451
|
|
452
|
Forsthoefel DJ, Newmark PA. Emerging patterns in planarian regeneration. Curr Opin Genet Dev 2009; 19:412-20. [PMID: 19574035 PMCID: PMC2882238 DOI: 10.1016/j.gde.2009.05.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 05/15/2009] [Indexed: 11/21/2022]
Abstract
In the past decade, the planarian has become an increasingly tractable invertebrate model for the investigation of regeneration and stem cell biology. Application of a variety of techniques and development of genomic reagents in this system have enabled exploration of the molecular mechanisms by which pluripotent somatic stem cells called neoblasts replenish, repair, and regenerate planarian tissues and organs. Recent investigations have implicated evolutionarily conserved signaling pathways in the re-establishment of anterior-posterior (A-P), dorsal-ventral (D-V), and medial-lateral (M-L) polarity after injury. These studies have significantly advanced our understanding of early events during planarian regeneration and have raised new questions about the mechanisms of stem cell-based tissue repair and renewal.
Collapse
Affiliation(s)
- David J. Forsthoefel
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign
| | - Phillip A. Newmark
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign
- Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign
| |
Collapse
|
453
|
Egger B, Gschwentner R, Hess MW, Nimeth KT, Adamski Z, Willems M, Rieger R, Salvenmoser W. The caudal regeneration blastema is an accumulation of rapidly proliferating stem cells in the flatworm Macrostomum lignano. BMC DEVELOPMENTAL BIOLOGY 2009; 9:41. [PMID: 19604404 PMCID: PMC2717932 DOI: 10.1186/1471-213x-9-41] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Accepted: 07/15/2009] [Indexed: 11/10/2022]
Abstract
BACKGROUND Macrostomum lignano is a small free-living flatworm capable of regenerating all body parts posterior of the pharynx and anterior to the brain. We quantified the cellular composition of the caudal-most body region, the tail plate, and investigated regeneration of the tail plate in vivo and in semithin sections labeled with bromodeoxyuridine, a marker for stem cells (neoblasts) in S-phase. RESULTS The tail plate accomodates the male genital apparatus and consists of about 3,100 cells, about half of which are epidermal cells. A distinct regeneration blastema, characterized by a local accumulation of rapidly proliferating neoblasts and consisting of about 420 cells (excluding epidermal cells), was formed 24 hours after amputation. Differentiated cells in the blastema were observed two days after amputation (with about 920 blastema cells), while the male genital apparatus required four to five days for full differentiation. At all time points, mitoses were found within the blastema. At the place of organ differentiation, neoblasts did not replicate or divide. After three days, the blastema was made of about 1420 cells and gradually transformed into organ primordia, while the proliferation rate decreased. The cell number of the tail plate, including about 960 epidermal cells, was restored to 75% at this time point. CONCLUSION Regeneration after artificial amputation of the tail plate of adult specimens of Macrostomum lignano involves wound healing and the formation of a regeneration blastema. Neoblasts undergo extensive proliferation within the blastema. Proliferation patterns of S-phase neoblasts indicate that neoblasts are either determined to follow a specific cell fate not before, but after going through S-phase, or that they can be redetermined after S-phase. In pulse-chase experiments, dispersed distribution of label suggests that S-phase labeled progenitor cells of the male genital apparatus undergo further proliferation before differentiation, in contrast to progenitor cells of epidermal cells. Mitotic activity and proliferation within the blastema is a feature of M. lignano shared with many other regenerating animals.
Collapse
Affiliation(s)
- Bernhard Egger
- Institute of Zoology, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria.
| | | | | | | | | | | | | | | |
Collapse
|
454
|
Chd1 regulates open chromatin and pluripotency of embryonic stem cells. Nature 2009; 460:863-8. [PMID: 19587682 DOI: 10.1038/nature08212] [Citation(s) in RCA: 408] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 06/18/2009] [Indexed: 02/06/2023]
Abstract
An open chromatin largely devoid of heterochromatin is a hallmark of stem cells. It remains unknown whether an open chromatin is necessary for the differentiation potential of stem cells, and which molecules are needed to maintain open chromatin. Here we show that the chromatin remodelling factor Chd1 is required to maintain the open chromatin of pluripotent mouse embryonic stem cells. Chd1 is a euchromatin protein that associates with the promoters of active genes, and downregulation of Chd1 leads to accumulation of heterochromatin. Chd1-deficient embryonic stem cells are no longer pluripotent, because they are incapable of giving rise to primitive endoderm and have a high propensity for neural differentiation. Furthermore, Chd1 is required for efficient reprogramming of fibroblasts to the pluripotent stem cell state. Our results indicate that Chd1 is essential for open chromatin and pluripotency of embryonic stem cells, and for somatic cell reprogramming to the pluripotent state.
Collapse
|
455
|
Oviedo NJ, Beane WS. Regeneration: The origin of cancer or a possible cure? Semin Cell Dev Biol 2009; 20:557-64. [PMID: 19427247 PMCID: PMC2706275 DOI: 10.1016/j.semcdb.2009.04.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 04/03/2009] [Accepted: 04/06/2009] [Indexed: 12/12/2022]
Abstract
A better understanding of the forces controlling cell growth will be essential for developing effective therapies in regenerative medicine and cancer. Historically, the literature has linked cancer and tissue regeneration-proposing regeneration as both the source of cancer and a method to inhibit tumorigenesis. This review discusses two powerful regeneration models, the vertebrate urodele amphibians and invertebrate planarians, in light of cancer regulation. Urodele limb and eye lens regeneration is described, as well as the planarian's emergence as a molecular and genetic model system in which recent insights begin to molecularly dissect cancer and regeneration in adult tissues.
Collapse
Affiliation(s)
- Néstor J Oviedo
- Center for Regenerative and Developmental Biology & Department of Biology, Tufts University, Medford, MA 02155-4243, USA.
| | | |
Collapse
|
456
|
High-resolution profiling and discovery of planarian small RNAs. Proc Natl Acad Sci U S A 2009; 106:11546-51. [PMID: 19564616 DOI: 10.1073/pnas.0905222106] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Freshwater planarian flatworms possess uncanny regenerative capacities mediated by abundant and collectively totipotent adult stem cells. Key functions of these cells during regeneration and tissue homeostasis have been shown to depend on PIWI, a molecule required for Piwi-interacting RNA (piRNA) expression in planarians. Nevertheless, the full complement of piRNAs and microRNAs (miRNAs) in this organism has yet to be defined. Here we report on the large-scale cloning and sequencing of small RNAs from the planarian Schmidtea mediterranea, yielding altogether millions of sequenced, unique small RNAs. We show that piRNAs are in part organized in genomic clusters and that they share characteristic features with mammalian and fly piRNAs. We further identify 61 novel miRNA genes and thus double the number of known planarian miRNAs. Sequencing, as well as quantitative PCR of small RNAs, uncovered 10 miRNAs enriched in planarian stem cells. These miRNAs are down-regulated in animals in which stem cells have been abrogated by irradiation, and thus constitute miRNAs likely associated with specific stem-cell functions. Altogether, we present the first comprehensive small RNA analysis in animals belonging to the third animal superphylum, the Lophotrochozoa, and single out a number of miRNAs that may function in regeneration. Several of these miRNAs are deeply conserved in animals.
Collapse
|
457
|
Umesono Y, Agata K. Evolution and regeneration of the planarian central nervous system. Dev Growth Differ 2009; 51:185-95. [PMID: 19379275 DOI: 10.1111/j.1440-169x.2009.01099.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
More than 100 years ago, early workers realized that planarians offer an excellent system for regeneration studies. Another unique aspect of planarians is that they occupy an interesting phylogenetic position with respect to the nervous system in that they possess an evolutionarily primitive brain structure and can regenerate a functional brain from almost any tiny body fragment. Recent molecular studies have revisited planarian regeneration and revealed key information about the cellular and molecular mechanisms underlying brain regeneration in planarians. One of our great advances was identification of a gene, nou-darake, which directs the formation of a proper extrinsic environment for pluripotent stem cells to differentiate into brain cells in the planarian Dugesia japonica. Our recent findings have provided mechanistic insights into stem cell biology and also evolutionary biology.
Collapse
Affiliation(s)
- Yoshihiko Umesono
- Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto 606-8502, Japan.
| | | |
Collapse
|
458
|
Sommer RJ. The future of evo–devo: model systems and evolutionary theory. Nat Rev Genet 2009; 10:416-22. [DOI: 10.1038/nrg2567] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
459
|
Abstract
Since first described, acoels were considered members of the flatworms (Platyhelminthes). However, no clear synapomorphies among the three large flatworm taxa -- the Catenulida, the Acoelomorpha and the Rhabditophora -- have been characterized to date. Molecular phylogenies, on the other hand, commonly positioned acoels separate from other flatworms. Accordingly, our own multi-locus phylogenetic analysis using 43 genes and 23 animal species places the acoel flatworm Isodiametra pulchra at the base of all Bilateria, distant from other flatworms. By contrast, novel data on the distribution and proliferation of stem cells and the specific mode of epidermal replacement constitute a strong synapomorphy for the Acoela plus the major group of flatworms, the Rhabditophora. The expression of a piwi-like gene not only in gonadal, but also in adult somatic stem cells is another unique feature among bilaterians. These two independent stem-cell-related characters put the Acoela into the Platyhelminthes-Lophotrochozoa clade and account for the most parsimonious evolutionary explanation of epidermal cell renewal in the Bilateria. Most available multigene analyses produce conflicting results regarding the position of the acoels in the tree of life. Given these phylogenomic conflicts and the contradiction of developmental and morphological data with phylogenomic results, the monophyly of the phylum Platyhelminthes and the position of the Acoela remain unresolved. By these data, both the inclusion of Acoela within Platyhelminthes, and their separation from flatworms as basal bilaterians are well-supported alternatives.
Collapse
|
460
|
Lopes KAR, Campos Velho NMR, Munin E. A study of low power laser on the regenerative process of Girardia tigrina (Girard,1850) (Turbellaria; Tricladida; Dugesiidae). BRAZ J BIOL 2009; 69:327-32. [DOI: 10.1590/s1519-69842009000200013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Accepted: 07/27/2007] [Indexed: 11/22/2022] Open
Abstract
The mechanism of regeneration does not start to restore the wound until its corresponding epimorphic phase. A bioestimulation of tissues and cells by laser radiation depends on the wavelength, on the dose, and on the intensity of the light. The goal of this work was to verify the effect of the low power laser at 660 nm on the regenerative process of Girardia tigrina. The specimens were maintained in the laboratory under a temperature ranging from 19° up to 24 °C for 21 days. The planarians were anesthetized by placing them on ice and then cut them with a scalpel. The three treatments were as following: animals individually irradiated with 14 sessions with 1 minute duration (treatment 1), 14 sessions with 3 minutes duration (treatment 2), and without irradiation (control). The planarians were amputated and divided in three study treatments: a control group (without radiation), and two other treatments: irradiated for 1 minute, and irradiated for 3 minutes. The animals were irradiated with diode laser (660 nm) with 3.3 ± 0.3 mW of power, using 0.94 mW.mm-2 power density for each irradiation procedure. During the experiment, 14 irradiation sessions were undertaken. The specimens were fixed in Bouin, and stained with hematoxyline and eosin. From observation and histological analysis, it was possible to assess the effects of interaction between laser and tissue. The head fragment after 1 minute of irradiation presented a better organized tissue scheme, when compared with the other treatments. Aspects of the body fragments submitted to 3 minutes of light treatment were very similar to fragments that had not been injured. It can be concluded that there are changes in the quality of regeneration when treated with low power laser under the conditions mentioned above.
Collapse
Affiliation(s)
| | | | - E. Munin
- Universidade Camilo Castelo Branco, Brazil
| |
Collapse
|
461
|
Zhang YF, Ye BP, Wang DY. Molecular actions guiding neural regeneration in planarian. Neurosci Bull 2009; 24:329-37. [PMID: 18839027 DOI: 10.1007/s12264-008-0610-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Planarian is among the simplest animals that possess a centralized nervous system (CNS), and its neural regeneration involves the replacement of cells lost to normal 'wear and tear' (cell turnover), and/or injury. In this review, we state and discuss the recent studies on molecular control of neural regeneration in planarians. The spatial and temporal expression patterns of genes in intact and regenerating planarian CNS have already been described relatively clearly. The bone morphogenetic protein (BMP) and Wnt signaling pathways are identified to regulate neural regeneration. During neural regeneration, conserved axon guidance mechanisms are necessary for proper wiring of the nervous system. In addition, apoptosis may play an important role in controlling cell numbers, eliminating unnecessary tissues or cells and remodeling the old tissues for regenerating CNS. The bilateral symmetry is established by determination of anterior-posterior (A-P) and dorsal-ventral (D-V) patterns. Moreover, neurons positive to dopamine, serotonin (5-HT), and gamma-aminobutyric acid (GABA) have been detected in planarians. Therefore, planarians present us with new, experimentally accessible contexts to study the molecular actions guiding neural regeneration.
Collapse
Affiliation(s)
- Yan-Fen Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | | | | |
Collapse
|
462
|
Burton PM, Finnerty JR. Conserved and novel gene expression between regeneration and asexual fission in Nematostella vectensis. Dev Genes Evol 2009; 219:79-87. [PMID: 19184098 DOI: 10.1007/s00427-009-0271-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Accepted: 01/02/2009] [Indexed: 11/28/2022]
Abstract
Due to work in model systems (e.g., flies and mice), the molecular mechanisms of embryogenesis are known in exquisite detail. However, these organisms are incapable of asexual reproduction and possess limited regenerative abilities. Thus, the mechanisms of alternate developmental trajectories and their relation to embryonic mechanisms remain understudied. Because these developmental trajectories are present in a diverse group of animal phyla spanning the metazoan phylogeny, including cnidarians, annelids, and echinoderms, they are likely to have played a major role in animal evolution. The starlet sea anemone Nematostella vectensis, an emerging model system, undergoes larval development, asexual fission, and complete bi-directional regeneration in the field and laboratory. In order to investigate to what extent embryonic patterning mechanisms are utilized during alternate developmental trajectories, we examined expression of developmental regulatory genes during regeneration and fission. When compared to previously reported embryonic expression patterns, we found that all genes displayed some level of expression consistent with embryogenesis. However, five of seven genes investigated also displayed striking differences in gene expression between one or more developmental trajectory. These results demonstrate that alternate developmental trajectories utilize distinct molecular mechanisms upstream of major developmental regulatory genes such as fox, otx, and Hox-like.
Collapse
Affiliation(s)
- Patrick M Burton
- Biology Department, Wabash College, Crawfordsville, IN 47933, USA.
| | | |
Collapse
|
463
|
Adams DS. A new tool for tissue engineers: ions as regulators of morphogenesis during development and regeneration. Tissue Eng Part A 2009; 14:1461-8. [PMID: 18601591 DOI: 10.1089/ten.tea.2008.0080] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Currently, most of the research on how to encourage stem cells to replace missing tissues focuses on biochemical control, such as signaling by growth factors. In addition to basic questions, such as how are stem cells induced to differentiate into particular cell types, also inherent in those studies are practical questions about how to identify, grow, induce, and safely deliver stems cells to the proper target. At the Forsyth Center for Regenerative and Developmental Biology, we are examining a different set of signals, specifically bioelectric signals (the regulated movement of ions across membranes), including membrane voltage, pH, and gap junction activity and gating. We have found strong evidence that bioelectrical signals function at many critical, early points, both up- and downstream of transcriptional regulation, during the processes of normal morphogenesis and adult stem cell-based regeneration. Examples described include gap-junction-dependent regulation of stem cell identity in a flatworm, proton-flux-regulated establishment of left-right asymmetry in vertebrates, and proton-flux-initiated regeneration of a complex structure that includes spinal cord--the tadpole tail--in frogs.
Collapse
Affiliation(s)
- Dany Spencer Adams
- Forsyth Center for Regenerative and Developmental Biology, The Forsyth Institute, and Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts 02115, USA.
| |
Collapse
|
464
|
Expression pattern of the expanded noggin gene family in the planarian Schmidtea mediterranea. Gene Expr Patterns 2009; 9:246-53. [PMID: 19174194 DOI: 10.1016/j.gep.2008.12.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2008] [Revised: 12/22/2008] [Accepted: 12/24/2008] [Indexed: 01/04/2023]
Abstract
Noggin genes are mainly known as inhibitors of the Bone Morphogenetic Protein (BMP) signalling pathway. Noggin genes play an important role in various developmental processes such as axis formation and neural differentiation. In vertebrates, inhibition of the BMP pathway is usually carried out together with other inhibitory molecules: chordin and follistatin. Recently, it has been shown in planarians that the BMP pathway has a conserved function in the maintenance and re-establishment of the dorsoventral axis during homeostasis and regeneration. In an attempt to further characterize the BMP pathway in this model we have undertaken an in silico search of noggin genes in the genome of Schmidtea mediterranea. In contrast to other systems in which between one and four noggin genes have been reported, ten genes containing a noggin domain are present in S. mediterranea. These genes have been classified into two groups: noggin genes (two genes) and noggin-like genes (eight genes). Noggin-like genes are characterized by the presence of an insertion of 50-60 amino acids in the middle of the noggin domain. Here, we report the characterization of this expanded family of noggin genes in planarians as well as their expression patterns in both intact and regenerating animals. In situ hybridizations show that planarian noggin genes are expressed in a variety of cell types located in different regions of the planarian body.
Collapse
|
465
|
Kawamura K, Tachibana M, Sunanaga T. Cell proliferation dynamics of somatic and germline tissues during zooidal life span in the colonial tunicate Botryllus primigenus. Dev Dyn 2008; 237:1812-25. [PMID: 18570248 DOI: 10.1002/dvdy.21592] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Botryllus primigenus is a colonial tunicate in which three successive generations develop synchronously. To identify proliferation centers and possible adult stem cells during asexual reproduction, somatic and germline cells were labeled with 5-bromo-2'-deoxyuridine (BrdU). In the youngest generation, multipotent epithelial cells exhibited an average labeling index (LI) of 30% 24 hr after BrdU injection. In the middle generation, the LI of organ rudiments decreased gradually and reached zero by the beginning of the eldest generation. Exceptionally, cells of specialized tissues such as the pharyngeal inner longitudinal vessel and the posterior end of the endostyle continued DNA synthesis and mitosis even in the eldest generation. Proliferating somatic and germline cells of younger generations expressed a Botryllus myc homolog (BpMyc), but adult tissues did not. This result strongly suggests that in B. primigenus undifferentiated progenitor cells are discernible from possible adult stem cells by the presence or absence of BpMyc.
Collapse
Affiliation(s)
- Kazuo Kawamura
- Laboratory of Cellular and Molecular Biotechnology, Faculty of Science, Kochi University, Kochi, Japan.
| | | | | |
Collapse
|
466
|
Abstract
Most but not all phyla include examples of species that are able to regenerate large sections of the body plan. The mechanisms underlying regeneration on this scale are currently being studied in a variety of contexts in both vertebrates and invertebrates. Regeneration generally involves the formation of a wound epithelium after transection or injury, followed by the generation of regenerative progenitor cells and morphogenesis to give the regenerate. Common mechanisms may exist in relation to each of these aspects. For example, the initial proliferation of progenitor cells often depends on the nerve supply, whereas morphogenesis reflects the generation of positional disparity between adjacent cells-the principle of intercalation. These mechanisms are reviewed here across a range of contexts. We also consider the evolutionary origins of regeneration and how regeneration may relate to both agametic reproduction and to ontogeny.
Collapse
Affiliation(s)
- Jeremy P Brockes
- Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, England.
| | | |
Collapse
|
467
|
Oviedo NJ, Nicolas CL, Adams DS, Levin M. Planarians: a versatile and powerful model system for molecular studies of regeneration, adult stem cell regulation, aging, and behavior. Cold Spring Harb Protoc 2008; 2008:pdb.emo101. [PMID: 21356684 PMCID: PMC10467510 DOI: 10.1101/pdb.emo101] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
INTRODUCTIONIn recent years, planarians have been increasingly recognized as an emerging model organism amenable to molecular genetic techniques aimed at understanding complex biological tasks commonly observed among metazoans. Growing evidence suggests that this model organism is uniquely poised to inform us about the mechanisms of tissue regeneration, stem cell regulation, tissue turnover, pharmacological action of diverse drugs, cancer, and aging. This article provides an overview of the planarian model system with special attention to the species Schmidtea mediterranea. Additionally, information is provided about the most popular use of this organism, together with modern genomic resources and technical approaches.
Collapse
Affiliation(s)
- Néstor J. Oviedo
- Center for Regenerative and Developmental Biology, Forsyth Institute and Developmental Biology Department, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Cindy L. Nicolas
- Center for Regenerative and Developmental Biology, Forsyth Institute and Developmental Biology Department, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Dany S. Adams
- Center for Regenerative and Developmental Biology, Forsyth Institute and Developmental Biology Department, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Michael Levin
- Center for Regenerative and Developmental Biology, Forsyth Institute and Developmental Biology Department, Harvard School of Dental Medicine, Boston, MA 02115, USA
| |
Collapse
|
468
|
Oviedo NJ, Pearson BJ, Levin M, Sánchez Alvarado A. Planarian PTEN homologs regulate stem cells and regeneration through TOR signaling. Dis Model Mech 2008; 1:131-43; discussion 141. [PMID: 19048075 DOI: 10.1242/dmm.000117] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Accepted: 03/29/2008] [Indexed: 12/20/2022] Open
Abstract
We have identified two genes, Smed-PTEN-1 and Smed-PTEN-2, capable of regulating stem cell function in the planarian Schmidtea mediterranea. Both genes encode proteins homologous to the mammalian tumor suppressor, phosphatase and tensin homolog deleted on chromosome 10 (PTEN). Inactivation of Smed-PTEN-1 and -2 by RNA interference (RNAi) in planarians disrupts regeneration, and leads to abnormal outgrowths in both cut and uncut animals followed soon after by death (lysis). The resulting phenotype is characterized by hyperproliferation of neoblasts (planarian stem cells), tissue disorganization and a significant accumulation of postmitotic cells with impaired differentiation capacity. Further analyses revealed that rapamycin selectively prevented such accumulation without affecting the normal neoblast proliferation associated with physiological turnover and regeneration. In animals in which PTEN function is abrogated, we also detected a significant increase in the number of cells expressing the planarian Akt gene homolog (Smed-Akt). However, functional abrogation of Smed-Akt in Smed-PTEN RNAi-treated animals does not prevent cell overproliferation and lethality, indicating that functional abrogation of Smed-PTEN is sufficient to induce abnormal outgrowths. Altogether, our data reveal roles for PTEN in the regulation of planarian stem cells that are strikingly conserved to mammalian models. In addition, our results implicate this protein in the control of stem cell maintenance during the regeneration of complex structures in planarians.
Collapse
Affiliation(s)
- Néstor J Oviedo
- Center for Regenerative and Developmental Biology, Forsyth Institute, and Developmental Biology Department, Harvard School of Dental Medicine, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
469
|
Eisenhoffer GT, Kang H, Sánchez Alvarado A. Molecular analysis of stem cells and their descendants during cell turnover and regeneration in the planarian Schmidtea mediterranea. Cell Stem Cell 2008; 3:327-39. [PMID: 18786419 PMCID: PMC2614339 DOI: 10.1016/j.stem.2008.07.002] [Citation(s) in RCA: 297] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 06/12/2008] [Accepted: 07/02/2008] [Indexed: 12/20/2022]
Abstract
In adult planarians, the replacement of cells lost to physiological turnover or injury is sustained by the proliferation and differentiation of stem cells known as neoblasts. Neoblast lineage relationships and the molecular changes that take place during differentiation into the appropriate cell types are poorly understood. Here we report the identification and characterization of a cohort of genes specifically expressed in neoblasts and their descendants. We find that genes with severely downregulated expression after irradiation molecularly define at least three discrete subpopulations of cells. Simultaneous BrdU labeling and in situ hybridization experiments in intact and regenerating animals indicate that these cell subpopulations are related by lineage. Our data demonstrate not only the ability to measure and study the in vivo population dynamics of adult stem cells during tissue homeostasis and regeneration, but also the utility of studies in planarians to broadly inform stem cell biology in adult organisms.
Collapse
Affiliation(s)
- George T Eisenhoffer
- Department of Neurobiology and Anatomy, Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | | | | |
Collapse
|
470
|
Agata K, Umesono Y. Brain regeneration from pluripotent stem cells in planarian. Philos Trans R Soc Lond B Biol Sci 2008; 363:2071-8. [PMID: 18375378 DOI: 10.1098/rstb.2008.2260] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
How can planarians regenerate their brain? Recently we have identified many genes critical for this process. Brain regeneration can be divided into five steps: (1) anterior blastema formation, (2) brain rudiment formation, (3) pattern formation, (4) neural network formation, and (5) functional recovery. Here we will describe the structure and process of regeneration of the planarian brain in the first part, and then introduce genes involved in brain regeneration in the second part. Especially, we will speculate about molecular events during the early steps of brain regeneration in this review. The finding providing the greatest insight thus far is the discovery of the nou-darake (ndk; 'brains everywhere' in Japanese) gene, since brain neurons are formed throughout the entire body as a result of loss of function of the ndk gene. This finding provides a clue for elucidating the molecular and cellular mechanisms underlying brain regeneration. Here we describe the molecular action of the nou-darake gene and propose a new model to explain brain regeneration and restriction in the head region of the planarians.
Collapse
Affiliation(s)
- Kiyokazu Agata
- Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto 606-8502, Japan.
| | | |
Collapse
|
471
|
Abstract
Augmentation of regenerative ability is a powerful strategy being pursued for the biomedical management of traumatic injury, cancer, and degeneration. While considerable attention has been focused on embryonic stem cells, it is clear that much remains to be learned about how somatic cells may be controlled in the adult organism. The tadpole of the frog Xenopus laevis is a powerful model system within which fundamental mechanisms of regeneration are being addressed. The tadpole tail contains spinal cord, muscle, vasculature, and other terminally differentiated cell types and can fully regenerate itself through tissue renewal--a process that is most relevant to mammalian healing. Recent insight into this process has uncovered fascinating molecular details of how a complex appendage senses injury and rapidly repairs the necessary morphology. Here, we review what is known about the chemical and bioelectric signals underlying this process and draw analogies to evolutionarily conserved pathways in other patterning systems. The understanding of this process is not only of fundamental interest for the evolutionary and cell biology of morphogenesis, but will also generate information that is crucial to the development of regenerative therapies for human tissues and organs.
Collapse
Affiliation(s)
- A.-S. Tseng
- Center for Regenerative and Developmental Biology, Forsyth Institute, and Developmental Biology Department, Harvard School of Dental Medicine, 140 The Fenway, Boston, MA 02115, USA
| | - M. Levin
- Center for Regenerative and Developmental Biology, Forsyth Institute, and Developmental Biology Department, Harvard School of Dental Medicine, 140 The Fenway, Boston, MA 02115, USA
| |
Collapse
|
472
|
Robust axonal growth and a blunted macrophage response are associated with impaired functional recovery after spinal cord injury in the MRL/MpJ mouse. Neuroscience 2008; 156:498-514. [PMID: 18786615 DOI: 10.1016/j.neuroscience.2008.08.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Revised: 08/04/2008] [Accepted: 08/05/2008] [Indexed: 01/19/2023]
Abstract
Spinal cord injury (SCI) in mammals leads to a robust inflammatory response followed by the formation of a glial and connective tissue scar that comprises a barrier to axonal regeneration. The inbred MRL/MpJ mouse strain exhibits reduced inflammation after peripheral injury and shows true regeneration without tissue scar formation following an ear punch wound. We hypothesized that following SCI, the unique genetic wound healing traits of this strain would result in reduced glial and connective tissue scar formation, increased axonal growth, and improved functional recovery. Adult MRL/MpJ and C57BL/6J mice were subjected to a mid-thoracic spinal contusion and the distribution of axon profiles and selected cellular and extracellular matrix components was compared at 1, 2, 4 and 6 weeks post-injury. Recovery of hind-limb locomotor function was assessed over the same time period. The MRL/MpJ mice exhibited robust axon growth within the lesion, beginning at 4 weeks post-injury. This growth was accompanied by reduced macrophage staining at 1, 2, 4 and 6 weeks post-injury, decreased chondroitin sulfate proteoglycan staining at 1-2 weeks and increased laminin staining throughout the lesion at 2-6 weeks post-injury. Paradoxically, the extent of locomotor recovery was impaired in the MRL/MpJ mice. Close examination of the chronic lesion site revealed evidence of ongoing degeneration both within and surrounding the lesion site. Thus, the regenerative genetic wound healing traits of the MRL/MpJ mice contribute to the evolution of a lesion environment that supports enhanced axon growth after SCI. However, this response occurs at the expense of meaningful functional recovery.
Collapse
|
473
|
Knakievicz T, Alves da Silveira P, Ferreira HB. Planarian neoblast micronucleus assay for evaluating genotoxicity. CHEMOSPHERE 2008; 72:1267-1273. [PMID: 18534660 DOI: 10.1016/j.chemosphere.2008.04.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Accepted: 04/18/2008] [Indexed: 05/26/2023]
Abstract
Planarian neoblasts are somatic stem cells that have the potential to be used in genotoxicity assays due to their proliferative nature, sensitivity to genotoxic agents, and experimental accessibility. Two freshwater planarian species, Girardia tigrina and Girardia schubarti, were used to develop a neoblast-based micronucleus (MN) assay to assess genotoxicity. Intact or regenerating planarians were exposed to gamma-rays, methyl methanesulphonate (MMS), or cyclophosphamide (CP), and neoblast MN frequency was measured. Exposure to the clastogens had no detectable effect on the MN frequency of intact planarian neoblasts. However, for regenerating individuals, active neoblast proliferation was induced by decapitation, and gamma-ray doses as low as 0.5 Gy, and MMS and CP concentrations as low as 0.8 microM and 100 mM, respectively, induced a significant increase in MN frequency. Exposure to higher doses of gamma-rays consistently resulted in detectable increases in MN frequency. For MMS and CP, concentrations of up to 1.6 microM and 200 mM, respectively, resulted in significant increases in MN frequency, but exposures to higher concentrations led to a decrease to non-significant levels, possibly due to cytotoxic effects of MMS and CP. After completion of regeneration, the MN frequencies returned to those of non-exposed controls, indicating that the neoblast MN assay for regenerating G. tigrina or G. schubarti reflects chromosomal damage caused by acute exposure to clastogenic agents. Upon standardization, this assay may represent an interesting alternative that allows damage caused to freshwater organisms by potentially genotoxic environmental pollutants to be monitored.
Collapse
Affiliation(s)
- Tanise Knakievicz
- Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500-Prédio 43-421, sala 210, Caxia Postal 15005, Porto Alegre, RS, Brazil
| | | | | |
Collapse
|
474
|
Expression and functional analysis of musashi-like genes in planarian CNS regeneration. Mech Dev 2008; 125:631-45. [DOI: 10.1016/j.mod.2008.03.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Revised: 03/01/2008] [Accepted: 03/11/2008] [Indexed: 01/01/2023]
|
475
|
Pellettieri J, Sánchez Alvarado A. Cell turnover and adult tissue homeostasis: from humans to planarians. Annu Rev Genet 2008; 41:83-105. [PMID: 18076325 DOI: 10.1146/annurev.genet.41.110306.130244] [Citation(s) in RCA: 217] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many fully developed metazoan tissues remain in a state of flux throughout life. During physiological cell turnover, older differentiated cells are typically eliminated by apoptosis and replaced by the division progeny of adult stem cells. Independently, each of these processes has been researched extensively, yet we know very little about how cell death and stem cell division are coordinated in adult organs. Freshwater planarians are an attractive model organism for research in this area. Not only do they undergo a very high rate of somatic cell turnover throughout life, but experimental tools are now available to study this process in vivo. Together, these attributes provide an opportunity to investigate the mechanisms, functions, and regulation of cell turnover in adult tissues.
Collapse
Affiliation(s)
- Jason Pellettieri
- Department of Neurobiology and Anatomy, Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84132-3401, USA.
| | | |
Collapse
|
476
|
Altincicek B, Vilcinskas A. Comparative analysis of septic injury-inducible genes in phylogenetically distant model organisms of regeneration and stem cell research, the planarian Schmidtea mediterranea and the cnidarian Hydra vulgaris. Front Zool 2008; 5:6. [PMID: 18439314 PMCID: PMC2386466 DOI: 10.1186/1742-9994-5-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Accepted: 04/27/2008] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The planarian Schmidtea mediterranea and the cnidarian Hydra vulgaris have emerged as valuable model organisms in regeneration and stem cell research because of their prominent ability to regenerate a complete organism from any small body fragment. Under natural conditions wounding may result from predator attacks. These injuries open their innermost to a wide array of microbes present in the environment. Therefore, we established the hypothesis that regeneration processes may be linked to or at least accompanied by innate immune responses. In order to screen for septic wounding inducible genes we dissected individuals using a scalpel in the presence of a crude bacterial lipopolysaccharide preparation that is commonly used to elicit innate immune responses in animals and applied the suppression subtractive hybridization technique that selectively amplifies cDNAs of differentially expressed genes. RESULTS This analysis revealed the induced expression of 27 genes in immune challenged Schmidtea and 35 genes in immune challenged Hydra. Identified genes from both animals encode proteins that share sequence similarities with potential homologues from other organisms known to be involved in signaling (e.g. calreticulin in Schmidtea and major vault protein in Hydra), stress responses (e.g. Hsp20 in Schmidtea and a PRP19/PSO4 DNA repair protein in Hydra), or to represent potential antimicrobial effectors (e.g. perforin-like protein in Schmidtea and PR-1-like protein and neutrophil cytosolic factor 1 in Hydra). As expected, septic wounding also induces expression of genes in Schmidtea and Hydra potentially involved in tissue remodeling associated with regeneration processes (e.g. matrix metalloproteinase in Schmidtea and a potential von Willebrand factor in Hydra). CONCLUSION We identified numerous immune-inducible genes in Hydra and Schmidtea that show a similar distribution corresponding to their physiological roles, although lineages of both animals split from their common ancestor for more than five hundred millions of years. The present study is the first analysis of immune-inducible genes of these two phylogenetically distant model organisms of regeneration and provide numerous candidate genes that we can use as a starting point for comparative examination of interrelationships between immunity and homeostasis.
Collapse
Affiliation(s)
- Boran Altincicek
- Interdisciplinary Research Center, Institute of Phytopathology and Applied Zoology, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany.
| | | |
Collapse
|
477
|
Cebrià F. Organization of the nervous system in the model planarian Schmidtea mediterranea: an immunocytochemical study. Neurosci Res 2008; 61:375-84. [PMID: 18499291 DOI: 10.1016/j.neures.2008.04.005] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 04/14/2008] [Accepted: 04/15/2008] [Indexed: 12/24/2022]
Abstract
Freshwater planarians are an emerging model in which to study regeneration at the molecular level. These animals can regenerate a complete central nervous system (CNS) in only a few days. In recent years, hundreds of genes expressed in the nervous system have been identified in two popular planarian species used by several laboratories: Dugesia japonica and Schmidtea mediterranea. Functional analyses of some of those neural genes have allowed the process of CNS regeneration to begin to be elucidated in those animals. However, additional work is required to characterize the different neuronal populations. Thus, the identification or generation of antibodies that act as markers for specific neuronal cell types would be extremely useful not only in obtaining a more detailed characterization of the planarian nervous system but also for the analysis of phenotypes obtained by RNA interference. Here, I have used five different antibodies to describe different neuronal populations in the freshwater planarian S. mediterranea. This study represents a first step in characterizing the organization of the nervous system of this species at the cellular level.
Collapse
Affiliation(s)
- Francesc Cebrià
- Departament de Genètica, Facultat de Biologia, and Institut de Biomedicina de la Universitat de Barcelona, Av. Diagonal 645, edifici annex planta 1, 08028 Barcelona, Catalunya, Spain.
| |
Collapse
|
478
|
Flatworm stem cells and the germ line: developmental and evolutionary implications of macvasa expression in Macrostomum lignano. Dev Biol 2008; 319:146-59. [PMID: 18405892 DOI: 10.1016/j.ydbio.2008.02.045] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Revised: 02/19/2008] [Accepted: 02/20/2008] [Indexed: 11/22/2022]
Abstract
We have isolated and identified the vasa homologue macvasa, expressed in testes, ovaries, eggs and somatic stem cells of the flatworm Macrostomum lignano. Molecular tools such as in situ hybridization and RNA interference were developed for M. lignano to study gene expression and function. Macvasa expression was followed during postembryonic development, regeneration and in starvation experiments. We were able to follow gonad formation in juveniles and the reformation of gonads from stem cells after amputation by in situ hybridization and a specific Macvasa antibody. Expression of macvasa in the germ cells was highly affected by feeding conditions and correlated with the decrease and regrowth of the gonads. RNA interference showed specific down-regulation of macvasa mRNA and protein. The absence of Macvasa did not influence gonad formation and stem cell proliferation. Our results corroborate the exclusive nature of the flatworm stem cell system but challenge the concept of a solely postembryonic specification of the germ line in Platyhelminthes. We address the transition of somatic stem cells to germ cells and speculate on Macrostomum as a system to unravel the mechanisms of preformation or epigenesis in the evolution of germ line specification from somatic stem cells.
Collapse
|
479
|
Abstract
Multicellular organisms possessing relatively long life spans are subjected to diverse, constant, and often intense intrinsic and extrinsic challenges to their survival. Animal and plant tissues wear out as part of normal physiological functions and can be lost to predators, disease, and injury. Both kingdoms survive this wide variety of insults by strategies that include the maintenance of adult stem cells or the induction of stem cell potential in differentiated cells. Repatterning mechanisms often deploy embryonic genes, but the question remains in both plants and animals whether regeneration invokes embryogenesis, generic patterning mechanisms, or unique circuitry comprised of well-established patterning genes.
Collapse
Affiliation(s)
- Kenneth D Birnbaum
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA.
| | | |
Collapse
|
480
|
|
481
|
Niva CC, Lee JM, Myohara M. Glutamine synthetase gene expression during the regeneration of the annelid Enchytraeus japonensis. Dev Genes Evol 2008; 218:39-46. [PMID: 18183418 PMCID: PMC2265772 DOI: 10.1007/s00427-007-0198-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Accepted: 11/27/2007] [Indexed: 11/29/2022]
Abstract
Enchytraeus japonensis is a highly regenerative oligochaete annelid that can regenerate a complete individual from a small body fragment in 4–5 days. In our previous study, we performed complementary deoxyribonucleic acid subtraction cloning to isolate genes that are upregulated during E. japonensis regeneration and identified glutamine synthetase (gs) as one of the most abundantly expressed genes during this process. In the present study, we show that the full-length sequence of E. japonensis glutamine synthetase (EjGS), which is the first reported annelid glutamine synthetase, is highly similar to other known class II glutamine synthetases. EjGS shows a 61–71% overall amino acid sequence identity with its counterparts in various other animal species, including Drosophila and mouse. We performed detailed expression analysis by in situ hybridization and reveal that strong gs expression occurs in the blastemal regions of regenerating E. japonensis soon after amputation. gs expression was detectable at the cell layer covering the wound and was found to persist in the epidermal cells during the formation and elongation of the blastema. Furthermore, in the elongated blastema, gs expression was detectable also in the presumptive regions of the brain, ventral nerve cord, and stomodeum. In the fully formed intact head, gs expression was also evident in the prostomium, brain, the anterior end of the ventral nerve cord, the epithelium of buccal and pharyngeal cavities, the pharyngeal pad, and in the esophageal appendages. In intact E. japonensis tails, gs expression was found in the growth zone in actively growing worms but not in full-grown individuals. In the nonblastemal regions of regenerating fragments and in intact worms, gs expression was also detected in the nephridia, chloragocytes, gut epithelium, epidermis, spermatids, and oocytes. These results suggest that EjGS may play roles in regeneration, nerve function, cell proliferation, nitrogenous waste excretion, macromolecule synthesis, and gametogenesis.
Collapse
Affiliation(s)
- Cintia Carla Niva
- Invertebrate Gene Function Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan.
| | | | | |
Collapse
|
482
|
Martinez-Agosto JA, Mikkola HKA, Hartenstein V, Banerjee U. The hematopoietic stem cell and its niche: a comparative view. Genes Dev 2008; 21:3044-60. [PMID: 18056420 DOI: 10.1101/gad.1602607] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Stem cells have been identified as a source of virtually all highly differentiated cells that are replenished during the lifetime of an animal. The critical balance between stem and differentiated cell populations is crucial for the long-term maintenance of functional tissue types. Stem cells maintain this balance by choosing one of several alternate fates: self-renewal, commitment to differentiate, and senescence or cell death. These characteristics comprise the core criteria by which these cells are usually defined. The self-renewal property is important, as it allows for extended production of the corresponding differentiated cells throughout the life span of the animal. A microenvironment that is supportive of stem cells is commonly referred to as a stem cell niche. In this review, we first present some general concepts regarding stem cells and their niches, comparing stem cells of many different kinds from diverse organisms, and in the second part, we compare specific aspects of hematopoiesis and the niches that support hematopoiesis in Drosophila, zebrafish and mouse.
Collapse
Affiliation(s)
- Julian A Martinez-Agosto
- Department of Human Genetics and Department of Pediatrics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA
| | | | | | | |
Collapse
|
483
|
Kreshchenko ND, Sedelnikov Z, Sheiman IM, Reuter M, Maule AG, Gustafsson MKS. Effects of neuropeptide F on regeneration in Girardia tigrina (Platyhelminthes). Cell Tissue Res 2007; 331:739-50. [PMID: 18095002 DOI: 10.1007/s00441-007-0519-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Accepted: 09/13/2007] [Indexed: 11/25/2022]
Abstract
The effects of neuropeptide F (NPF; from Moniezia expansa) on the regeneration of Girardia tigrina were studied. The animals were decapitated and incubated in water (control) or NPF. The dynamics of the proliferation of the neoblasts in the developing tissue were studied during the course of regeneration by monitoring the mitotic index (MI). The effects of incubation in FMRFamide and GYIRFamide on the MI were also tested. The course of cephalic regeneration was followed with in vivo computer-assisted morphometry for up to 7 days. The development of the regenerating nervous system and the musculature was visualised by immunostaining with a primary antiserum to the C-terminal decapeptide of NPF (YFAIIGRPRFa) and tetramethylrhodamine-isothiocyanate-conjugated phalloidin, which stains F-actin in muscle filaments. The study showed that NPF had a stimulatory effect on the mitotic activity of the neoblasts. FMRFamide and GYIRFamide did not have this effect. NPF also stimulated the growth of the regenerating head and the growing nervous system and musculature. NPF is postulated to have a morphogenetic action in the regenerating animals.
Collapse
|
484
|
Petersen CP, Reddien PW. Smed-betacatenin-1 is required for anteroposterior blastema polarity in planarian regeneration. Science 2007; 319:327-30. [PMID: 18063755 DOI: 10.1126/science.1149943] [Citation(s) in RCA: 287] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Planarian flatworms can regenerate heads at anterior-facing wounds and tails at posterior-facing wounds throughout the body. How this regeneration polarity is specified has been a classic problem for more than a century. We identified a planarian gene, Smed-betacatenin-1, that controls regeneration polarity. Posterior-facing blastemas regenerate a head instead of a tail in Smed-betacatenin-1(RNAi) animals. Smed-betacatenin-1 is required after wounding and at any posterior-facing wound for polarity. Additionally, intact Smed-betacatenin-1(RNAi) animals display anteriorization during tissue turnover. Five Wnt genes and a secreted Frizzled-related Wnt antagonist-like gene are expressed in domains along the anteroposterior axis that reset to new positions during regeneration, which suggests that Wnts control polarity through Smed-betacatenin-1. Our data suggest that beta-catenin specifies the posterior character of the anteroposterior axis throughout the Bilateria and specifies regeneration polarity in planarians.
Collapse
Affiliation(s)
- Christian P Petersen
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | | |
Collapse
|
485
|
Gurley KA, Rink JC, Sánchez Alvarado A. Beta-catenin defines head versus tail identity during planarian regeneration and homeostasis. Science 2007; 319:323-7. [PMID: 18063757 DOI: 10.1126/science.1150029] [Citation(s) in RCA: 348] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
After amputation, freshwater planarians properly regenerate a head or tail from the resulting anterior or posterior wound. The mechanisms that differentiate anterior from posterior and direct the replacement of the appropriate missing body parts are unknown. We found that in the planarian Schmidtea mediterranea, RNA interference (RNAi) of beta-catenin or dishevelled causes the inappropriate regeneration of a head instead of a tail at posterior amputations. Conversely, RNAi of the beta-catenin antagonist adenomatous polyposis coli results in the regeneration of a tail at anterior wounds. In addition, the silencing of beta-catenin is sufficient to transform the tail of uncut adult animals into a head. We suggest that beta-catenin functions as a molecular switch to specify and maintain anteroposterior identity during regeneration and homeostasis in planarians.
Collapse
Affiliation(s)
- Kyle A Gurley
- Department of Neurobiology and Anatomy, Howard Hughes Medical Institute, University of Utah School of Medicine, 401 MREB, 20N 1900E, Salt Lake City, UT 84132, USA.
| | | | | |
Collapse
|
486
|
Cebrià F. Regenerating the central nervous system: how easy for planarians! Dev Genes Evol 2007; 217:733-48. [PMID: 17999079 DOI: 10.1007/s00427-007-0188-6] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Accepted: 10/03/2007] [Indexed: 11/29/2022]
Abstract
The regenerative capabilities of freshwater planarians (Platyhelminthes) are very difficult to match. A fragment as tiny as 1/279th of the planarian body is able to regenerate a whole animal within very few days [Morgan. Arch Entwm 7:364-397 (1898)]. Although the planarian central nervous system (CNS) may appear quite morphologically simple, recent studies have shown it to be more complex at the molecular level, revealing a high degree of molecular compartmentalization in planarian cephalic ganglia. Planarian neural genes include homologues of well-known transcription factors and genes involved in human diseases, neurotransmission, axon guidance, signaling pathways, and RNA metabolism. The availability of hundreds of genes expressed in planarian neurons coupled with the ability to silence them through the use of RNA interference makes it possible to start unraveling the molecular mechanisms underlying CNS regeneration. In this review, I discuss current knowledge on the planarian nervous system and the genes involved in its regeneration, and I discuss some of the important questions that remain to be answered.
Collapse
Affiliation(s)
- Francesc Cebrià
- Departament de Genètica, Facultat de Biologia, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalunya, Spain.
| |
Collapse
|
487
|
Rossi L, Salvetti A, Marincola FM, Lena A, Deri P, Mannini L, Batistoni R, Wang E, Gremigni V. Deciphering the molecular machinery of stem cells: a look at the neoblast gene expression profile. Genome Biol 2007; 8:R62. [PMID: 17445279 PMCID: PMC1896013 DOI: 10.1186/gb-2007-8-4-r62] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 03/23/2007] [Accepted: 04/20/2007] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Mammalian stem cells are difficult to access experimentally; model systems that can regenerate offer an alternative way to characterize stem cell related genes. Planarian regeneration depends on adult pluripotent stem cells--the neoblasts. These cells can be selectively destroyed using X-rays, enabling comparison of organisms lacking stem cells with wild-type worms. RESULTS Using a genomic approach we produced an oligonucleotide microarray chip (the Dj600 chip), which was designed using selected planarian gene sequences. Using this chip, we compared planarians treated with high doses of X-rays (which eliminates all neoblasts) with wild-type worms, which led to identification of a set of putatively neoblast-restricted genes. Most of these genes are involved in chromatin modeling and RNA metabolism, suggesting that epigenetic modifications and post-transcriptional regulation are pivotal in neoblast regulation. Comparing planarians treated with low doses of X-rays (after which some radiotolerant neoblasts re-populate the planarian body) with specimens irradiated with high doses and unirradiated control worms, we identified a group of genes that were upregulated as a consequence of low-dose X-ray treatment. Most of these genes encode proteins that are known to regulate the balance between death and survival of the cell; our results thus suggest that genetic programs that control neoblast cytoprotection, proliferation, and migration are activated by low-dose X-rays. CONCLUSION The broad differentiation potential of planarian neoblasts is unparalleled by any adult stem cells in the animal kingdom. In addition to our validation of the Dj600 chip as a valuable platform, our work contributes to elucidating the molecular mechanisms that regulate the self-renewal and differentiation of neoblasts.
Collapse
Affiliation(s)
- Leonardo Rossi
- Dipartimento di Morfologia Umana e Biologia Applicata, Sezione di Biologia e Genetica, Università di Pisa, Via Volta, Pisa 56126, Italy
| | - Alessandra Salvetti
- Dipartimento di Morfologia Umana e Biologia Applicata, Sezione di Biologia e Genetica, Università di Pisa, Via Volta, Pisa 56126, Italy
| | - Francesco M Marincola
- Department of Transfusion Medicine, Warren G Magnuson Clinical Center, National Institutes of Health, Central Drive, Bethesda, Maryland 20892, USA
| | - Annalisa Lena
- Dipartimento di Morfologia Umana e Biologia Applicata, Sezione di Biologia e Genetica, Università di Pisa, Via Volta, Pisa 56126, Italy
| | - Paolo Deri
- Dipartimento di Biologia, Unità di Biologia Cellulare e dello Sviluppo, Università di Pisa, Via Carducci, Pisa 56010, Italy
| | - Linda Mannini
- Dipartimento di Biologia, Unità di Biologia Cellulare e dello Sviluppo, Università di Pisa, Via Carducci, Pisa 56010, Italy
| | - Renata Batistoni
- Dipartimento di Biologia, Unità di Biologia Cellulare e dello Sviluppo, Università di Pisa, Via Carducci, Pisa 56010, Italy
| | - Ena Wang
- Department of Transfusion Medicine, Warren G Magnuson Clinical Center, National Institutes of Health, Central Drive, Bethesda, Maryland 20892, USA
| | - Vittorio Gremigni
- Dipartimento di Morfologia Umana e Biologia Applicata, Sezione di Biologia e Genetica, Università di Pisa, Via Volta, Pisa 56126, Italy
| |
Collapse
|
488
|
Reddien PW, Bermange AL, Kicza AM, Sánchez Alvarado A. BMP signaling regulates the dorsal planarian midline and is needed for asymmetric regeneration. Development 2007; 134:4043-51. [PMID: 17942485 DOI: 10.1242/dev.007138] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Planarians can be cut into irregularly shaped fragments capable of regenerating new and complete organisms. Such regenerative capacities involve a robust ability to restore bilateral symmetry. We have identified three genes needed for bilaterally asymmetric fragments to regenerate missing body parts. These genes are candidate components of a signaling pathway that controls the dorsal-ventral patterning of many animal embryos: a BMP1/Tolloid-like gene (smedolloid-1), a SMAD4-like gene (smedsmad4-1), and a BMP2/4/DPP-like gene (smedbmp4-1). BMP signaling was involved in the formation of new tissues at the midline of regeneration, the dorsal-ventral patterning of new tissues, and the maintenance of the dorsal-ventral pattern of existing adult tissue in homeostasis. smedbmp4-1 was normally expressed at the dorsal midline. Asymmetric fragments lacking a midline displayed new smedbmp4-1 expression prior to formation of a regenerative outgrowth (blastema). Asymmetric fragments containing the midline displayed expanded smedbmp4-1 expression towards the wound. We suggest injured animals that lack left-right symmetry reset their midline through modulation of BMP activity as an early and necessary event in regeneration.
Collapse
Affiliation(s)
- Peter W Reddien
- MIT Biology, Whitehead Institute, 9 Cambridge Center, Cambridge, MA 02138, USA
| | | | | | | |
Collapse
|
489
|
Molina MD, Saló E, Cebrià F. The BMP pathway is essential for re-specification and maintenance of the dorsoventral axis in regenerating and intact planarians. Dev Biol 2007; 311:79-94. [PMID: 17905225 DOI: 10.1016/j.ydbio.2007.08.019] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Revised: 07/27/2007] [Accepted: 08/07/2007] [Indexed: 10/22/2022]
Abstract
The bone morphogenetic protein (BMP) pathway has been shown to play an important role in the establishment of the dorsoventral axis during development in both vertebrate and invertebrate species. In an attempt to unravel the role of BMPs in pattern formation during planarian regeneration, we studied this signaling pathway in Schmidtea mediterranea. Here, we functionally characterize planarian homologues of two key elements of the pathway: Smed-BMP and Smed-Smad1. Whole-mount in situ hybridization showed that Smed-BMP is expressed at the planarian dorsal midline, suggesting a role in dorsoventral patterning, while Smed-Smad1 is widely expressed throughout the mesenchyme and in the central nervous system. RNA interference (RNAi) knockdowns of Smed-BMP or Smed-Smad1 led to the disappearance of dorsal markers along with the ectopic expression of ventral markers on the dorsal side of the treated animals. In almost all cases, a duplicated central nervous system differentiated dorsally after Smed-BMP or Smed-Smad1 RNAi. These defects were observed not only during regeneration but also in intact non-regenerating animals. Our results suggest that the BMP signaling pathway is conserved in planarians and that it plays a key role in the regeneration and maintenance of the dorsoventral axis.
Collapse
Affiliation(s)
- M Dolores Molina
- Departament de Genètica, Facultat de Biologia, Av. Diagonal 645, edifici annex planta 1, 08028 Barcelona, Catalunya, Spain
| | | | | |
Collapse
|
490
|
Oviedo NJ, Levin M. smedinx-11 is a planarian stem cell gap junction gene required for regeneration and homeostasis. Development 2007; 134:3121-31. [PMID: 17670787 DOI: 10.1242/dev.006635] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The largely unknown mechanisms that regulate adult stem cells probably involve signals from neighboring differentiated cells. Gap junction channels providing direct cell-cell communication via small molecules are a crucial component of morphogenesis and normal physiology. However, no specific gap junction protein has yet been functionally linked to adult/somatic stem cell behavior in vivo or to organ regeneration. We report the identification and characterization of smedinx-11--an innexin gap junction channel gene expressed in the adult stem cells (neoblasts) of the planarian Schmidtea mediterranea. smedinx-11 RNAi treatment inhibits regeneration and abrogates neoblast maintenance. Moreover, smedinx-11 expression is enriched in an irradiation-sensitive subpopulation (;X2') and is required for proper expression of other stem cell-specific markers. Analyses of the smedinx-11 downregulation phenotype revealed a striking anterior-posterior neoblast gradient. Our data demonstrate a novel role for gap junction proteins and suggest gap junction-mediated signaling as a new and tractable control point for adult, somatic stem cell regulation.
Collapse
Affiliation(s)
- Néstor J Oviedo
- Center for Regenerative and Developmental Biology, Forsyth Institute, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | | |
Collapse
|
491
|
Cebrià F, Guo T, Jopek J, Newmark PA. Regeneration and maintenance of the planarian midline is regulated by a slit orthologue. Dev Biol 2007; 307:394-406. [PMID: 17553481 PMCID: PMC2148499 DOI: 10.1016/j.ydbio.2007.05.006] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Revised: 05/02/2007] [Accepted: 05/04/2007] [Indexed: 01/06/2023]
Abstract
Several families of evolutionarily conserved axon guidance cues orchestrate the precise wiring of the nervous system during embryonic development. The remarkable plasticity of freshwater planarians provides the opportunity to study these molecules in the context of neural regeneration and maintenance. Here we characterize a homologue of the Slit family of guidance cues from the planarian Schmidtea mediterranea. Smed-slit is expressed along the planarian midline, in both dorsal and ventral domains. RNA interference (RNAi) targeting Smed-slit results in the collapse of many newly regenerated tissues at the midline; these include the cephalic ganglia, ventral nerve cords, photoreceptors, and the posterior digestive system. Surprisingly, Smed-slit RNAi knockdown animals also develop morphologically distinguishable, ectopic neural structures near the midline in uninjured regions of intact and regenerating planarians. These results suggest that Smed-slit acts not only as a repulsive cue required for proper midline formation during regeneration but that it may also act to regulate the behavior of neural precursors at the midline in intact planarians.
Collapse
Affiliation(s)
- Francesc Cebrià
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, B107 Chemical and Life Sciences Laboratory, 601 South Goodwin Avenue, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
492
|
Lau AH, Knakievicz T, Prá D, Erdtmann B. Freshwater planarians as novel organisms for genotoxicity testing: Analysis of chromosome aberrations. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2007; 48:475-82. [PMID: 17584880 DOI: 10.1002/em.20307] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Two freshwater species of planarians, Girardia schubarti Marcus and G. tigrina Girard, were used for measuring chromosome aberration (CA) induction under laboratory conditions. Three genotoxicants were tested: methyl methanesulfonate (MMS), a direct-acting genotoxicant; cyclophosphamide, a metabolism-dependent genotoxicant; and gamma-radiation, a clastogenic agent. All three agents produced positive responses in both species. The strongest dose-responses were detected with MMS, and, in general, G. tigrina was somewhat more sensitive to the genotoxicity of the agents than G. schubarti. This difference in sensitivity may be due to: (a) the smaller body mass of G. tigrina; (b) differences in DNA repair, which may be reflected in the marginally higher background CA frequency of G. tigrina; and/or (c) the greater number of chromosomes in G. tigrina (2N = 16) as compared with G. schubarti (2N = 8). The responses induced by gamma-radiation in the planarians were similar to or higher than those induced in cultured human lymphocytes. The CA-planarian assay has advantages for monitoring environmental genotoxicity in natural water resources or urban and industrial wastewater since planarians are characterized by (a) a relatively low number of easily analyzable chromosomes; (b) high regenerating capacity, allowing exposure of replicating cells from different parts of the same organism to different doses; (c) easy maintenance under laboratory conditions; and (d) worldwide distribution, making them available for genotoxicity tests using either in situ or controlled laboratory exposure conditions.
Collapse
Affiliation(s)
- Adriana Helena Lau
- Universidade Federal do Rio Grande do Sul (UFRGS), Instituto de Biociências, Departamento de Genética, Porto Alegre, RS, Brasil.
| | | | | | | |
Collapse
|
493
|
Higuchi S, Hayashi T, Hori I, Shibata N, Sakamoto H, Agata K. Characterization and categorization of fluorescence activated cell sorted planarian stem cells by ultrastructural analysis. Dev Growth Differ 2007; 49:571-81. [PMID: 17587325 DOI: 10.1111/j.1440-169x.2007.00947.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Planarians have regenerative ability made possible by pluripotent stem cells referred to as neoblasts. Classical ultrastructural studies have indicated that stem cells can be distinguished by a unique cytoplasmic structure known as the chromatoid body and their undifferentiated features, and they are specifically eliminated by X-ray irradiation. Recently, by using fluorescence activated cell sorting (FACS), planarian cells were separated into two X-ray-sensitive fractions (X1 and X2) and an X-ray-insensitive fraction (XIS) according to DNA content and cytoplasmic size. Here we analyzed the fractionated cells by transmission electron microscopy (TEM). First, we found that both undifferentiated cells (stem cells) and regenerative cells (differentiating cells) were concentrated in the X1 fraction containing the S/G2/M phase cells. The regenerative cells were considered to be committed stem cells or progenitor cells, suggesting that some stem cells may maintain proliferative ability even after cell fate-commitment. Second, we succeeded in identifying a new type of stem cells, which were small in size with few chromatoid bodies and a heterochromatin-rich nucleus. Interestingly, they were concentrated in the X2 fraction, containing G0/G1 phase cells. These results suggest that planarian stem cells are not homogeneous, but may consist of heterogeneous populations, like mammalian stem cells.
Collapse
Affiliation(s)
- Sayaka Higuchi
- RIKEN Center for Developmental Biology, Faculty of Science, Kobe University, Kobe, Japan
| | | | | | | | | | | |
Collapse
|
494
|
Sánchez Alvarado A. Stem cells and the Planarian Schmidtea mediterranea. C R Biol 2007; 330:498-503. [PMID: 17631444 PMCID: PMC2043120 DOI: 10.1016/j.crvi.2007.05.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Accepted: 05/03/2007] [Indexed: 10/23/2022]
Abstract
In recent years, stem cells have been heralded as potential therapeutic agents to address a large number of degenerative diseases. Yet, in order to rationally utilize these cells as effective therapeutic agents, and/or improve treatment of stem-cell-associated malignancies such as leukemias and carcinomas, a better understanding of the basic biological properties of stem cells needs to be acquired. A major limitation in the study of stem cells lies in the difficulty of accessing and studying these cells in vivo. This barrier is further compounded by the limitations of in vitro culture systems, which are unable to emulate the microenvironments in which stem cells reside and which are known to provide critical regulatory signals for their proliferation and differentiation. Given the complexity of vertebrate embryonic and adult stem cell populations and their relative inaccessibility to in vivo molecular analyses, the study of stem cells should benefit from analyzing their counterparts in simpler model organisms. In the past, the use of Drosophila or C. elegans has provided invaluable contributions to our understanding of genes and pathways involved in a variety of human diseases. However, stem cells in these organisms are mostly restricted to the gonads, and more importantly neither Drosophila, nor C. elegans are capable of regenerating body parts lost to injury. Therefore, a simple animal with experimentally accessible stem cells playing a role in tissue maintenance and/or regeneration should be very useful in identifying and functionally testing the mechanisms regulating stem cell activities. The planarian Schmidtea mediterranea is poised to fill this experimental gap. S. mediterranea displays robust regenerative properties driven by a stem cell population capable of producing the approximately 40 different cell types found in this organism, including the germ cells. Given that all known metazoans depend on stem cells for their survival, it is extremely likely that the molecular events regulating stem cell biology would have been conserved throughout evolution, and that the knowledge derived from studying planarian stem cells could be vertically integrated to the study of vertebrate stem cells. Current efforts, therefore, are aimed at further characterizing the population of planarian stem cells in order to define its suitability as a model system in which to mechanistically dissect the basic biological attributes of metazoans stem cells.
Collapse
Affiliation(s)
- Alejandro Sánchez Alvarado
- Department of Neurobiology & Anatomy, Howard Hughes Medical Institute, University of Utah School of Medicine, 401 MREB, 20 North 1900 East, Salt Lake City, UT 84132-3401, USA.
| |
Collapse
|
495
|
Abstract
Because research on regeneration has a long history, some classic definitions and concepts about regeneration which were established in earlier times have been retained without reconsideration for a long time, even though many relevant new findings have accumulated. To clarify the points on which research should be focused on for elucidating the mechanisms of regeneration, we should reconsider such classical definitions and principles of regeneration at the cellular and molecular level. Here, we consider two differing principles of regeneration which have been classically defined as 'epimorphosis' and 'morphallaxis', and propose the abandonment of these classical categories and their replacement by a new unifying principle in order to facilitate regeneration studies.
Collapse
Affiliation(s)
- Kiyokazu Agata
- Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto 606-8502, Japan.
| | | | | |
Collapse
|
496
|
Galliot B, Miljkovic-Licina M, Ghila L, Chera S. RNAi gene silencing affects cell and developmental plasticity in hydra. C R Biol 2007; 330:491-7. [PMID: 17631443 DOI: 10.1016/j.crvi.2007.01.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Accepted: 01/09/2007] [Indexed: 11/30/2022]
Abstract
The recent establishment of gene silencing through RNA interference upon feeding opens avenues to decipher the genetic control of regeneration in hydra. Following that approach, we identified three main stages for head regeneration. Immediately post-amputation, the serine protease inhibitor Kazal1 gene produced by the gland cells prevents from an excessive autophagy in regenerating tips. This cytoprotective function, or self-preservation, is similar to that played by Kazal-type proteins in the mammalian exocrine pancreas, in homeostatic or post-injury conditions, likely reflecting an evolutionarily conserved mechanism linking cell survival to tissue repair. Indeed, in wild-type hydra, within the first hours following mid-gastric section, an extensive cellular remodelling is taking place, including phenotypic cellular transitions and cell proliferation. The activation of the MAPK pathway, which leads to the RSK-dependent CREB phosphorylation, is required for these early cellular events. Later, at the early-late stage, the expression of the Gsx/cnox-2 ParaHox gene in proliferating apical neuronal progenitors is required for the de novo neurogenesis that precedes the emergence of the tentacle rudiments. Hence, head regeneration in wild-type hydra relies on spatially restricted and timely orchestrated cellular modifications, which display similarities with those reported during vertebrate epimorphic regeneration. These results suggest some conservation across evolution of the mechanisms driving the post-amputation reactivation of developmental programs.
Collapse
Affiliation(s)
- Brigitte Galliot
- Department of Zoology and Animal Biology, University of Geneva, 30, quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland.
| | | | | | | |
Collapse
|
497
|
Inoue T, Hayashi T, Takechi K, Agata K. Clathrin-mediated endocytic signals are required for the regeneration of,as well as homeostasis in, the planarian CNS. Development 2007; 134:1679-89. [PMID: 17376807 DOI: 10.1242/dev.02835] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Planarians have a well-organized central nervous system (CNS), including a brain, and can regenerate the CNS from almost any portion of the body using pluripotent stem cells. In this study, to identify genes required for CNS regeneration, genes expressed in the regenerating CNS were systematically cloned and subjected to functional analysis. RNA interference (RNAi) of the planarian clathrin heavy chain (DjCHC) gene prevented CNS regeneration in the intermediate stage of regeneration prior to neural circuit formation. To analyze DjCHC gene function at the cellular level, we developed a functional analysis method using primary cultures of planarian neurons purified by fluorescence-activated cell sorting (FACS) after RNAi treatment. Using this method, we showed that the DjCHC gene was not essential for neural differentiation, but was required for neurite extension and maintenance, and that DjCHC-RNAi-treated neurons entered a TUNEL-positive apoptotic state. DjCHC-RNAi-treated uncut planarians showed brain atrophy, and the DjCHC-RNAi planarian phenotype was mimicked by RNAi-treated planarians of the mu-2 (μ2)gene, which is involved in endocytosis, but not the mu-1(μ1) gene, which is involved in exocytosis. Thus,clathrin-mediated endocytic signals may be required for not only maintenance of neurons after synaptic formation, but also axonal extension at the early stage of neural differentiation.
Collapse
Affiliation(s)
- Takeshi Inoue
- Group for Evolutionary Regeneration Biology, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Kobe, Japan
| | | | | | | |
Collapse
|
498
|
Rinkevich Y, Paz G, Rinkevich B, Reshef R. Systemic bud induction and retinoic acid signaling underlie whole body regeneration in the urochordate Botrylloides leachi. PLoS Biol 2007; 5:e71. [PMID: 17341137 PMCID: PMC1808485 DOI: 10.1371/journal.pbio.0050071] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Accepted: 01/10/2007] [Indexed: 11/19/2022] Open
Abstract
Regeneration in adult chordates is confined to a few model cases and terminates in restoration of restricted tissues and organs. Here, we study the unique phenomenon of whole body regeneration (WBR) in the colonial urochordate Botrylloides leachi in which an entire adult zooid is restored from a miniscule blood vessel fragment. In contrast to all other documented cases, regeneration is induced systemically in blood vessels. Multiple buds appear simultaneously in newly established regeneration niches within vasculature fragments, stemming from composites of pluripotent blood cells and terminating in one functional zooid. We found that retinoic acid (RA) regulates diverse developmental aspects in WBR. The homologue of the RA receptor and a retinaldehyde dehydrogenase-related gene were expressed specifically in blood cells within regeneration niches and throughout bud development. The addition of RA inhibitors as well as RNA interference knockdown experiments resulted in WBR arrest and bud malformations. The administration of all-trans RA to blood vessel fragments resulted in doubly accelerated regeneration and multibud formation, leading to restored colonies with multiple zooids. The Botrylloides system differs from known regeneration model systems by several fundamental criteria, including epimorphosis without the formation of blastema and the induction of a "multifocal regeneration niche" system. This is also to our knowledge the first documented case of WBR from circulating blood cells that restores not only the soma, but also the germ line. This unique Botrylloides WBR process could serve as a new in vivo model system for regeneration, suggesting that RA signaling may have had ancestral roles in body restoration events.
Collapse
Affiliation(s)
- Yuval Rinkevich
- Faculty of Biology, Technion—Israel Institute of Technology, Haifa, Israel
| | - Guy Paz
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, Israel
| | - Baruch Rinkevich
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, Israel
| | - Ram Reshef
- Faculty of Biology, Technion—Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
499
|
Wang Y, Zayas RM, Guo T, Newmark PA. nanos function is essential for development and regeneration of planarian germ cells. Proc Natl Acad Sci U S A 2007; 104:5901-6. [PMID: 17376870 PMCID: PMC1851589 DOI: 10.1073/pnas.0609708104] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Germ cells are required for the successful propagation of sexually reproducing species. Understanding the mechanisms by which these cells are specified and how their totipotency is established and maintained has important biomedical and evolutionary implications. Freshwater planarians serve as fascinating models for studying these questions. They can regenerate germ cells from fragments of adult tissues that lack reproductive structures, suggesting that inductive signaling is involved in planarian germ cell specification. To study the development and regeneration of planarian germ cells, we have functionally characterized an ortholog of nanos, a gene required for germ cell development in diverse organisms, from Schmidtea mediterranea. In the hermaphroditic strain of this species, Smed-nanos mRNA is detected in developing, regenerating, and mature ovaries and testes. However, it is not detected in the vast majority of newly hatched planarians or in small tissue fragments that will ultimately regenerate germ cells, consistent with an epigenetic origin of germ cells. We show that Smed-nanos RNA interference (RNAi) results in failure to develop, regenerate, or maintain gonads in sexual planarians. Unexpectedly, Smed-nanos mRNA is also detected in presumptive testes primordia of asexual individuals that reproduce strictly by fission. These presumptive germ cells are lost after Smed-nanos RNAi, suggesting that asexual planarians specify germ cells, but their differentiation is blocked downstream of Smed-nanos function. Our results reveal a conserved function of nanos in germ cell development in planarians and suggest that these animals will serve as useful models for dissecting the molecular basis of epigenetic germ cell specification.
Collapse
Affiliation(s)
- Yuying Wang
- *Department of Cell and Developmental Biology
| | - Ricardo M. Zayas
- *Department of Cell and Developmental Biology
- Neuroscience Program, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| | - Tingxia Guo
- *Department of Cell and Developmental Biology
| | - Phillip A. Newmark
- *Department of Cell and Developmental Biology
- Neuroscience Program, University of Illinois at Urbana–Champaign, Urbana, IL 61801
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
500
|
Cebrià F, Newmark PA. Morphogenesis defects are associated with abnormal nervous system regeneration following roboA RNAi in planarians. Development 2007; 134:833-7. [PMID: 17251262 DOI: 10.1242/dev.02794] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The process by which the proper pattern is restored to newly formed tissues during metazoan regeneration remains an open question. Here, we provide evidence that the nervous system plays a role in regulating morphogenesis during anterior regeneration in the planarian Schmidtea mediterranea. RNA interference (RNAi) knockdown of a planarian ortholog of the axon-guidance receptor roundabout (robo) leads to unexpected phenotypes during anterior regeneration, including the development of a supernumerary pharynx (the feeding organ of the animal) and the production of ectopic, dorsal outgrowths with cephalic identity. We show that Smed-roboA RNAi knockdown disrupts nervous system structure during cephalic regeneration: the newly regenerated brain and ventral nerve cords do not re-establish proper connections. These neural defects precede, and are correlated with, the development of ectopic structures. We propose that, in the absence of proper connectivity between the cephalic ganglia and the ventral nerve cords, neurally derived signals promote the differentiation of pharyngeal and cephalic structures. Together with previous studies on regeneration in annelids and amphibians, these results suggest a conserved role of the nervous system in pattern formation during blastema-based regeneration.
Collapse
Affiliation(s)
- Francesc Cebrià
- Department of Cell and Developmental Biology, Neuroscience Program, University of Illinois at Urbana-Champaign, B107 Chemical and Life Sciences Laboratory, 601 South Goodwin Avenue, Urbana, IL 61801, USA
| | | |
Collapse
|