451
|
Zhang Z, Liu J, Zhang C, Li F, Li L, Wang D, Chand D, Guan F, Zang X, Zhang Y. Over-Expression and Prognostic Significance of HHLA2, a New Immune Checkpoint Molecule, in Human Clear Cell Renal Cell Carcinoma. Front Cell Dev Biol 2020; 8:280. [PMID: 32509772 PMCID: PMC7248229 DOI: 10.3389/fcell.2020.00280] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/31/2020] [Indexed: 12/21/2022] Open
Abstract
HHLA2, a newly identified B7 family member, regulates T cell functions. However, the expression and prognostic value of HHLA2 in solid tumors is ill defined. This study aimed to reveal the expression landscape of HHLA2 in various solid tumors, and to evaluate its prognostic value in kidney clear cell carcinoma (KIRC). Using The Cancer Genome Atlas (TCGA) database, we investigated the expression pattern of HHLA2 across 22 types of cancer. HHLA2 and CD8 protein expression was determined via immunohistochemistry (IHC). KIRC-specific findings were further analyzed with R software and the prognostic value was validated on tissue microarrays. HHLA2 was widely expressed in cancers at both the mRNA and protein levels. Among all tested tumors, KIRC showed the highest transcript level of HHLA2, and HHLA2 levels were significantly higher in tumor tissues than in matched normal samples, as evidenced by both TCGA and IHC data. HHLA2 was also positively correlated with survival rates in KIRC based on TCGA and clinical data. Receiver operating characteristic curves data showed the prognostic value of HHLA2 for patients with KIRC in TCGA. Moreover, HHLA2 was positively correlated with immune-related genes, while HHLA2 and CD8 expression exhibited a consistent trend in KIRC tumor samples. In conclusion, HHLA2 is highly expressed in KIRC and predicts a favorable survival outcome, highlighting that it may work as a potential target for KIRC therapy.
Collapse
Affiliation(s)
- Zhen Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinyan Liu
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chaoqi Zhang
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Feng Li
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lifeng Li
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dan Wang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Damini Chand
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Fangxia Guan
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Xingxing Zang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,School of Life Sciences, Zhengzhou University, Zhengzhou, China.,Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory for Tumor Immunology and Biotherapy of Henan Province, Zhengzhou, China
| |
Collapse
|
452
|
|
453
|
Wang G, Tai R, Wu Y, Yang S, Wang J, Yu X, Lei L, Shan Z, Li N. The expression and immunoregulation of immune checkpoint molecule VISTA in autoimmune diseases and cancers. Cytokine Growth Factor Rev 2020; 52:1-14. [DOI: 10.1016/j.cytogfr.2020.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 02/02/2020] [Accepted: 02/03/2020] [Indexed: 12/24/2022]
|
454
|
Bailly C, Vergoten G. Protein homodimer sequestration with small molecules: Focus on PD-L1. Biochem Pharmacol 2020; 174:113821. [DOI: 10.1016/j.bcp.2020.113821] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 01/16/2020] [Indexed: 12/25/2022]
|
455
|
Bailly C. Regulation of PD-L1 expression on cancer cells with ROS-modulating drugs. Life Sci 2020; 246:117403. [DOI: 10.1016/j.lfs.2020.117403] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/29/2020] [Accepted: 02/03/2020] [Indexed: 12/14/2022]
|
456
|
Pemetrexed Enhances Membrane PD-L1 Expression and Potentiates T Cell-Mediated Cytotoxicity by Anti-PD-L1 Antibody Therapy in Non-Small-Cell Lung Cancer. Cancers (Basel) 2020; 12:cancers12030666. [PMID: 32178474 PMCID: PMC7139811 DOI: 10.3390/cancers12030666] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 12/15/2022] Open
Abstract
Immunotherapy has significantly changed the treatment landscape for advanced non-small-cell lung cancer (NSCLC) with the introduction of drugs targeting programmed cell death protein-1 (PD-1) and programmed cell death ligand-1 (PD-L1). In particular, the addition of the anti-PD-1 antibody pembrolizumab to platinum-pemetrexed chemotherapy resulted in a significantly improved overall survival in patients with non-squamous NSCLC, regardless of PD-L1 expression. In this preclinical study, we investigated whether chemotherapy can modulate PD-L1 expression in non-squamous NSCLC cell lines, thus potentially affecting immunotherapy efficacy. Among different chemotherapeutic agents tested, only pemetrexed increased PD-L1 levels by activating both mTOR/P70S6K and STAT3 pathways. Moreover, it also induced the secretion of cytokines, such as IFN-γ and IL-2, by activated peripheral blood mononuclear cells PBMCs that further stimulated the expression of PD-L1 on tumor cells, as demonstrated in a co-culture system. The anti-PD-1/PD-L1 therapy enhanced T cell-mediated cytotoxicity of NSCLC cells treated with pemetrexed and expressing high levels of PD-L1 in comparison with untreated cells. These data may explain the positive results obtained with pemetrexed-based chemotherapy combined with pembrolizumab in PD-L1-negative NSCLC and can support pemetrexed as one of the preferable chemotherapy partners for immunochemotherapy combination regimens.
Collapse
|
457
|
Objective Clinical and Radiological Response under Sunitinib in a Case of Thigh Hidradenocarcinoma. Case Rep Oncol Med 2020; 2020:9656475. [PMID: 32158575 PMCID: PMC7060839 DOI: 10.1155/2020/9656475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 01/13/2020] [Indexed: 11/17/2022] Open
Abstract
A 56-year-old male was treated by local surgery in 1968 and 2005 for a left thigh lesion. A 2nd local relapse occurred in 2015 and was treated by complete macroscopic surgery with histology concluding to a hidradenocarcinoma. A 3rd locoregional relapse occurred in October 2018, with the presence of inflammatory ulcerated lesions. A 2nd histology and immunohistochemistry exam showed a proliferation positive for CK, CK5, and p63 suggesting the diagnosis of hidradenocarcinoma. The patient was treated by 3 lines of chemotherapy, 1st by Adriamycin, 2nd by carboplatin-paclitaxel, and then 3rd by oral capecitabine, leading to a stable clinical disease but without a clinical benefit. A locoregional plus metastatic lung progression was observed in March 2019, with the presence of lung nodules and retroperitoneal lymph nodes, multiple skin left thigh and left inguinal ulcerated lesions. The patient received then in 4th line in April 2019 oral sunitinib at 50 mg daily, with 4 weeks therapy/2 weeks pause. Side effects were represented by mucositis, anorexia, weight loss, and fatigue. We observed since the 1st week of therapy a fast response, with a decrease of the ulcerated lesions, a skin loss, and deep hemorrhagic areas. CT-scan showed after 2 weeks of sunitinib an objective response on both locoregional and metastatic lesions.
Collapse
|
458
|
Yamaguchi S, Ito S, Masuda T, Couraud PO, Ohtsuki S. Novel cyclic peptides facilitating transcellular blood-brain barrier transport of macromolecules in vitro and in vivo. J Control Release 2020; 321:744-755. [PMID: 32135226 DOI: 10.1016/j.jconrel.2020.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/26/2020] [Accepted: 03/02/2020] [Indexed: 12/15/2022]
Abstract
Brain delivery of nanoparticles and macromolecular drugs depends on blood-brain barrier (BBB)-permeable carriers. In this study, we searched for cyclic heptapeptides facilitating BBB permeation of M13 phages by phage library screening using a transcellular permeability assay with hCMEC/D3 cell monolayers, a human BBB model. The M13 phage, which is larger than macromolecular drugs and nanoparticles, served as a model macromolecule. The screen identified cyclic heptapeptide SLSHSPQ (SLS) as a human BBB-permeable peptide. The SLS-displaying phage (SLS-phage) exhibited improved permeation across the cell monolayer of monkey and rat BBB co-culture models. The SLS-phage internalized into hCMEC/D3 cells via macropinocytosis and externalized via the exosome excretion pathway. SLS-phage distribution into brain parenchyma was observed in mice after intravenous administration. Moreover, liposome permeated across the BBB as cyclic SLS peptide conjugates. In conclusion, the cyclic SLS heptapeptide is a novel carrier candidate for brain delivery of macromolecular drugs and nanoparticles.
Collapse
Affiliation(s)
- Shunsuke Yamaguchi
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Japan Society for the Promotion of Science, Research Fellowship for Young Scientists, Chiyoda-ku, Tokyo, Japan
| | - Shingo Ito
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Takeshi Masuda
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Pierre-Olivier Couraud
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| |
Collapse
|
459
|
Cappelli LC, Thomas MA, Bingham CO, Shah AA, Darrah E. Immune checkpoint inhibitor-induced inflammatory arthritis as a model of autoimmune arthritis. Immunol Rev 2020; 294:106-123. [PMID: 31930524 PMCID: PMC7047521 DOI: 10.1111/imr.12832] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023]
Abstract
The development of inflammatory arthritis in patients receiving immune checkpoint inhibitor therapy is increasingly recognized due to the growing use of these drugs for the treatment of cancer. This represents an important opportunity not only to define the mechanisms responsible for the development of this immune-related adverse event and to ultimately predict or prevent its development, but also to provide a unique window into early events in the development of inflammatory arthritis. Knowledge gained through the study of this patient population, for which the inciting event is known, could shed light into the pathogenesis of autoimmune arthritis. This review will highlight the clinical and immunologic features of these entities to define common elements for future study.
Collapse
Affiliation(s)
- Laura C. Cappelli
- Johns Hopkins School of Medicine, Division of Rheumatology, Baltimore, MD, USA
| | - Mekha A. Thomas
- Johns Hopkins School of Medicine, Division of Rheumatology, Baltimore, MD, USA
| | - Clifton O. Bingham
- Johns Hopkins School of Medicine, Division of Rheumatology, Baltimore, MD, USA
| | - Ami A. Shah
- Johns Hopkins School of Medicine, Division of Rheumatology, Baltimore, MD, USA
| | - Erika Darrah
- Johns Hopkins School of Medicine, Division of Rheumatology, Baltimore, MD, USA
| |
Collapse
|
460
|
Gentile D, Orlandi P, Banchi M, Bocci G. Preclinical and clinical combination therapies in the treatment of anaplastic thyroid cancer. Med Oncol 2020; 37:19. [DOI: 10.1007/s12032-020-1345-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 02/12/2020] [Indexed: 12/30/2022]
|
461
|
Lu T, Chen Y, Li J, Guo Q, Lin W, Zheng Y, Su Y, Zong J, Lin S, Ye Y, Pan J. High Soluble Programmed Death-Ligand 1 Predicts Poor Prognosis in Patients with Nasopharyngeal Carcinoma. Onco Targets Ther 2020; 13:1757-1765. [PMID: 32161471 PMCID: PMC7051865 DOI: 10.2147/ott.s242517] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/18/2020] [Indexed: 12/13/2022] Open
Abstract
Purpose Immune checkpoint proteins in the tumor microenvironment can enter the blood circulation and are potential markers for liquid biopsy. The aims of this study were to explore differences in immune checkpoint protein expression between patients with nasopharyngeal carcinoma (NPC) and healthy controls and to investigate the prognostic value of the soluble form of programmed death-ligand 1 (sPD-L1) in NPC. Methods In total, 242 patients were included in the disease group. Plasma samples from 23 NPC patients and 15 healthy control were used for immune checkpoint protein panel assays. Samples from 219 patients with NPC including 30 paired pre-treatment and post-radiotherapy samples were evaluated by enzyme-linked immunosorbent assay to determine sPD-L1 levels. Results A total of 14 immune checkpoint proteins, including sPD-L1were upregulated in 23 patients with NPC (all p<0.001) compared with 15 healthy controls. Among 219 patients, the median follow-up time was 50 months (7–82 months). Based on the optimal cutoff value of 93.7 pg/mL, patients with high expression of sPD-L1 had worse distant metastasis-free survival (87.5% vs 74.0%, p=0.006) than those of patients with low expression. Multivariate analysis showed that sPD-L1 (HR=1.99, p=0.048) and EBV-DNA (HR=2.51, p=0.030) were poor prognostic factors for DMFS. In the group with high EBV-DNA expression, DMFS was worse for patients with high sPD-L1 expression than those with low sPD-L1 expression (56.4% vs 82.6%, p=0.002). Conclusion Plasma immune checkpoint protein expression differed significantly between patients with NPC and healthy donors. Plasma sPD-L1 levels are a candidate prognostic biomarker, especially when combined with EBV-DNA.
Collapse
Affiliation(s)
- Tianzhu Lu
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, People's Republic of China
| | - Yiping Chen
- Department of Radiation Oncology, Fujian Cancer Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| | - Jieyu Li
- Laboratory of Immuno-Oncology, Fujian Cancer Hospital, Fuzhou, People's Republic of China
| | - Qiaojuan Guo
- Department of Radiation Oncology, Fujian Cancer Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| | - Wansong Lin
- Laboratory of Immuno-Oncology, Fujian Cancer Hospital, Fuzhou, People's Republic of China
| | - Yuhong Zheng
- Department of Clinical Laboratory, Fujian Cancer Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| | - Ying Su
- Department of Radiation Biology, Fujian Cancer Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| | - Jingfeng Zong
- Department of Radiation Oncology, Fujian Cancer Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| | - Shaojun Lin
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, People's Republic of China.,Department of Radiation Oncology, Fujian Cancer Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| | - Yunbin Ye
- Laboratory of Immuno-Oncology, Fujian Cancer Hospital, Fuzhou, People's Republic of China.,The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, People's Republic of China
| | - Jianji Pan
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, People's Republic of China.,Department of Radiation Oncology, Fujian Cancer Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| |
Collapse
|
462
|
Bailly C, Thuru X, Quesnel B. Combined cytotoxic chemotherapy and immunotherapy of cancer: modern times. NAR Cancer 2020; 2:zcaa002. [PMID: 34316682 PMCID: PMC8209987 DOI: 10.1093/narcan/zcaa002] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/24/2020] [Accepted: 01/29/2020] [Indexed: 12/15/2022] Open
Abstract
Monoclonal antibodies targeting programmed cell death 1/programmed cell death ligand 1 (PD-1/PD-L1) immune checkpoints have improved the treatments of cancers. However, not all patients equally benefit from immunotherapy. The use of cytotoxic drugs is practically inevitable to treat advanced cancers and metastases. The repertoire of cytotoxics includes 80 products that principally target nucleic acids or the microtubule network in rapidly proliferating tumor cells. Paradoxically, many of these compounds tend to become essential to promote the activity of immunotherapy and to offer a sustained therapeutic effect. We have analyzed each cytotoxic drug with respect to effect on expression and function of PD-(L)1. The major cytotoxic drugs—carboplatin, cisplatin, cytarabine, dacarbazine, docetaxel, doxorubicin, ecteinascidin, etoposide, fluorouracil, gemcitabine, irinotecan, oxaliplatin, paclitaxel and pemetrexed—all have the capacity to upregulate PD-L1 expression on cancer cells (via the generation of danger signals) and to promote antitumor immunogenicity, via activation of cytotoxic T lymphocytes, maturation of antigen-presenting cells, depletion of immunosuppressive regulatory T cells and/or expansion of myeloid-derived suppressor cells. The use of ‘immunocompatible’ cytotoxic drugs combined with anti-PD-(L)1 antibodies is a modern approach, not only for increasing the direct killing of cancer cells, but also as a strategy to minimize the activation of immunosuppressive and cancer cell prosurvival program responses.
Collapse
Affiliation(s)
| | - Xavier Thuru
- Centre de Recherche Jean-Pierre Aubert, INSERM, University of Lille, UMR-S 1172, CHU Lille, 59045 Lille, France
| | - Bruno Quesnel
- Centre de Recherche Jean-Pierre Aubert, INSERM, University of Lille, UMR-S 1172, CHU Lille, 59045 Lille, France
| |
Collapse
|
463
|
Monocytes Undergo Functional Reprogramming to Generate Immunosuppression through HIF-1 α Signaling Pathway in the Late Phase of Sepsis. Mediators Inflamm 2020; 2020:4235909. [PMID: 32089644 PMCID: PMC7029303 DOI: 10.1155/2020/4235909] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/08/2019] [Accepted: 11/20/2019] [Indexed: 01/05/2023] Open
Abstract
Severe pneumonia with sepsis is characterized by a dysregulated inflammatory response of endotoxin. In our study, we attempted to investigate the roles of the immune guardian cells (monocytes) in the immune-inflammatory response of severe pneumonia-induced sepsis. We performed analysis in the blood samples of human and animals with ELISA, western blot, flow cytometry (FCM) methods, etc. Results showed that the proinflammatory status shifted to hypoinflammatory phases during the sepsis process. In a clinical study, the levels of IL-1β, IL-6, TNF-α, etc., except for IL-10, were inhibited in the late phase of sepsis, while, in an animal study, the immune suppression status was attenuated with administration of the adenovirus Ade-HIF-1α. Conversely, the amount of IL-10 was lower in the adenovirus Ade-HIF-1α group compared with the sepsis model group and the Ade-control group. Moreover, in the clinical study, the programmed cell death-ligand 1 (PD-L1) was overexpressed in monocytes in the late phase of sepsis, while the expression of proteins HIF-1α and STAT3 was decreased in the late phase of sepsis. However, in the animal study, we found that the HIF-1α factor facilitated the inflammatory response. The expression of the proteins HIF-1α and STAT3 was increased, and the PD-L1 protein was decreased with the adenovirus Ade-HIF-1α administration compared with the rats without Ade-HIF-1α injection and with the Ade-control injection. Additionally, the proteins HIF-1α and STAT3 were coregulated at transcriptional levels during the inflammatory responses of sepsis. Taken together, monocytes undergo reprogramming to generate immunosuppression through the HIF-1α signaling pathway in the late phase of sepsis.
Collapse
|
464
|
Alvarado-Ortiz E, de la Cruz-López KG, Becerril-Rico J, Sarabia-Sánchez MA, Ortiz-Sánchez E, García-Carrancá A. Mutant p53 Gain-of-Function: Role in Cancer Development, Progression, and Therapeutic Approaches. Front Cell Dev Biol 2020; 8:607670. [PMID: 33644030 PMCID: PMC7905058 DOI: 10.3389/fcell.2020.607670] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/23/2020] [Indexed: 02/05/2023] Open
Abstract
Frequent p53 mutations (mutp53) not only abolish tumor suppressor capacities but confer various gain-of-function (GOF) activities that impacts molecules and pathways now regarded as central for tumor development and progression. Although the complete impact of GOF is still far from being fully understood, the effects on proliferation, migration, metabolic reprogramming, and immune evasion, among others, certainly constitute major driving forces for human tumors harboring them. In this review we discuss major molecular mechanisms driven by mutp53 GOF. We present novel mechanistic insights on their effects over key functional molecules and processes involved in cancer. We analyze new mechanistic insights impacting processes such as immune system evasion, metabolic reprogramming, and stemness. In particular, the increased lipogenic activity through the mevalonate pathway (MVA) and the alteration of metabolic homeostasis due to interactions between mutp53 and AMP-activated protein kinase (AMPK) and Sterol regulatory element-binding protein 1 (SREBP1) that impact anabolic pathways and favor metabolic reprograming. We address, in detail, the impact of mutp53 over metabolic reprogramming and the Warburg effect observed in cancer cells as a consequence, not only of loss-of-function of p53, but rather as an effect of GOF that is crucial for the imbalance between glycolysis and oxidative phosphorylation. Additionally, transcriptional activation of new targets, resulting from interaction of mutp53 with NF-kB, HIF-1α, or SREBP1, are presented and discussed. Finally, we discuss perspectives for targeting molecules and pathways involved in chemo-resistance of tumor cells resulting from mutp53 GOF. We discuss and stress the fact that the status of p53 currently constitutes one of the most relevant criteria to understand the role of autophagy as a survival mechanism in cancer, and propose new therapeutic approaches that could promote the reduction of GOF effects exercised by mutp53 in cancer.
Collapse
Affiliation(s)
- Eduardo Alvarado-Ortiz
- Programa de Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Secretaría de Salud, Mexico City, Mexico
| | - Karen Griselda de la Cruz-López
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Secretaría de Salud, Mexico City, Mexico
- Doctorado en Ciencias Biomédicas, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jared Becerril-Rico
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Secretaría de Salud, Mexico City, Mexico
| | - Miguel Angel Sarabia-Sánchez
- Programa de Posgrado en Ciencias Bioquímicas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Elizabeth Ortiz-Sánchez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Secretaría de Salud, Mexico City, Mexico
| | - Alejandro García-Carrancá
- Laboratorio de Virus and Cáncer, Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México and Instituto Nacional de Cancerología, Secretaría de Salud, Mexico City, Mexico
- *Correspondence: Alejandro García-Carrancá
| |
Collapse
|
465
|
De los Santos MI, Bacos DM, Bernal SD. WITHDRAWN: A novel bifunctional T regulatory cell engaging (BiTE) TGF-β1/PD-L1 fusion protein with therapeutic potential for autoimmune diseases. J Transl Autoimmun 2020. [DOI: 10.1016/j.jtauto.2020.100037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
466
|
Riccio G, Lauritano C. Microalgae with Immunomodulatory Activities. Mar Drugs 2019; 18:E2. [PMID: 31861368 PMCID: PMC7024220 DOI: 10.3390/md18010002] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/11/2019] [Accepted: 12/16/2019] [Indexed: 12/14/2022] Open
Abstract
Microalgae are photosynthetic microorganisms adapted to live in very different environments and showing an enormous biochemical and genetic diversity, thus representing an excellent source of new natural products with possible applications in several biotechnological sectors. Microalgae-derived compounds have shown several properties, such as anticancer, antimicrobial, anti-inflammatory, and immunomodulatory. In the last decade, compounds stimulating the immune system, both innate immune response and adaptive immune response, have been used to prevent and fight various pathologies, including cancer (cancer immunotherapy). In this review we report the microalgae that have been shown to possess immunomodulatory properties, the cells and the cellular mediators involved in the mechanisms of action and the experimental models used to test immunostimulatory activities. We also report information on fractions or pure compounds from microalgae identified as having immunostimulatory activity. Given the increasing interest in microalgae as new eco-friendly source of bioactive compounds, we also discuss their possible role as source of new classes of promising drugs to treat human pathologies.
Collapse
Affiliation(s)
| | - Chiara Lauritano
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, CAP80121 Naples, Italy
| |
Collapse
|
467
|
Basis of PD1/PD-L1 Therapies. J Clin Med 2019; 8:jcm8122168. [PMID: 31817953 PMCID: PMC6947170 DOI: 10.3390/jcm8122168] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023] Open
Abstract
It is obvious that tumor cells have developed a number of strategies to escape immune surveillance including an altered expression of various immune checkpoints, such as the programmed death-1 receptor (PD-1) and its ligands PD-L1 and PD-L2. The interaction between PD-1 and PD-L1 results in an activation of self-tolerance pathways in both immune cells as well as tumor cells. Thus, these molecules represent excellent targets for T cell-based immunotherapies. However, the efficacy of therapies using checkpoint inhibitors is variable and only a limited number of patients receive a long-term response, while others develop resistances. Therefore, a better insight into the constitutive expression levels and their control as well as the predictive and prognostic value of PD-1/PD-L1, which are controversially discussed due to the methodological assessment, the dynamic and time-related variable expression of these molecules, is urgently required. In this review, the current knowledge of the PD-L1 and PD-1 genes, their expression in immune and tumor cells, the underlying molecular mechanisms of their regulation and their association with clinical parameters and therapy responses are summarized.
Collapse
|
468
|
Liu D. CAR-T "the living drugs", immune checkpoint inhibitors, and precision medicine: a new era of cancer therapy. J Hematol Oncol 2019; 12:113. [PMID: 31703740 PMCID: PMC6842223 DOI: 10.1186/s13045-019-0819-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
New advances in the design and manufacture of monoclonal antibodies, bispecific T cell engagers, and antibody-drug conjugates make the antibody-directed agents more powerful with less toxicities. Small molecule inhibitors are routinely used now as oral targeted agents for multiple cancers. The discoveries of PD1 and PD-L1 as negative immune checkpoints for T cells have led to the revolution of modern cancer immunotherapy. Multiple agents targeting PD1, PD-L1, or CTLA-4 are widely applied as immune checkpoint inhibitors (ICIs) which alleviate the suppression of immune regulatory machineries and lead to immunoablation of once highly refractory cancers such as stage IV lung cancer. Tisagenlecleucel and axicabtagene ciloleucel are the two approved CD19-targeted chimeric antigen receptor (CAR) T cell products. Several CAR-T cell platforms targeting B cell maturation antigen (BCMA) are under active clinical trials for refractory and/or relapsed multiple myeloma. Still more targets such as CLL-1, EGFR, NKG2D and mesothelin are being directed in CAR-T cell trials for leukemia and solid tumors. Increasing numbers of novel agents are being studied to target cancer-intrinsic oncogenic pathways as well as immune checkpoints. One such an example is targeting CD47 on macrophages which represents a "do-not-eat-me" immune checkpoint. Fueling the current excitement of cancer medicine includes also TCR- T cells, TCR-like antibodies, cancer vaccines and oncolytic viruses.
Collapse
Affiliation(s)
- Delong Liu
- New York Medical College, Valhalla, NY, 10595, USA.
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|