451
|
De Zoysa M, Whang I, Lee Y, Lee S, Lee JS, Lee J. Defensin from disk abalone Haliotis discus discus: molecular cloning, sequence characterization and immune response against bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2010; 28:261-266. [PMID: 19922800 DOI: 10.1016/j.fsi.2009.11.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 10/25/2009] [Accepted: 11/02/2009] [Indexed: 05/28/2023]
Abstract
Gene-encoded antimicrobial peptides (AMPs) serve a major role in host defense systems against pathogens. In this study, cDNA of a new mollusk defensin was identified from a normalized cDNA library constructed from whole tissues of disk abalone. Abalone defensin peptide (pro-defensin) has a 198-bp coding sequence comprised of a putative 66 amino acids with a mature defensin consisting of 48 amino acid residues. The presence of an invertebrate defensin family domain, an arrangement of six cysteine residues and their disulfide linkage in C(1)-C(4), C(2)-C(5) and C(3)-C(6) form, an alpha helix in three-dimensional structure and a phylogenetic relationship suggests that abalone defensin could be a new member of the invertebrate defensin family, and related to arthropod defensins. In non-stimulated abalone, defensin transcripts were constitutively expressed in all examined tissues including hemocytes, gills, mantle, muscle, digestive tract and hepatopancreas. It was observed that abalone defensin transcripts were significantly induced in hemocytes, gills and digestive tract at different time intervals after infection by pathogenic bacteria mixture containing Vibrio alginolyticus, Vibrio parahemolyticus and Lysteria monocytogenes. Our overall results suggest that disk abalone defensin could be involved in the immune response reactions as a host defense against pathogenic bacteria.
Collapse
Affiliation(s)
- Mahanama De Zoysa
- Department of Marine Life Sciences, College of Ocean Sciences, Jeju National University, Jeju Special Self-Governing Province 690-756, Republic of Korea
| | | | | | | | | | | |
Collapse
|
452
|
Laughlin TF, Ahmad Z. Inhibition of Escherichia coli ATP synthase by amphibian antimicrobial peptides. Int J Biol Macromol 2010; 46:367-74. [PMID: 20100509 DOI: 10.1016/j.ijbiomac.2010.01.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 01/18/2010] [Accepted: 01/18/2010] [Indexed: 11/30/2022]
Abstract
Previously melittin, the alpha-helical basic honey bee venom peptide, was shown to inhibit F(1)-ATPase by binding at the beta-subunit DELSEED motif of F(1)F(o)-ATP synthase. Herein, we present the inhibitory effects of the basic alpha-helical amphibian antimicrobial peptides, ascaphin-8, aurein 2.2, aurein 2.3, carein 1.8, carein 1.9, citropin 1.1, dermaseptin, maculatin 1.1, maganin II, MRP, or XT-7, on purified F(1) and membrane bound F(1)F(0)Escherichia coli ATP synthase. We found that the extent of inhibition by amphibian peptides is variable. Whereas MRP-amide inhibited ATPase essentially completely (approximately 96% inhibition), carein 1.8 did not inhibit at all (0% inhibition). Inhibition by other peptides was partial with a range of approximately 13-70%. MRP-amide was also the most potent inhibitor on molar scale (IC(50) approximately 3.25 microM). Presence of an amide group at the c-terminal of peptides was found to be critical in exerting potent inhibition of ATP synthase ( approximately 20-40% additional inhibition). Inhibition was fully reversible and found to be identical in both F(1)F(0) membrane preparations as well as in isolated purified F(1). Interestingly, growth of E. coli was abrogated in the presence of ascaphin-8, aurein 2.2, aurein 2.3, citropin 1.1, dermaseptin, magainin II-amide, MRP, MRP-amide, melittin, or melittin-amide but was unaffected in the presence of carein 1.8, carein 1.9, maculatin 1.1, magainin II, or XT-7. Hence inhibition of F(1)-ATPase and E. coli cell growth by amphibian antimicrobial peptides suggests that their antimicrobial/anticancer properties are in part linked to their actions on ATP synthase.
Collapse
Affiliation(s)
- Thomas F Laughlin
- Department of Biological Sciences, Box 70703, East Tennessee State University, Johnson City, TN 37614, USA
| | | |
Collapse
|
453
|
Abstract
Background Antibacterial peptides are one of the effecter molecules of innate immune system. Over the last few decades several antibacterial peptides have successfully approved as drug by FDA, which has prompted an interest in these antibacterial peptides. In our recent study we analyzed 999 antibacterial peptides, which were collected from Antibacterial Peptide Database (APD). We have also developed methods to predict and classify these antibacterial peptides using Support Vector Machine (SVM). Results During analysis we observed that certain residues are preferred over other in antibacterial peptide, particularly at the N and C terminus. These observation and increased data of antibacterial peptide in APD encouraged us to again develop a new and more robust method for predicting antibacterial peptides in protein from their amino acid sequence or given peptide have antibacterial properties or not. First, the binary patterns of the 15 N terminus residues were used for predicting antibacterial peptide using SVM and achieved accuracy of 85.46% with 0.705 Mathew's Correlation Coefficient (MCC). Then we used the binary pattern of 15 C terminus residues and achieved accuracy of 85.05% with 0.701 MCC, latter on we developed prediction method by combining N & C terminus and achieved an accuracy of 91.64% with 0.831 MCC. Finally we developed SVM based model using amino acid composition of whole peptide and achieved 92.14% accuracy with MCC 0.843. In this study we used five-fold cross validation technique to develop all these models and tested the performance of these models on an independent dataset. We further classify antibacterial peptides according to their sources and achieved an overall accuracy of 98.95%. We further classify antibacterial peptides in their respective family and got a satisfactory result. Conclusion Among antibacterial peptides, there is preference for certain residues at N and C terminus, which helps to discriminate them from non-antibacterial peptides. Amino acid composition of antibacterial peptides helps to demarcate them from non-antibacterial peptide and their further classification in source and family. Antibp2 will be helpful in discovering efficacious antibacterial peptide, which we hope will be helpful against antibiotics resistant bacteria. We also developed user friendly web server for the biological community.
Collapse
|
454
|
Schillaci D, Arizza V, Parrinello N, Di Stefano V, Fanara S, Muccilli V, Cunsolo V, Haagensen J, Molin S. Antimicrobial and antistaphylococcal biofilm activity from the sea urchin Paracentrotus lividus. J Appl Microbiol 2010; 108:17-24. [DOI: 10.1111/j.1365-2672.2009.04394.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
455
|
An SVM Model Based on Physicochemical Properties to Predict Antimicrobial Activity from Protein Sequences with Cysteine Knot Motifs. ADVANCES IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY 2010. [DOI: 10.1007/978-3-642-15060-9_6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
456
|
Strauss J, Kadilak A, Cronin C, Mello CM, Camesano TA. Binding, inactivation, and adhesion forces between antimicrobial peptide cecropin P1 and pathogenic E. coli. Colloids Surf B Biointerfaces 2010; 75:156-64. [DOI: 10.1016/j.colsurfb.2009.08.026] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 07/20/2009] [Accepted: 08/17/2009] [Indexed: 10/20/2022]
|
457
|
Kim JS, Park TJ, Kim YA. Optimized Methods for purification and NMR measurement of antibacterial peptide, bovine lactophoricin. JOURNAL OF THE KOREAN MAGNETIC RESONANCE SOCIETY 2009. [DOI: 10.6564/jkmrs.2009.13.2.096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
458
|
Gable JE, Schlamadinger DE, Cogen AL, Gallo RL, Kim JE. Fluorescence and UV resonance Raman study of peptide-vesicle interactions of human cathelicidin LL-37 and its F6W and F17W mutants. Biochemistry 2009; 48:11264-72. [PMID: 19894716 DOI: 10.1021/bi900996q] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
LL-37 is a broad-spectrum human antimicrobial peptide in the cathelicidin family. Potency assays in the form of minimal inhibitory concentration and vesicle leakage indicate that the single-tryptophan mutants, F6W and F17W, are as effective at killing bacteria and disrupting membranes as the native, tryptophan-free LL-37 peptide. Steady-state fluorescence and UV resonance Raman spectroscopy of F6W and F17W reveal molecular details of these tryptophan residues. The local environment polarity, hydrogen bond strength of the indole N-H moiety, and rotational freedom decrease for both F6W and F17W in the presence of carbonate ions relative to in pure distilled water; these results are consistent with burial of the hydrophobic region of alpha-helical LL-37 in oligomeric cores induced in the presence of carbonate ions. Differences in the spectroscopic properties of the carbonate-induced alpha-helical forms of F6W and F17W reflect the presence of a local lysine residue near F6W that makes the microenvironment of F6W more polar than that of F17W. In the presence of lipid vesicles, the mutants undergo additional loss of environment polarity, hydrogen bond strength, and rotational freedom. Quenching experiments utilizing brominated lipids reveal that the tryptophan residues in both mutants are essentially equidistant from the bilayer center and that bromines closer to the bilayer center, in the 9,10 positions, quench fluorescence more efficiently than those closer to the headgroups (6,7 positions). These results support carpeting or toroidal pore mechanisms of membrane disruption by LL-37 and demonstrate that the combination of tryptophan mutants and sensitive spectroscopic tools may provide important molecular clues about antimicrobial action.
Collapse
Affiliation(s)
- Jonathan E Gable
- Department of Chemistry and Biochemistry, University ofCalifornia at San Diego, La Jolla, California 92093, USA
| | | | | | | | | |
Collapse
|
459
|
Ryadnov M, Mukamolova G, Hawrani A, Spencer J, Platt R. RE Coil: An Antimicrobial Peptide Regulator. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200904780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
460
|
Yang L, Johansson J, Ridsdale R, Willander H, Fitzen M, Akinbi HT, Weaver TE. Surfactant protein B propeptide contains a saposin-like protein domain with antimicrobial activity at low pH. THE JOURNAL OF IMMUNOLOGY 2009; 184:975-83. [PMID: 20007532 DOI: 10.4049/jimmunol.0900650] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Surfactant protein B (SP-B) proprotein contains three saposin-like protein (SAPLIP) domains: a SAPLIP domain corresponding to the mature SP-B peptide is essential for lung function and postnatal survival; the function of SAPLIP domains in the N-terminal (SP-BN) and C-terminal regions of the proprotein is not known. In the current study, SP-BN was detected in the supernatant of mouse bronchoalveolar lavage fluid (BALF) and in nonciliated bronchiolar cells, alveolar type II epithelial cells, and alveolar macrophages. rSP-BN indirectly promoted the uptake of bacteria by macrophage cell lines and directly killed bacteria at acidic pH, consistent with a lysosomal, antimicrobial function. Native SP-BN isolated from BALF also killed bacteria but only at acidic pH; the bactericidal activity of BALF at acidic pH was completely blocked by SP-BN Ab. Transgenic mice overexpressing SP-BN and mature SP-B peptide had significantly decreased bacterial burden and increased survival following intranasal inoculation with bacteria. These findings support the hypothesis that SP-BN contributes to innate host defense of the lung by supplementing the nonoxidant antimicrobial defenses of alveolar macrophages.
Collapse
Affiliation(s)
- Li Yang
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH 45229-3039, USA
| | | | | | | | | | | | | |
Collapse
|
461
|
Ryadnov M, Mukamolova G, Hawrani A, Spencer J, Platt R. RE Coil: An Antimicrobial Peptide Regulator. Angew Chem Int Ed Engl 2009; 48:9676-9. [DOI: 10.1002/anie.200904780] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
462
|
The antimicrobial peptides derived from chromogranin/secretogranin family, new actors of innate immunity. ACTA ACUST UNITED AC 2009; 165:102-10. [PMID: 19932135 DOI: 10.1016/j.regpep.2009.11.014] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2009] [Revised: 11/11/2009] [Accepted: 11/12/2009] [Indexed: 12/20/2022]
Abstract
Chromogranins/secretogranins are members of the granin family present in secretory vesicles of nervous, endocrine and immune cells. In chromaffin cells, activation of nicotinic cholinergic receptors induces the release, with catecholamines, of bioactive peptides resulting from a natural processing. During the past decade, our laboratory has characterized new antimicrobial chromogranin-derived peptides in the secretions of stimulated bovine chromaffin cells. They act at the micromolar range against bacteria, fungi, yeasts, and are non-toxic for the mammalian cells. They are recovered in several biological fluids involved in defence mechanisms (human serum, neutrophil secretions and saliva). These new antimicrobial peptides demonstrate the major role of the adrenal medulla in innate immunity. In this review we focus on the antimicrobial peptides derived from human and bovine chromogranin A (CGA), chromogranin B (CGB) and secretogranin II (SGII) emphasizing their direct action against pathogens and their effects on immune cells.
Collapse
|
463
|
Expression and Purification of an Antimicrobial Peptide by Fusion with Elastin-like Polypeptides in Escherichia coli. Appl Biochem Biotechnol 2009; 160:2377-87. [DOI: 10.1007/s12010-009-8850-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2009] [Accepted: 10/29/2009] [Indexed: 10/20/2022]
|
464
|
Thomas S, Karnik S, Barai RS, Jayaraman VK, Idicula-Thomas S. CAMP: a useful resource for research on antimicrobial peptides. Nucleic Acids Res 2009; 38:D774-80. [PMID: 19923233 PMCID: PMC2808926 DOI: 10.1093/nar/gkp1021] [Citation(s) in RCA: 287] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Antimicrobial peptides (AMPs) are gaining popularity as better substitute to antibiotics. These peptides are shown to be active against several bacteria, fungi, viruses, protozoa and cancerous cells. Understanding the role of primary structure of AMPs in their specificity and activity is essential for their rational design as drugs. Collection of Anti-Microbial Peptides (CAMP) is a free online database that has been developed for advancement of the present understanding on antimicrobial peptides. It is manually curated and currently holds 3782 antimicrobial sequences. These sequences are divided into experimentally validated (patents and non-patents: 2766) and predicted (1016) datasets based on their reference literature. Information like source organism, activity (MIC values), reference literature, target and non-target organisms of AMPs are captured in the database. The experimentally validated dataset has been further used to develop prediction tools for AMPs based on the machine learning algorithms like Random Forests (RF), Support Vector Machines (SVM) and Discriminant Analysis (DA). The prediction models gave accuracies of 93.2% (RF), 91.5% (SVM) and 87.5% (DA) on the test datasets. The prediction and sequence analysis tools, including BLAST, are integrated in the database. CAMP will be a useful database for study of sequence-activity and -specificity relationships in AMPs. CAMP is freely available at http://www.bicnirrh.res.in/antimicrobial.
Collapse
Affiliation(s)
- Shaini Thomas
- Biomedical Informatics Center of Indian Council of Medical Research, National Institute for Research in Reproductive Health, Mumbai, India.
| | | | | | | | | |
Collapse
|
465
|
Ramanathan K, Shanthi V, Sethumadhavan R. Contribution of unconventional C-H…O bonds to the structural stability of Antimicrobial peptides. Interdiscip Sci 2009; 1:263-71. [DOI: 10.1007/s12539-009-0034-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 06/12/2009] [Accepted: 06/18/2009] [Indexed: 10/20/2022]
Affiliation(s)
- K Ramanathan
- School of Biotechnology, Chemical and Biomedical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | | | | |
Collapse
|
466
|
Sherman PJ, Jackway RJ, Gehman JD, Praporski S, McCubbin GA, Mechler A, Martin LL, Separovic F, Bowie JH. Solution Structure and Membrane Interactions of the Antimicrobial Peptide Fallaxidin 4.1a: An NMR and QCM Study. Biochemistry 2009; 48:11892-901. [DOI: 10.1021/bi901668y] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Patrick J. Sherman
- Department of Chemistry, The University of Adelaide, South Australia 5005, Australia
| | - Rebecca J. Jackway
- Department of Chemistry, The University of Adelaide, South Australia 5005, Australia
| | - John D. Gehman
- School of Chemistry, Bio21 Institute, University of Melbourne, Victoria 3010, Australia
| | | | | | - Adam Mechler
- School of Chemistry, Monash University, Victoria 3800, Australia
| | | | - Frances Separovic
- School of Chemistry, Bio21 Institute, University of Melbourne, Victoria 3010, Australia
| | - John H. Bowie
- Department of Chemistry, The University of Adelaide, South Australia 5005, Australia
| |
Collapse
|
467
|
Torrent M, Nogués VM, Boix E. A theoretical approach to spot active regions in antimicrobial proteins. BMC Bioinformatics 2009; 10:373. [PMID: 19906288 PMCID: PMC2780422 DOI: 10.1186/1471-2105-10-373] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Accepted: 11/11/2009] [Indexed: 01/20/2023] Open
Abstract
Background Much effort goes into identifying new antimicrobial compounds able to evade the increasing resistance of microorganisms to antibiotics. One strategy relies on antimicrobial peptides, either derived from fragments released by proteolytic cleavage of proteins or designed from known antimicrobial protein regions. Results To identify these antimicrobial determinants, we developed a theoretical approach that predicts antimicrobial proteins from their amino acid sequence in addition to determining their antimicrobial regions. A bactericidal propensity index has been calculated for each amino acid, using the experimental data reported from a high-throughput screening assay as reference. Scanning profiles were performed for protein sequences and potentially active stretches were identified by the best selected threshold parameters. The method was corroborated against positive and negative datasets. This successful approach means that we can spot active sequences previously reported in the literature from experimental data for most of the antimicrobial proteins examined. Conclusion The method presented can correctly identify antimicrobial proteins with an accuracy of 85% and a sensitivity of 90%. The method can also predict their key active regions, making this a tool for the design of new antimicrobial drugs.
Collapse
Affiliation(s)
- Marc Torrent
- Dpt, Bioquímica i Biologia Molecular, Fac, Biociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.
| | | | | |
Collapse
|
468
|
Subramanian S, Ross NW, MacKinnon SL. Myxinidin, a novel antimicrobial peptide from the epidermal mucus of hagfish, Myxine glutinosa L. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2009; 11:748-757. [PMID: 19330556 DOI: 10.1007/s10126-009-9189-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Accepted: 02/18/2009] [Indexed: 05/27/2023]
Abstract
Fish epidermal mucus contains innate immune components that provide a first line of defense against various infectious pathogens. This study reports the bioassay-guided fractionation and characterization of a novel antimicrobial peptide, myxinidin, from the acidic epidermal mucus extract of hagfish (Myxine glutinosa L.). Edman sequencing and mass spectrometry revealed that myxinidin consists of 12 amino acids and has a molecular mass of 1,327.68 Da. Myxinidin showed activity against a broad range of bacteria and yeast pathogens at minimum bactericidal concentration (MBC) ranging from 1.0 to 10.0 microg/mL. Screened pathogens, Salmonella enterica serovar Typhimurium C610, Escherichia coli D31, Aeromonas salmonicida A449, Yersinia ruckeri 96-4, and Listonella anguillarum 02-11 were found to be highly sensitive to myxinidin at the MBC of 1.0-2.5 microg/mL; Staphylococcus epidermis C621 and yeast (Candida albicans C627) had an MBC of 10.0 microg/mL. The antimicrobial activity of myxinidin was found to be two to 16 times more active than a potent fish-derived antimicrobial peptide, pleurocidin (NRC-17), against most of the screened pathogens. The microbicidal activity of myxinidin was retained in the presence of sodium chloride (NaCl) at concentrations up to 0.3 M and had no hemolytic activity against mammalian red blood cells. These results suggest that myxinidin may have potential applications in fish and human therapeutics.
Collapse
Affiliation(s)
- Sangeetha Subramanian
- Institute for Marine Biosciences, National Research Council, 1411 Oxford Street, Halifax, Nova Scotia, Canada, B3H 3Z1
| | | | | |
Collapse
|
469
|
Brown SE, Howard A, Kasprzak AB, Gordon KH, East PD. A peptidomics study reveals the impressive antimicrobial peptide arsenal of the wax moth Galleria mellonella. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2009; 39:792-800. [PMID: 19786100 DOI: 10.1016/j.ibmb.2009.09.004] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 09/07/2009] [Accepted: 09/21/2009] [Indexed: 05/28/2023]
Abstract
The complete antimicrobial peptide repertoire of Galleria mellonella was investigated for the first time by LC/MS. Combining data from separate trypsin, Glu-C and Asp-N digests of immune hemolymph allowed detection of 18 known or putative G. mellonella antimicrobial peptides or proteins, namely lysozyme, moricin-like peptides (5), cecropins (2), gloverin, Gm proline-rich peptide 1, Gm proline-rich peptide 2, Gm anionic peptide 1 (P1-like), Gm anionic peptide 2, galiomicin, gallerimycin, inducible serine protease inhibitor 2, 6tox and heliocin-like peptide. Six of these were previously known only as nucleotide sequences, so this study provides the first evidence for expression of these genes. LC/MS data also provided insight into the expression and processing of the antimicrobial Gm proline-rich peptide 1. The gene for this peptide was isolated and shown to be unique to moths and to have an unusually long precursor region (495 bp). The precursor region contained other proline-rich peptides and LC/MS data suggested that these were being specifically processed and were present in hemolymph at very high levels. This study shows that G. mellonella can concurrently release an impressive array of at least 18 known or putative antimicrobial peptides from 10 families to defend itself against invading microbes.
Collapse
|
470
|
De Zoysa M, Nikapitiya C, Whang I, Lee JS, Lee J. Abhisin: a potential antimicrobial peptide derived from histone H2A of disk abalone (Haliotis discus discus). FISH & SHELLFISH IMMUNOLOGY 2009; 27:639-646. [PMID: 19706329 DOI: 10.1016/j.fsi.2009.08.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 08/09/2009] [Accepted: 08/11/2009] [Indexed: 05/28/2023]
Abstract
Antimicrobial peptides (AMPs) play an important role in the immune defense against pathogenic microorganisms. In this study, a histone H2A full-length cDNA was cloned from disk abalone Haliotis discus discus. We identified a 40-amino acid AMP designated as abhisin from the N-terminus of the abalone histone H2A sequence. Abhisin shows the characteristic features of AMPs including net positive charge (+13), higher hydrophobic residues (27%) and 2.82 kcal/mol protein binding potential. Abhisin shares 80% amino acid identity with the buforin I peptide that is derived from Asian toad histone H2A. We synthesized the synthetic peptide of abhisin, and characterized its antimicrobial activities. Our results showed the growth inhibition of Gram positive (G+) Listeria monocytogenes, Gram negative (G-) Vibrio ichthyoenteri bacteria, and fungi (yeast) Pityrosporum ovale by abhisin treatment at 250 microg/mL. However, stronger activity was displayed against the G+ than G- bacteria. Additionally, scanning electron microscope (SEM) observation results confirmed that P. ovale cells were damaged by abhisin treatment. Interestingly, abhisin treatment (50 microg/mL) decreased the viability of THP-1 leukemia cancer cells approximately by 25% but there was no effect on the normal vero cells, suggesting that abhisin has cytotoxicity against cancer cells but not normal cells. Quantitative real time RT-PCR results revealed that histone H2A transcription was significantly induced at 3 h post-infection with bacteria in abalone gills and digestive tract. These results suggest that abhisin is a potential antimicrobial agent, and its precursor histone H2A may be involved in the innate immune defense system in abalone.
Collapse
Affiliation(s)
- Mahanama De Zoysa
- Department of Marine Life Science, College of Ocean Science, Jeju National University, Jeju Special Self-Governing Province 690-756, Republic of Korea
| | | | | | | | | |
Collapse
|
471
|
Comparative molecular dynamics simulation studies of protegrin-1 monomer and dimer in two different lipid bilayers. Biophys J 2009; 97:787-95. [PMID: 19651037 DOI: 10.1016/j.bpj.2009.05.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2009] [Revised: 05/15/2009] [Accepted: 05/22/2009] [Indexed: 11/22/2022] Open
Abstract
Antimicrobial peptides interact specifically with the membrane of a pathogen and kill the pathogen by releasing its cellular contents. Protegrin-1 (PG-1), a beta-hairpin antimicrobial peptide, is known to exist as a transmembrane monomer in a 1,2-dilauroylphosphatidylcholine (DLPC) bilayer and shows concentration-dependent oligomerization in a 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) bilayer. To examine its structure, dynamics, orientation, and interaction in membranes, we performed comparative molecular dynamics simulations of PG-1 monomer and dimer in DLPC and POPC bilayers for a total of 840 ns. The PG-1 monomer exhibits larger tilting in DLPC than in POPC due to a hydrophobic mismatch. PG-1 tilting is dependent on its rotation angle. The specific orientation of PG-1 in membranes is governed by the interactions of its aromatic residues with lipid headgroups. The calculated (15)N and (13)CO chemical shifts of Val(16) in DLPC reveal that there are different sets of tilt and rotation angles that satisfy the experimental values reasonably, suggesting that more experiments are needed to determine its orientation. The dimer simulations show that the dimer interface is better preserved in POPC than in DLPC because POPC's greater hydrophobic thickness causes reduced flexibility of the C-terminal strands. Both monomer and dimer simulations show membrane thinning around PG-1, largely due to arginine-lipid interactions.
Collapse
|
472
|
Duval E, Zatylny C, Laurencin M, Baudy-Floc'h M, Henry J. KKKKPLFGLFFGLF: a cationic peptide designed to exert antibacterial activity. Peptides 2009; 30:1608-12. [PMID: 19573572 DOI: 10.1016/j.peptides.2009.06.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 06/19/2009] [Accepted: 06/19/2009] [Indexed: 11/18/2022]
Abstract
With 14 residues organized as two domains linked by a single proline, the de novo peptide called K4 was designed, using Antimicrobial Peptide Database, to exert antibacterial activity. The N-terminal domain is composed of four lysines enhancing membrane interactions, and the C-terminal domain is putatively folded into a hydrophobic alpha-helix. Following the synthesis, the purification and the structural checking, antibacterial assays revealed a strong activity against gram-positive and gram-negative bacteria including human pathogenic bacteria such as Staphylococcus aureus and some marine bacteria of the genus Vibrio. Scanning electron microscopy of Escherichia coli confirmed that K4 lyses bacterial cells. The cytotoxicity was tested against rabbit erythrocytes and chinese hamster ovary cells (CHO-K1). These tests revealed that K4 is non-toxic to mammalian cells for bacteriolytic concentrations. The peptide K4 could be a valuable candidate for future therapeutic applications.
Collapse
Affiliation(s)
- Emilie Duval
- UMR 100 IFREMER Physiologie et Ecophysiologie des Mollusques Marins, Université de Caen, Caen cedex, France
| | | | | | | | | |
Collapse
|
473
|
Structure, dynamics and mapping of membrane-binding residues of micelle-bound antimicrobial peptides by natural abundance (13)C NMR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1798:114-21. [PMID: 19682427 DOI: 10.1016/j.bbamem.2009.07.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 06/08/2009] [Accepted: 07/30/2009] [Indexed: 12/23/2022]
Abstract
Worldwide bacterial resistance to traditional antibiotics has drawn much research attention to naturally occurring antimicrobial peptides (AMPs) owing to their potential as alternative antimicrobials. Structural studies of AMPs are essential for an in-depth understanding of their activity, mechanism of action, and in guiding peptide design. Two-dimensional solution proton NMR spectroscopy has been the major tool. In this article, we describe the applications of natural abundance (13)C NMR spectroscopy that provides complementary information to 2D (1)H NMR. The correlation of (13)Calpha secondary shifts with both 3D structure and heteronuclear (15)N NOE values indicates that natural abundance carbon chemical shifts are useful probes for backbone structure and dynamics of membrane peptides. Using human LL-37-derived peptides (GF-17, KR-12, and RI-10), as well as amphibian antimicrobial and anticancer peptide aurein 1.2 and its analog LLAA, as models, we show that the cross peak intensity plots of 2D (1)H-(13)Calpha HSQC spectra versus residue number present a wave-like pattern (HSQC wave) where key hydrophobic residues of micelle-bound peptides are located in the troughs with weaker intensities, probably due to fast exchange between the free and bound forms. In all the cases, the identification of aromatic phenylalanines as a key membrane-binding residue is consistent with previous intermolecular Phe-lipid NOE observations. Furthermore, mutation of one of the key hydrophobic residues of KR-12 to Ala significantly reduced the antibacterial activity of the peptide mutants. These results illustrate that natural abundance heteronuclear-correlated NMR spectroscopy can be utilized to probe backbone structure and dynamics, and perhaps to map key membrane-binding residues of peptides in complex with micelles. (1)H-(13)Calpha HSQC wave, along with other NMR waves such as dipolar wave and chemical shift wave, offers novel insights into peptide-membrane interactions from different angles.
Collapse
|
474
|
Lee J, Ham S, Im W. Beta-hairpin restraint potentials for calculations of potentials of mean force as a function of beta-hairpin tilt, rotation, and distance. J Comput Chem 2009; 30:1334-43. [PMID: 19009593 DOI: 10.1002/jcc.21154] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We have developed a set of restraint potentials for beta-hairpin tilt relative to the membrane normal, beta-hairpin rotation around the beta-hairpin axis, and hairpin-hairpin distance. Such restraint potentials enable us to characterize the molecular basis of specific beta-hairpin tilt and rotation in membranes and hairpin-hairpin interactions at the atomic level by sampling their conformational space along these degrees of freedom, i.e., reaction coordinates, during molecular dynamics simulations. We illustrate the efficacy of the beta-hairpin restraint potentials by calculating the potentials of mean force (PMFs) as a function of tilt and rotation angles of protegrin-1 (PG-1), a beta-hairpin antimicrobial peptide, in an implicit membrane model. The peptide association in the membrane is also examined by calculating the PMFs as a function of distance between two PG-1 peptides in various dimer interfaces. These novel restraint potentials are found to perform well in each of these cases and are expected to be a useful means to study the microscopic driving forces of insertion, tilting, and rotation of beta-hairpin peptides in membranes as well as their association in aqueous solvent or membrane environments particularly when combined with explicit solvent models.
Collapse
Affiliation(s)
- Jinhyuk Lee
- Department of Molecular Biosciences and Center for Bioinformatics, The University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047, USA
| | | | | |
Collapse
|
475
|
Lipid segregation explains selective toxicity of a series of fragments derived from the human cathelicidin LL-37. Antimicrob Agents Chemother 2009; 53:3705-14. [PMID: 19581460 DOI: 10.1128/aac.00321-09] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The only human cathelicidin, the 37-residue peptide LL-37, exhibits antimicrobial activity against both gram-positive and gram-negative bacteria. We studied the ability of several fragments of LL-37, exhibiting different antimicrobial activities, to interact with membranes whose compositions mimic the cytoplasmic membranes of gram-positive or of gram-negative bacteria. These fragments are as follows: KR-12, the smallest active segment of LL-37, with the sequence KRIVQRIKDFLR, which exhibits antimicrobial activity only against gram-negative bacteria; a slightly smaller peptide, RI-10, missing the two cationic residues at the N and C termini of KR-12, which has been shown not to have any antimicrobial activity; a longer peptide, GF-17, which shows antimicrobial activity against gram-positive as well as gram-negative bacteria; and GF-17D3, with 3 D-amino-acid residues, which is also selective only for gram-negative bacteria. Those fragments with the capacity to cluster anionic lipids away from zwitterionic lipids in a membrane exhibit selective toxicity toward bacteria containing zwitterionic as well as anionic lipids in their cytoplasmic membranes but not toward bacteria with only anionic lipids. This finding allows for the prediction of the bacterial-species selectivity of certain agents and paves the way for designing new antimicrobials targeted specifically toward gram-negative bacteria.
Collapse
|
476
|
Coupling molecular dynamics simulations with experiments for the rational design of indolicidin-analogous antimicrobial peptides. J Mol Biol 2009; 392:837-54. [PMID: 19576903 DOI: 10.1016/j.jmb.2009.06.071] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 06/08/2009] [Accepted: 06/27/2009] [Indexed: 11/21/2022]
Abstract
Antimicrobial peptides (AMPs) have attracted much interest in recent years because of their potential use as new-generation antibiotics. Indolicidin (IL) is a 13-residue cationic AMP that is effective against a broad spectrum of bacteria, fungi, and even viruses. Unfortunately, its high hemolytic activity retards its clinical applications. In this study, we adopted molecular dynamics (MD) simulations as an aid toward the rational design of IL analogues exhibiting high antimicrobial activity but low hemolysis. We employed long-timescale, multi-trajectory all-atom MD simulations to investigate the interactions of the peptide IL with model membranes. The lipid bilayer formed by the zwitterionic 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) was chosen as the model erythrocyte membrane; lipid bilayers formed from a mixture of POPC and the negatively charged 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol were chosen to model bacterial membranes. MD simulations with a total simulation time of up to 4 micros revealed the mechanisms of the processes of IL adsorption onto and insertion into the membranes. The packing order of these lipid bilayers presumably correlated to the membrane stability upon IL adsorption and insertion. We used the degree of local membrane thinning and the reduction in the order parameter of the acyl chains of the lipids to characterize the membrane stability. The order of the mixed 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol/POPC lipid bilayer reduced significantly upon the adsorption of IL. On the other hand, although the order of the pure-POPC lipid bilayer was perturbed slightly during the adsorption stage, the value was reduced more dramatically upon the insertion of IL into the membrane's hydrophobic region. The results imply that enhancing IL adsorption on the microbial membrane may amplify its antimicrobial activity, while the degree of hemolysis may be reduced through inhibition of IL insertion into the hydrophobic region of the erythrocyte membrane. In addition, through simulations, we identified the amino acids that are most responsible for the adsorption onto or insertion into the two model membranes. Positive charges are critical to the peptide's adsorption, whereas the presence of hydrophobic Trp8 and Trp9 leads to its deeper insertion. Combining the hypothetical relationships between the membrane disordering and the antimicrobial and hemolytical activities with the simulated results, we designed three new IL-analogous peptides: IL-K7 (Pro7-->Lys), IL-F89 (Trp8 and Trp9-->Phe), and IL-K7F89 (Pro7-->Lys; Trp8 and Trp9-->Phe). The hemolytic activity of IL-F89 is considerably lower than that of IL, whereas the antimicrobial activity of IL-K7 is greatly enhanced. In particular, the de novo peptide IL-K7F89 exhibits higher antimicrobial activity against Escherichia coli; its hemolytic activity decreased to only 10% of that of IL. Our simulated and experimental results correlated well. This approach-coupling MD simulations with experimental design-is a useful strategy toward the rational design of AMPs for potential therapeutic use.
Collapse
|
477
|
Galinier R, Roger E, Sautiere PE, Aumelas A, Banaigs B, Mitta G. Halocyntin and papillosin, two new antimicrobial peptides isolated from hemocytes of the solitary tunicate, Halocynthia papillosa. J Pept Sci 2009; 15:48-55. [PMID: 19085906 DOI: 10.1002/psc.1101] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We report here the screening of five marine invertebrate species from two taxa (tunicates and echinoderms) for the presence of cationic antimicrobial peptides (AMP) in defence cells (hemocytes). Antimicrobial activities were detected only in the two tunicates Microcosmus sabatieri and Halocynthia papillosa. In addition, we report the isolation and characterization of two novel peptides from H. papillosa hemocytes. These molecules display antibacterial activity against Gram-positive and Gram-negative bacteria. Complete peptide characterization was obtained by a combination of Edman degradation and mass spectrometry. The mature molecules, named halocyntin and papillosin, comprise 26 and 34 amino acid residues, respectively. Their primary structure display no significant similarities with previously described AMP.
Collapse
Affiliation(s)
- Richard Galinier
- Laboratoire de Biologie et d'Ecologie Tropicale et Méditerranéenne, CNRS-UPVD-EPHE, Perpignan, France.
| | | | | | | | | | | |
Collapse
|
478
|
Morales Betanzos C, Gonzalez-Moa MJ, Boltz KW, Vander Werf BD, Johnston SA, Svarovsky SA. Bacterial glycoprofiling by using random sequence peptide microarrays. Chembiochem 2009; 10:877-88. [PMID: 19243087 DOI: 10.1002/cbic.200800716] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Current analytical methods have been slow in addressing the growing need for glyco-analysis. A new generation of more empirical high-throughput (HTP) tools is needed to aid the advance of this important field. To this end, we have developed a new HTP screening platform for identification of surface-immobilized peptides that specifically bind O-antigenic glycans of bacterial lipopolysaccharides (LPS). This method involves screening of random sequence peptide libraries in addressable high-density microarray format with the newly developed luminescent LPS-quantum dot micelles. Screening of LPS fractions from O111:B4 and O55:B5 serotypes of E. coli on a microarray consisting of 10,000 20-mer peptide features revealed minor differences, while comparison of LPS from E. coli O111:B4 and P. aeruginosa produced sets of highly specific peptides. Peptides strongly binding to the E. coli LPS were highly enriched in aromatic and cationic amino acids, and most of these inhibited growth of E. coli. Flow cytometry and isothermal titration calorimetry (ITC) experiments showed that some of these peptides bind LPS in-solution with a K(d) of 1.75 microM. Peptide selections against P. aeruginosa were largely composed of hydrogen-bond forming amino acids in accordance with dramatic compositional differences in O-antigenic glycans in E. coli and P. aeruginosa. While the main value of this approach lies in the ability to rapidly differentiate bacterial and possibly other complex glycans, the peptides discovered here can potentially be used off-array as antiendotoxic and antimicrobial lead compounds, and on-array/on-bead as diagnostic and affinity reagents.
Collapse
Affiliation(s)
- Carlos Morales Betanzos
- Center for Innovations in Medicine, The Biodesign Institute, Arizona State University, 1001 S. McAllister Avenue, Tempe, AZ 85287, USA
| | | | | | | | | | | |
Collapse
|
479
|
Giuseppe Rizzello C, Coda R, De Angelis M, Di Cagno R, Carnevali P, Gobbetti M. Long-term fungal inhibitory activity of water-soluble extract from Amaranthus spp. seeds during storage of gluten-free and wheat flour breads. Int J Food Microbiol 2009; 131:189-96. [DOI: 10.1016/j.ijfoodmicro.2009.02.025] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 02/11/2009] [Accepted: 02/20/2009] [Indexed: 11/28/2022]
|
480
|
Pisuttharachai D, Yasuike M, Aono H, Yano Y, Murakami K, Kondo H, Aoki T, Hirono I. Characterization of two isoforms of Japanese spiny lobster Panulirus japonicus defensin cDNA. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2009; 33:434-438. [PMID: 19073210 DOI: 10.1016/j.dci.2008.11.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 11/18/2008] [Accepted: 11/19/2008] [Indexed: 05/27/2023]
Abstract
Antimicrobial peptides (AMPs) are components of the innate immune responses that form the first line of host defense against pathogens. In this study, cDNAs of two new isoforms of defensin (designated PJD1 and PJD2) from a Japanese spiny lobster Panulirus japonicus haemocytes cDNA library were cloned and sequenced. PJD1 and PJD2 consist of 656 and 673 nucleotides encoding putative proteins of 66 and 64 amino acids, respectively. The isoforms share 74.2% amino acid identity. In a phylogenetic analysis, the peptides clustered with vertebrate defensins and were closely mostly related to chicken beta-defensin. PJD1 and PJD2 were detected in all tissues examined including heart, nerves, intestine, haemocytes, gills and hepatopancreas.
Collapse
Affiliation(s)
- Duangjai Pisuttharachai
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo 108-8477, Japan
| | | | | | | | | | | | | | | |
Collapse
|
481
|
Tian ZG, Dong TT, Yang YL, Teng D, Wang JH. Expression of antimicrobial peptide LH multimers in Escherichia coli C43(DE3). Appl Microbiol Biotechnol 2009; 83:143-9. [PMID: 19205689 DOI: 10.1007/s00253-009-1893-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Revised: 01/22/2009] [Accepted: 01/22/2009] [Indexed: 11/26/2022]
Abstract
The tandem repeats of LFB15(W4,10)-HP(4-16) (LH) gene were cloned into vector pET32a(+) for recombinant expression in Escherichia coli. The E. coli C43(DE3) was successfully used as the expression host to avoid the cell death during induction in E. coli BL21(DE3). Fusion LH dimer was expressed as inclusion body at a portion of 35% of total cell protein and could be well purified by Ni(2+)-chelating chromatography. The recombinant LH was released by the cleavage of 50% formic acid, and its yield reached 11.3 mg/l with purity of 95%. The MIC(50) of 3.6 and 1.9 microM of recombinant LH against E. coli CMCC 44102 and Bacillus subtilis ATCC 6633 were determined, respectively. The results demonstrated that expression of tandem LH gene in E. coli C43(DE3) and formic acid cleavage would provide a potent efficient platform for the production of interested peptides.
Collapse
Affiliation(s)
- Zi-gang Tian
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing 100081, People's Republic of China
| | | | | | | | | |
Collapse
|
482
|
Killing of trypanosomatid parasites by a modified bovine host defense peptide, BMAP-18. PLoS Negl Trop Dis 2009; 3:e373. [PMID: 19190729 PMCID: PMC2628741 DOI: 10.1371/journal.pntd.0000373] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 01/06/2009] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Tropical diseases caused by parasites continue to cause socioeconomic devastation that reverberates worldwide. There is a growing need for new control measures for many of these diseases due to increasing drug resistance exhibited by the parasites and problems with drug toxicity. One new approach is to apply host defense peptides (HDP; formerly called antimicrobial peptides) to disease control, either to treat infected hosts, or to prevent disease transmission by interfering with parasites in their insect vectors. A potent anti-parasite effector is bovine myeloid antimicrobial peptide-27 (BMAP-27), a member of the cathelicidin family. Although BMAP-27 is a potent inhibitor of microbial growth, at higher concentrations it also exhibits cytotoxicity to mammalian cells. We tested the anti-parasite activity of BMAP-18, a truncated peptide that lacks the hydrophobic C-terminal sequence of the BMAP-27 parent molecule, an alteration that confers reduced toxicity to mammalian cells. METHODOLOGY/PRINCIPAL FINDINGS BMAP-18 showed strong growth inhibitory activity against several species and life cycle stages of African trypanosomes, fish trypanosomes and Leishmania parasites in vitro. When compared to native BMAP-27, the truncated BMAP-18 peptide showed reduced cytotoxicity on a wide variety of mammalian and insect cells and on Sodalis glossindius, a bacterial symbiont of the tsetse vector. The fluorescent stain rhodamine 123 was used in immunofluorescence microscopy and flow cytometry experiments to show that BMAP-18 at low concentrations rapidly disrupted mitochondrial potential without obvious alteration of parasite plasma membranes, thus inducing death by apoptosis. Scanning electron microscopy revealed that higher concentrations of BMAP-18 induced membrane lesions in the parasites as early as 15 minutes after exposure, thus killing them by necrosis. In addition to direct killing of parasites, BMAP-18 was shown to inhibit LPS-induced secretion of tumour necrosis factor alpha (TNF-alpha), a cytokine that is associated with inflammation and cachexia (wasting) in sleeping sickness patients. As a prelude to in vivo applications, high affinity antibodies to BMAP-18 were produced in rabbits and used in immuno-mass spectrometry assays to detect the intact peptide in human blood and plasma. CONCLUSIONS/SIGNIFICANCE BMAP-18, a truncated form of the potent antimicrobial BMAP-27, showed low toxicity to mammalian cells, insect cells and the tsetse bacterial symbiont Sodalis glossinidius while retaining an ability to kill a variety of species and life cycle stages of pathogenic kinetoplastid parasites in vitro. BMAP-18 also inhibited secretion of TNF-alpha, an inflammatory cytokine that plays a role in the cachexia associated with African sleeping sickness. These findings support the idea that BMAP-18 should be explored as a candidate for therapy of economically important trypanosome-infected hosts, such as cattle, fish and humans, and for paratransgenic expression in Sodalis glossinidius, a bacterial symbiont in the tsetse vector, as a strategy for interference with trypanosome transmission.
Collapse
|
483
|
Screening and cloning of antimicrobial DNA sequences using a vital staining method. Gene 2009; 430:132-9. [DOI: 10.1016/j.gene.2008.10.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Revised: 07/14/2008] [Accepted: 10/23/2008] [Indexed: 11/19/2022]
|
484
|
Abstract
We have developed the Recombinantly-produced Antimicrobial Peptides Database (RAPD) to house relevant information on recombinant approaches to generate antimicrobial peptides. Key information stored in the database, which is extracted from published experiments, includes expression host, fusion strategy, release method and yield for individual peptides. Bibliographic data directly related to each particular case are also available. RAPD allows easy comparison of the relative popularity and efficiency of different strategies, and can thus be used as a guideline for future production of similar peptides. The database is freely available at http://faculty.ist.unomaha.edu/chen/rapd/index.php.
Collapse
Affiliation(s)
- Yifeng Li
- Department of Anesthesiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | | |
Collapse
|
485
|
Haney EF, Hunter HN, Matsuzaki K, Vogel HJ. Solution NMR studies of amphibian antimicrobial peptides: linking structure to function? BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:1639-55. [PMID: 19272309 DOI: 10.1016/j.bbamem.2009.01.002] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 12/19/2008] [Accepted: 01/09/2009] [Indexed: 10/21/2022]
Abstract
The high-resolution three-dimensional structure of an antimicrobial peptide has implications for the mechanism of its antimicrobial activity, as the conformation of the peptide provides insights into the intermolecular interactions that govern the binding to its biological target. For many cationic antimicrobial peptides the negatively charged membranes surrounding the bacterial cell appear to be a main target. In contrast to what has been found for other classes of antimicrobial peptides, solution NMR studies have revealed that in spite of the wide diversity in the amino acid sequences of amphibian antimicrobial peptides (AAMPs), they all adopt amphipathic alpha-helical structures in the presence of membrane-mimetic micelles, bicelles or organic solvent mixtures. In some cases the amphipathic AAMP structures are directly membrane-perturbing (e.g. magainin, aurein and the rana-box peptides), in other instances the peptide spontaneously passes through the membrane and acts on intracellular targets (e.g. buforin). Armed with a high-resolution structure, it is possible to relate the peptide structure to other relevant biophysical and biological data to elucidate a mechanism of action. While many linear AAMPs have significant antimicrobial activity of their own, mixtures of peptides sometimes have vastly improved antibiotic effects. Thus, synergy among antimicrobial peptides is an avenue of research that has recently attracted considerable attention. While synergistic relationships between AAMPs are well described, it is becoming increasingly evident that analyzing the intermolecular interactions between these peptides will be essential for understanding the increased antimicrobial effect. NMR structure determination of hybrid peptides composed of known antimicrobial peptides can shed light on these intricate synergistic relationships. In this work, we present the first NMR solution structure of a hybrid peptide composed of magainin 2 and PGLa bound to SDS and DPC micelles. The hybrid peptide adopts a largely helical conformation and some information regarding the inter-helix organization of this molecule is reported. The solution structure of the micelle associated MG2-PGLa hybrid peptide highlights the importance of examining structural contributions to the synergistic relationships but it also demonstrates the limitations in the resolution of the currently used solution NMR techniques for probing such interactions. Future studies of antimicrobial peptide synergy will likely require stable isotope-labeling strategies, similar to those used in NMR studies of proteins.
Collapse
Affiliation(s)
- Evan F Haney
- Structural Biology Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | | | | | | |
Collapse
|
486
|
Park TJ, Kim JS, Choi SS, Kim Y. Cloning, expression, isotope labeling, purification, and characterization of bovine antimicrobial peptide, lactophoricin in Escherichia coli. Protein Expr Purif 2008; 65:23-9. [PMID: 19130889 DOI: 10.1016/j.pep.2008.12.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 11/14/2008] [Accepted: 12/08/2008] [Indexed: 10/21/2022]
Abstract
Lactophoricin (LPcin-I) is a 23-amino acid peptide that corresponds to the carboxyterminal 113-135 region of component-3 of proteose peptone (PP3), a minor phosphoglycoprotein found in bovine milk. It has been reported that lactophoricin has antibacterial activity and a cationic amphipathic helical structure, but its shorter analogous peptide (LPcin-II), a 17-amino acid peptide, corresponding to the 119-135 region of PP3 does not display antibacterial activity. LPcin-I and LPcin-II have similar charge ratios and identical hydrophobic/hydrophilic sectors, according to their helical wheel projection patterns, and both peptides show cationic amphipathic helical folding and interact with membranes. However, it is known that only LPcin-I incorporates into planar lipidic bilayers to form voltage-dependent channels. In this study, the authors cloned and expressed the two recombinant peptides as ketosteroid isomerase (KSI) fusion proteins inclusion bodies in Escherichia coli. These peptides were subjected to NMR structural studies to explore their structure-activity relationships. Fusion proteins were purified by Ni-NTA affinity chromatography under denaturing conditions, and recombinant LPcin-I and LPcin-II were released from fusion by CNBr cleavage. Final purifications of LPcin-I and LPcin-II were achieved by preparative reversed-phase high performance liquid chromatography. Using these methods, we obtained several tens of milligrams of uniformly and selectively (15)N labeled peptides per liter of growth, which was sufficient for solid-state NMR spectroscopy. Peptides were identified by tris-tricine polyacrylamide gel electrophoresis and HSQC spectra. Initial structural data were obtained by solution NMR spectroscopy and compared in membrane-like environments.
Collapse
Affiliation(s)
- Tae-Joon Park
- Department of Chemistry and Protein Research Center for Bio-Industry, Hankuk University of Foreign Studies, Yong-In 449-791, Republic of Korea
| | | | | | | |
Collapse
|
487
|
Wang G, Li X, Wang Z. APD2: the updated antimicrobial peptide database and its application in peptide design. Nucleic Acids Res 2008; 37:D933-7. [PMID: 18957441 PMCID: PMC2686604 DOI: 10.1093/nar/gkn823] [Citation(s) in RCA: 656] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The antimicrobial peptide database (APD, http://aps.unmc.edu/AP/main.php) has been updated and expanded. It now hosts 1228 entries with 65 anticancer, 76 antiviral (53 anti-HIV), 327 antifungal and 944 antibacterial peptides. The second version of our database (APD2) allows users to search peptide families (e.g. bacteriocins, cyclotides, or defensins), peptide sources (e.g. fish, frogs or chicken), post-translationally modified peptides (e.g. amidation, oxidation, lipidation, glycosylation or d-amino acids), and peptide binding targets (e.g. membranes, proteins, DNA/RNA, LPS or sugars). Statistical analyses reveal that the frequently used amino acid residues (>10%) are Ala and Gly in bacterial peptides, Cys and Gly in plant peptides, Ala, Gly and Lys in insect peptides, and Leu, Ala, Gly and Lys in amphibian peptides. Using frequently occurring residues, we demonstrate database-aided peptide design in different ways. Among the three peptides designed, GLK-19 showed a higher activity against Escherichia coli than human LL-37.
Collapse
Affiliation(s)
- Guangshun Wang
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, USA.
| | | | | |
Collapse
|
488
|
Hammami R, Ben Hamida J, Vergoten G, Fliss I. PhytAMP: a database dedicated to antimicrobial plant peptides. Nucleic Acids Res 2008; 37:D963-8. [PMID: 18836196 PMCID: PMC2686510 DOI: 10.1093/nar/gkn655] [Citation(s) in RCA: 183] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Plants produce small cysteine-rich antimicrobial peptides as an innate defense against pathogens. Based on amino acid sequence homology, these peptides were classified mostly as α-defensins, thionins, lipid transfer proteins, cyclotides, snakins and hevein-like. Although many antimicrobial plant peptides are now well characterized, much information is still missing or is unavailable to potential users. The compilation of such information in one centralized resource, such as a database would therefore facilitate the study of the potential these peptide structures represent, for example, as alternatives in response to increasing antibiotic resistance or for increasing plant resistance to pathogens by genetic engineering. To achieve this goal, we developed a new database, PhytAMP, which contains valuable information on antimicrobial plant peptides, including taxonomic, microbiological and physicochemical data. Information is very easy to extract from this database and allows rapid prediction of structure/function relationships and target organisms and hence better exploitation of plant peptide biological activities in both the pharmaceutical and agricultural sectors. PhytAMP may be accessed free of charge at http://phytamp.pfba-lab.org.
Collapse
Affiliation(s)
- Riadh Hammami
- Unité de Protéomie Fonctionnelle & Biopréservation Alimentaire, Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université El Manar, Tunis, Tunisie
| | | | | | | |
Collapse
|
489
|
Steinstraesser L, Koehler T, Jacobsen F, Daigeler A, Goertz O, Langer S, Kesting M, Steinau H, Eriksson E, Hirsch T. Host defense peptides in wound healing. Mol Med 2008; 14:528-37. [PMID: 18385817 DOI: 10.2119/2008-00002.steinstraesser] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Accepted: 03/25/2008] [Indexed: 12/16/2022] Open
Abstract
Host defense peptides are effector molecules of the innate immune system. They show broad antimicrobial action against gram-positive and -negative bacteria, and they likely play a key role in activating and mediating the innate as well as adaptive immune response in infection and inflammation. These features make them of high interest for wound healing research. Non-healing and infected wounds are a major problem in patient care and health care spending. Increasing infection rates, growing bacterial resistance to common antibiotics, and the lack of effective therapeutic options for the treatment of problematic wounds emphasize the need for new approaches in therapy and pathophysiologic understanding. This review focuses on the current knowledge of host defense peptides affecting wound healing and infection. We discuss the current data and highlight the potential future developments in this field of research.
Collapse
|
490
|
Wang G. Structures of human host defense cathelicidin LL-37 and its smallest antimicrobial peptide KR-12 in lipid micelles. J Biol Chem 2008; 283:32637-43. [PMID: 18818205 DOI: 10.1074/jbc.m805533200] [Citation(s) in RCA: 330] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
As a key component of the innate immunity system, human cathelicidin LL-37 plays an essential role in protecting humans against infectious diseases. To elucidate the structural basis for its targeting bacterial membrane, we have determined the high quality structure of (13)C,(15)N-labeled LL-37 by three-dimensional triple-resonance NMR spectroscopy, because two-dimensional (1)H NMR did not provide sufficient spectral resolution. The structure of LL-37 in SDS micelles is composed of a curved amphipathic helix-bend-helix motif spanning residues 2-31 followed by a disordered C-terminal tail. The helical bend is located between residues Gly-14 and Glu-16. Similar chemical shifts and (15)N nuclear Overhauser effect (NOE) patterns of the peptide in complex with dioctanoylphosphatidylglycerol (D8PG) micelles indicate a similar structure. The aromatic rings of Phe-5, Phe-6, Phe-17, and Phe-27 of LL-37, as well as arginines, showed intermolecular NOE cross-peaks with D8PG, providing direct evidence for the association of the entire amphipathic helix with anionic lipid micelles. The structure of LL-37 serves as a model for understanding the structure and function relationship of homologous primate cathelicidins. Using synthetic peptides, we also identified the smallest antibacterial peptide KR-12 corresponding to residues 18-29 of LL-37. Importantly, KR-12 displayed a selective toxic effect on bacteria but not human cells. NMR structural analysis revealed a short three-turn amphipathic helix rich in positively charged side chains, allowing for effective competition for anionic phosphatidylglycerols in bacterial membranes. KR-12 may be a useful peptide template for developing novel antimicrobial agents of therapeutic use.
Collapse
Affiliation(s)
- Guangshun Wang
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198-6805, USA.
| |
Collapse
|
491
|
Wu G, Ding J, Li H, Li L, Zhao R, Shen Z, Fan X, Xi T. Effects of cations and pH on antimicrobial activity of thanatin and s-thanatin against Escherichia coli ATCC25922 and B. subtilis ATCC 21332. Curr Microbiol 2008; 57:552-7. [PMID: 18810542 DOI: 10.1007/s00284-008-9241-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2008] [Revised: 07/30/2008] [Accepted: 08/05/2008] [Indexed: 11/26/2022]
Abstract
This study analyzes the in vitro effects of cations and pH on antimicrobial activity of thanatin and s-thanatin against Escherichia coli ATCC25922 and B. subtilis ATCC21332. Thanatin and s-thanatin were synthesized by the solid-phase method using a model 432A synthesizer. The bacterial strains tested included two antibiotic-susceptible strains of Escherichia coli ATCC25922 and B. subtilis ATCC21332. Susceptibility determinations were carried out either in a variety of cation concentrations or in pH conditions from pH 5 to pH 8. NaCl or KCl was added to the media to final concentrations of 0, 10, 50, 100, 200, and 500 mM, whereas CaCl(2) and MgCl(2) were added to the media to final concentrations of 0, 1, 2, 5, 10, and 20 mM. The antimicrobial activity of thanatin and s-thanatin against Escherichia coli ATCC25922 and B. subtilis ATCC21332 decreased, as indicated by the increasing minimal inhibitory concentrations (MICs) of both peptides with increasing concentrations of Na(+)/K(+)/Ca(2+)/Mg(2+). Both peptides lost their activities at 500 mM Na(+)/K(+) but retained them at 20 mM Ca(2+)/Mg(2+). Both peptides have MICs that are not significantly different at a variety of pH levels, with the antimicrobial activity slightly higher in neutral or slightly basic media than under acidic conditions. The antimicrobial peptides thanatin and s-thanatin, which have an anti-parallel beta-sheet constrained by disulfide bonds, were salt sensitive against both Gram-positive and Gram-negative pathogens in vitro. Determining the reason why the thanatins are salt sensitive would be useful to provide an understanding of how thanatin and s-thanatin kill bacteria. Further investigation of the antimicrobial properties of these peptides is warranted.
Collapse
Affiliation(s)
- Guoqiu Wu
- Zhongda Hospital, Southeast University, Nanjing, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
492
|
Mucroporin, the first cationic host defense peptide from the venom of Lychas mucronatus. Antimicrob Agents Chemother 2008; 52:3967-72. [PMID: 18779362 DOI: 10.1128/aac.00542-08] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The misuse of antibiotics has led our age to a dangerous edge, as antibiotic-resistant pathogens appear to evolve more quickly than antibiotics are invented. Thus, new agents to treat bacterial infection are badly needed. Cationic host defense peptides are on the first line of a host defense system and are thought to be good candidates for treating bacterial infection. Here, a novel cationic host defense peptide, mucroporin, was cloned and characterized from the venom of Lychas mucronatus. The MIC for Staphylococcus aureus was 25 microg/ml, including antibiotic-resistant pathogens. Based on the molecular template of mucroporin, mucroporin-M1 was designed by amino acid substitution. The MIC for S. aureus was 5 microg/ml, including the antibiotic-resistant pathogens methicillin-resistant S. aureus, methicillin-resistant coagulase-negative Staphylococcus, penicillin-resistant S. aureus, and penicillin-resistant S. epidermidis. Moreover, mucroporin-M1 also inhibited gram-negative bacteria. The modes of action of mucroporin and mucroporin-M1 were both rapid killing by disrupting the cell membrane of bacteria, and the number of surviving bacteria was reduced by about 4 to 5 orders of magnitude immediately after peptide delivery. These results showed that mucroporin could be considered a potential anti-infective drug, especially for treating antibiotic-resistant pathogens.
Collapse
|
493
|
Transactivation, dimerization, and DNA-binding activity of white spot syndrome virus immediate-early protein IE1. J Virol 2008; 82:11362-73. [PMID: 18768963 DOI: 10.1128/jvi.01244-08] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Immediate-early proteins from many viruses function as transcriptional regulators and exhibit transactivation activity, DNA binding activity, and dimerization. In this study, we investigated these characteristics in white spot syndrome virus (WSSV) immediate-early protein 1 (IE1) and attempted to map the corresponding functional domains. Transactivation was investigated by transiently expressing a protein consisting of the DNA binding domain of the yeast transactivator GAL4 fused to full-length IE1. This GAL4-IE1 fusion protein successfully activated the Autographa californica multicapsid nucleopolyhedrovirus p35 basal promoter when five copies of the GAL4 DNA binding site were inserted upstream of the TATA box. A deletion series of GAL4-IE1 fusion proteins suggested that the transactivation domain of WSSV IE1 was carried within its first 80 amino acids. A point mutation assay further showed that all 12 of the acidic residues in this highly acidic domain were important for IE1's transactivation activity. DNA binding activity was confirmed by an electrophoresis mobility shift assay using a probe with (32)P-labeled random oligonucleotides. The DNA binding region of WSSV IE1 was located in its C-terminal end (amino acids 81 to 224), but mutation of a putative zinc finger motif in this C-terminal region suggested that this motif was not directly involved in the DNA binding activity. A homotypic interaction between IE1 molecules was demonstrated by glutathione S-transferase pull-down assay and a coimmunoprecipitation analysis. A glutaraldehyde cross-linking experiment and gel filtration analysis showed that this self-interaction led to the formation of stable IE1 dimers.
Collapse
|
494
|
Wang G, Watson KM, Buckheit RW. Anti-human immunodeficiency virus type 1 activities of antimicrobial peptides derived from human and bovine cathelicidins. Antimicrob Agents Chemother 2008; 52:3438-40. [PMID: 18591279 PMCID: PMC2533476 DOI: 10.1128/aac.00452-08] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 05/23/2008] [Accepted: 06/20/2008] [Indexed: 01/15/2023] Open
Abstract
From among 15 human cathelicidin LL-37-derived peptides, FK-13 was identified as the smallest peptide active against human immunodeficiency virus (HIV) and GI-20 had the highest therapeutic index, which was twice that of LL-37. BMAP-18, which is derived from bovine cathelicidin BMAP-27, possessed a therapeutic index similar to that of GI-20. Peptide sequence order, helical structures, and aromatic residues are important in HIV inhibition.
Collapse
Affiliation(s)
- Guangshun Wang
- The Structure-Fun Laboratory, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, Nebraska 68198-6805, USA.
| | | | | |
Collapse
|
495
|
Production and purification of a cecropin family antibacterial peptide, hinnavin II, in Escherichia coli. BIOTECHNOL BIOPROC E 2008. [DOI: 10.1007/s12257-008-0044-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
496
|
Eby DM, Farrington KE, Johnson GR. Synthesis of bioinorganic antimicrobial peptide nanoparticles with potential therapeutic properties. Biomacromolecules 2008; 9:2487-94. [PMID: 18661941 DOI: 10.1021/bm800512e] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Amphiphilicity and cationicity are properties shared between antimicrobial peptides and proteins that catalyze biomineralization reactions. Merging these two functionalities, we demonstrate a reaction where a cationic antimicrobial peptide catalyzes self-biomineralization within inorganic matrices. The resultant antimicrobial peptide nanoparticles retain biocidal activity, protect the peptide from proteolytic degradation, and facilitate a continuous release of the antibiotic over time. Taken together, these properties demonstrate the therapeutic potential of self-synthesizing biomaterials that retain the biocidal properties of antimicrobial peptides.
Collapse
Affiliation(s)
- D Matthew Eby
- Universal Technology Corporation, Applied Research Associates, Inc., Florida, USA.
| | | | | |
Collapse
|
497
|
Loit E, Wu K, Cheng X, Hincke MT, Altosaar I. Functional whole-colony screening method to identify antimicrobial peptides. J Microbiol Methods 2008; 75:425-31. [PMID: 18708097 DOI: 10.1016/j.mimet.2008.07.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 07/19/2008] [Accepted: 07/19/2008] [Indexed: 11/26/2022]
Abstract
A high throughput method for screening cDNA libraries has been developed to identify putative antimicrobial peptides (AMPs). It is based on a rapid dye inclusion assay for assessing antagonism of bacterial viability. Colonies are grown on a membrane on a permissive medium until full colony size is reached. The membrane, supporting the array of colonies, is transferred onto an inductive medium containing a vital dye. Upon expression of any antagonizing peptides, the cell membrane becomes compromised allowing dye infusion to permit visual identification of deleterious peptides. Our approach was validated by screening a synthetic oligonucleotide library expressed in Escherichia coli. A random oligonucleotide library, containing inserts of up to 75 nucleotides in length was constructed and expressed in E. coli. From a potential pool of 100000 peptides, in a single round of screening, three were found to be antimicrobial: L1, L3, and L8. Peptide L1 was shown to have a concentration-dependent bactericidal effect against Gram-negative E. coli and moderate biostatic activity against the Gram-positive bacteria Listeria monocytogenes. L8 was found to have bacteriostatic, and possibly bactericidal effect against E. coli, Pseudomonas aeruginosa and Salmonella typhimurium. These results validated this high throughput AMP identification assay based on filter bound colony array libraries and vital dye inclusion.
Collapse
Affiliation(s)
- E Loit
- Centre for Research on Environmental Microbiology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Canada
| | | | | | | | | |
Collapse
|
498
|
Kalita DJ, Kumar A, Kumar S. Structure-function studies of Bubalus bubalis lingual antimicrobial peptide analogs. Vet Res Commun 2008; 33:149-61. [PMID: 18651233 DOI: 10.1007/s11259-008-9081-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2008] [Indexed: 10/21/2022]
Abstract
Antimicrobial peptides expressed on different epithelial lining are major components of the innate immune system. Based on the deduced amino acid sequence of Bubalus bubalis lingual antimicrobial peptide (LAP) cDNA (Accession No. DQ458768), five overlapping peptides LAP(23-55), LAP(42-64), LAP(21-64), LAP(1-26) and LAP(1-64) were synthesized using solid phase fluorenylmethoxycarbonyl (Fmoc) chemistry. Circular Dichroism spectroscopy of synthesized peptides revealed predominantly beta-structure for LAP(23-55,) LAP(42-64) and LAP(21-64) with less alpha-helix in different solutions. Quantitation of secondary structure indicated the highest beta-structure for all these three peptides in membrane mimetic SDS solution. The helicogenic solvent TFE could not induce helix in LAP(23-55) however TFE induced helical propensity was observed in LAP(42-64) and LAP(21-64). The quantitation of secondary structure indicated the highest ordered structure for LAP(23-55) followed by LAP(42-64) and LAP(21-64). The antibacterial activity of LAP(23-55) was found to be more potent against Staphylococcus aureus, Listeria monocytogens, Escherichia coli and Salmonella typhimurium followed by LAP(42-64) and LAP(21-64). Minimum inhibitory concentration (MIC) also showed similar trend with lowest value for LAP(23-55) followed by LAP(42-64) and LAP(21-64). Haemolysis and cytotoxicity was observed above 3 fold for LAP(21-64,) above six fold for LAP(23-55) and LAP(42-64) of their MIC. The LAP(1-26) and LAP(1-64) could not produce any characteristic CD spectra and did not show any antimicrobial activity, indicating that N- terminal of the peptide negates the antimicrobial activity.
Collapse
Affiliation(s)
- Dhruba Jyoti Kalita
- Division of Biochemistry, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | | | | |
Collapse
|
499
|
Petsalaki E, Russell RB. Peptide-mediated interactions in biological systems: new discoveries and applications. Curr Opin Biotechnol 2008; 19:344-50. [PMID: 18602004 DOI: 10.1016/j.copbio.2008.06.004] [Citation(s) in RCA: 188] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Revised: 06/04/2008] [Accepted: 06/06/2008] [Indexed: 12/14/2022]
Abstract
Peptide-mediated interactions play very important roles in cellular processes. Recent years have seen much activity in the discovery of new bioactive peptides, and interactions mediated by protein-peptide binding events. At the same time, computational approaches continue to be developed that allow protein-peptide interactions to be discovered with great accuracy. There are also a growing number of chemicals that can target these interactions with various applications in disease. Both new discoveries and predictions suggest that these protein-peptide interactions play greater roles in cellular processes than previously thought. We propose that projects to uncover the protein-peptide repertoire used in Nature in a systematic way will have numerous applications in molecular biology and medicine.
Collapse
|
500
|
Sung WS, Lee J, Lee DG. Fungicidal effect and the mode of action of piscidin 2 derived from hybrid striped bass. Biochem Biophys Res Commun 2008; 371:551-5. [DOI: 10.1016/j.bbrc.2008.04.107] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Accepted: 04/19/2008] [Indexed: 10/22/2022]
|