451
|
SOD1 Targeted as Treatment for Amyotrophic Lateral Sclerosis. Am J Med Genet A 2020; 182:2475-2476. [DOI: 10.1002/ajmg.a.61250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
452
|
Morello G, Salomone S, D’Agata V, Conforti FL, Cavallaro S. From Multi-Omics Approaches to Precision Medicine in Amyotrophic Lateral Sclerosis. Front Neurosci 2020; 14:577755. [PMID: 33192262 PMCID: PMC7661549 DOI: 10.3389/fnins.2020.577755] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating and fatal neurodegenerative disorder, caused by the degeneration of upper and lower motor neurons for which there is no truly effective cure. The lack of successful treatments can be well explained by the complex and heterogeneous nature of ALS, with patients displaying widely distinct clinical features and progression patterns, and distinct molecular mechanisms underlying the phenotypic heterogeneity. Thus, stratifying ALS patients into consistent and clinically relevant subgroups can be of great value for the development of new precision diagnostics and targeted therapeutics for ALS patients. In the last years, the use and integration of high-throughput "omics" approaches have dramatically changed our thinking about ALS, improving our understanding of the complex molecular architecture of ALS, distinguishing distinct patient subtypes and providing a rational foundation for the discovery of biomarkers and new individualized treatments. In this review, we discuss the most significant contributions of omics technologies in unraveling the biological heterogeneity of ALS, highlighting how these approaches are revealing diagnostic, prognostic and therapeutic targets for future personalized interventions.
Collapse
Affiliation(s)
- Giovanna Morello
- Institute for Research and Biomedical Innovation (IRIB), Italian National Research Council (CNR), Catania, Italy
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Salvatore Salomone
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Velia D’Agata
- Human Anatomy and Histology, University of Catania, Catania, Italy
| | | | - Sebastiano Cavallaro
- Institute for Research and Biomedical Innovation (IRIB), Italian National Research Council (CNR), Catania, Italy
| |
Collapse
|
453
|
Scarola M, Comisso E, Rosso M, Del Sal G, Schneider C, Schoeftner S, Benetti R. FUS-dependent loading of SUV39H1 to OCT4 pseudogene-lncRNA programs a silencing complex with OCT4 promoter specificity. Commun Biol 2020; 3:632. [PMID: 33128015 PMCID: PMC7603346 DOI: 10.1038/s42003-020-01355-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 10/01/2020] [Indexed: 11/16/2022] Open
Abstract
The resurrection of pseudogenes during evolution produced lncRNAs with new biological function. Here we show that pseudogene-evolution created an Oct4 pseudogene lncRNA that is able to direct epigenetic silencing of the parental Oct4 gene via a 2-step, lncRNA dependent mechanism. The murine Oct4 pseudogene 4 (mOct4P4) lncRNA recruits the RNA binding protein FUS to allow the binding of the SUV39H1 HMTase to a defined mOct4P4 lncRNA sequence element. The mOct4P4-FUS-SUV39H1 silencing complex holds target site specificity for the parental Oct4 promoter and interference with individual components results in loss of Oct4 silencing. SUV39H1 and FUS do not bind parental Oct4 mRNA, confirming the acquisition of a new biological function by the mOct4P4 lncRNA. Importantly, all features of mOct4P4 function are recapitulated by the human hOCT4P3 pseudogene lncRNA, indicating evolutionary conservation. Our data highlight the biological relevance of rapidly evolving lncRNAs that infiltrate into central epigenetic regulatory circuits in vertebrate cells.
Collapse
Affiliation(s)
- Michele Scarola
- Laboratorio Nazionale-Consorzio Interuniversitario per le Biotecnologie, Laboratorio Nazionale (LNCIB), Padriciano 99, 34149, Trieste, Italy
- Dipartimento di Area Medica (DAME), Università degli Studi di Udine, p.le Kolbe 4, 33100, Udine, Italy
| | - Elisa Comisso
- Laboratorio Nazionale-Consorzio Interuniversitario per le Biotecnologie, Laboratorio Nazionale (LNCIB), Padriciano 99, 34149, Trieste, Italy
- Dipartimento di Area Medica (DAME), Università degli Studi di Udine, p.le Kolbe 4, 33100, Udine, Italy
| | - Massimo Rosso
- Laboratorio Nazionale-Consorzio Interuniversitario per le Biotecnologie, Laboratorio Nazionale (LNCIB), Padriciano 99, 34149, Trieste, Italy
- Dipartimento di Science della Vita, Università degli Studi di Trieste, Via E. Weiss 2, 34127, Trieste, Italy
| | - Giannino Del Sal
- Laboratorio Nazionale-Consorzio Interuniversitario per le Biotecnologie, Laboratorio Nazionale (LNCIB), Padriciano 99, 34149, Trieste, Italy
- Dipartimento di Science della Vita, Università degli Studi di Trieste, Via E. Weiss 2, 34127, Trieste, Italy
| | - Claudio Schneider
- Laboratorio Nazionale-Consorzio Interuniversitario per le Biotecnologie, Laboratorio Nazionale (LNCIB), Padriciano 99, 34149, Trieste, Italy
- Dipartimento di Area Medica (DAME), Università degli Studi di Udine, p.le Kolbe 4, 33100, Udine, Italy
| | - Stefan Schoeftner
- Laboratorio Nazionale-Consorzio Interuniversitario per le Biotecnologie, Laboratorio Nazionale (LNCIB), Padriciano 99, 34149, Trieste, Italy.
- Dipartimento di Science della Vita, Università degli Studi di Trieste, Via E. Weiss 2, 34127, Trieste, Italy.
| | - Roberta Benetti
- Laboratorio Nazionale-Consorzio Interuniversitario per le Biotecnologie, Laboratorio Nazionale (LNCIB), Padriciano 99, 34149, Trieste, Italy.
- Dipartimento di Area Medica (DAME), Università degli Studi di Udine, p.le Kolbe 4, 33100, Udine, Italy.
| |
Collapse
|
454
|
Sun L, Zhao W, Yan M, Yang B, Xiong P, Zhao S. The efficacy and safety of Chinese herbal compound combined with western medicine for amyotrophic lateral sclerosis: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2020; 99:e21933. [PMID: 33120727 PMCID: PMC7581109 DOI: 10.1097/md.0000000000021933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Traditional Chinese medicine (TCM) compound formulations are selected according to different populations, with strong targeting and less adverse reactions. As a complex disease, amyotrophic lateral sclerosis (ALS) has limited efficacy in the use of conventional treatment regiments, short life cycle, high cost, many side effects, and low quality of life. It is urgent to seek new alternative therapies. Clinical practice shows that Chinese herbal compound combined with western medicine has certain therapeutic advantages, but there is no evidence of evidence-based medicine. The purpose of this study was to evaluate the efficacy and safety of Chinese herbal compound combined with western medicine in the treatment of ALS. METHODS Use computer to retrieve English database (PubMed, Embase, Web of Science, the Cochrane Library) and Chinese database (CNKI, Wanfang Database, Weipu database, and China Biomedical Literature Service System), moreover manually retrieve Baidu academic and Google academic from the establishment of the database to 2020 July for randomized controlled clinical study on ALS treated with compound Chinese medicine with western medicine therapy, 2 researchers independently conducted data extraction and literature quality evaluation on the quality of the included studies, and meta-analysis of the included literature was carried out using RevMan5.3 software. RESULTS This study evaluated the efficacy and safety of TCM combined with western medicine in the treatment of ALS by means of effective rate, improved Norris scale, ALS Functional Rating Scale, TCM syndrome score, and adverse reaction incidence. CONCLUSION This study will provide reliable evidence for the clinical application of Chinese herbal compound combined with western medicine in the treatment of ALS.OSF registration number: DOI 10.17605/OSF.IO/R5XG4.
Collapse
Affiliation(s)
- Lei Sun
- Shaanxi University of Chinese Medicine, Xixian New Area
| | - Wenjuan Zhao
- Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang
| | - Mingliang Yan
- Yan’an Municipal Hospital of Traditional Chinese Medicine, Yan’an, Shaanxi Province, China
| | - Bin Yang
- Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang
| | - Peng Xiong
- Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang
| | - Shengjie Zhao
- Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang
| |
Collapse
|
455
|
Cao B, Gu X, Wei Q, Li C, Chen Y, Ou R, Hou Y, Zhang L, Li T, Song W, Zhao B, Wu Y, Chen X, Shang H. Mutation screening and burden analysis of GLT8D1 in Chinese patients with amyotrophic lateral sclerosis. Neurobiol Aging 2020; 101:298.e17-298.e21. [PMID: 33581933 DOI: 10.1016/j.neurobiolaging.2020.10.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/20/2020] [Accepted: 10/17/2020] [Indexed: 02/08/2023]
Abstract
The glycosyltransferase 8 domain containing 1 (GLT8D1) gene was identified to be an amyotrophic lateral sclerosis (ALS)-causative gene via pedigree cosegregation and burden analysis. In the present study, 977 Chinese sporadic ALS (sALS) cases and 47 Chinese familial ALS (fALS) cases underwent whole-exome sequencing. Rare variants with minor allele frequency <0.1% in GLT8D1 were analyzed. One likely pathogenic variant in the exon 4 was identified in a fALS case and validated within the family. Moreover, 3 rare variants of uncertain significance in 4 patients with sALS and 1 rare variant of uncertain significance in 1 patient with fALS were also identified. Furthermore, by using the East Asian controls from the gnomAD database, there was no significant enrichment of rare variants of GLT8D1 at the whole-gene level or the exon 4-specific level in Chinese patients with sALS. In conclusion, cosegregation findings further support the pathogenic role of GLT8D1 in fALS. However, no pathogenic mutation and no enrichment of rare variants were found in patients with sALS, which implies that GLT8D1 may not play a role in Chinese patients with sALS.
Collapse
Affiliation(s)
- Bei Cao
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaojing Gu
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qianqian Wei
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chunyu Li
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yongping Chen
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ruwei Ou
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanbing Hou
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lingyu Zhang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tao Li
- Department of Psychiatry, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wei Song
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bi Zhao
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ying Wu
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xueping Chen
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
456
|
Martins-Macedo J, Lepore AC, Domingues HS, Salgado AJ, Gomes ED, Pinto L. Glial restricted precursor cells in central nervous system disorders: Current applications and future perspectives. Glia 2020; 69:513-531. [PMID: 33052610 DOI: 10.1002/glia.23922] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 12/27/2022]
Abstract
The crosstalk between glial cells and neurons represents an exceptional feature for maintaining the normal function of the central nervous system (CNS). Increasing evidence has revealed the importance of glial progenitor cells in adult neurogenesis, reestablishment of cellular pools, neuroregeneration, and axonal (re)myelination. Several types of glial progenitors have been described, as well as their potentialities for recovering the CNS from certain traumas or pathologies. Among these precursors, glial-restricted precursor cells (GRPs) are considered the earliest glial progenitors and exhibit tripotency for both Type I/II astrocytes and oligodendrocytes. GRPs have been derived from embryos and embryonic stem cells in animal models and have maintained their capacity for self-renewal. Despite the relatively limited knowledge regarding the isolation, characterization, and function of these progenitors, GRPs are promising candidates for transplantation therapy and reestablishment/repair of CNS functions in neurodegenerative and neuropsychiatric disorders, as well as in traumatic injuries. Herein, we review the definition, isolation, characterization and potentialities of GRPs as cell-based therapies in different neurological conditions. We briefly discuss the implications of using GRPs in CNS regenerative medicine and their possible application in a clinical setting. MAIN POINTS: GRPs are progenitors present in the CNS with differentiation potential restricted to the glial lineage. These cells have been employed in the treatment of a myriad of neurodegenerative and traumatic pathologies, accompanied by promising results, herein reviewed.
Collapse
Affiliation(s)
- Joana Martins-Macedo
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Angelo C Lepore
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Helena S Domingues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Eduardo D Gomes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Luísa Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
457
|
Dominguez S, Varfolomeev E, Brendza R, Stark K, Tea J, Imperio J, Ngu H, Earr T, Foreman O, Webster JD, Easton A, Vucic D, Bingol B. Genetic inactivation of RIP1 kinase does not ameliorate disease in a mouse model of ALS. Cell Death Differ 2020; 28:915-931. [PMID: 32994544 DOI: 10.1038/s41418-020-00625-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/07/2020] [Accepted: 09/11/2020] [Indexed: 12/20/2022] Open
Abstract
RIP1 kinase is proposed to play a critical role in driving necroptosis and inflammation in neurodegenerative disorders, including Amyotrophic Lateral Sclerosis (ALS). Preclinical studies indicated that while pharmacological inhibition of RIP1 kinase can ameliorate axonal pathology and delay disease onset in the mutant SOD1 transgenic (SOD1-Tg) mice, genetic blockade of necroptosis does not provide benefit in this mouse model. To clarify the role of RIP1 kinase activity in driving pathology in SOD1-Tg mice, we crossed SOD1-Tgs to RIP1 kinase-dead knock-in mice, and measured disease progression using functional and histopathological endpoints. Genetic inactivation of the RIP1 kinase activity in the SOD1-Tgs did not benefit the declining muscle strength or nerve function, motor neuron degeneration or neuroinflammation. In addition, we did not find evidence of phosphorylated RIP1 accumulation in the spinal cords of ALS patients. On the other hand, genetic inactivation of RIP1 kinase activity ameliorated the depletion of the neurotransmitter dopamine in a toxin model of dopaminergic neurodegeneration. These findings indicate that RIP1 kinase activity is dispensable for disease pathogenesis in the SOD1-Tg mice while inhibition of kinase activity may provide benefit in acute injury models.
Collapse
Affiliation(s)
- Sara Dominguez
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Eugene Varfolomeev
- Department of Early Discovery Biochemistry, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Robert Brendza
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Kim Stark
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Joy Tea
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Jose Imperio
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Hai Ngu
- Department of Pathology, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Timothy Earr
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Oded Foreman
- Department of Pathology, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Joshua D Webster
- Department of Pathology, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Amy Easton
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Domagoj Vucic
- Department of Early Discovery Biochemistry, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Baris Bingol
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, 94080, USA.
| |
Collapse
|
458
|
Small Molecules and Peptides Targeting Glial Cell Line-Derived Neurotrophic Factor Receptors for the Treatment of Neurodegeneration. Int J Mol Sci 2020; 21:ijms21186575. [PMID: 32911810 PMCID: PMC7554781 DOI: 10.3390/ijms21186575] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/31/2020] [Accepted: 09/06/2020] [Indexed: 12/14/2022] Open
Abstract
Glial cell line-derived neurotrophic factor (GDNF) family ligands (GFLs) are able to promote the survival of multiple neuronal populations in the body and, therefore, hold considerable promise for disease-modifying treatments of diseases and conditions caused by neurodegeneration. Available data reveal the potential of GFLs for the therapy of Parkinson's disease, neuropathic pain and diseases caused by retinal degeneration but, also, amyotrophic lateral sclerosis and, possibly, Alzheimer's disease. Despite promising data collected in preclinical models, clinical translation of GFLs is yet to be conducted. The main reasons for the limited success of GFLs clinical development are the poor pharmacological characteristics of GFL proteins, such as the inability of GFLs to cross tissue barriers, poor diffusion in tissues, biphasic dose-response and activation of several receptors in the organism in different cell types, along with ethical limitations on patients' selection in clinical trials. The development of small molecules selectively targeting particular GFL receptors with improved pharmacokinetic properties can overcome many of the difficulties and limitations associated with the clinical use of GFL proteins. The current review lists several strategies to target the GFL receptor complex with drug-like molecules, discusses their advantages, provides an overview of available chemical scaffolds and peptides able to activate GFL receptors and describes the effects of these molecules in cultured cells and animal models.
Collapse
|
459
|
Herrando-Grabulosa M, Gaja-Capdevila N, Vela JM, Navarro X. Sigma 1 receptor as a therapeutic target for amyotrophic lateral sclerosis. Br J Pharmacol 2020; 178:1336-1352. [PMID: 32761823 DOI: 10.1111/bph.15224] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/13/2020] [Accepted: 07/25/2020] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult disease causing a progressive loss of upper and lower motoneurons, muscle paralysis and early death. ALS has a poor prognosis of 3-5 years after diagnosis with no effective cure. The aetiopathogenic mechanisms involved include glutamate excitotoxicity, oxidative stress, protein misfolding, mitochondrial alterations, disrupted axonal transport and inflammation. Sigma non-opioid intracellular receptor 1 (sigma 1 receptor) is a protein expressed in motoneurons, mainly found in the endoplasmic reticulum (ER) on the mitochondria-associated ER membrane (MAM) or in close contact with cholinergic postsynaptic sites. MAMs are sites that allow the assembly of several complexes implicated in essential survival cell functions. The sigma 1 receptor modulates essential mechanisms for motoneuron survival including excitotoxicity, calcium homeostasis, ER stress and mitochondrial dysfunction. This review updates sigma 1 receptor mechanisms and its alterations in ALS, focusing on MAM modulation, which may constitute a novel target for therapeutic strategies. LINKED ARTICLES: This article is part of a themed issue on Neurochemistry in Japan. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.6/issuetoc.
Collapse
Affiliation(s)
- Mireia Herrando-Grabulosa
- Institute of Neurosciences, Department Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Núria Gaja-Capdevila
- Institute of Neurosciences, Department Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - José M Vela
- Esteve Pharmaceuticals S.A., Drug Discovery and Preclinical Development, Barcelona, Spain
| | - Xavier Navarro
- Institute of Neurosciences, Department Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Institut Guttmann de Neurorehabilitació, Badalona, Spain
| |
Collapse
|
460
|
Venkatachalam N, Bakavayev S, Engel D, Barak Z, Engel S. Primate differential redoxome (PDR) - A paradigm for understanding neurodegenerative diseases. Redox Biol 2020; 36:101683. [PMID: 32829254 PMCID: PMC7451816 DOI: 10.1016/j.redox.2020.101683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/18/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022] Open
Abstract
Despite different phenotypic manifestations, mounting evidence points to similarities in the molecular basis of major neurodegenerative diseases (ND). CNS has evolved to be robust against hazard of ROS, a common perturbation aerobic organisms are confronted with. The trade-off of robustness is system's fragility against rare and unexpected perturbations. Identifying the points of CNS fragility is key for understanding etiology of ND. We postulated that the 'primate differential redoxome' (PDR), an assembly of proteins that contain cysteine residues present only in the primate orthologues of mammals, is likely to associate with an added level of regulatory functionalities that enhanced CNS robustness against ROS and facilitated evolution. The PDR contains multiple deterministic and susceptibility factors of major ND, which cluster to form coordinated redox networks regulating various cellular processes. The PDR analysis revealed a potential CNS fragility point, which appears to associates with a non-redundant PINK1-PRKN-SQSTM1(p62) axis coordinating protein homeostasis and mitophagy.
Collapse
Affiliation(s)
- Nachiyappan Venkatachalam
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Shamchal Bakavayev
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Daniel Engel
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Zeev Barak
- Department of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Stanislav Engel
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
461
|
van Es MA, Goedee HS, Westeneng HJ, Nijboer TCW, van den Berg LH. Is it accurate to classify ALS as a neuromuscular disorder? Expert Rev Neurother 2020; 20:895-906. [PMID: 32749157 DOI: 10.1080/14737175.2020.1806061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is a fatal disorder characterized by the progressive loss of upper and lower motor neurons. ALS has traditionally been classified within the domain of neuromuscular diseases, which are a unique spectrum of disorders that predominantly affect the peripheral nervous system. However, over the past decades compounding evidence has emerged that there is extensive involvement of the central nervous system. Therefore, one can question whether it remains accurate to classify ALS as a neuromuscular disorder. AREAS COVERED In this review, the authors sought to discuss current approaches toward disease classification and how we should classify ALS based on novel insights from clinical, imaging, pathophysiological, neuropathological and genetic studies. EXPERT OPINION ALS exhibits the cardinal features of a neurodegenerative disease. Therefore, classifying ALS as a neuromuscular disease in the strict sense has become untenable. Diagnosing ALS however does require significant neuromuscular expertise and therefore neuromuscular specialists remain best equipped to evaluate this category of patients. Designating motor neuron diseases as a separate category in the ICD-11 is justified and adequately deals with this issue. However, to drive effective therapy development the fields of motor neuron disease and neurodegenerative disorders must come together.
Collapse
Affiliation(s)
- Michael A van Es
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht , Utrecht, The Netherlands
| | - H Stephan Goedee
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht , Utrecht, The Netherlands
| | - Henk-Jan Westeneng
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht , Utrecht, The Netherlands
| | - Tanja C W Nijboer
- Center of Excellence for Rehabilitation Medicine, UMC Utrecht Brain Center, University Medical Center Utrecht, and De Hoogstraat Rehabilitation , Utrecht, Netherlands.,Department of Experimental Psychology, Helmholtz Institute, Utrecht University , Utrecht, The Netherlands
| | - Leonard H van den Berg
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht , Utrecht, The Netherlands
| |
Collapse
|
462
|
Saitoh Y, Takahashi Y. Riluzole for the treatment of amyotrophic lateral sclerosis. Neurodegener Dis Manag 2020; 10:343-355. [PMID: 32847483 DOI: 10.2217/nmt-2020-0033] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease caused by the death of motor neurons. Riluzole is a benzothiazole derivative that blocks glutamatergic neurotransmission in the CNS, which is thought to exert neuroprotective effects. Riluzole was approved by the US FDA in 1995 as the first drug to treat ALS. Although riluzole is generally safe and well tolerated in clinical practice, its efficacy in ALS is modest, prolonging tracheostomy-free survival by only 2-3 months. In this article, we will first provide an overview of the ALS field, followed by a discussion of riluzole regarding its physical properties; pharmacology; clinical efficacy in ALS; safety and tolerability; and recommended administration.
Collapse
Affiliation(s)
- Yuji Saitoh
- Department of Neurology, National Center Hospital, National Center of Neurology & Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo 187-8551, Japan
| | - Yuji Takahashi
- Department of Neurology, National Center Hospital, National Center of Neurology & Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo 187-8551, Japan
| |
Collapse
|
463
|
Kukharsky MS, Skvortsova VI, Bachurin SO, Buchman VL. In a search for efficient treatment for amyotrophic lateral sclerosis: Old drugs for new approaches. Med Res Rev 2020; 41:2804-2822. [DOI: 10.1002/med.21725] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/23/2020] [Accepted: 08/08/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Michail S. Kukharsky
- Faculty of Medical Biology Pirogov Russian National Research Medical University Moscow Russian Federation
- Institute of Physiologically Active Compounds Russian Academy of Sciences Moscow Region Russian Federation
| | - Veronika I. Skvortsova
- Faculty of Medical Biology Pirogov Russian National Research Medical University Moscow Russian Federation
| | - Sergey O. Bachurin
- Institute of Physiologically Active Compounds Russian Academy of Sciences Moscow Region Russian Federation
| | - Vladimir L. Buchman
- Institute of Physiologically Active Compounds Russian Academy of Sciences Moscow Region Russian Federation
- School of Biosciences Cardiff University Cardiff United Kingdom
| |
Collapse
|
464
|
Vasques JF, Mendez-Otero R, Gubert F. Modeling ALS using iPSCs: is it possible to reproduce the phenotypic variations observed in patients in vitro? Regen Med 2020; 15:1919-1933. [PMID: 32795164 DOI: 10.2217/rme-2020-0067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal disease that leads to progressive degeneration of motoneurons. Mutations in the C9ORF72, SOD1, TARDBP and FUS genes, among others, have been associated with ALS. Although motoneuron degeneration is the common outcome of ALS, different pathological mechanisms seem to be involved in this process, depending on the genotypic background of the patient. The advent of induced pluripotent stem cell (iPSC) technology enabled the development of patient-specific cell lines, from which it is possible to generate different cell types and search for phenotypic alterations. In this review, we summarize the pathophysiological markers detected in cells differentiated from iPSCs of ALS patients. In a translational perspective, iPSCs from ALS patients could be useful for drug screening, through stratifying patients according to their genetic background.
Collapse
Affiliation(s)
- Juliana Ferreira Vasques
- Instituto de Biofísica Carlos Chagas Filho, UFRJ, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa
| | - Rosalia Mendez-Otero
- Instituto de Biofísica Carlos Chagas Filho, UFRJ, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa
| | - Fernanda Gubert
- Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa.,Instituto de Ciências Biomédicas, UFRJ, Rio de Janeiro, Brazil
| |
Collapse
|
465
|
Béland LC, Markovinovic A, Jakovac H, De Marchi F, Bilic E, Mazzini L, Kriz J, Munitic I. Immunity in amyotrophic lateral sclerosis: blurred lines between excessive inflammation and inefficient immune responses. Brain Commun 2020; 2:fcaa124. [PMID: 33134918 PMCID: PMC7585698 DOI: 10.1093/braincomms/fcaa124] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/07/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022] Open
Abstract
Despite wide genetic, environmental and clinical heterogeneity in amyotrophic lateral sclerosis, a rapidly fatal neurodegenerative disease targeting motoneurons, neuroinflammation is a common finding. It is marked by local glial activation, T cell infiltration and systemic immune system activation. The immune system has a prominent role in the pathogenesis of various chronic diseases, hence some of them, including some types of cancer, are successfully targeted by immunotherapeutic approaches. However, various anti-inflammatory or immunosuppressive therapies in amyotrophic lateral sclerosis have failed. This prompted increased scrutiny over the immune-mediated processes underlying amyotrophic lateral sclerosis. Perhaps the biggest conundrum is that amyotrophic lateral sclerosis pathogenesis exhibits features of three otherwise distinct immune dysfunctions-excessive inflammation, autoimmunity and inefficient immune responses. Epidemiological and genome-wide association studies show only minimal overlap between amyotrophic lateral sclerosis and autoimmune diseases, so excessive inflammation is usually thought to be secondary to protein aggregation, mitochondrial damage or other stresses. In contrast, several recently characterized amyotrophic lateral sclerosis-linked mutations, including those in TBK1, OPTN, CYLD and C9orf72, could lead to inefficient immune responses and/or damage pile-up, suggesting that an innate immunodeficiency may also be a trigger and/or modifier of this disease. In such cases, non-selective immunosuppression would further restrict neuroprotective immune responses. Here we discuss multiple layers of immune-mediated neuroprotection and neurotoxicity in amyotrophic lateral sclerosis. Particular focus is placed on individual patient mutations that directly or indirectly affect the immune system, and the mechanisms by which these mutations influence disease progression. The topic of immunity in amyotrophic lateral sclerosis is timely and relevant, because it is one of the few common and potentially malleable denominators in this heterogenous disease. Importantly, amyotrophic lateral sclerosis progression has recently been intricately linked to patient T cell and monocyte profiles, as well as polymorphisms in cytokine and chemokine receptors. For this reason, precise patient stratification based on immunophenotyping will be crucial for efficient therapies.
Collapse
Affiliation(s)
| | - Andrea Markovinovic
- Laboratory for Molecular Immunology, Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
- ENCALS Center Zagreb, 10000 Zagreb, Croatia
| | - Hrvoje Jakovac
- Department of Physiology and Immunology, Medical Faculty, University of Rijeka, 51000 Rijeka, Croatia
| | - Fabiola De Marchi
- Department of Neurology, ALS Centre, University of Piemonte Orientale, “Maggiore della Carità” Hospital, 28100 Novara, Italy
| | - Ervina Bilic
- Department of Neurology, Clinical Hospital Centre Zagreb, 10000 Zagreb, Croatia
- ENCALS Center Zagreb, 10000 Zagreb, Croatia
| | - Letizia Mazzini
- Department of Neurology, ALS Centre, University of Piemonte Orientale, “Maggiore della Carità” Hospital, 28100 Novara, Italy
| | - Jasna Kriz
- CERVO Research Centre, Laval University, Quebec City, Quebec G1J 2G3, Canada
| | - Ivana Munitic
- Laboratory for Molecular Immunology, Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
466
|
Liang JJH, McKinnon IA, Rankin CH. The contribution of C. elegans neurogenetics to understanding neurodegenerative diseases. J Neurogenet 2020; 34:527-548. [DOI: 10.1080/01677063.2020.1803302] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Joseph J. H. Liang
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Issa A. McKinnon
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Catharine H. Rankin
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
- Department of Psychology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
467
|
Li R, Wang J, Xie W, Liu J, Wang C. UCHL1 from serum and CSF is a candidate biomarker for amyotrophic lateral sclerosis. Ann Clin Transl Neurol 2020; 7:1420-1428. [PMID: 32729234 PMCID: PMC7448153 DOI: 10.1002/acn3.51141] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE To identify potential ALS biomarkers in patients and to evaluate their diagnostic performance using cerebrospinal fluid (CSF) and serum. METHOD We recruited a discovery cohort, comprising 20 ALS patients and 20 controls to screen for potential CSF biomarker, UCHL1, using a Luminex neurodegenerative disease panel. To validate UCHL1's diagnostic performance, we used receiver operating characteristic (ROC) curves to determine the potential for early diagnosis in another cohort comprising 23 CSF and 69 serum ALS samples. Finally, we analyzed its correlation with clinical features. RESULTS We found significantly elevated levels of CSF-derived UCHL1 in both discovery and validation cohorts (P < 0.05). ROC curves revealed an AUC of 0.8288, with a sensitivity and specificity of 73.91% and 81.25%, respectively, when the cut-off value for UCHL1 was >291.9 pg/mL. A similar result was observed in the serum cohort, with the ALS group exhibiting significantly higher serum UCHL1 levels than the controls (P < 0.05). AUC of the ROC in the serum UCHL1 cohort was 0.7709, with sensitivity and specificity of 61.43% and 79.59%, respectively, when the cut-off value of serum UCHL1 was >15.22 pg/mL. At the early stage CSF and serum UCHL1 were significantly different between ALS patients and controls (P < 0.05). Furthermore, serum UCHL1 levels showed a positive relationship with the burden of UMN and LMN dysfunction, albeit with no statistical significance. INTERPRETATION Taken together, our findings suggest that ALS patients exhibit significantly elevated CSF- and serum-derived UCHL1. Moreover, our data warrant that UCHL1 displays good diagnostic performance and provide novel options for ALS early diagnosis. However, its prognostic value needs to be further investigated.
Collapse
Affiliation(s)
- Ruibing Li
- Department of Laboratory Medicine, the First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, P.R. China
| | - Jianan Wang
- Department of Laboratory Medicine, the First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, P.R. China
| | - Wei Xie
- Department of Neurology, the First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, P.R. China
| | - Jiayu Liu
- Department of Laboratory Medicine, the First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, P.R. China
| | - Chengbin Wang
- Department of Laboratory Medicine, the First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, P.R. China
| |
Collapse
|
468
|
Clark CM, Clark RM, Hoyle JA, Dickson TC. Pathogenic or protective? Neuropeptide Y in amyotrophic lateral sclerosis. J Neurochem 2020; 156:273-289. [PMID: 32654149 DOI: 10.1111/jnc.15125] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/16/2020] [Accepted: 06/24/2020] [Indexed: 12/13/2022]
Abstract
Neuropeptide Y (NPY) is an endogenous peptide of the central and enteric nervous systems which has gained significant interest as a potential neuroprotective agent for treatment of neurodegenerative disease. Amyotrophic lateral sclerosis (ALS) is an aggressive and fatal neurodegenerative disease characterized by motor deficits and motor neuron loss. In ALS, recent evidence from ALS patients and animal models has indicated that NPY may have a role in the disease pathogenesis. Increased NPY levels were found to correlate with disease progression in ALS patients. Similarly, NPY expression is increased in the motor cortex of ALS mice by end stages of the disease. Although the functional consequence of increased NPY levels in ALS is currently unknown, NPY has been shown to exert a diverse range of neuroprotective roles in other neurodegenerative diseases; through modulation of potassium channel activity, increased production of neurotrophins, inhibition of endoplasmic reticulum stress and autophagy, reduction of excitotoxicity, oxidative stress, neuroinflammation and hyperexcitability. Several of these mechanisms and signalling pathways are heavily implicated in the pathogenesis of ALS. Therefore, in this review, we discuss possible effects of NPY and NPY-receptor signalling in the ALS disease context, as determining NPY's contribution to, or impact on, ALS disease mechanisms will be essential for future studies investigating the NPY system as a therapeutic strategy in this devastating disease.
Collapse
Affiliation(s)
- Courtney M Clark
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Rosemary M Clark
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Joshua A Hoyle
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Tracey C Dickson
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
469
|
Pytte J, Flynn LL, Anderton RS, Mastaglia FL, Theunissen F, James I, Pfaff A, Koks S, Saunders AM, Bedlack R, Burns DK, Lutz MW, Siddique N, Siddique T, Roses AD, Akkari PA. Disease-modifying effects of an SCAF4 structural variant in a predominantly SOD1 ALS cohort. Neurol Genet 2020; 6:e470. [PMID: 32754644 PMCID: PMC7357414 DOI: 10.1212/nxg.0000000000000470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/02/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To test the hypothesis that rs573116164 will have disease-modifying effects in patients with superoxide dismutase 1 (SOD1) familial amyotrophic lateral sclerosis (fALS), we characterized rs573116164 within a cohort of 190 patients with fALS and 560 healthy age-matched controls to assess the variant for association with various measures of disease. METHODS Using a previously described bioinformatics evaluation algorithm, a polymorphic short structural variant associated with SOD1 was identified according to its theoretical effect on gene expression. An 12-18 poly-T repeat (rs573116164) within the 3' untranslated region of serine and arginine rich proteins-related carboxy terminal domain associated factor 4 (SCAF4), a gene that is adjacent to SOD1, was assessed for disease association and influence on survival and age at onset in an fALS cohort using PCR, Sanger sequencing, and capillary separation techniques for allele detection. RESULTS In a North American cohort of predominantly SOD1 fALS patients (n =190) and age-matched healthy controls (n = 560), we showed that carriage of an 18T SCAF4 allele was associated with disease within this cohort (odds ratio [OR] 6.6; 95% confidence interval [CI] 3.9-11.2; p = 4.0e-11), but also within non-SOD1 cases (n = 27; OR 5.3; 95% CI 1.9-14.5; p = 0.0014). This finding suggests genetically SOD1-independent effects of SCAF4 on fALS susceptibility. Furthermore, carriage of an 18T allele was associated with a 26-month reduction in survival time (95% CI 6.6-40.8; p = 0.014), but did not affect age at onset of disease. CONCLUSIONS The findings in this fALS cohort suggest that rs573116164 could have SOD1-independent and broader relevance in ALS, warranting further investigation in other fALS and sporadic ALS cohorts, as well as studies of functional effects of the 18T variant on gene expression.
Collapse
Affiliation(s)
- Julia Pytte
- Centre for Neuromuscular and Neurological Disorders (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), University of Western Australia, Crawley; Perron Institute for Neurological and Translational Science (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), Nedlands; Centre for Molecular Medicine and Innovative Therapeutics (L.L.F., A.P., S.K., P.A.A.), Murdoch University; School of Health Sciences (R.S.A.), and Institute for Health Research (R.S.A.), University of Notre Dame Australia, Fremantle; Institute for Immunology and Infectious Diseases (I.J.), Murdoch University, Australia; Department of Neurology (A.M.S., R.B., M.W.L., A.D.R.), Duke University School of Medicine, Durham, NC; Zinfandel Pharmaceuticals, Inc. (A.M.S., D.K.B., A.D.R.), Durham, NC; ALS Clinic (R.B.), Duke University, Durham, NC; Departments of Neurology, Pathology and Cell and Molecular Biology (N.S., T.S.), the Les Turner ALS Center, Northwestern University Feinberg School of Medicine; and the Northwestern University Interdepartmental Neuroscience Program (N.S., T.S.), Chicago, IL
| | - Loren L Flynn
- Centre for Neuromuscular and Neurological Disorders (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), University of Western Australia, Crawley; Perron Institute for Neurological and Translational Science (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), Nedlands; Centre for Molecular Medicine and Innovative Therapeutics (L.L.F., A.P., S.K., P.A.A.), Murdoch University; School of Health Sciences (R.S.A.), and Institute for Health Research (R.S.A.), University of Notre Dame Australia, Fremantle; Institute for Immunology and Infectious Diseases (I.J.), Murdoch University, Australia; Department of Neurology (A.M.S., R.B., M.W.L., A.D.R.), Duke University School of Medicine, Durham, NC; Zinfandel Pharmaceuticals, Inc. (A.M.S., D.K.B., A.D.R.), Durham, NC; ALS Clinic (R.B.), Duke University, Durham, NC; Departments of Neurology, Pathology and Cell and Molecular Biology (N.S., T.S.), the Les Turner ALS Center, Northwestern University Feinberg School of Medicine; and the Northwestern University Interdepartmental Neuroscience Program (N.S., T.S.), Chicago, IL
| | - Ryan S Anderton
- Centre for Neuromuscular and Neurological Disorders (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), University of Western Australia, Crawley; Perron Institute for Neurological and Translational Science (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), Nedlands; Centre for Molecular Medicine and Innovative Therapeutics (L.L.F., A.P., S.K., P.A.A.), Murdoch University; School of Health Sciences (R.S.A.), and Institute for Health Research (R.S.A.), University of Notre Dame Australia, Fremantle; Institute for Immunology and Infectious Diseases (I.J.), Murdoch University, Australia; Department of Neurology (A.M.S., R.B., M.W.L., A.D.R.), Duke University School of Medicine, Durham, NC; Zinfandel Pharmaceuticals, Inc. (A.M.S., D.K.B., A.D.R.), Durham, NC; ALS Clinic (R.B.), Duke University, Durham, NC; Departments of Neurology, Pathology and Cell and Molecular Biology (N.S., T.S.), the Les Turner ALS Center, Northwestern University Feinberg School of Medicine; and the Northwestern University Interdepartmental Neuroscience Program (N.S., T.S.), Chicago, IL
| | - Frank L Mastaglia
- Centre for Neuromuscular and Neurological Disorders (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), University of Western Australia, Crawley; Perron Institute for Neurological and Translational Science (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), Nedlands; Centre for Molecular Medicine and Innovative Therapeutics (L.L.F., A.P., S.K., P.A.A.), Murdoch University; School of Health Sciences (R.S.A.), and Institute for Health Research (R.S.A.), University of Notre Dame Australia, Fremantle; Institute for Immunology and Infectious Diseases (I.J.), Murdoch University, Australia; Department of Neurology (A.M.S., R.B., M.W.L., A.D.R.), Duke University School of Medicine, Durham, NC; Zinfandel Pharmaceuticals, Inc. (A.M.S., D.K.B., A.D.R.), Durham, NC; ALS Clinic (R.B.), Duke University, Durham, NC; Departments of Neurology, Pathology and Cell and Molecular Biology (N.S., T.S.), the Les Turner ALS Center, Northwestern University Feinberg School of Medicine; and the Northwestern University Interdepartmental Neuroscience Program (N.S., T.S.), Chicago, IL
| | - Frances Theunissen
- Centre for Neuromuscular and Neurological Disorders (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), University of Western Australia, Crawley; Perron Institute for Neurological and Translational Science (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), Nedlands; Centre for Molecular Medicine and Innovative Therapeutics (L.L.F., A.P., S.K., P.A.A.), Murdoch University; School of Health Sciences (R.S.A.), and Institute for Health Research (R.S.A.), University of Notre Dame Australia, Fremantle; Institute for Immunology and Infectious Diseases (I.J.), Murdoch University, Australia; Department of Neurology (A.M.S., R.B., M.W.L., A.D.R.), Duke University School of Medicine, Durham, NC; Zinfandel Pharmaceuticals, Inc. (A.M.S., D.K.B., A.D.R.), Durham, NC; ALS Clinic (R.B.), Duke University, Durham, NC; Departments of Neurology, Pathology and Cell and Molecular Biology (N.S., T.S.), the Les Turner ALS Center, Northwestern University Feinberg School of Medicine; and the Northwestern University Interdepartmental Neuroscience Program (N.S., T.S.), Chicago, IL
| | - Ian James
- Centre for Neuromuscular and Neurological Disorders (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), University of Western Australia, Crawley; Perron Institute for Neurological and Translational Science (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), Nedlands; Centre for Molecular Medicine and Innovative Therapeutics (L.L.F., A.P., S.K., P.A.A.), Murdoch University; School of Health Sciences (R.S.A.), and Institute for Health Research (R.S.A.), University of Notre Dame Australia, Fremantle; Institute for Immunology and Infectious Diseases (I.J.), Murdoch University, Australia; Department of Neurology (A.M.S., R.B., M.W.L., A.D.R.), Duke University School of Medicine, Durham, NC; Zinfandel Pharmaceuticals, Inc. (A.M.S., D.K.B., A.D.R.), Durham, NC; ALS Clinic (R.B.), Duke University, Durham, NC; Departments of Neurology, Pathology and Cell and Molecular Biology (N.S., T.S.), the Les Turner ALS Center, Northwestern University Feinberg School of Medicine; and the Northwestern University Interdepartmental Neuroscience Program (N.S., T.S.), Chicago, IL
| | - Abigail Pfaff
- Centre for Neuromuscular and Neurological Disorders (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), University of Western Australia, Crawley; Perron Institute for Neurological and Translational Science (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), Nedlands; Centre for Molecular Medicine and Innovative Therapeutics (L.L.F., A.P., S.K., P.A.A.), Murdoch University; School of Health Sciences (R.S.A.), and Institute for Health Research (R.S.A.), University of Notre Dame Australia, Fremantle; Institute for Immunology and Infectious Diseases (I.J.), Murdoch University, Australia; Department of Neurology (A.M.S., R.B., M.W.L., A.D.R.), Duke University School of Medicine, Durham, NC; Zinfandel Pharmaceuticals, Inc. (A.M.S., D.K.B., A.D.R.), Durham, NC; ALS Clinic (R.B.), Duke University, Durham, NC; Departments of Neurology, Pathology and Cell and Molecular Biology (N.S., T.S.), the Les Turner ALS Center, Northwestern University Feinberg School of Medicine; and the Northwestern University Interdepartmental Neuroscience Program (N.S., T.S.), Chicago, IL
| | - Sulev Koks
- Centre for Neuromuscular and Neurological Disorders (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), University of Western Australia, Crawley; Perron Institute for Neurological and Translational Science (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), Nedlands; Centre for Molecular Medicine and Innovative Therapeutics (L.L.F., A.P., S.K., P.A.A.), Murdoch University; School of Health Sciences (R.S.A.), and Institute for Health Research (R.S.A.), University of Notre Dame Australia, Fremantle; Institute for Immunology and Infectious Diseases (I.J.), Murdoch University, Australia; Department of Neurology (A.M.S., R.B., M.W.L., A.D.R.), Duke University School of Medicine, Durham, NC; Zinfandel Pharmaceuticals, Inc. (A.M.S., D.K.B., A.D.R.), Durham, NC; ALS Clinic (R.B.), Duke University, Durham, NC; Departments of Neurology, Pathology and Cell and Molecular Biology (N.S., T.S.), the Les Turner ALS Center, Northwestern University Feinberg School of Medicine; and the Northwestern University Interdepartmental Neuroscience Program (N.S., T.S.), Chicago, IL
| | - Ann M Saunders
- Centre for Neuromuscular and Neurological Disorders (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), University of Western Australia, Crawley; Perron Institute for Neurological and Translational Science (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), Nedlands; Centre for Molecular Medicine and Innovative Therapeutics (L.L.F., A.P., S.K., P.A.A.), Murdoch University; School of Health Sciences (R.S.A.), and Institute for Health Research (R.S.A.), University of Notre Dame Australia, Fremantle; Institute for Immunology and Infectious Diseases (I.J.), Murdoch University, Australia; Department of Neurology (A.M.S., R.B., M.W.L., A.D.R.), Duke University School of Medicine, Durham, NC; Zinfandel Pharmaceuticals, Inc. (A.M.S., D.K.B., A.D.R.), Durham, NC; ALS Clinic (R.B.), Duke University, Durham, NC; Departments of Neurology, Pathology and Cell and Molecular Biology (N.S., T.S.), the Les Turner ALS Center, Northwestern University Feinberg School of Medicine; and the Northwestern University Interdepartmental Neuroscience Program (N.S., T.S.), Chicago, IL
| | - Richard Bedlack
- Centre for Neuromuscular and Neurological Disorders (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), University of Western Australia, Crawley; Perron Institute for Neurological and Translational Science (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), Nedlands; Centre for Molecular Medicine and Innovative Therapeutics (L.L.F., A.P., S.K., P.A.A.), Murdoch University; School of Health Sciences (R.S.A.), and Institute for Health Research (R.S.A.), University of Notre Dame Australia, Fremantle; Institute for Immunology and Infectious Diseases (I.J.), Murdoch University, Australia; Department of Neurology (A.M.S., R.B., M.W.L., A.D.R.), Duke University School of Medicine, Durham, NC; Zinfandel Pharmaceuticals, Inc. (A.M.S., D.K.B., A.D.R.), Durham, NC; ALS Clinic (R.B.), Duke University, Durham, NC; Departments of Neurology, Pathology and Cell and Molecular Biology (N.S., T.S.), the Les Turner ALS Center, Northwestern University Feinberg School of Medicine; and the Northwestern University Interdepartmental Neuroscience Program (N.S., T.S.), Chicago, IL
| | - Daniel K Burns
- Centre for Neuromuscular and Neurological Disorders (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), University of Western Australia, Crawley; Perron Institute for Neurological and Translational Science (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), Nedlands; Centre for Molecular Medicine and Innovative Therapeutics (L.L.F., A.P., S.K., P.A.A.), Murdoch University; School of Health Sciences (R.S.A.), and Institute for Health Research (R.S.A.), University of Notre Dame Australia, Fremantle; Institute for Immunology and Infectious Diseases (I.J.), Murdoch University, Australia; Department of Neurology (A.M.S., R.B., M.W.L., A.D.R.), Duke University School of Medicine, Durham, NC; Zinfandel Pharmaceuticals, Inc. (A.M.S., D.K.B., A.D.R.), Durham, NC; ALS Clinic (R.B.), Duke University, Durham, NC; Departments of Neurology, Pathology and Cell and Molecular Biology (N.S., T.S.), the Les Turner ALS Center, Northwestern University Feinberg School of Medicine; and the Northwestern University Interdepartmental Neuroscience Program (N.S., T.S.), Chicago, IL
| | - Michael W Lutz
- Centre for Neuromuscular and Neurological Disorders (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), University of Western Australia, Crawley; Perron Institute for Neurological and Translational Science (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), Nedlands; Centre for Molecular Medicine and Innovative Therapeutics (L.L.F., A.P., S.K., P.A.A.), Murdoch University; School of Health Sciences (R.S.A.), and Institute for Health Research (R.S.A.), University of Notre Dame Australia, Fremantle; Institute for Immunology and Infectious Diseases (I.J.), Murdoch University, Australia; Department of Neurology (A.M.S., R.B., M.W.L., A.D.R.), Duke University School of Medicine, Durham, NC; Zinfandel Pharmaceuticals, Inc. (A.M.S., D.K.B., A.D.R.), Durham, NC; ALS Clinic (R.B.), Duke University, Durham, NC; Departments of Neurology, Pathology and Cell and Molecular Biology (N.S., T.S.), the Les Turner ALS Center, Northwestern University Feinberg School of Medicine; and the Northwestern University Interdepartmental Neuroscience Program (N.S., T.S.), Chicago, IL
| | - Nailah Siddique
- Centre for Neuromuscular and Neurological Disorders (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), University of Western Australia, Crawley; Perron Institute for Neurological and Translational Science (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), Nedlands; Centre for Molecular Medicine and Innovative Therapeutics (L.L.F., A.P., S.K., P.A.A.), Murdoch University; School of Health Sciences (R.S.A.), and Institute for Health Research (R.S.A.), University of Notre Dame Australia, Fremantle; Institute for Immunology and Infectious Diseases (I.J.), Murdoch University, Australia; Department of Neurology (A.M.S., R.B., M.W.L., A.D.R.), Duke University School of Medicine, Durham, NC; Zinfandel Pharmaceuticals, Inc. (A.M.S., D.K.B., A.D.R.), Durham, NC; ALS Clinic (R.B.), Duke University, Durham, NC; Departments of Neurology, Pathology and Cell and Molecular Biology (N.S., T.S.), the Les Turner ALS Center, Northwestern University Feinberg School of Medicine; and the Northwestern University Interdepartmental Neuroscience Program (N.S., T.S.), Chicago, IL
| | - Teepu Siddique
- Centre for Neuromuscular and Neurological Disorders (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), University of Western Australia, Crawley; Perron Institute for Neurological and Translational Science (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), Nedlands; Centre for Molecular Medicine and Innovative Therapeutics (L.L.F., A.P., S.K., P.A.A.), Murdoch University; School of Health Sciences (R.S.A.), and Institute for Health Research (R.S.A.), University of Notre Dame Australia, Fremantle; Institute for Immunology and Infectious Diseases (I.J.), Murdoch University, Australia; Department of Neurology (A.M.S., R.B., M.W.L., A.D.R.), Duke University School of Medicine, Durham, NC; Zinfandel Pharmaceuticals, Inc. (A.M.S., D.K.B., A.D.R.), Durham, NC; ALS Clinic (R.B.), Duke University, Durham, NC; Departments of Neurology, Pathology and Cell and Molecular Biology (N.S., T.S.), the Les Turner ALS Center, Northwestern University Feinberg School of Medicine; and the Northwestern University Interdepartmental Neuroscience Program (N.S., T.S.), Chicago, IL
| | - Allen D Roses
- Centre for Neuromuscular and Neurological Disorders (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), University of Western Australia, Crawley; Perron Institute for Neurological and Translational Science (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), Nedlands; Centre for Molecular Medicine and Innovative Therapeutics (L.L.F., A.P., S.K., P.A.A.), Murdoch University; School of Health Sciences (R.S.A.), and Institute for Health Research (R.S.A.), University of Notre Dame Australia, Fremantle; Institute for Immunology and Infectious Diseases (I.J.), Murdoch University, Australia; Department of Neurology (A.M.S., R.B., M.W.L., A.D.R.), Duke University School of Medicine, Durham, NC; Zinfandel Pharmaceuticals, Inc. (A.M.S., D.K.B., A.D.R.), Durham, NC; ALS Clinic (R.B.), Duke University, Durham, NC; Departments of Neurology, Pathology and Cell and Molecular Biology (N.S., T.S.), the Les Turner ALS Center, Northwestern University Feinberg School of Medicine; and the Northwestern University Interdepartmental Neuroscience Program (N.S., T.S.), Chicago, IL
| | - P Anthony Akkari
- Centre for Neuromuscular and Neurological Disorders (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), University of Western Australia, Crawley; Perron Institute for Neurological and Translational Science (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), Nedlands; Centre for Molecular Medicine and Innovative Therapeutics (L.L.F., A.P., S.K., P.A.A.), Murdoch University; School of Health Sciences (R.S.A.), and Institute for Health Research (R.S.A.), University of Notre Dame Australia, Fremantle; Institute for Immunology and Infectious Diseases (I.J.), Murdoch University, Australia; Department of Neurology (A.M.S., R.B., M.W.L., A.D.R.), Duke University School of Medicine, Durham, NC; Zinfandel Pharmaceuticals, Inc. (A.M.S., D.K.B., A.D.R.), Durham, NC; ALS Clinic (R.B.), Duke University, Durham, NC; Departments of Neurology, Pathology and Cell and Molecular Biology (N.S., T.S.), the Les Turner ALS Center, Northwestern University Feinberg School of Medicine; and the Northwestern University Interdepartmental Neuroscience Program (N.S., T.S.), Chicago, IL
| |
Collapse
|
470
|
Volonté C, Amadio S, Liguori F, Fabbrizio P. Duality of P2X7 Receptor in Amyotrophic Lateral Sclerosis. Front Pharmacol 2020; 11:1148. [PMID: 32792962 PMCID: PMC7394054 DOI: 10.3389/fphar.2020.01148] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022] Open
Affiliation(s)
- Cinzia Volonté
- CNR-Institute for Systems Analysis and Computer Science, Rome, Italy.,Fondazione Santa Lucia, IRCCS, Rome, Italy
| | | | | | - Paola Fabbrizio
- Istituto di Ricerche Farmacologiche Mario Negri, IRCCS, Milan, Italy
| |
Collapse
|
471
|
Cristofani R, Crippa V, Cicardi ME, Tedesco B, Ferrari V, Chierichetti M, Casarotto E, Piccolella M, Messi E, Galbiati M, Rusmini P, Poletti A. A Crucial Role for the Protein Quality Control System in Motor Neuron Diseases. Front Aging Neurosci 2020; 12:191. [PMID: 32792938 PMCID: PMC7385251 DOI: 10.3389/fnagi.2020.00191] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/02/2020] [Indexed: 12/11/2022] Open
Abstract
Motor neuron diseases (MNDs) are fatal diseases characterized by loss of motor neurons in the brain cortex, in the bulbar region, and/or in the anterior horns of the spinal cord. While generally sporadic, inherited forms linked to mutant genes encoding altered RNA/protein products have also been described. Several different mechanisms have been found altered or dysfunctional in MNDs, like the protein quality control (PQC) system. In this review, we will discuss how the PQC system is affected in two MNDs—spinal and bulbar muscular atrophy (SBMA) and amyotrophic lateral sclerosis (ALS)—and how this affects the clearance of aberrantly folded proteins, which accumulate in motor neurons, inducing dysfunctions and their death. In addition, we will discuss how the PQC system can be targeted to restore proper cell function, enhancing the survival of affected cells in MNDs.
Collapse
Affiliation(s)
- Riccardo Cristofani
- Laboratorio di Biologia Applicata, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2022, Università degli Studi di Milano, Milan, Italy
| | - Valeria Crippa
- Laboratorio di Biologia Applicata, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2022, Università degli Studi di Milano, Milan, Italy
| | - Maria Elena Cicardi
- Laboratorio di Biologia Applicata, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2022, Università degli Studi di Milano, Milan, Italy.,Department of Neuroscience, Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Barbara Tedesco
- Laboratorio di Biologia Applicata, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2022, Università degli Studi di Milano, Milan, Italy
| | - Veronica Ferrari
- Laboratorio di Biologia Applicata, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2022, Università degli Studi di Milano, Milan, Italy
| | - Marta Chierichetti
- Laboratorio di Biologia Applicata, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2022, Università degli Studi di Milano, Milan, Italy
| | - Elena Casarotto
- Laboratorio di Biologia Applicata, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2022, Università degli Studi di Milano, Milan, Italy
| | - Margherita Piccolella
- Laboratorio di Biologia Applicata, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2022, Università degli Studi di Milano, Milan, Italy
| | - Elio Messi
- Laboratorio di Biologia Applicata, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2022, Università degli Studi di Milano, Milan, Italy
| | - Mariarita Galbiati
- Laboratorio di Biologia Applicata, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2022, Università degli Studi di Milano, Milan, Italy
| | - Paola Rusmini
- Laboratorio di Biologia Applicata, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2022, Università degli Studi di Milano, Milan, Italy
| | - Angelo Poletti
- Laboratorio di Biologia Applicata, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2022, Università degli Studi di Milano, Milan, Italy.,Center of Excellence on Neurodegenerative Diseases (CEND), Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
472
|
Targeted next-generation sequencing study in familial ALS-FTD Portuguese patients negative for C9orf72 HRE. J Neurol 2020; 267:3578-3592. [DOI: 10.1007/s00415-020-10042-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/25/2020] [Accepted: 06/30/2020] [Indexed: 12/18/2022]
|
473
|
Krahn AI, Wells C, Drewry DH, Beitel LK, Durcan TM, Axtman AD. Defining the Neural Kinome: Strategies and Opportunities for Small Molecule Drug Discovery to Target Neurodegenerative Diseases. ACS Chem Neurosci 2020; 11:1871-1886. [PMID: 32464049 DOI: 10.1021/acschemneuro.0c00176] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Kinases are highly tractable drug targets that have reached unparalleled success in fields such as cancer but whose potential has not yet been realized in neuroscience. There are currently 55 approved small molecule kinase-targeting drugs, 48 of which have an anticancer indication. The intrinsic complexity linked to central nervous system (CNS) drug development and a lack of validated targets has hindered progress in developing kinase inhibitors for CNS disorders when compared to other therapeutic areas such as oncology. Identification and/or characterization of new kinases as potential drug targets for neurodegenerative diseases will create opportunities for the development of CNS drugs in the future. The track record of kinase inhibitors in other disease indications supports the idea that with the best targets identified small molecule kinase modulators will become impactful therapeutics for neurodegenerative diseases. This Review highlights the imminent need for new therapeutics to treat the most prevalent neurodegenerative diseases as well as the promise of kinase inhibitors to address this need. With a focus on kinases that remain largely unexplored after decades of dedicated research in the kinase field, we offer specific examples of understudied kinases that are supported by patient-derived data as linked to Alzheimer's disease, Parkinson's disease, and/or amyotrophic lateral sclerosis. Finally, we show literature-reported high-quality inhibitors for several understudied kinases and suggest other kinases that merit additional medicinal chemistry efforts to elucidate their therapeutic potential.
Collapse
Affiliation(s)
- Andrea I. Krahn
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada H3A 2B4
| | - Carrow Wells
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - David H. Drewry
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Lenore K. Beitel
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada H3A 2B4
| | - Thomas M. Durcan
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada H3A 2B4
| | - Alison D. Axtman
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
474
|
Gunes ZI, Kan VWY, Ye X, Liebscher S. Exciting Complexity: The Role of Motor Circuit Elements in ALS Pathophysiology. Front Neurosci 2020; 14:573. [PMID: 32625051 PMCID: PMC7311855 DOI: 10.3389/fnins.2020.00573] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/11/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal disease, characterized by the degeneration of both upper and lower motor neurons. Despite decades of research, we still to date lack a cure or disease modifying treatment, emphasizing the need for a much-improved insight into disease mechanisms and cell type vulnerability. Altered neuronal excitability is a common phenomenon reported in ALS patients, as well as in animal models of the disease, but the cellular and circuit processes involved, as well as the causal relevance of those observations to molecular alterations and final cell death, remain poorly understood. Here, we review evidence from clinical studies, cell type-specific electrophysiology, genetic manipulations and molecular characterizations in animal models and culture experiments, which argue for a causal involvement of complex alterations of structure, function and connectivity of different neuronal subtypes within the cortical and spinal cord motor circuitries. We also summarize the current knowledge regarding the detrimental role of astrocytes and reassess the frequently proposed hypothesis of glutamate-mediated excitotoxicity with respect to changes in neuronal excitability. Together, these findings suggest multifaceted cell type-, brain area- and disease stage- specific disturbances of the excitation/inhibition balance as a cardinal aspect of ALS pathophysiology.
Collapse
Affiliation(s)
- Zeynep I Gunes
- Institute of Clinical Neuroimmunology, Klinikum der Universität München, Ludwig Maximilians University Munich, Munich, Germany.,Graduate School of Systemic Neurosciences, Ludwig Maximilians University Munich, Munich, Germany.,Biomedical Center, Ludwig Maximilians University Munich, Munich, Germany
| | - Vanessa W Y Kan
- Institute of Clinical Neuroimmunology, Klinikum der Universität München, Ludwig Maximilians University Munich, Munich, Germany.,Graduate School of Systemic Neurosciences, Ludwig Maximilians University Munich, Munich, Germany.,Biomedical Center, Ludwig Maximilians University Munich, Munich, Germany
| | - XiaoQian Ye
- Institute of Clinical Neuroimmunology, Klinikum der Universität München, Ludwig Maximilians University Munich, Munich, Germany.,Biomedical Center, Ludwig Maximilians University Munich, Munich, Germany
| | - Sabine Liebscher
- Institute of Clinical Neuroimmunology, Klinikum der Universität München, Ludwig Maximilians University Munich, Munich, Germany.,Biomedical Center, Ludwig Maximilians University Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
475
|
Perrone B, Conforti FL. Common mutations of interest in the diagnosis of amyotrophic lateral sclerosis: how common are common mutations in ALS genes? Expert Rev Mol Diagn 2020; 20:703-714. [PMID: 32497448 DOI: 10.1080/14737159.2020.1779060] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is a complex neurodegenerative disease predominantly affecting upper and lower motor neurons. Diagnosis of this devastating pathology is very difficult because the high degree of clinical heterogeneity with which it occurs and until now, no truly effective treatment exists. AREAS COVERED Molecular diagnosis may be a valuable tool for dissecting out ALS complex heterogeneity and for identifying new molecular mechanisms underlying the characteristic selective degeneration and death of motor neurons. To date, pathogenic variants in ALS genes are known to be present in up to 70% of familial and 10% of apparently sporadic ALS cases and can be associated with risks for ALS only or risks for other neurodegenerative diseases. This paper shows the procedure currently used in diagnostic laboratories to investigate most frequent mutations in ALS and evaluating the utility of involved molecular techniques as potential tools to discriminate 'common mutations' in ALS patients. EXPERT OPINION Genetic testing may allow for establishing an accurate pathological diagnosis and a more precise stratification of patient groups in future drug trials.
Collapse
Affiliation(s)
- Benedetta Perrone
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria , Arcavacata di Rende (Cosenza), Italy
| | - Francesca Luisa Conforti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria , Arcavacata di Rende (Cosenza), Italy
| |
Collapse
|
476
|
Figueroa‐Romero C, Mikhail KA, Gennings C, Curtin P, Bello GA, Botero TM, Goutman SA, Feldman EL, Arora M, Austin C. Early life metal dysregulation in amyotrophic lateral sclerosis. Ann Clin Transl Neurol 2020; 7:872-882. [PMID: 32438517 PMCID: PMC7318091 DOI: 10.1002/acn3.51006] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/22/2020] [Accepted: 02/09/2020] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE Deficiencies and excess of essential elements and toxic metals are implicated in amyotrophic lateral sclerosis (ALS), but the age when metal dysregulation appears remains unknown. This study aims to determine whether metal uptake is dysregulated during childhood in individuals eventually diagnosed with ALS. METHODS Laser ablation-inductively coupled plasma-mass spectrometry was used to obtain time series data of metal uptake using biomarkers in teeth from autopsies or dental extractions of ALS (n = 36) and control (n = 31) participants. Covariate data included sex, smoking, occupational exposures, and ALS family history. Case-control differences were identified in temporal profiles of metal uptake for individual metals using distributed lag models. Weighted quantile sum (WQS) regression was used for metals mixture analyses. Similar analyses were performed on an ALS mouse model to further verify the relevance of dysregulation of metals in ALS. RESULTS Metal levels were higher in cases than in controls: 1.49 times for chromium (1.11-1.82; at 15 years), 1.82 times for manganese (1.34-2.46; at birth), 1.65 times for nickel (1.22-2.01; at 8 years), 2.46 times for tin (1.65-3.30; at 2 years), and 2.46 times for zinc (1.49-3.67; at 6 years). Co-exposure to 11 elements indicated that childhood metal dysregulation was associated with ALS. The mixture contribution of metals to disease outcome was likewise apparent in tooth biomarkers of an ALS mouse model, and differences in metal distribution were evident in ALS mouse brains compared to brains from littermate controls. INTERPRETATION Overall, our study reveals direct evidence that altered metal uptake during specific early life time windows is associated with adult-onset ALS.
Collapse
Affiliation(s)
| | | | - Chris Gennings
- Department of Environmental Medicine and Public Health, and Senator Frank Lautenberg Laboratory for Environmental Health SciencesIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Paul Curtin
- Department of Environmental Medicine and Public Health, and Senator Frank Lautenberg Laboratory for Environmental Health SciencesIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Ghalib A. Bello
- Department of Environmental Medicine and Public Health, and Senator Frank Lautenberg Laboratory for Environmental Health SciencesIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Tatiana M. Botero
- Department of Cariology, Restorative Sciences and EndodonticsSchool of Dentistry University of MichiganAnn ArborMIUSA
| | | | - Eva L. Feldman
- Department of NeurologyUniversity of MichiganAnn ArborMIUSA
| | - Manish Arora
- Department of Environmental Medicine and Public Health, and Senator Frank Lautenberg Laboratory for Environmental Health SciencesIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Christine Austin
- Department of Environmental Medicine and Public Health, and Senator Frank Lautenberg Laboratory for Environmental Health SciencesIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| |
Collapse
|
477
|
Liscic RM, Alberici A, Cairns NJ, Romano M, Buratti E. From basic research to the clinic: innovative therapies for ALS and FTD in the pipeline. Mol Neurodegener 2020; 15:31. [PMID: 32487123 PMCID: PMC7268618 DOI: 10.1186/s13024-020-00373-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/27/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and Frontotemporal Degeneration (FTD) are neurodegenerative disorders, related by deterioration of motor and cognitive functions and short survival. Aside from cases with an inherited pathogenic mutation, the causes of the disorders are still largely unknown and no effective treatment currently exists. It has been shown that FTD may coexist with ALS and this overlap occurs at clinical, genetic, and molecular levels. In this work, we review the main pathological aspects of these complex diseases and discuss how the integration of the novel pathogenic molecular insights and the analysis of molecular interaction networks among all the genetic players represents a critical step to shed light on discovering novel therapeutic strategies and possibly tailoring personalized medicine approaches to specific ALS and FTD patients.
Collapse
Affiliation(s)
- Rajka Maria Liscic
- Department of Neurology, Johannes Kepler University, Linz, Austria
- School of Medicine, University of Osijek, Osijek, Croatia
| | - Antonella Alberici
- Neurology Unit, Department of Neurological Sciences and Vision, ASST-Spedali Civili-University of Brescia, Brescia, Italy
| | - Nigel John Cairns
- College of Medicine and Health and Living Systems Institute, University of Exeter, Exeter, UK
| | - Maurizio Romano
- Department of Life Sciences, Via Valerio 28, University of Trieste, 34127, Trieste, Italy
| | - Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149, Trieste, Italy.
| |
Collapse
|
478
|
Yun Y, Ha Y. CRISPR/Cas9-Mediated Gene Correction to Understand ALS. Int J Mol Sci 2020; 21:E3801. [PMID: 32471232 PMCID: PMC7312396 DOI: 10.3390/ijms21113801] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/21/2020] [Accepted: 05/21/2020] [Indexed: 12/24/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease caused by the death of motor neurons in the spinal cord and brainstem. ALS has a diverse genetic origin; at least 20 genes have been shown to be related to ALS. Most familial and sporadic cases of ALS are caused by variants of the SOD1, C9orf72, FUS, and TARDBP genes. Genome editing using clustered regularly interspaced short palindromic repeats/CRISPR-associated system 9 (CRISPR/Cas9) can provide insights into the underlying genetics and pathophysiology of ALS. By correcting common mutations associated with ALS in animal models and patient-derived induced pluripotent stem cells (iPSCs), CRISPR/Cas9 has been used to verify the effects of ALS-associated mutations and observe phenotype differences between patient-derived and gene-corrected iPSCs. This technology has also been used to create mutations to investigate the pathophysiology of ALS. Here, we review recent studies that have used CRISPR/Cas9 to understand the genetic underpinnings of ALS.
Collapse
Affiliation(s)
- Yeomin Yun
- Department of Neurosurgery, Spine and Spinal Cord Institute, College of Medicine, Yonsei University, Seoul 03722, Korea;
- Brain Korea 21 PLUS Project for Medical Science, College of Medicine, Yonsei University, Seoul 03722, Korea
| | - Yoon Ha
- Department of Neurosurgery, Spine and Spinal Cord Institute, College of Medicine, Yonsei University, Seoul 03722, Korea;
- Brain Korea 21 PLUS Project for Medical Science, College of Medicine, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
479
|
Mitochondrial Dysfunctions: A Red Thread across Neurodegenerative Diseases. Int J Mol Sci 2020; 21:ijms21103719. [PMID: 32466216 PMCID: PMC7279270 DOI: 10.3390/ijms21103719] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
Mitochondria play a central role in a plethora of processes related to the maintenance of cellular homeostasis and genomic integrity. They contribute to preserving the optimal functioning of cells and protecting them from potential DNA damage which could result in mutations and disease. However, perturbations of the system due to senescence or environmental factors induce alterations of the physiological balance and lead to the impairment of mitochondrial functions. After the description of the crucial roles of mitochondria for cell survival and activity, the core of this review focuses on the "mitochondrial switch" which occurs at the onset of neuronal degeneration. We dissect the pathways related to mitochondrial dysfunctions which are shared among the most frequent or disabling neurodegenerative diseases such as Alzheimer's, Parkinson's, and Huntington's, Amyotrophic Lateral Sclerosis, and Spinal Muscular Atrophy. Can mitochondrial dysfunctions (affecting their morphology and activities) represent the early event eliciting the shift towards pathological neurobiological processes? Can mitochondria represent a common target against neurodegeneration? We also review here the drugs that target mitochondria in neurodegenerative diseases.
Collapse
|
480
|
Pham J, Keon M, Brennan S, Saksena N. Connecting RNA-Modifying Similarities of TDP-43, FUS, and SOD1 with MicroRNA Dysregulation Amidst A Renewed Network Perspective of Amyotrophic Lateral Sclerosis Proteinopathy. Int J Mol Sci 2020; 21:ijms21103464. [PMID: 32422969 PMCID: PMC7278980 DOI: 10.3390/ijms21103464] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 12/11/2022] Open
Abstract
Beyond traditional approaches in understanding amyotrophic lateral sclerosis (ALS), multiple recent studies in RNA-binding proteins (RBPs)-including transactive response DNA-binding protein (TDP-43) and fused in sarcoma (FUS)-have instigated an interest in their function and prion-like properties. Given their prominence as hallmarks of a highly heterogeneous disease, this prompts a re-examination of the specific functional interrelationships between these proteins, especially as pathological SOD1-a non-RBP commonly associated with familial ALS (fALS)-exhibits similar properties to these RBPs including potential RNA-regulatory capabilities. Moreover, the cytoplasmic mislocalization, aggregation, and co-aggregation of TDP-43, FUS, and SOD1 can be identified as proteinopathies akin to other neurodegenerative diseases (NDs), eliciting strong ties to disrupted RNA splicing, transport, and stability. In recent years, microRNAs (miRNAs) have also been increasingly implicated in the disease, and are of greater significance as they are the master regulators of RNA metabolism in disease pathology. However, little is known about the role of these proteins and how they are regulated by miRNA, which would provide mechanistic insights into ALS pathogenesis. This review seeks to discuss current developments across TDP-43, FUS, and SOD1 to build a detailed snapshot of the network pathophysiology underlying ALS while aiming to highlight possible novel therapeutic targets to guide future research.
Collapse
Affiliation(s)
- Jade Pham
- Faculty of Medicine, The University of New South Wales, Kensington, Sydney, NSW 2033, Australia;
| | - Matt Keon
- Iggy Get Out, Neurodegenerative Disease Section, Darlinghurst, Sydney, NSW 2010, Australia; (M.K.); (S.B.)
| | - Samuel Brennan
- Iggy Get Out, Neurodegenerative Disease Section, Darlinghurst, Sydney, NSW 2010, Australia; (M.K.); (S.B.)
| | - Nitin Saksena
- Iggy Get Out, Neurodegenerative Disease Section, Darlinghurst, Sydney, NSW 2010, Australia; (M.K.); (S.B.)
- Correspondence:
| |
Collapse
|
481
|
Lanznaster D, Veyrat-Durebex C, Vourc’h P, Andres CR, Blasco H, Corcia P. Metabolomics: A Tool to Understand the Impact of Genetic Mutations in Amyotrophic Lateral Sclerosis. Genes (Basel) 2020; 11:genes11050537. [PMID: 32403313 PMCID: PMC7288444 DOI: 10.3390/genes11050537] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022] Open
Abstract
Metabolomics studies performed in patients with amyotrophic lateral sclerosis (ALS) reveal a set of distinct metabolites that can shed light on the pathological alterations taking place in each individual. Metabolites levels are influenced by disease status, and genetics play an important role both in familial and sporadic ALS cases. Metabolomics analysis helps to unravel the differential impact of the most common ALS-linked genetic mutations (as C9ORF72, SOD1, TARDBP, and FUS) in specific signaling pathways. Further, studies performed in genetic models of ALS reinforce the role of TDP-43 pathology in the vast majority of ALS cases. Studies performed in differentiated cells from ALS-iPSC (induced Pluripotent Stem Cells) reveal alterations in the cell metabolism that are also found in ALS models and ultimately in ALS patients. The development of metabolomics approaches in iPSC derived from ALS patients allow addressing and ultimately understanding the pathological mechanisms taking place in any patient. Lately, the creation of a "patient in a dish" will help to identify patients that may benefit from specific treatments and allow the implementation of personalized medicine.
Collapse
Affiliation(s)
- Débora Lanznaster
- UMR 1253, iBrain, University of Tours, Inserm, 37000 Tours, France; (C.V.-D.); (P.V.); (C.R.A.); (H.B.); (P.C.)
- Correspondence:
| | - Charlotte Veyrat-Durebex
- UMR 1253, iBrain, University of Tours, Inserm, 37000 Tours, France; (C.V.-D.); (P.V.); (C.R.A.); (H.B.); (P.C.)
- CHU de Tours, Service de Biochimie et Biologie Moléculaire, 37000 Tours, France
| | - Patrick Vourc’h
- UMR 1253, iBrain, University of Tours, Inserm, 37000 Tours, France; (C.V.-D.); (P.V.); (C.R.A.); (H.B.); (P.C.)
- CHU de Tours, Service de Biochimie et Biologie Moléculaire, 37000 Tours, France
| | - Christian R. Andres
- UMR 1253, iBrain, University of Tours, Inserm, 37000 Tours, France; (C.V.-D.); (P.V.); (C.R.A.); (H.B.); (P.C.)
- CHU de Tours, Service de Biochimie et Biologie Moléculaire, 37000 Tours, France
| | - Hélène Blasco
- UMR 1253, iBrain, University of Tours, Inserm, 37000 Tours, France; (C.V.-D.); (P.V.); (C.R.A.); (H.B.); (P.C.)
- CHU de Tours, Service de Biochimie et Biologie Moléculaire, 37000 Tours, France
| | - Philippe Corcia
- UMR 1253, iBrain, University of Tours, Inserm, 37000 Tours, France; (C.V.-D.); (P.V.); (C.R.A.); (H.B.); (P.C.)
- CHU de Tours, Service de Neurologie, 37000 Tours, France
| |
Collapse
|
482
|
The Dichotomic Role of Macrophage Migration Inhibitory Factor in Neurodegeneration. Int J Mol Sci 2020; 21:ijms21083023. [PMID: 32344747 PMCID: PMC7216212 DOI: 10.3390/ijms21083023] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 12/12/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine expressed by different cell types and exerting multiple biological functions. It has been shown that MIF may be involved in several disorders, including neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS), Parkinson disease (PD), and Huntington disease (HD), that represent an unmet medical need. Therefore, further studies are needed to identify novel pathogenetic mechanisms that may translate into tailored therapeutic approaches so to improve patients’ survival and quality of life. Here, we reviewed the preclinical and clinical studies investigating the role of MIF in ALS, PD, and HD. The emerging results suggest that MIF might play a dichotomic role in these disorders, exerting a protective action in ALS, a pathogenetic action in HD, and a yet undefined and debated role in PD. The better understanding of the role of MIF in these diseases could allow its use as a novel diagnostic and therapeutic tool for the monitoring and treatment of the patients and for eventual biomarker-driven therapeutic approaches.
Collapse
|
483
|
Scaricamazza S, Salvatori I, Giacovazzo G, Loeffler JP, Renè F, Rosina M, Quessada C, Proietti D, Heil C, Rossi S, Battistini S, Giannini F, Volpi N, Steyn FJ, Ngo ST, Ferraro E, Madaro L, Coccurello R, Valle C, Ferri A. Skeletal-Muscle Metabolic Reprogramming in ALS-SOD1 G93A Mice Predates Disease Onset and Is A Promising Therapeutic Target. iScience 2020; 23:101087. [PMID: 32371370 PMCID: PMC7200935 DOI: 10.1016/j.isci.2020.101087] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 03/13/2020] [Accepted: 04/15/2020] [Indexed: 12/12/2022] Open
Abstract
Patients with ALS show, in addition to the loss of motor neurons in the spinal cord, brainstem, and cerebral cortex, an abnormal depletion of energy stores alongside hypermetabolism. In this study, we show that bioenergetic defects and muscle remodeling occur in skeletal muscle of the SOD1G93A mouse model of ALS mice prior to disease onset and before the activation of muscle denervation markers, respectively. These changes in muscle physiology were followed by an increase in energy expenditure unrelated to physical activity. Finally, chronic treatment of SOD1G93A mice with Ranolazine, an FDA-approved inhibitor of fatty acid β-oxidation, led to a decrease in energy expenditure in symptomatic SOD1G93A mice, and this occurred in parallel with a robust, albeit temporary, recovery of the pathological phenotype. Metabolic switch use occurs early in the skeletal muscle of SOD1G93A mice Mitochondrial impairment precedes locomotor deficits and evokes catabolic pathways Sarcolipin upregulation in presymptomatic SOD1G93A mice precedes hypermetabolism Pharmacological modulation of hypermetabolism improves locomotor performance
Collapse
Affiliation(s)
- Silvia Scaricamazza
- University of Rome Tor Vergata, Department of Biology, Rome, Italy; IRCCS Fondazione Santa Lucia, Rome, Italy
| | | | | | - Jean Philippe Loeffler
- Université de Strasbourg, UMR_S 1118, Strasbourg, France; INSERM, U1118, Central and Peripheral Mechanisms of Neurodegeneration, Strasbourg, France
| | - Frederique Renè
- Université de Strasbourg, UMR_S 1118, Strasbourg, France; INSERM, U1118, Central and Peripheral Mechanisms of Neurodegeneration, Strasbourg, France
| | - Marco Rosina
- University of Rome Tor Vergata, Department of Biology, Rome, Italy
| | - Cyril Quessada
- Université de Strasbourg, UMR_S 1118, Strasbourg, France; INSERM, U1118, Central and Peripheral Mechanisms of Neurodegeneration, Strasbourg, France
| | | | | | - Simona Rossi
- University of Rome Tor Vergata, Department of Biology, Rome, Italy; National Research Council, Institute of Translational Pharmacology (IFT), Rome, Italy
| | - Stefania Battistini
- University of Siena, Department of Medical, Surgical and Neurological Science, Siena, Italy
| | - Fabio Giannini
- University of Siena, Department of Medical, Surgical and Neurological Science, Siena, Italy
| | - Nila Volpi
- University of Siena, Department of Medical, Surgical and Neurological Science, Siena, Italy
| | - Frederik J Steyn
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia; Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia
| | - Shyuan T Ngo
- Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia; Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | | | - Luca Madaro
- IRCCS Fondazione Santa Lucia, Rome, Italy; DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Roberto Coccurello
- IRCCS Fondazione Santa Lucia, Rome, Italy; National Research Council, Institute for Complex System (ISC), Rome, Italy
| | - Cristiana Valle
- IRCCS Fondazione Santa Lucia, Rome, Italy; National Research Council, Institute of Translational Pharmacology (IFT), Rome, Italy.
| | - Alberto Ferri
- IRCCS Fondazione Santa Lucia, Rome, Italy; National Research Council, Institute of Translational Pharmacology (IFT), Rome, Italy.
| |
Collapse
|
484
|
Ain Q, Schmeer C, Wengerodt D, Witte OW, Kretz A. Extrachromosomal Circular DNA: Current Knowledge and Implications for CNS Aging and Neurodegeneration. Int J Mol Sci 2020; 21:E2477. [PMID: 32252492 PMCID: PMC7177960 DOI: 10.3390/ijms21072477] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 12/13/2022] Open
Abstract
Still unresolved is the question of how a lifetime accumulation of somatic gene copy number alterations impact organ functionality and aging and age-related pathologies. Such an issue appears particularly relevant in the broadly post-mitotic central nervous system (CNS), where non-replicative neurons are restricted in DNA-repair choices and are prone to accumulate DNA damage, as they remain unreplaced over a lifetime. Both DNA injuries and consecutive DNA-repair strategies are processes that can evoke extrachromosomal circular DNA species, apparently from either part of the genome. Due to their capacity to amplify gene copies and related transcripts, the individual cellular load of extrachromosomal circular DNAs will contribute to a dynamic pool of additional coding and regulatory chromatin elements. Analogous to tumor tissues, where the mosaicism of circular DNAs plays a well-characterized role in oncogene plasticity and drug resistance, we suggest involvement of the "circulome" also in the CNS. Accordingly, we summarize current knowledge on the molecular biogenesis, homeostasis and gene regulatory impacts of circular extrachromosomal DNA and propose, in light of recent discoveries, a critical role in CNS aging and neurodegeneration. Future studies will elucidate the influence of individual extrachromosomal DNA species according to their sequence complexity and regional distribution or cell-type-specific abundance.
Collapse
Affiliation(s)
- Quratul Ain
- Hans-Berger Department of Neurology, Jena University Hospital, 07747 Jena, Thuringia, Germany; (Q.A.); (C.S.); (D.W.); (O.W.W.)
| | - Christian Schmeer
- Hans-Berger Department of Neurology, Jena University Hospital, 07747 Jena, Thuringia, Germany; (Q.A.); (C.S.); (D.W.); (O.W.W.)
- Jena Center for Healthy Ageing, Jena University Hospital, 07747 Jena, Thuringia, Germany
| | - Diane Wengerodt
- Hans-Berger Department of Neurology, Jena University Hospital, 07747 Jena, Thuringia, Germany; (Q.A.); (C.S.); (D.W.); (O.W.W.)
| | - Otto W. Witte
- Hans-Berger Department of Neurology, Jena University Hospital, 07747 Jena, Thuringia, Germany; (Q.A.); (C.S.); (D.W.); (O.W.W.)
- Jena Center for Healthy Ageing, Jena University Hospital, 07747 Jena, Thuringia, Germany
| | - Alexandra Kretz
- Hans-Berger Department of Neurology, Jena University Hospital, 07747 Jena, Thuringia, Germany; (Q.A.); (C.S.); (D.W.); (O.W.W.)
- Jena Center for Healthy Ageing, Jena University Hospital, 07747 Jena, Thuringia, Germany
| |
Collapse
|
485
|
Vicencio E, Beltrán S, Labrador L, Manque P, Nassif M, Woehlbier U. Implications of Selective Autophagy Dysfunction for ALS Pathology. Cells 2020; 9:cells9020381. [PMID: 32046060 PMCID: PMC7072226 DOI: 10.3390/cells9020381] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/01/2020] [Accepted: 02/03/2020] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a lethal neurodegenerative disorder that progressively affects motor neurons in the brain and spinal cord. Due to the biological complexity of the disease, its etiology remains unknown. Several cellular mechanisms involved in the neurodegenerative process in ALS have been found, including the loss of RNA and protein homeostasis, as well as mitochondrial dysfunction. Insoluble protein aggregates, damaged mitochondria, and stress granules, which contain RNA and protein components, are recognized and degraded by the autophagy machinery in a process known as selective autophagy. Autophagy is a highly dynamic process whose dysregulation has now been associated with neurodegenerative diseases, including ALS, by numerous studies. In ALS, the autophagy process has been found deregulated in both familial and sporadic cases of the disease. Likewise, mutations in genes coding for proteins involved in the autophagy machinery have been reported in ALS patients, including selective autophagy receptors. In this review, we focus on the role of selective autophagy in ALS pathology.
Collapse
Affiliation(s)
- Emiliano Vicencio
- Center for Integrative Biology, Faculty of Science, Universidad Mayor, Camino la Piramide 5750, Huechuraba 8580745, Santiago, Chile; (E.V.); (S.B.); (L.L.); (P.M.)
| | - Sebastián Beltrán
- Center for Integrative Biology, Faculty of Science, Universidad Mayor, Camino la Piramide 5750, Huechuraba 8580745, Santiago, Chile; (E.V.); (S.B.); (L.L.); (P.M.)
| | - Luis Labrador
- Center for Integrative Biology, Faculty of Science, Universidad Mayor, Camino la Piramide 5750, Huechuraba 8580745, Santiago, Chile; (E.V.); (S.B.); (L.L.); (P.M.)
| | - Patricio Manque
- Center for Integrative Biology, Faculty of Science, Universidad Mayor, Camino la Piramide 5750, Huechuraba 8580745, Santiago, Chile; (E.V.); (S.B.); (L.L.); (P.M.)
- Center for Genomics and Bioinformatics, Faculty of Science, Universidad Mayor, Camino la Piramide 5750, Huechuraba 8580745, Santiago, Chile
| | - Melissa Nassif
- Center for Integrative Biology, Faculty of Science, Universidad Mayor, Camino la Piramide 5750, Huechuraba 8580745, Santiago, Chile; (E.V.); (S.B.); (L.L.); (P.M.)
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Camino la Piramide 5750, Huechuraba 8580745, Santiago, Chile
- Correspondence: (U.W.); (M.N.)
| | - Ute Woehlbier
- Center for Integrative Biology, Faculty of Science, Universidad Mayor, Camino la Piramide 5750, Huechuraba 8580745, Santiago, Chile; (E.V.); (S.B.); (L.L.); (P.M.)
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Camino la Piramide 5750, Huechuraba 8580745, Santiago, Chile
- Correspondence: (U.W.); (M.N.)
| |
Collapse
|
486
|
Theunissen F, Flynn LL, Anderton RS, Mastaglia F, Pytte J, Jiang L, Hodgetts S, Burns DK, Saunders A, Fletcher S, Wilton SD, Akkari PA. Structural Variants May Be a Source of Missing Heritability in sALS. Front Neurosci 2020; 14:47. [PMID: 32082115 PMCID: PMC7005198 DOI: 10.3389/fnins.2020.00047] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/13/2020] [Indexed: 12/11/2022] Open
Abstract
The underlying genetic and molecular mechanisms that drive amyotrophic lateral sclerosis (ALS) remain poorly understood. Structural variants within the genome can play a significant role in neurodegenerative disease risk, such as the repeat expansion in C9orf72 and the tri-nucleotide repeat in ATXN2, both of which are associated with familial and sporadic ALS. Many such structural variants reside in uncharacterized regions of the human genome, and have been under studied. Therefore, characterization of structural variants located in and around genes associated with ALS could provide insight into disease pathogenesis, and lead to the discovery of highly informative genetic tools for stratification in clinical trials. Such genomic variants may provide a deeper understanding of how gene expression can affect disease etiology, disease severity and trajectory, patient response to treatment, and may hold the key to understanding the genetics of sporadic ALS. This article outlines the current understanding of amyotrophic lateral sclerosis genetics and how structural variations may underpin some of the missing heritability of this disease.
Collapse
Affiliation(s)
- Frances Theunissen
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,School of Human Sciences, University of Western Australia, Nedlands, WA, Australia
| | - Loren L Flynn
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Nedlands, WA, Australia.,Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
| | - Ryan S Anderton
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Nedlands, WA, Australia.,School of Health Sciences, Institute for Health Research, University of Notre Dame Australia, Fremantle, WA, Australia
| | - Frank Mastaglia
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Nedlands, WA, Australia
| | - Julia Pytte
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,School of Human Sciences, University of Western Australia, Nedlands, WA, Australia
| | - Leanne Jiang
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,School of Biological Sciences, University of Western Australia, Nedlands, WA, Australia
| | - Stuart Hodgetts
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,School of Human Sciences, University of Western Australia, Nedlands, WA, Australia
| | - Daniel K Burns
- Zinfandel Pharmaceuticals, Chapel Hill, NC, United States
| | - Ann Saunders
- Zinfandel Pharmaceuticals, Chapel Hill, NC, United States
| | - Sue Fletcher
- Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Nedlands, WA, Australia.,Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
| | - Steve D Wilton
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Nedlands, WA, Australia.,Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
| | - Patrick Anthony Akkari
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Nedlands, WA, Australia.,Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
| |
Collapse
|