.2011.05.002] [Citation(s) in RCA: 579] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 05/04/2011] [Accepted: 05/05/2011] [Indexed: 02/09/2023]
Abstract
Metastasis is the leading cause of cancer mortality. The metastatic cascade represents a multi-step process which includes local tumor cell invasion, entry into the vasculature followed by the exit of carcinoma cells from the circulation and colonization at the distal sites. At the earliest stage of successful cancer cell dissemination, the primary cancer adapts the secondary site of tumor colonization involving the tumor–stroma crosstalk. The migration and plasticity of cancer cells as well as the surrounding environment such as stromal and endothelial cells are mandatory. Consequently, the mechanisms of cell movement are of utmost relevance for targeted intervention of which three different types have been reported. Tumor cells can migrate either collectively, in a mesenchymal or in an amoeboid type of movement and intravasate the blood or lymph vasculature. Intravasation by the interaction of tumor cells with the vascular endothelium is mechanistically poorly understood. Changes in the epithelial plasticity enable carcinoma cells to switch between these types of motility. The types of migration may change depending on the intervention thereby increasing the velocity and aggressiveness of invading cancer cells. Interference with collective or mesenchymal cell invasion by targeting integrin expression or metalloproteinase activity, respectively, resulted in an amoeboid cell phenotype as the ultimate exit strategy of cancer cells. There are little mechanistic details reported in vivo showing that the amoeboid behavior can be either reversed or efficiently inhibited. Future concepts of metastasis intervention must simultaneously address the collective, mesenchymal and amoeboid mechanisms of cell invasion in order to advance in anti-metastatic strategies as these different types of movement can coexist and cooperate. Beyond the targeting of cell movements, the adhesion of cancer cells to the stroma in heterotypic circulating tumor cell emboli is of paramount relevance for anti-metastatic therapy.
Collapse
Affiliation(s)
- Franziska van Zijl
- Department of Medicine I, Division: Institute of Cancer Research, Comprehensive Cancer Center Vienna, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Georg Krupitza
- Institute of Clinical Pathology, Comprehensive Cancer Center Vienna, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Wolfgang Mikulits
- Department of Medicine I, Division: Institute of Cancer Research, Comprehensive Cancer Center Vienna, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria.
| |
Collapse
|
473
|
Abstract
Brain metastases are a serious obstacle in the treatment of patients with solid tumors and contribute to the morbidity and mortality of these cancers. It is speculated that the frequency of brain metastasis is increasing for several reasons, including improved systemic therapy and survival, and detection of metastases in asymptomatic patients. The lack of preclinical models that recapitulate the clinical setting and the exclusion of patients with brain metastases from most clinical trials have slowed progress. Molecular factors contributing to brain metastases are being elucidated, such as genes involved in cell adhesion, extravasation, metabolism, and cellular signaling. Furthermore, the role of the unique brain microenvironment is beginning to be explored. Although the presence and function of the blood-brain barrier in metastatic tumors is still poorly understood, it is likely that some tumor cells are protected from therapeutics by the blood-tumor barrier, creating a sanctuary site. This Review discusses what is known about the biology of brain metastases, what preclinical models are available to study the disease, and which novel therapeutic strategies are being studied in patients.
Collapse
|
474
|
Cirri P, Chiarugi P. Cancer associated fibroblasts: the dark side of the coin. Am J Cancer Res 2011; 1:482-497. [PMID: 21984967 PMCID: PMC3186047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 03/08/2011] [Indexed: 05/31/2023] Open
Abstract
Valid experimental evidence has recently shown that progression of malignant tumors does not depend exclusively on cell-autonomous properties of the cancer cells, but is also deeply influenced by tumor stroma reactivity and undergoes a strict microenvironmental control. Beside structural environmental components as extracellular matrix (ECM) or hypoxia, stromal cells as macrophages, endothelial cells, and cancer-associated fibroblasts (CAFs) play a definite role in cancer progression. This review summarizes our current knowledge on the role of CAFs in tumor progression towards an aggressive phenotype, with particular emphasis on invasiveness, stemness, and preparation of metastatic niche. The controversial origins of CAFs as well as the therapeutical implications of targeting CAFs for anticancer therapy are discussed.
Collapse
Affiliation(s)
- Paolo Cirri
- Department of Biochemical Science, University of Florence viale Morgagni 50, 50134 Florence, Italy
| | | |
Collapse
|