51901
|
Johnson CA, Barlow AL, Turner BM. Molecular cloning of Drosophila melanogaster cDNAs that encode a novel histone deacetylase dHDAC3. Gene X 1998; 221:127-34. [PMID: 9852957 DOI: 10.1016/s0378-1119(98)00435-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
The steady-state level of histone acetylation in eukaryotes is established and maintained by multiple histone acetyltransferases (HATs) and histone deacetylases (HDACs) and affects both the structure and the function of chromatin. Histone deacetylases play a key role in the regulation of transcription, and form a highly conserved protein family in many eukaryotic species. Here we describe the cloning, sequencing and genetic mapping of two histone deacetylase genes in Drosophila melanogaster: dHDAC1 is essentially identical to the previously cloned D. melanogaster d-Rpd3 gene and dHDAC3, a novel gene, is orthologous to the human and the chicken (Gallus gallus) HDAC3 genes. The predicted amino acid sequence (438 aa) of dHDAC3 shows 58.1% identity with dHDAC1/d-Rpd3, the only previously known member of the HDAC family in this organism. The map positions on polytene chromosomes for dHDAC1 and dHDAC3 were determined as 64C1-6 and 83A3-4 respectively. A search for other dHDAC3-like genes failed to find other potential paralogues in D. melanogaster, but identified significant homologies with bacterial and fungal genes encoding enzymes that metabolise acetyl groups, and with genes for other hydrolyases such as carboxypeptidase. In addition, histone deacetylase activity in D. melanogaster nuclear extracts can be inhibited by high concentrations of zinc and activated by low concentrations, which is identical to the properties of bovine carboxypeptidase A. On the basis of sequence and functional similarities, we suggest that histone deacetylases are metal-substituted enzymes.
Collapse
Affiliation(s)
- C A Johnson
- Department of Anatomy, Medical School, University of Birmingham, UK
| | | | | |
Collapse
|
51902
|
Kadrmas JL, Allaway D, Studholme RE, Sullivan JT, Ronson CW, Poole PS, Raetz CR. Cloning and overexpression of glycosyltransferases that generate the lipopolysaccharide core of Rhizobium leguminosarum. J Biol Chem 1998; 273:26432-40. [PMID: 9756877 DOI: 10.1074/jbc.273.41.26432] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The lipopolysaccharide (LPS) core of the Gram-negative bacterium Rhizobium leguminosarum is more amenable to enzymatic study than that of Escherichia coli because much of it is synthesized from readily available sugar nucleotides. The inner portion of the R. leguminosarum core contains mannose, galactose, and three 3-deoxy-D-manno-octulosonate (Kdo) residues, arranged in the order: lipid A-(Kdo)2-Man-Gal-Kdo-[O antigen]. A mannosyltransferase that uses GDP-mannose and the conserved precursor Kdo2-[4'-32P]lipid IVA (Kadrmas, J. L., Brozek, K. A., and Raetz, C. R. H. (1996) J. Biol. Chem. 271, 32119-32125) is proposed to represent a key early enzyme in R. leguminosarum core assembly. Conditions for demonstrating efficient galactosyl- and distal Kdo-transferase activities are now described using a coupled assay system that starts with GDP-mannose and Kdo2-[4'-32P]lipid IVA. As predicted, mannose incorporation precedes galactose addition, which in turn precedes distal Kdo transfer. LPS core mutants with Tn5 insertions in the genes encoding the putative galactosyltransferase (lpcA) and the distal Kdo-transferase (lpcB) are shown to be defective in the corresponding in vitro glycosylation of Kdo2-[4'-32P]lipid IVA. We have also discovered the new gene (lpcC) that encodes the mannosyltransferase. The gene is separated by several kilobase pairs from the lpcAB cluster. All three glycosyltransferases are carried on cosmid pIJ1848, which contains at least 20 kilobase pairs of R. leguminosarum DNA. Transfer of pIJ1848 into R. meliloti 1021 results in heterologous expression of all three enzymes, which are not normally present in strain 1021. Expression of the lpc genes individually behind the T7 promoter results in the production of each R. leguminosarum glycosyltransferase in E. coli membranes in a catalytically active form, demonstrating that lpcA, lpcB, and lpcC are structural genes.
Collapse
Affiliation(s)
- J L Kadrmas
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | |
Collapse
|
51903
|
Holzmann K, Pöltl A, Sauermann G. A novel spliced transcript of human CLAPS2 encoding a protein alternative to clathrin adaptor protein AP17. Gene X 1998; 220:39-44. [PMID: 9767099 DOI: 10.1016/s0378-1119(98)00406-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
Transcripts of genes encoding proteins of clathrin complexes have been reported to undergo tissue-specific alternative splicing. AP17, encoded by human CLAPS2 cDNA, is the small chain of the major clathrin adaptor complex AP-2 associated with mammalian plasma membranes. In this study, two cDNAs were isolated from a cDNA library of human blood cells. Whereas one cDNA encoded AP17, the other cDNA encoded a putative novel protein variant, termed AP17Delta. Both coding regions were completely sequenced. Consisting of 142aa residues, the predicted protein AP17Delta of 12kDa lacks 38aa residues of AP17. Using specific primers for RT-PCR, mRNAs for AP17Delta and AP17 were found in leukocytes and cultured leukemia cells. The finding of a putative intron in a human EST cDNA clone suggests that mRNAs for AP17 and AP17Delta are formed by alternative splicing. In addition, the identity of human and rat AP17 amino acid sequences is demonstrated.
Collapse
Affiliation(s)
- K Holzmann
- Institute of Tumor Biology-Cancer Research, University of Vienna, Vienna, Austria.
| | | | | |
Collapse
|
51904
|
Gary JD, Wurmser AE, Bonangelino CJ, Weisman LS, Emr SD. Fab1p is essential for PtdIns(3)P 5-kinase activity and the maintenance of vacuolar size and membrane homeostasis. J Cell Biol 1998; 143:65-79. [PMID: 9763421 PMCID: PMC2132800 DOI: 10.1083/jcb.143.1.65] [Citation(s) in RCA: 327] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/1998] [Revised: 09/03/1998] [Indexed: 11/22/2022] Open
Abstract
The Saccharomyces cerevisiae FAB1 gene encodes a 257-kD protein that contains a cysteine-rich RING-FYVE domain at its NH2-terminus and a kinase domain at its COOH terminus. Based on its sequence, Fab1p was initially proposed to function as a phosphatidylinositol 4-phosphate (PtdIns(4)P) 5-kinase (). Additional sequence analysis of the Fab1p kinase domain, reveals that Fab1p defines a subfamily of putative PtdInsP kinases that is distinct from the kinases that synthesize PtdIns(4,5)P2. Consistent with this, we find that unlike wild-type cells, fab1Delta, fab1(tsf), and fab1 kinase domain point mutants lack detectable levels of PtdIns(3,5)P2, a phosphoinositide recently identified both in yeast and mammalian cells. PtdIns(4,5)P2 synthesis, on the other hand, is only moderately affected even in fab1Delta mutants. The presence of PtdIns(3)P in fab1 mutants, combined with previous data, indicate that PtdIns(3,5)P2 synthesis is a two step process, requiring the production of PtdIns(3)P by the Vps34p PtdIns 3-kinase and the subsequent Fab1p- dependent phosphorylation of PtdIns(3)P yielding PtdIns(3,5)P2. Although Vps34p-mediated synthesis of PtdIns(3)P is required for the proper sorting of hydrolases from the Golgi to the vacuole, the production of PtdIns(3,5)P2 by Fab1p does not directly affect Golgi to vacuole trafficking, suggesting that PtdIns(3,5)P2 has a distinct function. The major phenotypes resulting from Fab1p kinase inactivation include temperature-sensitive growth, vacuolar acidification defects, and dramatic increases in vacuolar size. Based on our studies, we hypothesize that whereas Vps34p is essential for anterograde trafficking of membrane and protein cargoes to the vacuole, Fab1p may play an important compensatory role in the recycling/turnover of membranes deposited at the vacuole. Interestingly, deletion of VAC7 also results in an enlarged vacuole morphology and has no detectable PtdIns(3,5)P2, suggesting that Vac7p functions as an upstream regulator, perhaps in a complex with Fab1p. We propose that Fab1p and Vac7p are components of a signal transduction pathway which functions to regulate the efflux or turnover of vacuolar membranes through the regulated production of PtdIns(3,5)P2.
Collapse
Affiliation(s)
- J D Gary
- Division of Cellular and Molecular Medicine and Howard Hughes Medical Institute, University of California at San Diego, School of Medicine, La Jolla, California 92093-0668, USA
| | | | | | | | | |
Collapse
|
51905
|
Fetrow JS, Godzik A, Skolnick J. Functional analysis of the Escherichia coli genome using the sequence-to-structure-to-function paradigm: identification of proteins exhibiting the glutaredoxin/thioredoxin disulfide oxidoreductase activity. J Mol Biol 1998; 282:703-11. [PMID: 9743619 DOI: 10.1006/jmbi.1998.2061] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The application of an automated method for the screening of protein activity based on the sequence-to-structure-to-function paradigm is presented for the complete Escherichia coli genome. First, the structure of the protein is identified from its sequence using a threading algorithm, which aligns the sequences to the best matching structure in a structural database and extends sequence analysis well beyond the limits of local sequence identity. Then, the active site is identified in the resulting sequence-to-structure alignment using a "fuzzy functional form" (FFF), a three-dimensional descriptor of the active site of a protein. Here, this sequence-to-structure-to-function concept is applied to analysis of the complete E. coli genome, i.e. all E. coli open reading frames (ORFs) are screened for the thiol-disulfide oxidoreductase activity of the glutaredoxin/thioredoxin protein family. We show that the method can identify the active sites in ten sequences that are known to or proposed to exhibit this activity. Furthermore, oxidoreductase activity is predicted in two other sequences that have not been identified previously. This method distinguishes protein pairs with similar active sites from proteins pairs that are just topological cousins, i.e. those having similar global folds, but not necessarily similar active sites. Thus, this method provides a novel approach for extraction of active site and functional information based on three-dimensional structures, rather than simple sequence analysis. Prediction of protein activity is fully automated and easily extendible to new functions. Finally, it is demonstrated here that the method can be applied to complete genome database analysis.
Collapse
Affiliation(s)
- J S Fetrow
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
51906
|
Sjamsuridzal W, Sugiyama J. Detection of multiple insertions of group I introns in the nuclear small subunit ribosomal RNA gene from the ustilaginomycete Graphiola phoenicis parasitic on palm. J GEN APPL MICROBIOL 1998; 44:355-360. [PMID: 12501415 DOI: 10.2323/jgam.44.355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Wellyzar Sjamsuridzal
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | | |
Collapse
|
51907
|
Bourges N, Groppi A, Barreau C, Clavé C, Bégueret J. Regulation of gene expression during the vegetative incompatibility reaction in Podospora anserina. Characterization of three induced genes. Genetics 1998; 150:633-41. [PMID: 9755195 PMCID: PMC1460364 DOI: 10.1093/genetics/150.2.633] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Vegetative incompatibility in fungi limits the formation of viable heterokaryons. It results from the coexpression of incompatible genes in the heterokaryotic cells and leads to a cell death reaction. In Podospora anserina, a modification of gene expression takes place during this reaction, including a strong decrease of total RNA synthesis and the appearance of a new set of proteins. Using in vitro translation of mRNA and separation of protein products by two-dimensional gel electrophoresis, we have shown that the mRNA content of cells is qualitatively modified during the progress of the incompatibility reaction. Thus, gene expression during vegetative incompatibility is regulated, at least in part, by variation of the mRNA content of specific genes. A subtractive cDNA library enriched in sequences preferentially expressed during incompatibility was constructed. This library was used to identify genomic loci corresponding to genes whose mRNA is induced during incompatibility. Three such genes were characterized and named idi genes for genes induced during incompatibility. Their expression profiles suggest that they may be involved in different steps of the incompatibility reaction. The putative IDI proteins encoded by these genes are small proteins with signal peptides. IDI-2 protein is a cysteine-rich protein. IDI-2 and IDI-3 proteins display some similarity in a tryptophan-rich region.
Collapse
Affiliation(s)
- N Bourges
- Laboratoire de Génétique Moléculaire des Champignons Filamenteux, UPR CNRS 9026, Institut de Biochimie et de Génétique Cellulaires, UPR CNRS 9026, Bordeaux Cedex, France
| | | | | | | | | |
Collapse
|
51908
|
Weinstock GM, Hardham JM, McLeod MP, Sodergren EJ, Norris SJ. The genome of Treponema pallidum: new light on the agent of syphilis. FEMS Microbiol Rev 1998; 22:323-32. [PMID: 9862125 DOI: 10.1111/j.1574-6976.1998.tb00373.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Treponema pallidum subsp, pallidum, the causative agent of the sexually transmitted disease syphilis, is a fastidious, microaerophilic obligate parasite of humans. This bacterium is one of the few prominent infectious agents that has not been cultured continuously in vitro and consequently relatively little is known about its virulence mechanisms at the molecular level. T. pallidum therefore represented an attractive candidate for genomic sequencing. The complete genome sequence of T. pallidum has now been completed and comprises 1,138,006 base pairs containing 1041 predicted protein coding sequences. An important goal of this project is to identify possible virulence factors. Analysis of the genome indicates a number of potential virulence factors including a family of 12 proteins related to the Msp protein of Treponema denticola, a number of putative hemolysins, as well as several other classes of proteins of interest. The results of this analysis are reviewed in this article and indicate the value of whole genome sequences for rapidly advancing knowledge of infectious agents.
Collapse
Affiliation(s)
- G M Weinstock
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, Houston 77030, USA.
| | | | | | | | | |
Collapse
|
51909
|
Faiyaz ul Haque M, King LM, Krakow D, Cantor RM, Rusiniak ME, Swank RT, Superti-Furga A, Haque S, Abbas H, Ahmad W, Ahmad M, Cohn DH. Mutations in orthologous genes in human spondyloepimetaphyseal dysplasia and the brachymorphic mouse. Nat Genet 1998; 20:157-62. [PMID: 9771708 DOI: 10.1038/2458] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The osteochondrodysplasias are a genetically heterogeneous group of disorders affecting skeletal development, linear growth and the maintenance of cartilage and bone. We have studied a large inbred Pakistani family with a distinct form of recessively inherited spondyloepimetaphyseal dysplasia (SEMD) and mapped a gene associated with this dwarfing condition to chromosome 10q23-24, a region syntenic with the locus for the brachymorphic mutation on mouse chromosome 19. We identified two orthologous genes, ATPSK2 and Atpsk2, encoding novel ATP sulfurylase/APS kinase orthologues in the respective regions of the human and mouse genomes. We characterized a nonsense mutation in ATPSK2 in the SEMD family and a missense mutation in the region of Atpsk2 encoding the APS kinase activity in the brachymorphic mouse. ATP sulfurylase/APS kinase catalyses the metabolic activation of inorganic sulfate to PAPS, the universal donor for post-translational protein sulfation in all cell types. The cartilage-specificity of the human and mouse phenotypes provides further evidence of the critical role of sulfate activation in the maturation of cartilage extracellular matrix molecules and the effect of defects in this process on the architecture of cartilage and skeletogenesis.
Collapse
Affiliation(s)
- M Faiyaz ul Haque
- Ahmanson Department of Pediatrics, Steven Spielberg Pediatric Research Center, Cedars-Sinai Research Institute, Los Angeles, California 90048, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
51910
|
Arpigny JL, Jendrossek D, Jaeger KE. A novel heat-stable lipolytic enzyme from Sulfolobus acidocaldarius DSM 639 displaying similarity to polyhydroxyalkanoate depolymerases. FEMS Microbiol Lett 1998; 167:69-73. [PMID: 9785454 DOI: 10.1111/j.1574-6968.1998.tb13209.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
A fragment of genomic DNA from Sulfolobus acidocaldarius DSM 639 encoding a lipolytic enzyme was cloned and sequenced. The 314-amino acid polypeptide displays a maximum sequence similarity (43%) to a putative polyhydroxyalkanoate depolymerase from Pseudomonas oleovorans and contains the pentapeptide G-X1-S-X2-G which is typical of serine hydrolases. The protein is highly thermostable and is able to hydrolyse a variety of lipid substrates thus providing a promising tool for potential biotechnological applications.
Collapse
Affiliation(s)
- J L Arpigny
- Lehrstuhl für Biologie der Mikroorganismen, Ruhr-Universität Bochum, Germany.
| | | | | |
Collapse
|
51911
|
Ramirez M, Tomasz A. Molecular characterization of the complete 23F capsular polysaccharide locus of Streptococcus pneumoniae. J Bacteriol 1998; 180:5273-8. [PMID: 9748469 PMCID: PMC107572 DOI: 10.1128/jb.180.19.5273-5278.1998] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The complete DNA sequence of the capsular locus 23F of Streptococcus pneumoniae is presented. The 18.6-kb cps23f locus is composed of 18 open reading frames flanked at the 5' and 3' ends by the genes dexB and aliA, an arrangement similar to those of some of the other identified cps loci.
Collapse
Affiliation(s)
- M Ramirez
- The Rockefeller University, New York, New York 10021, USA
| | | |
Collapse
|
51912
|
Leonard CJ, Aravind L, Koonin EV. Novel families of putative protein kinases in bacteria and archaea: evolution of the "eukaryotic" protein kinase superfamily. Genome Res 1998; 8:1038-47. [PMID: 9799791 DOI: 10.1101/gr.8.10.1038] [Citation(s) in RCA: 248] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The central role of serine/threonine and tyrosine protein kinases in signal transduction and cellular regulation in eukaryotes is well established and widely documented. Considerably less is known about the prevalence and role of these protein kinases in bacteria and archaea. In order to examine the evolutionary origins of the eukaryotic-type protein kinase (ePK) superfamily, we conducted an extensive analysis of the proteins encoded by the completely sequenced bacterial and archaeal genomes. We detected five distinct families of known and predicted putative protein kinases with representatives in bacteria and archaea that share a common ancestry with the eukaryotic protein kinases. Four of these protein families have not been identified previously as protein kinases. From the phylogenetic distribution of these families, we infer the existence of an ancestral protein kinase(s) prior to the divergence of eukaryotes, bacteria, and archaea.
Collapse
Affiliation(s)
- C J Leonard
- National Center for Biotechnology Information (NCBI), National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894 USA
| | | | | |
Collapse
|
51913
|
Abstract
The methanogenic archaeon Methanobacterium thermoautotrophicum Marburg is infected by the double-stranded DNA phage psiM2. The complete phage genome sequence of 26 111 bp was established. Thirty-one open reading frames (orfs), all of them organized in the same direction of transcription, were identified. On the basis of comparison of the deduced amino acid sequences to known proteins and by searching for conserved motifs, putative functions were assigned to the products of six orfs. These included three proteins involved in packaging DNA into the capsid, two putative phage structural proteins and a protein related to the Int family of site-specific recombinases. Analysis of the N-terminal amino acid sequences of three phage-encoded proteins led to the identification of two genes encoding structural proteins and of peiP, the structural gene of pseudomurein endoisopeptidase. This enzyme is involved in the lysis of host cells, and it appears to belong to a novel enzyme family. peiP was overexpressed in Escherichia coli, and its product was shown to catalyse the in vitro lysis of M. thermoautotrophicum cells. Comparison of the phage psiM2 DNA sequence with parts of the sequence of the wild-type phage psiM1 suggests that psiM2 is a deletion derivative, which formed by homologous recombination between two copies of a direct repeat.
Collapse
Affiliation(s)
- P Pfister
- Institute of Microbiology, Swiss Federal Institute of Technology Zurich, Schmelzbergstr. 7, CH-8092 Zurich, Switzerland
| | | | | | | |
Collapse
|
51914
|
Mazeyrat S, Saut N, Sargent CA, Grimmond S, Longepied G, Ehrmann IE, Ellis PS, Greenfield A, Affara NA, Mitchell MJ. The mouse Y chromosome interval necessary for spermatogonial proliferation is gene dense with syntenic homology to the human AZFa region. Hum Mol Genet 1998; 7:1713-24. [PMID: 9736773 DOI: 10.1093/hmg/7.11.1713] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Delta Sxrb deletion interval of the mouse Y chromosome contains Spy, a spermatogenesis factor gene(s) whose expression is essential for the postnatal development of the mitotic germ cells, spermatogonia. The boundaries of Delta Sxrb are defined by the duplicated genes Zfy1 and Zfy2 and four further genes have previously been mapped within the interval: Ube1y and Smcy, linked with Zfy1 on a contig of 250 kb, and Dffry and Uty, which were unanchored. The interval was estimated to be >450 kb. In order to identify any further gene(s) that may underlie Spy, systematic exon trapping was performed on an extended contig, anchored on Zfy1, which covers 750 kb of the Delta Sxrb interval. Exons from two novel genes were isolated and placed together with Dffry and Uty on the contig in the order Dffry-Dby-Uty-Tspy-Eif2gammay-Smcy- Ube1y-Zfy1. All the genes, with the double exception of Tspy, are X-Y homologous and produce putatively functional, spliced transcripts. The tight linkage and order of Dffry, Dby and Uty was shown to be conserved in deletion intervals 5C/5D of the human Y chromosome by the construction of a contig of human PAC and YAC clones; this represents the first example of syntenic homology between Y chromosomes from two distinct mammalian orders. Interval 5C/5D contains the distal boundary of the AZFa interval, which, like Delta Sxrb, is believed to be necessary for spermatogonial development in the prepubertal testis. Our results therefore show that AZFa and Spy may be encoded by homologous genes.
Collapse
Affiliation(s)
- S Mazeyrat
- INSERM U491, Faculté de Médecine, 27 Boulevard Jean Moulin, 13385 Marseille cedex 5, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
51915
|
Visick JE, Ichikawa JK, Clarke S. Mutations in the Escherichia coli surE gene increase isoaspartyl accumulation in a strain lacking the pcm repair methyltransferase but suppress stress-survival phenotypes. FEMS Microbiol Lett 1998; 167:19-25. [PMID: 9785447 DOI: 10.1111/j.1574-6968.1998.tb13202.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The Escherichia coli surE gene is co-transcribed with pcm, encoding the L-isoaspartyl protein repair methyltransferase, and is highly conserved among both the Eubacteria and the Archaea; however, no biochemical function has yet been identified for this gene. Isoaspartyl accumulation during stationary phase was much higher in a pcm surE double mutant than in either single mutant, suggesting that the two genes may represent two parallel pathways by which E. coli can respond to protein damage. A null mutation in surE also suppressed stress-survival defects previously observed in a pcm mutant strain, providing further evidence for an interaction between the two gene products.
Collapse
Affiliation(s)
- J E Visick
- Department of Chemistry and Biochemistry, University of California, Los Angeles 90095-1569, USA
| | | | | |
Collapse
|
51916
|
Weimer RM, Creighton CX, Stassinopoulos A, Youderian P, Hartzell PL. A chaperone in the HSP70 family controls production of extracellular fibrils in Myxococcus xanthus. J Bacteriol 1998; 180:5357-68. [PMID: 9765567 PMCID: PMC107584 DOI: 10.1128/jb.180.20.5357-5368.1998] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/1998] [Accepted: 08/05/1998] [Indexed: 11/20/2022] Open
Abstract
Three independent Tn5-lac insertions in the S1 locus of Myxococcus xanthus inactivate the sglK gene, which is nonessential for growth but required for social motility and multicellular development. The sequence of sglK reveals that it encodes a homologue of the chaperone HSP70 (DnaK). The sglK gene is cotranscribed with the upstream grpS gene, which encodes a GrpE homologue. Unlike sglK, grpS is not required for social motility or development. Wild-type M. xanthus is encased in extracellular polysaccharide filaments associated with the multimeric fibrillin protein. Mutations in sglK inhibit cell cohesion, the binding of Congo red, and the synthesis or secretion of fibrillin, indicating that sglK mutants do not make fibrils. The fibR gene, located immediately upstream of the grpS-sglK operon, encodes a product which is predicted to have a sequence similar to those of the repressors of alginate biosynthesis in Pseudomonas aeruginosa and Pseudomonas putida. Inactivation of fibR leads to the overproduction of fibrillin, suggesting that M. xanthus fibril production and Pseudomonas alginate production are regulated in analogous ways. M. xanthus and Pseudomonas exopolysaccharides may play similar roles in a mechanism of social motility conserved in these gram-negative bacteria.
Collapse
Affiliation(s)
- R M Weimer
- Department of Microbiology, Molecular Biology and Biochemistry, University of Idaho, Moscow, Idaho 83844-3052, USA
| | | | | | | | | |
Collapse
|
51917
|
Addis MF, Rappelli P, Delogu G, Carta F, Cappuccinelli P, Fiori PL. Cloning and molecular characterization of a cDNA clone coding for Trichomonas vaginalis alpha-actinin and intracellular localization of the protein. Infect Immun 1998; 66:4924-31. [PMID: 9746598 PMCID: PMC108609 DOI: 10.1128/iai.66.10.4924-4931.1998] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have identified and sequenced a cDNA clone coding for Trichomonas vaginalis alpha-actinin. Analysis of the obtained sequence revealed that the 2,857-nucleotide-long cDNA contained an open reading frame encoding 849 amino acids which showed consistent homology with alpha-actinins of different species. Such homology was particularly significant in regions which have been reported to represent the actin-binding and Ca2+-binding domains in other alpha-actinins. The deduced protein was also characterized by the presence of a divergent central region thought to play a role in its high immunogenicity. A study of protein localization performed by immunofluorescence revealed that the protein is diffusely distributed throughout the T. vaginalis cytoplasm when the cell is pear shaped. When parasites adhere and transform into the amoeboid morphology, the protein is located only in areas close to the cytoplasmic membrane and colocalizes with actin. Concomitantly with transformation into the amoeboid morphology, alpha-actinin mRNA expression is upregulated.
Collapse
Affiliation(s)
- M F Addis
- Division of Experimental and Clinical Microbiology, Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | | | | | | | | | | |
Collapse
|
51918
|
Gerstein M, Hegyi H. Comparing genomes in terms of protein structure: surveys of a finite parts list. FEMS Microbiol Rev 1998; 22:277-304. [PMID: 10357579 DOI: 10.1111/j.1574-6976.1998.tb00371.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We give an overview of the emerging field of structural genomics, describing how genomes can be compared in terms of protein structure. As the number of genes in a genome and the total number of protein folds are both quite limited, these comparisons take the form of surveys of a finite parts list, similar in respects to demographic censuses. Fold surveys have many similarities with other whole-genome characterizations, e.g., analyses of motifs or pathways. However, structure has a number of aspects that make it particularly suitable for comparing genomes, namely the way it allows for the precise definition of a basic protein module and the fact that it has a better defined relationship to sequence similarity than does protein function. An essential requirement for a structure survey is a library of folds, which groups the known structures into 'fold families.' This library can be built up automatically using a structure comparison program, and we described how important objective statistical measures are for assessing similarities within the library and between the library and genome sequences. After building the library, one can use it to count the number of folds in genomes, expressing the results in the form of Venn diagrams and 'top-10' statistics for shared and common folds. Depending on the counting methodology employed, these statistics can reflect different aspects of the genome, such as the amount of internal duplication or gene expression. Previous analyses have shown that the common folds shared between very different microorganisms, i.e., in different kingdoms, have a remarkably similar structure, being comprised of repeated strand-helix-strand super-secondary structure units. A major difficulty with this sort of 'fold-counting' is that only a small subset of the structures in a complete genome are currently known and this subset is prone to sampling bias. One way of overcoming biases is through structure prediction, which can be applied uniformly and comprehensively to a whole genome. Various investigators have, in fact, already applied many of the existing techniques for predicting secondary structure and transmembrane (TM) helices to the recently sequenced genomes. The results have been consistent: microbial genomes have similar fractions of strands and helices even though they have significantly different amino acid composition. The fraction of membrane proteins with a given number of TM helices falls off rapidly with more TM elements, approximately according to a Zipf law. This latter finding indicates that there is no preference for the highly studied 7-TM proteins in microbial genomes. Continuously updated tables and further information pertinent to this review are available over the web at http://bioinfo.mbb.yale.edu/genome.
Collapse
Affiliation(s)
- M Gerstein
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.
| | | |
Collapse
|
51919
|
Cao Y, Oh BC, Stryer L. Cloning and localization of two multigene receptor families in goldfish olfactory epithelium. Proc Natl Acad Sci U S A 1998; 95:11987-92. [PMID: 9751777 PMCID: PMC21752 DOI: 10.1073/pnas.95.20.11987] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/1998] [Indexed: 11/18/2022] Open
Abstract
Goldfish reproduction is coordinated by pheromones that are released by ovulating females and detected by males. Two highly potent pheromones, a dihydroxyprogesterone and a prostaglandin, previously have been identified, and their effects on goldfish behavior have been studied in depth. We have cloned goldfish olfactory epithelium cDNAs belonging to two multigene G-protein coupled receptor families as a step toward elucidating the molecular basis of pheromone recognition. One gene family (GFA) consists of homologs of putative odorant receptors (approximately 320 residues) found in the olfactory epithelium of other fish and mammals. The other family (GFB) consists of homologs of putative pheromone receptors found in the vomeronasal organ (VNO) of mammals and also in the nose of pufferfish. GFB receptors (approximately 840 residues) are akin to the V2R family of VNO receptors, which possess a large extracellular N-terminal domain and are homologs of calcium-sensing and metabotropic glutamate receptors. In situ hybridization showed that the two families of goldfish receptors are differentially expressed in the olfactory epithelium. GFB mRNA is abundant in rather compact cells whose nuclei are near the apical surface. In contrast, GFA mRNA is found in elongated cells whose nuclei are positioned deeper in the epithelium. Our findings support the hypothesis that the separate olfactory organ and VNO of terrestrial vertebrates arose in evolution by the segregation of distinct classes of neurons that were differentially positioned in the olfactory epithelium of a precursor aquatic vertebrate.
Collapse
Affiliation(s)
- Y Cao
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305-5125, USA
| | | | | |
Collapse
|
51920
|
Vidal-Taboada JM, Sanz S, Egeo A, Scartezzini P, Oliva R. Identification and characterization of a new gene from human chromosome 21 between markers D21S343 and D21S268 encoding a leucine-rich protein. Biochem Biophys Res Commun 1998; 250:547-54. [PMID: 9784380 DOI: 10.1006/bbrc.1998.9352] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We initiated the present work as part of an effort to identify and characterize genes from the EST2-HMG14 region from human chromosome 21 potentially responsible for some of the Down syndrome (DS) features. Genomic sample sequencing with cosmid clone A1047 located in the ETS2-HMG14 region of chromosome 21 has led to the identification and sequencing of a novel 1080-bp cDNA. This cDNA contains a potential ORF of 867 bp predicting a 288-amino-acid protein rich in leucine with a molecular weight of 32.8 kD. Northern blot analysis and RT-PRC indicate that the expression of this novel gene is high in testis and in the human leukemic T cell line Jurkat and lower in other tissues including all fetal tissues studied. We have called to this novel gene c21-LRP (chromosome 21 leucine-rich protein) and, because of its location in the DS-2 region, it could be a candidate for some of the DS anomalies. Mapping experiments have narrowed the location of the c21-LRP gene between markers D21S343 and D21S268 from chromosome 21. Analysis of the c21-LRP protein predicts two transmembrane helices and detects several signatures and potential homologies to known proteins pointing toward several potential roles for this protein.
Collapse
Affiliation(s)
- J M Vidal-Taboada
- Institut de Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine, University of Barcelona, Casanova 143, Barcelona, 08036, Spain
| | | | | | | | | |
Collapse
|
51921
|
Halfter W, Dong S, Schurer B, Cole GJ. Collagen XVIII is a basement membrane heparan sulfate proteoglycan. J Biol Chem 1998; 273:25404-12. [PMID: 9738008 DOI: 10.1074/jbc.273.39.25404] [Citation(s) in RCA: 234] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The present study shows that collagen XVIII is, next to perlecan and agrin, the third basal lamina heparan sulfate proteoglycan (HSPG) and the first collagen/proteoglycan with heparan sulfate side chains. By using monoclonal antibodies to an unidentified HSPG in chick, 14 cDNA clones were isolated from a chick yolk sac library. All clones had a common nucleotide sequence that was homologous to the mRNA sequences of mouse and human collagen XVIII. The deduced amino acid sequence of the chick fragment shows an 83% overall homology with the human and mouse collagen XVIII. Similar to the human and mouse homologue, the chick collagen XVIII mRNA has a size of 4.5 kilobase pairs. In Western blots, collagen XVIII appeared as a smear with a molecular mass of 300 kDa. After treatment with heparitinase, the protein was reduced in molecular mass by 120 kDa to a protein core of 180 kDa. Collagen XVIII has typical features of a collagen, such as its existence, under non-denaturing conditions, as a non-covalently linked oligomer, and a sensitivity of the core protein to collagenase digestion. It also has characteristics of an HSPG, such as long heparitinase-sensitive carbohydrate chains and a highly negative net charge. Collagen XVIII is abundant in basal laminae of the retina, epidermis, pia, cardiac and striated muscle, kidney, blood vessels, and lung. In situ hybridization showed that the main expression of collagen XVIII HSPG in the chick embryo is in the kidney and the peripheral nervous system. As a substrate, collagen XVIII moderately promoted the adhesion of Schwann cells but had no such activity on peripheral nervous system neurons and axons.
Collapse
Affiliation(s)
- W Halfter
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.
| | | | | | | |
Collapse
|
51922
|
Carpenter PB, Dunphy WG. Identification of a novel 81-kDa component of the Xenopus origin recognition complex. J Biol Chem 1998; 273:24891-7. [PMID: 9733795 DOI: 10.1074/jbc.273.38.24891] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Xenopus origin recognition complex is essential for chromosomal DNA replication in cell-free extracts. We have immunopurified the Xenopus origin recognition complex with anti-Xorc2 antibodies and analyzed its composition and properties. Xorc2 (p63) is specifically associated with Xorc1 (p115) and up to four additional polypeptides (p81, p78, p45, and p40). The cDNA encoding p81 is highly homologous to various expressed sequence tags from humans and mice encoding a protein of previously unknown function. Immunodepletion of p81 from Xenopus egg extracts, which also results in the removal of Xorc2, completely abolishes chromosomal DNA replication. Thus, p81 appears to play a crucial role at S phase in higher eukaryotes.
Collapse
Affiliation(s)
- P B Carpenter
- Division of Biology, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California 91125, USA
| | | |
Collapse
|
51923
|
Lewin DA, Sheff D, Ooi CE, Whitney JA, Yamamoto E, Chicione LM, Webster P, Bonifacino JS, Mellman I. Cloning, expression, and localization of a novel gamma-adaptin-like molecule. FEBS Lett 1998; 435:263-8. [PMID: 9762922 DOI: 10.1016/s0014-5793(98)01083-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
We describe the cloning, expression, and localization of gamma2-adaptin, a novel isoform of gamma-adaptin. The predicted human and mouse gamma2-adaptin proteins are approximately 90 kDa and 64.4% and 61.7%) identical to gamma-adaptin, respectively. gamma2-Adaptin was localized to the Golgi, its localization distinct from gamma-adaptin. The membrane association of gamma- and gamma2-adaptin could further be distinguished by differential sensitivity to the fungal metabolite brefeldin A, gamma2-adaptin binding being insensitive to drug treatment. Together, these results suggest that gamma2-adaptin plays a role in membrane transport distinct from that played by gamma-adaptin.
Collapse
Affiliation(s)
- D A Lewin
- Yale University School of Medicine, Department of Cell Biology, New Haven, CT 06520-8002, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
51924
|
Kimura M, Matsumoto G, Shingu Y, Yoneyama K, Yamaguchi I. The mystery of the trichothecene 3-O-acetyltransferase gene. Analysis of the region around Tri101 and characterization of its homologue from Fusarium sporotrichioides. FEBS Lett 1998; 435:163-8. [PMID: 9762900 DOI: 10.1016/s0014-5793(98)01061-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The trichothecene 3-O-acetyltransferase gene, Tri101, plays a pivotal role for the well-being of the type B trichothecene producer Fusarium graminearum. We have analyzed the cosmids containing Tri101 and found that this resistance gene is not in the biosynthetic gene cluster reported so far. It was located between the UTP-ammonia ligase gene and the phosphate permease gene which are not related to trichothecene biosynthesis. These two 'house-keeping' genes were also linked in Fusarium species that do not produce trichothecenes. The result suggests that the isolated occurrence of Tri101 is attributed to horizontal gene transfer and not to the reciprocal translocation of the chromosome containing the gene cluster. Interestingly, 3-O-acetylation was not always a primary self-defensive strategy for all the t-type trichothecene producers; i.e. the type A trichothecene producer Fusarium sporotrichioides did not acetylate T-2 toxin in vivo although the fungus possessed a functional 3-O-acetyltransferase gene. Thus Tri101 appears to be a defense option which the producers have independently acquired in addition to their original resistance mechanisms.
Collapse
Affiliation(s)
- M Kimura
- Microbial Toxicology Laboratory, The Institute of Physical and Chemical Research (RIKEN), Wako, Saitama, Japan.
| | | | | | | | | |
Collapse
|
51925
|
Abstract
The MutS protein of Escherichia coli plays a key role in the recognition and repair of errors made during the replication of DNA. Homologs of MutS have been found in many species including eukaryotes, Archaea and other bacteria, and together these proteins have been grouped into the MutS family. Although many of these proteins have similar activities to the E.coli MutS, there is significant diversity of function among the MutS family members. This diversity is even seen within species; many species encode multiple MutS homologs with distinct functions. To better characterize the MutS protein family, I have used a combination of phylogenetic reconstructions and analysis of complete genome sequences. This phylogenomic analysis is used to infer the evolutionary relationships among the MutS family members and to divide the family into subfamilies of orthologs. Analysis of the distribution of these orthologs in particular species and examination of the relationships within and between subfamilies is used to identify likely evolutionary events (e.g. gene duplications, lateral transfer and gene loss) in the history of the MutS family. In particular, evidence is presented that a gene duplication early in the evolution of life resulted in two main MutS lineages, one including proteins known to function in mismatch repair and the other including proteins known to function in chromosome segregation and crossing-over. The inferred evolutionary history of the MutS family is used to make predictions about some of the uncharacterized genes and species included in the analysis. For example, since function is generally conserved within subfamilies and lineages, it is proposed that the function of uncharacterized proteins can be predicted by their position in the MutS family tree. The uses of phylogenomic approaches to the study of genes and genomes are discussed.
Collapse
Affiliation(s)
- J A Eisen
- Department of Biological Sciences, Stanford University, Stanford, CA 94305-5020, USA.
| |
Collapse
|
51926
|
Anumanthan A, Bensussan A, Boumsell L, Christ AD, Blumberg RS, Voss SD, Patel AT, Robertson MJ, Nadler LM, Freeman GJ. Cloning of BY55, a Novel Ig Superfamily Member Expressed on NK Cells, CTL, and Intestinal Intraepithelial Lymphocytes. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.6.2780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Expression of the BY55 protein has been shown to be tightly associated with NK and CD8+ T lymphocytes with cytolytic effector activity. To determine the function of this protein, we molecularly cloned BY55 cDNA. The cDNA sequence predicts a cysteine-rich, glycosylphosphatidylinositol-anchored protein of 181 amino acids with a single Ig-like domain weakly homologous to killer inhibitory receptors. Reduction and carboxyamidomethylation of immunoprecipitated BY55 gave a band of 27 kDa, whereas reduction alone led to an 80-kDa species, suggesting that BY55 is a tightly disulfide-linked multimer. RNA blot analysis revealed BY55 mRNAs of 1.5 and 1.6 kb whose expression was highly restricted to NK and T cells. BY55 was expressed on the CD56dim, CD16+ subset of NK cells, which have high cytolytic activity, but was not expressed and was not induced on the CD56bright, CD16− subset of NK cells, a subset with high proliferative, but low cytolytic, capacity. In human tissues, BY55 mRNA was expressed only in spleen, PBL, and small intestine (in gut lymphocytes). BY55 was expressed on all intestinal intraepithelial lymphocytes, which were predominantly CD3+TCRα/β+CD4−CD8+CD11b+CD28−CD45RO+CD56−CD101+CD103+ (αEβ7 integrin). In addition, BY55 was expressed on most CD8+CD28− peripheral blood T cells. These phenotypic relationships suggest that CD8+CD28+ precursor CTL may terminally differentiate into CD8+CD28−BY55+ effector CTL and that some of the peripheral blood CD8+CD28− subset may represent recirculation from mucosal epithelial immune sites.
Collapse
Affiliation(s)
- Anukanth Anumanthan
- *Department of Adult Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115
| | - Armand Bensussan
- †Institut National de la Santé et de la Recherche Médicale, Unit 448, Faculte de Medicine de Creteil, Paris, France; and
| | - Laurence Boumsell
- †Institut National de la Santé et de la Recherche Médicale, Unit 448, Faculte de Medicine de Creteil, Paris, France; and
| | - Andreas D. Christ
- ‡Gastroenterology Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Richard S. Blumberg
- ‡Gastroenterology Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Stephan D. Voss
- *Department of Adult Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115
| | - Amish T. Patel
- *Department of Adult Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115
| | - Michael J. Robertson
- *Department of Adult Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115
| | - Lee M. Nadler
- *Department of Adult Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115
| | - Gordon J. Freeman
- *Department of Adult Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
51927
|
Aravind L, Leipe DD, Koonin EV. Toprim--a conserved catalytic domain in type IA and II topoisomerases, DnaG-type primases, OLD family nucleases and RecR proteins. Nucleic Acids Res 1998; 26:4205-13. [PMID: 9722641 PMCID: PMC147817 DOI: 10.1093/nar/26.18.4205] [Citation(s) in RCA: 320] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Iterative profile searches and structural modeling show that bacterial DnaG-type primases, small primase-like proteins from bacteria and archaea, type IA and type II topoisomerases, bacterial and archaeal nucleases of the OLD family and bacterial DNA repair proteins of the RecR/M family contain a common domain, designated Toprim (topoisomerase-primase) domain. The domain consists of approximately 100 amino acids and has two conserved motifs, one of which centers at a conserved glutamate and the other one at two conserved aspartates (DxD). Examination of the structure of Topo IA and Topo II and modeling of the Toprim domains of the primases reveal a compact beta/alpha fold, with the conserved negatively charged residues juxtaposed, and inserts seen in Topo IA and Topo II. The conserved glutamate may act as a general base in nucleotide polymerization by primases and in strand rejoining by topoisomerases and as a general acid in strand cleavage by topoisomerases and nucleases. The role of this glutamate in catalysis is supported by site-directed mutagenesis data on primases and Topo IA. The DxD motif may coordinate Mg2+that is required for the activity of all Toprim-containing enzymes. The common ancestor of all life forms could encode a prototype Toprim enzyme that might have had both nucleotidyl transferase and polynucleotide cleaving activity.
Collapse
Affiliation(s)
- L Aravind
- Department of Biology, Texas A&M University, College Station, TX 70843, USA, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | | |
Collapse
|
51928
|
Gal-Mor O, Borovok I, Av-Gay Y, Cohen G, Aharonowitz Y. Gene organization in the trxA/B-oriC region of the Streptomyces coelicolor chromosome and comparison with other eubacteria. Gene 1998; 217:83-90. [PMID: 9795152 DOI: 10.1016/s0378-1119(98)00357-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The gene organization was determined in the trxA/B-rnpA region of the Streptomyces coelocolor chromosome, near to the origin of replication, oriC. Previously, we showed that the trxA and trxB genes, coding for thioredoxin and thioredoxin reductase, respectively, occur in S. coelicolor as a gene cluster and are contained on a cosmid H24 that carries oriC and several genes involved in DNA replication. Here we show that the trxA/B locus is positioned approx. 9.4kb from oriC, present the nucleotide sequence of the trxA/B-rnpA region and use sequence analysis to identify the nature of the intervening genes. Seven open reading frames were found, all oriented in the same direction, five of which were identified as the S. coelicolor homologs of SpoIIIJ, Jag, GidB, Soj and SpoOJ in Bacillus subtilis and which have been ascribed different functions in this and other bacteria for either DNA replication, chromosomal partitioning or morphological development. The arrangement of the genes coding for the above five proteins in the trxA/B-rnpA region in S. coelicolor resembles that in Mycobacterium leprae, Mycobacterium tuberculosis, B. subtilis and Pseudomonas putida, and supports the view that many of the genes necessary for development and cell division in bacteria are organized in a similar fashion. In B. subtilis and P. putida, however, the trxA/B genes are not present in the above gene arrangement.
Collapse
Affiliation(s)
- O Gal-Mor
- Department of Molecular Microbiology, Biotechnology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Ramat Aviv 69978, Israel
| | | | | | | | | |
Collapse
|
51929
|
Martinez E, Kundu TK, Fu J, Roeder RG. A human SPT3-TAFII31-GCN5-L acetylase complex distinct from transcription factor IID. J Biol Chem 1998; 273:23781-5. [PMID: 9726987 DOI: 10.1074/jbc.273.37.23781] [Citation(s) in RCA: 155] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In yeast, SPT3 is a component of the multiprotein SPT-ADA-GCN5 acetyltransferase (SAGA) complex that integrates proteins with transcription coactivator/adaptor functions (ADAs and GCN5), histone acetyltransferase activity (GCN5), and core promoter-selective functions (SPTs) involving interactions with the TATA-binding protein (TBP). In particular, yeast SPT3 has been shown to interact directly with TBP. Here we report the molecular cloning of a cDNA encoding a human homologue of yeast SPT3. Amino acid sequence comparisons between human SPT3 (hSPT3) and its counterparts in different yeast species reveal three highly conserved domains, with the most conserved 92-amino acid N-terminal domain being 25% identical with human TAFII18. Despite the significant sequence similarity with TAFII18, native hSPT3 is not a bona fide TAFII because it is not associated in vivo either with human TBP/TFIID or with a TFIID-related TBP-free TAFII complex. However, we present evidence that hSPT3 is associated in vivo with TAFII31 and the recently described longer form of human GCN5 (hGCN5-L) in a novel human complex that has histone acetyltransferase activity. We propose that the human SPT3-TAFII31-GCN5-L acetyltransferase (STAGA) complex is a likely homologue of the yeast SAGA complex.
Collapse
Affiliation(s)
- E Martinez
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, New York 10021, USA
| | | | | | | |
Collapse
|
51930
|
Dustin ML, Olszowy MW, Holdorf AD, Li J, Bromley S, Desai N, Widder P, Rosenberger F, van der Merwe PA, Allen PM, Shaw AS. A novel adaptor protein orchestrates receptor patterning and cytoskeletal polarity in T-cell contacts. Cell 1998; 94:667-77. [PMID: 9741631 DOI: 10.1016/s0092-8674(00)81608-6] [Citation(s) in RCA: 559] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Recognition of antigen by T cells requires the formation of a specialized junction between the T cell and the antigen-presenting cell. This junction is generated by the recruitment and the exclusion of specific proteins from the contact area. The mechanisms that regulate these events are unknown. Here we demonstrate that ligand engagement of the adhesion molecule, CD2, initiates a process of protein segregation, CD2 clustering, and cytoskeletal polarization. Although protein segregation was not dependent on the cytoplasmic domain of CD2, CD2 clustering and cytoskeletal polarization required an interaction of the CD2 cytoplasmic domain with a novel SH3-containing protein. This novel protein, called CD2AP, is likely to facilitate receptor patterning in the contact area by linking specific adhesion receptors to the cytoskeleton.
Collapse
Affiliation(s)
- M L Dustin
- Department of Pathology and Center for Immunology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
51931
|
|
51932
|
Baker ME. Evolution of mammalian 11beta- and 17beta-hydroxysteroid dehydrogenases-type 2 and retinol dehydrogenases from ancestors in Caenorhabditis elegans and evidence for horizontal transfer of a eukaryote dehydrogenase to E. coli. J Steroid Biochem Mol Biol 1998; 66:355-63. [PMID: 9749841 DOI: 10.1016/s0960-0760(98)00064-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Physiological responses due to steroid hormones and retinoids are regulated by their cognate receptors and dehydrogenases. The origins of either regulatory mechanism are not fully understood. Here we examine the origins of the human 11beta-hydroxysteroid dehydrogenase-type 2, which regulates access of glucocorticoids to cells, and 17beta-hydroxysteroid dehydrogenase-type 2, which regulates access of androgens and estrogens to cells. Sequence comparisons trace their ancestry to homologs in Caenorhabditis elegans. These C. elegans proteins most closely resemble mammalian all-trans and 11-cis-retinol dehydrogenases. The similarity is sufficient -37% to 43% identity to suggest that one or more of the C. elegans homologs metabolizes a retinoid. Receptors for retinoids, but not for androgens, estrogens or glucocorticoids have been identified in C. elegans, suggesting that retinoid-mediated gene transcription is more ancient than that for adrenal and sex steroids. We propose that the hydroxysteroid dehydrogenase-type 2 mechanism for regulating the androgen, estrogen and glucocorticoid concentrations in mammals descended from that for regulating retinoid concentrations. Interestingly, E. coli contains a protein with strong sequence similarity to mammalian retinol dehydrogenases. Sequence comparisons and phylogenetic analysis indicate that the E. coli protein may be an example of horizontal transfer from a eukaryote ancestor.
Collapse
Affiliation(s)
- M E Baker
- Department of Medicine, University of California, San Diego, La Jolla 92093-0623, USA.
| |
Collapse
|
51933
|
Trebesius K, Harmsen D, Rakin A, Schmelz J, Heesemann J. Development of rRNA-targeted PCR and in situ hybridization with fluorescently labelled oligonucleotides for detection of Yersinia species. J Clin Microbiol 1998; 36:2557-64. [PMID: 9705392 PMCID: PMC105162 DOI: 10.1128/jcm.36.9.2557-2564.1998] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this report, we present details of two rapid molecular detection techniques based on 16S and 23S rRNA sequence data to identify and differentiate Yersinia species from clinical and environmental sources. Near-full-length 16S rRNA gene (rDNA) sequences for three different Yersinia species and partial 23S rDNA sequences for three Y. pestis and three Y. pseudotuberculosis strains were determined. While 16S rDNA sequences of Y. pestis and Y. pseudotuberculosis were found to be identical, one base difference was identified within a highly variable region of 23S rDNA. The rDNA sequences were used to develop primers and fluorescently tagged oligonucleotide probes suitable for differential detection of Yersinia species by PCR and in situ hybridization, respectively. As few as 10(2) Yersinia cells per ml could be detected by PCR with a seminested approach. Amplification with a subgenus-specific primer pair followed by a second PCR allowed differentiation of Y. enterocolitica biogroup 1B from biogroups 2 to 5 or from other pathogenic Yersinia species. Moreover, a set of oligonucleotide probes suitable for rapid (3-h) in situ detection and differentiation of the three pathogenic Yersinia species (in particular Y. pestis and Y. pseudotuberculosis) was developed. The applicability of this technique was demonstrated by detection of Y. pestis and Y. pseudotuberculosis in spiked throat and stool samples, respectively. These probes were also capable of identifying Y. enterocolitica within cryosections of experimentally infected mouse tissue by the use of confocal laser scanning microscopy.
Collapse
Affiliation(s)
- K Trebesius
- Max-von-Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig Maximilians Universität München, D-80336 Munich, Germany
| | | | | | | | | |
Collapse
|
51934
|
Macfadyen LP, Ma C, Redfield RJ. A 3',5' cyclic AMP (cAMP) phosphodiesterase modulates cAMP levels and optimizes competence in Haemophilus influenzae Rd. J Bacteriol 1998; 180:4401-5. [PMID: 9721275 PMCID: PMC107447 DOI: 10.1128/jb.180.17.4401-4405.1998] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/1998] [Accepted: 06/25/1998] [Indexed: 11/20/2022] Open
Abstract
Changes in intracellular 3',5' cyclic AMP (cAMP) concentration regulate the development of natural competence in Haemophilus influenzae. In Escherichia coli, cAMP levels are modulated by a cAMP phosphodiesterase encoded by the cpdA gene. We have used several approaches to demonstrate that the homologous icc gene of H. influenzae encodes a functional cAMP phosphodiesterase and that this gene limits intracellular cAMP and thereby influences competence and other cAMP-dependent processes. In E. coli, expression of cloned icc reduced both cAMP-dependent sugar fermentation and beta-galactosidase expression, as has been shown for cpdA. In H. influenzae, an icc null mutation increased cAMP-dependent sugar fermentation and competence development in strains where these processes are limited by mutations reducing cAMP synthesis. When endogenous production of cAMP was eliminated by a cya mutation, an icc strain was 10,000-fold more sensitive to exogenous cAMP than an icc+ strain. The icc strain showed moderately elevated competence under noninducing conditions, as expected, but had subnormal competence increases at onset of stationary phase in rich medium, and on transfer to a nutrient-limited medium, suggesting that excessive cAMP may interfere with induction. Consistent with this finding, a cya strain cultured in 1 mM cAMP failed to develop maximal competence on transfer to inducing conditions. Thus, by limiting cAMP levels, the H. influenzae cAMP phosphodiesterase may coordinate its responses to nutritional stress, ensuring optimal competence development.
Collapse
Affiliation(s)
- L P Macfadyen
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
51935
|
Yan D, Perriman R, Igel H, Howe KJ, Neville M, Ares M. CUS2, a yeast homolog of human Tat-SF1, rescues function of misfolded U2 through an unusual RNA recognition motif. Mol Cell Biol 1998; 18:5000-9. [PMID: 9710584 PMCID: PMC109085 DOI: 10.1128/mcb.18.9.5000] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A screen for suppressors of a U2 snRNA mutation identified CUS2, an atypical member of the RNA recognition motif (RRM) family of RNA binding proteins. CUS2 protein is associated with U2 RNA in splicing extracts and interacts with PRP11, a subunit of the conserved splicing factor SF3a. Absence of CUS2 renders certain U2 RNA folding mutants lethal, arguing that a normal activity of CUS2 is to help refold U2 into a structure favorable for its binding to SF3b and SF3a prior to spliceosome assembly. Both CUS2 function in vivo and the in vitro RNA binding activity of CUS2 are disrupted by mutation of the first RRM, suggesting that rescue of misfolded U2 involves the direct binding of CUS2. Human Tat-SF1, reported to stimulate Tat-specific, transactivating region-dependent human immunodeficiency virus transcription in vitro, is structurally similar to CUS2. Anti-Tat-SF1 antibodies coimmunoprecipitate SF3a66 (SAP62), the human homolog of PRP11, suggesting that Tat-SF1 has a parallel function in splicing in human cells.
Collapse
Affiliation(s)
- D Yan
- Center for the Molecular Biology of RNA, Biology Department, University of California, Santa Cruz, Santa Cruz, California 95064, USA
| | | | | | | | | | | |
Collapse
|
51936
|
Adams JC, Seed B, Lawler J. Muskelin, a novel intracellular mediator of cell adhesive and cytoskeletal responses to thrombospondin-1. EMBO J 1998; 17:4964-74. [PMID: 9724633 PMCID: PMC1170825 DOI: 10.1093/emboj/17.17.4964] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We have used an expression cloning strategy based on a cell-attachment assay screen to seek identification of molecules required in cellular responses to thrombospondin-1, a regulated macromolecular component of extracellular matrix. We report the identification and functional characterization of a novel, widely expressed, intracellular protein, named muskelin, which contains dispersed motifs with homology to the tandem repeats first identified in the Drosophila kelch ORF1 protein. In adherent C2C12 cells, muskelin localizes in the cytoplasm and at cell margins. Over-expression of muskelin in C2C12 cells promotes cell attachment to the thrombospondin-1 C-terminal domain, alters the mechanisms of attachment to intact thrombospondin-1 and correlates with decreased formation of fascin microspikes and increased assembly of focal contacts by cells adherent on thrombospondin-1. Reciprocally, cell attachment, spreading and cytoskeletal organization are specifically reduced in TSP-1-adherent cells after antisense depletion of muskelin. These results establish a requirement for muskelin in cell responses to thrombospondin-1 and demonstrate that such responses involve a novel process which is integrated into the regulation of cell-adhesive behaviour and cytoskeletal organization.
Collapse
Affiliation(s)
- J C Adams
- MRC Laboratory for Molecular Cell Biology and Department of Biochemistry and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK
| | | | | |
Collapse
|
51937
|
Scharf JM, Endrizzi MG, Wetter A, Huang S, Thompson TG, Zerres K, Dietrich WF, Wirth B, Kunkel LM. Identification of a candidate modifying gene for spinal muscular atrophy by comparative genomics. Nat Genet 1998; 20:83-6. [PMID: 9731538 DOI: 10.1038/1753] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Spinal muscular atrophy (SMA) is a common recessive disorder characterized by the loss of lower motor neurons in the spinal cord. The disease has been classified into three types based on age of onset and severity. SMA I-III all map to chromosome 5q13 (refs 2,3), and nearly all patients display deletions or gene conversions of the survival motor neuron (SMN1) gene. Some correlation has been established between SMN protein levels and disease course; nevertheless, the genetic basis for SMA phenotypic variability remains unclear, and it has been postulated that the loss of an additional modifying factor contributes to the severity of type I SMA. Using comparative genomics to screen for such a factor among evolutionarily conserved sequences between mouse and human, we have identified a novel transcript, H4F5, which lies closer to SMN1 than any previously identified gene in the region. A multi-copy microsatellite marker that is deleted in more than 90% of type I SMA chromosomes is embedded in an intron of this gene, indicating that H4F5 is also highly deleted in type I SMA chromosomes, and thus is a candidate phenotypic modifier for SMA.
Collapse
Affiliation(s)
- J M Scharf
- Program in Neuroscience, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
51938
|
Arigoni F, Talabot F, Peitsch M, Edgerton MD, Meldrum E, Allet E, Fish R, Jamotte T, Curchod ML, Loferer H. A genome-based approach for the identification of essential bacterial genes. Nat Biotechnol 1998; 16:851-6. [PMID: 9743119 DOI: 10.1038/nbt0998-851] [Citation(s) in RCA: 197] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have used comparative genomics to identify 26 Escherichia coli open reading frames that are both of unknown function (hypothetical open reading frames or y-genes) and conserved in the compact genome of Mycoplasma genitalium. Not surprisingly, these genes are broadly conserved in the bacterial world. We used a markerless knockout strategy to screen for essential E. coli genes. To verify this phenotype, we constructed conditional mutants in genes for which no null mutants could be obtained. In total we identified six genes that are essential for E. coli (yhbZ, ygjD, ycfB, yfil, yihA, and yjeQ). The respective orthologs of the genes yhbZ, ygjD, ycfB, yjeQ, and yihA are also essential in Bacillus subtilis. This low number of essential genes was unexpected and might be due to a characteristic of the versatile genomes of E. coli and B. subtilis that is comparable to the phenomenon of nonorthologous gene displacement. The gene ygjD, encoding a sialoglycoprotease, was eliminated from a minimal genome computationally derived from a comparison of the Haemophilus influenzae and M. genitalium genomes. We show that ygjD and its ortholog ydiE are essential in E. coli and B. subtilis, respectively. Thus, we include this gene in a minimal genome. This study systematically integrates comparative genomics and targeted gene disruptions to identify broadly conserved bacterial genes of unknown function required for survival on complex media.
Collapse
Affiliation(s)
- F Arigoni
- Geneva Biomedical Research Institute, Glaxo Wellcome Research and Development S.A., Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
51939
|
Birukov KG, Schavocky JP, Shirinsky VP, Chibalina MV, Van Eldik LJ, Watterson DM. Organization of the genetic locus for chicken myosin light chain kinase is complex: Multiple proteins are encoded and exhibit differential expression and localization. J Cell Biochem 1998. [DOI: 10.1002/(sici)1097-4644(19980901)70:3<402::aid-jcb13>3.0.co;2-m] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
51940
|
|
51941
|
McClelland M, Wilson RK. Comparison of sample sequences of the Salmonella typhi genome to the sequence of the complete Escherichia coli K-12 genome. Infect Immun 1998; 66:4305-12. [PMID: 9712782 PMCID: PMC108520 DOI: 10.1128/iai.66.9.4305-4312.1998] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/1997] [Accepted: 06/04/1998] [Indexed: 11/20/2022] Open
Abstract
Raw sequence data representing the majority of a bacterial genome can be obtained at a tiny fraction of the cost of a completed sequence. To demonstrate the utility of such a resource, 870 single-stranded M13 clones were sequenced from a shotgun library of the Salmonella typhi Ty2 genome. The sequence reads averaged over 400 bases and sampled the genome with an average spacing of once every 5,000 bases. A total of 339,243 bases of unique sequence was generated (approximately 7% representation). The sample of 870 sequences was compared to the complete Escherichia coli K-12 genome and to the rest of the GenBank database, which can also be considered a collection of sampled sequences. Despite the incomplete S. typhi data set, interesting categories could easily be discerned. Sixteen percent of the sequences determined from S. typhi had close homologs among known Salmonella sequences (P < 1e-40 in BlastX or BlastN), reflecting the proportion of these genomes that have been sequenced previously; 277 sequences (32%) had no apparent orthologs in the complete E. coli K-12 genome (P > 1e-20), of which 155 sequences (18%) had no close similarities to any sequence in the database (P > 1e-5). Eight of the 277 sequences had similarities to genes in other strains of E. coli or plasmids, and six sequences showed evidence of novel phage lysogens or sequence remnants of phage integrations, including a member of the lambda family (P < 1e-15). Twenty-three sample sequences had a significantly closer similarity a sequence in the database from organisms other than the E. coli/Salmonella clade (which includes Shigella and Citrobacter). These sequences are new candidate lateral transfer events to the S. typhi lineage or deletions on the E. coli K-12 lineage. Eleven putative junctions of insertion/deletion events greater than 100 bp were observed in the sample, indicating that well over 150 such events may distinguish S. typhi from E. coli K-12. The need for automatic methods to more effectively exploit sample sequences is discussed.
Collapse
Affiliation(s)
- M McClelland
- Sidney Kimmel Cancer Center, San Diego, California 92121, USA.
| | | |
Collapse
|
51942
|
Mizrahi V, Andersen SJ. DNA repair in Mycobacterium tuberculosis. What have we learnt from the genome sequence? Mol Microbiol 1998; 29:1331-9. [PMID: 9781872 DOI: 10.1046/j.1365-2958.1998.01038.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The genome sequence of Mycobacterium tuberculosis was analysed by searching for homologues of genes known to be involved in the reversal or repair of DNA damage in Escherichia coli and related organisms. Genes necessary to perform nucleotide excision repair (NER), base excision repair (BER), recombination, and SOS repair and mutagenesis were identified. In particular, all of the genes known to be directly involved in the repair of oxidative and alkylative damage are present in M. tuberculosis. In contrast, we failed to identify homologues of genes involved in mismatch repair. This finding has potentially significant implications with respect to genome stability, strain variability at repeat loci and the emergence of chromosomally encoded drug resistance mutations.
Collapse
Affiliation(s)
- V Mizrahi
- Molecular Biology Unit, South African Institute for Medical Research, Johannesburg.
| | | |
Collapse
|
51943
|
Das A, Park JH, Hagen CB, Parsons M. Distinct domains of a nucleolar protein mediate protein kinase binding, interaction with nucleic acids and nucleolar localization. J Cell Sci 1998; 111 ( Pt 17):2615-23. [PMID: 9701560 DOI: 10.1242/jcs.111.17.2615] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Nopp44/46 is a phosphoprotein of the protozoan parasite Trypanosoma brucei that is localized to the nucleolus. Based on the primary sequence, Nopp44/46 appears to be a protein composed of distinct domains. This communication describes the relationship of these domains to the known functional interactions of the molecule and suggests that the amino-terminal region defines a novel homology region that functions in nucleolar targeting. We have previously shown that Nopp44/46 is capable of interacting with nucleic acids and associating with a protein kinase. Using in vitro transcription and translation, we now demonstrate that the nucleic acid binding function maps to the carboxy-terminal domain of the molecule, a region rich in arginine-glycine-glycine motifs. Our experiments reveal that a central region containing a high proportion of acidic residues is required for association with the protein kinase. Analysis of transfectants expressing epitope-tagged Nopp44/46 deletion constructs showed that the amino-terminal 96 amino acids allowed nuclear and nucleolar accumulation of the protein. This region of the molecule shows homology to several recently described nucleolar proteins. Deletion of a 27-amino-acid region within this domain abrogated nucleolar, but not nuclear, localization. These studies show that Nopp44/46 is composed of distinct modules, each of which plays a different role in molecular interactions. We suggest that this protein could facilitate interactions between sets of nucleolar molecules.
Collapse
Affiliation(s)
- A Das
- Seattle Biomedical Research Institute, Seattle, WA 98109, USA
| | | | | | | |
Collapse
|
51944
|
Tate P, Lee M, Tweedie S, Skarnes WC, Bickmore WA. Capturing novel mouse genes encoding chromosomal and other nuclear proteins. J Cell Sci 1998; 111 ( Pt 17):2575-85. [PMID: 9701556 DOI: 10.1242/jcs.111.17.2575] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The burgeoning wealth of gene sequences contrasts with our ignorance of gene function. One route to assigning function is by determining the sub-cellular location of proteins. We describe the identification of mouse genes encoding proteins that are confined to nuclear compartments by splicing endogeneous gene sequences to a promoterless betageo reporter, using a gene trap approach. Mouse ES (embryonic stem) cell lines were identified that express betageo fusions located within sub-nuclear compartments, including chromosomes, the nucleolus and foci containing splicing factors. The sequences of 11 trapped genes were ascertained, and characterisation of endogenous protein distribution in two cases confirmed the validity of the approach. Three novel proteins concentrated within distinct chromosomal domains were identified, one of which appears to be a serine/threonine kinase. The sequence of a gene whose product co-localises with splicesome components suggests that this protein may be an E3 ubiquitin-protein ligase. The majority of the other genes isolated represent novel genes. This approach is shown to be a powerful tool for identifying genes encoding novel proteins with specific sub-nuclear localisations and exposes our ignorance of the protein composition of the nucleus. Motifs in two of the isolated genes suggest new links between cellular regulatory mechanisms (ubiquitination and phosphorylation) and mRNA splicing and chromosome structure/function.
Collapse
Affiliation(s)
- P Tate
- MRC Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, Scotland, UK
| | | | | | | | | |
Collapse
|
51945
|
Marin K, Zuther E, Kerstan T, Kunert A, Hagemann M. The ggpS gene from Synechocystis sp. strain PCC 6803 encoding glucosyl-glycerol-phosphate synthase is involved in osmolyte synthesis. J Bacteriol 1998; 180:4843-9. [PMID: 9733686 PMCID: PMC107508 DOI: 10.1128/jb.180.18.4843-4849.1998] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A salt-sensitive mutant of Synechocystis sp. strain PCC 6803 defective in the synthesis of the compatible solute glucosylglycerol (GG) was used to search for the gene encoding GG-phosphate synthase (GGPS), the key enzyme in GG synthesis. Cloning and sequencing of the mutated region and the corresponding wild-type region revealed that a deletion of about 13 kb occurred in the genome of mutant 11. This deletion affected at least 10 open reading frames, among them regions coding for proteins showing similarities to trehalose (otsA homolog)- and glycerol-3-phosphate-synthesizing enzymes. After construction and characterization of mutants defective in these genes, it became obvious that an otsA homolog (sll1566) (T. Kaneko et al., DNA Res. 3:109-136, 1996) encodes GGPS, since only the mutant affected in sll1566 showed salt sensitivity combined with a complete absence of GG accumulation. Furthermore, the overexpression of sll1566 in Escherichia coli led to the appearance of GGPS activity in the heterologous host. The overexpressed protein did not show the salt dependence that is characteristic for the GGPS in crude protein extracts of Synechocystis.
Collapse
Affiliation(s)
- K Marin
- Universität Rostock, FB Biologie, D-18051 Rostock, Germany
| | | | | | | | | |
Collapse
|
51946
|
Zhang Z, Schäffer AA, Miller W, Madden TL, Lipman DJ, Koonin EV, Altschul SF. Protein sequence similarity searches using patterns as seeds. Nucleic Acids Res 1998; 26:3986-90. [PMID: 9705509 PMCID: PMC147803 DOI: 10.1093/nar/26.17.3986] [Citation(s) in RCA: 224] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Protein families often are characterized by conserved sequence patterns or motifs. A researcher frequently wishes to evaluate the significance of a specific pattern within a protein, or to exploit knowledge of known motifs to aid the recognition of greatly diverged but homologous family members. To assist in these efforts, the pattern-hit initiated BLAST (PHI-BLAST) program described here takes as input both a protein sequence and a pattern of interest that it contains. PHI-BLAST searches a protein database for other instances of the input pattern, and uses those found as seeds for the construction of local alignments to the query sequence. The random distribution of PHI-BLAST alignment scores is studied analytically and empirically. In many instances, the program is able to detect statistically significant similarity between homologous proteins that are not recognizably related using traditional single-pass database search methods. PHI-BLAST is applied to the analysis of CED4-like cell death regulators, HS90-type ATPase domains, archaeal tRNA nucleotidyltransferases and archaeal homologs of DnaG-type DNA primases.
Collapse
Affiliation(s)
- Z Zhang
- Department of Computer Science and Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | | | |
Collapse
|
51947
|
Warren RF, Henk A, Mowery P, Holub E, Innes RW. A mutation within the leucine-rich repeat domain of the Arabidopsis disease resistance gene RPS5 partially suppresses multiple bacterial and downy mildew resistance genes. THE PLANT CELL 1998; 10:1439-52. [PMID: 9724691 PMCID: PMC144076 DOI: 10.1105/tpc.10.9.1439] [Citation(s) in RCA: 209] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Recognition of pathogens by plants is mediated by several distinct families of functionally variable but structurally related disease resistance (R) genes. The largest family is defined by the presence of a putative nucleotide binding domain and 12 to 21 leucine-rich repeats (LRRs). The function of these LRRs has not been defined, but they are speculated to bind pathogen-derived ligands. We have isolated a mutation in the Arabidopsis RPS5 gene that indicates that the LRR region may interact with other plant proteins. The rps5-1 mutation causes a glutamate-to-lysine substitution in the third LRR and partially compromises the function of several R genes that confer bacterial and downy mildew resistance. The third LRR is relatively well conserved, and we speculate that it may interact with a signal transduction component shared by multiple R gene pathways.
Collapse
Affiliation(s)
- R F Warren
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | | | | | | | | |
Collapse
|
51948
|
Yu S, Fiss E, Jacobs WR. Analysis of the exochelin locus in Mycobacterium smegmatis: biosynthesis genes have homology with genes of the peptide synthetase family. J Bacteriol 1998; 180:4676-85. [PMID: 9721311 PMCID: PMC107483 DOI: 10.1128/jb.180.17.4676-4685.1998] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/1998] [Accepted: 06/29/1998] [Indexed: 11/20/2022] Open
Abstract
Mycobacteria secrete the siderophore exochelin when grown under iron-limiting conditions. In order to understand iron uptake mechanisms in mycobacteria, we have taken a genetic approach to identify those genes involved in exochelin biosynthesis and transport in Mycobacterium smegmatis. Of the 6,000 chemically mutagenized clones of M. smegmatis mc2155 screened on agar plates containing chrome azural S, 19 mutants that had lost the ability to produce or secrete exochelin were identified. Thirteen of these mutants were complemented by a single M. smegmatis cosmid. Sequence analysis of this cosmid revealed nine open reading frames, three of which are homologous to genes encoding transporter proteins, which are likely involved in exochelin transport. Complementation and Tn10 mutagenesis analysis identified two new genes, fxbB and fxbC, which are required for exochelin biosynthesis. The fxbB and fxbC genes encode large proteins of 257 and 497 kDa, respectively, which are highly homologous to peptide synthetases, indicating that exochelin biosynthesis occurs by a nonribosomal mechanism.
Collapse
Affiliation(s)
- S Yu
- Howard Hughes Medical Institute, Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
51949
|
Rocchetta HL, Pacan JC, Lam JS. Synthesis of the A-band polysaccharide sugar D-rhamnose requires Rmd and WbpW: identification of multiple AlgA homologues, WbpW and ORF488, in Pseudomonas aeruginosa. Mol Microbiol 1998; 29:1419-34. [PMID: 9781879 DOI: 10.1046/j.1365-2958.1998.01024.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pseudomonas aeruginosa is capable of producing various cell-surface polysaccharides including alginate, A-band and B-band lipopolysaccharides (LPS). The D-mannuronic acid residues of alginate and the D-rhamnose (D-Rha) residues of A-band polysaccharide are both derived from the common sugar nucleotide precursor GDP-D-mannose (D-Man). Three genes, rmd, gmd and wbpW, which encode proteins involved in the synthesis of GDP-D-Rha, have been localized to the 5' end of the A-band gene cluster. In this study, WbpW was found to be homologous to phosphomannose isomerases (PMIs) and GDP-mannose pyrophosphorylases (GMPs) involved in GDP-D-Man biosynthesis. To confirm the enzymatic activity of WbpW, Escherichia coli PMI and GMP mutants deficient in the K30 capsule were complemented with wbpW, and restoration of K30 capsule production was observed. This indicates that WbpW, like AlgA, is a bifunctional enzyme that possesses both PMI and GMP activities for the synthesis of GDP-D-Man. No gene encoding a phosphomannose mutase (PMM) enzyme could be identified within the A-band gene cluster. This suggests that the PMM activity of AlgC may be essential for synthesis of the precursor pool of GDP-D-Man, which is converted to GDP-D-Rha for A-band synthesis. Gmd, a previously reported A-band enzyme, and Rmd are predicted to perform the two-step conversion of GDP-D-Man to GDP-D-Rha. Chromosomal mutants were generated in both rmd and wbpW. The Rmd mutants do not produce A-band LPS, while the WbpW mutants synthesize very low amounts of A band after 18 h of growth. The latter observation was thought to result from the presence of the functional homologue AlgA, which may compensate for the WbpW deficiency in these mutants. Thus, WbpW AlgA double mutants were constructed. These mutants also produced low levels of A-band LPS. A search of the PAO1 genome sequence identified a second AlgA homologue, designated ORF488, which may be responsible for the synthesis of GDP-D-Man in the absence of WbpW and AlgA. Polymerase chain reaction (PCR) amplification and sequence analysis of this region reveals three open reading frames (ORFs), orf477, orf488 and orf303, arranged as an operon. ORF477 is homologous to initiating enzymes that transfer glucose 1-phosphate onto undecaprenol phosphate (Und-P), while ORF303 is homologous to L-rhamnosyltransferases involved in polysaccharide assembly. Chromosomal mapping using pulsed field gel electrophoresis (PFGE) and Southern hybridization places orf477, orf488 and orf303 between 0.3 and 0.9 min on the 75 min map of PAO1, giving it a map location distinct from that of previously described polysaccharide genes. This region may represent a unique locus within P. aeruginosa responsible for the synthesis of another polysaccharide molecule.
Collapse
Affiliation(s)
- H L Rocchetta
- Department of Microbiology and Canadian Bacterial Diseases Network, University of Guelph, ON
| | | | | |
Collapse
|
51950
|
Abstract
Csr (carbon storage regulator) is a recently discovered global regulatory system that controls bacterial gene expression post-transcriptionally. Its effector is a small RNA-binding protein referred to as CsrA or, in phytopathogenic Erwinia species, RsmA (repressor of stationary phase metabolites). Numerous genes whose expression occurs in the stationary phase of growth are repressed by csrA/rsmA, and csrA activates certain exponential-phase metabolic pathways. Glycogen synthesis and catabolism, gluconeogenesis, glycolysis, motility, cell surface properties and adherence are modulated by csrA in Escherichia coli, while the production of several secreted virulence factors, the plant hypersensitive response elicitor HrpN(Ecc) and, potentially, other secondary metabolites are regulated by rsmA in Erwinia carotovora. CsrA represses glycogen synthesis by binding to and destabilizing glgCAP mRNA and is hypothesized to repress other genes by a similar mechanism. The second component of the Csr system is CsrB (AepH in Erwinia species), a non-coding RNA molecule that forms a large globular ribonucleoprotein complex with approximately 18 CsrA subunits and antagonizes the effects of CsrA in vivo. Highly repeated sequence elements found within the loops of predicted stem-loops and other single-stranded segments of CsrB RNA may facilitate CsrA binding. Current information supports a model in which CsrA exists in an equilibrium between CsrB and CsrA-regulated mRNAs, which predicts that CsrB levels may be a key determinant of CsrA activity in the cell. The presence of csrA homologues in phylogenetically diverse species further suggests that this novel kind of regulatory system is likely to play a broad role in modulating eubacterial gene expression.
Collapse
Affiliation(s)
- T Romeo
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center at Fort Worth, 76107-2699, USA.
| |
Collapse
|