501
|
Tosi T, Estrozi L, Job V, Guilvout I, Pugsley A, Schoehn G, Dessen A. Structural Similarity of Secretins from Type II and Type III Secretion Systems. Structure 2014; 22:1348-1355. [DOI: 10.1016/j.str.2014.07.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 06/02/2014] [Accepted: 07/21/2014] [Indexed: 01/07/2023]
|
502
|
Sathiyamoorthy K, Jiang J, Hu YX, Rowe CL, Möhl BS, Chen J, Jiang W, Mellins ED, Longnecker R, Zhou ZH, Jardetzky TS. Assembly and architecture of the EBV B cell entry triggering complex. PLoS Pathog 2014; 10:e1004309. [PMID: 25144748 PMCID: PMC4140853 DOI: 10.1371/journal.ppat.1004309] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 07/01/2014] [Indexed: 11/18/2022] Open
Abstract
Epstein-Barr Virus (EBV) is an enveloped double-stranded DNA virus of the gammaherpesvirinae sub-family that predominantly infects humans through epithelial cells and B cells. Three EBV glycoproteins, gH, gL and gp42, form a complex that targets EBV infection of B cells. Human leukocyte antigen (HLA) class II molecules expressed on B cells serve as the receptor for gp42, triggering membrane fusion and virus entry. The mechanistic role of gHgL in herpesvirus entry has been largely unresolved, but it is thought to regulate the activation of the virally-encoded gB protein, which acts as the primary fusogen. Here we study the assembly and function of the reconstituted B cell entry complex comprised of gHgL, gp42 and HLA class II. The structure from negative-stain electron microscopy provides a detailed snapshot of an intermediate state in EBV entry and highlights the potential for the triggering complex to bring the two membrane bilayers into proximity. Furthermore, gHgL interacts with a previously identified, functionally important hydrophobic pocket on gp42, defining the overall architecture of the complex and playing a critical role in membrane fusion activation. We propose a macroscopic model of the initiating events in EBV B cell fusion centered on the formation of the triggering complex in the context of both viral and host membranes. This model suggests how the triggering complex may bridge the two membrane bilayers, orienting critical regions of the N- and C- terminal ends of gHgL to promote the activation of gB and efficient membrane fusion.
Collapse
Affiliation(s)
- Karthik Sathiyamoorthy
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Jiansen Jiang
- Department of Microbiology, Immunology & Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Yao Xiong Hu
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Cynthia L. Rowe
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Britta S. Möhl
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Jia Chen
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Wei Jiang
- Department of Pediatrics, Program in Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Elizabeth D. Mellins
- Department of Pediatrics, Program in Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Richard Longnecker
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Z. Hong Zhou
- Department of Microbiology, Immunology & Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Theodore S. Jardetzky
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
503
|
Abstract
NOSs are homodimeric multidomain enzymes responsible for producing NO. In mammals, NO acts as an intercellular messenger in a variety of signaling reactions, as well as a cytotoxin in the innate immune response. Mammals possess three NOS isoforms--inducible, endothelial, and neuronal NOS--that are composed of an N-terminal oxidase domain and a C-terminal reductase domain. Calmodulin (CaM) activates NO synthesis by binding to the helical region connecting these two domains. Although crystal structures of isolated domains have been reported, no structure is available for full-length NOS. We used high-throughput single-particle EM to obtain the structures and higher-order domain organization of all three NOS holoenzymes. The structures of inducible, endothelial, and neuronal NOS with and without CaM bound are similar, consisting of a dimerized oxidase domain flanked by two separated reductase domains. NOS isoforms adopt many conformations enabled by three flexible linkers. These conformations represent snapshots of the continuous electron transfer pathway from the reductase domain to the oxidase domain, which reveal that only a single reductase domain participates in electron transfer at a time, and that CaM activates NOS by constraining rotational motions and by directly binding to the oxidase domain. Direct visualization of these large conformational changes induced during electron transfer provides significant insight into the molecular underpinnings governing NO formation.
Collapse
|
504
|
Jang TH, Zheng C, Li J, Richards C, Hsiao YS, Walz T, Wu H, Park HH. Structural study of the RIPoptosome core reveals a helical assembly for kinase recruitment. Biochemistry 2014; 53:5424-31. [PMID: 25119434 PMCID: PMC4148139 DOI: 10.1021/bi500585u] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Receptor interaction protein kinase 1 (RIP1) is a molecular cell-fate switch. RIP1, together with Fas-associated protein with death domain (FADD) and caspase-8, forms the RIPoptosome that activates apoptosis. RIP1 also associates with RIP3 to form the necrosome that triggers necroptosis. The RIPoptosome assembles through interactions between the death domains (DDs) of RIP1 and FADD and between death effector domains (DEDs) of FADD and caspase-8. In this study, we analyzed the overall structure of the RIP1 DD/FADD DD complex, the core of the RIPoptosome, by negative-stain electron microscopy and modeling. The results show that RIP1 DD and FADD DD form a stable complex in vitro similar to the previously described Fas DD/FADD DD complex, suggesting that the RIPoptosome and the Fas death-inducing signaling complex share a common assembly mechanism. Both complexes adopt a helical conformation that requires type I, II, and III interactions between the death domains.
Collapse
Affiliation(s)
- Tae-ho Jang
- School of Biotechnology and Graduate School of Biochemistry, Yeungnam University , Gyeongsan 712-749, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
505
|
Dürr KL, Chen L, Stein RA, De Zorzi R, Folea IM, Walz T, Mchaourab HS, Gouaux E. Structure and dynamics of AMPA receptor GluA2 in resting, pre-open, and desensitized states. Cell 2014; 158:778-792. [PMID: 25109876 DOI: 10.1016/j.cell.2014.07.023] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 07/21/2014] [Accepted: 07/22/2014] [Indexed: 10/24/2022]
Abstract
Ionotropic glutamate receptors (iGluRs) mediate the majority of fast excitatory signaling in the nervous system. Despite the profound importance of iGluRs to neurotransmission, little is known about the structures and dynamics of intact receptors in distinct functional states. Here, we elucidate the structures of the intact GluA2 AMPA receptor in an apo resting/closed state, in an activated/pre-open state bound with partial agonists and a positive allosteric modulator, and in a desensitized/closed state in complex with fluorowilliardiine. To probe the conformational properties of these states, we carried out double electron-electron resonance experiments on cysteine mutants and cryoelectron microscopy studies. We show how agonist binding modulates the conformation of the ligand-binding domain "layer" of the intact receptors and how, upon desensitization, the receptor undergoes large conformational rearrangements of the amino-terminal and ligand-binding domains. We define mechanistic principles by which to understand antagonism, activation, and desensitization in AMPA iGluRs.
Collapse
Affiliation(s)
- Katharina L Dürr
- Vollum Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Lei Chen
- Vollum Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Richard A Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Rita De Zorzi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - I Mihaela Folea
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Thomas Walz
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Hassane S Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Eric Gouaux
- Vollum Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Howard Hughes Medical Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| |
Collapse
|
506
|
Malet H, Liu K, El Bakkouri M, Chan SWS, Effantin G, Bacia M, Houry WA, Gutsche I. Assembly principles of a unique cage formed by hexameric and decameric E. coli proteins. eLife 2014; 3:e03653. [PMID: 25097238 PMCID: PMC4145799 DOI: 10.7554/elife.03653] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A 3.3 MDa macromolecular cage between two Escherichia coli proteins with seemingly incompatible symmetries-the hexameric AAA+ ATPase RavA and the decameric inducible lysine decarboxylase LdcI-is reconstructed by cryo-electron microscopy to 11 Å resolution. Combined with a 7.5 Å resolution reconstruction of the minimal complex between LdcI and the LdcI-binding domain of RavA, and the previously solved crystal structures of the individual components, this work enables to build a reliable pseudoatomic model of this unusual architecture and to identify conformational rearrangements and specific elements essential for complex formation. The design of the cage created via lateral interactions between five RavA rings is unique for the diverse AAA+ ATPase superfamily.
Collapse
Affiliation(s)
- Hélène Malet
- European Molecular Biology Laboratory, Grenoble, France Unit for Virus Host-Cell Interactions, Université Grenoble Alpes, Grenoble, France Unit for Virus Host-Cell Interactions, CNRS, Grenoble, France
| | - Kaiyin Liu
- Department of Biochemistry, University of Toronto, Toronto, Canada
| | | | | | - Gregory Effantin
- Unit for Virus Host-Cell Interactions, Université Grenoble Alpes, Grenoble, France Unit for Virus Host-Cell Interactions, CNRS, Grenoble, France
| | - Maria Bacia
- Université Grenoble Alpes, Institut de Biologie Structurale, Grenoble, France Institut de Biologie Structurale, CNRS, Grenoble, France Institut de Biologie Structurale, CEA, Grenoble, France
| | - Walid A Houry
- Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Irina Gutsche
- Unit for Virus Host-Cell Interactions, Université Grenoble Alpes, Grenoble, France Unit for Virus Host-Cell Interactions, CNRS, Grenoble, France
| |
Collapse
|
507
|
Structure of the mammalian 80S initiation complex with initiation factor 5B on HCV-IRES RNA. Nat Struct Mol Biol 2014; 21:721-7. [PMID: 25064512 DOI: 10.1038/nsmb.2859] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 06/20/2014] [Indexed: 02/05/2023]
Abstract
The universally conserved eukaryotic initiation factor (eIF) 5B, a translational GTPase, is essential for canonical translation initiation. It is also required for initiation facilitated by the internal ribosomal entry site (IRES) of hepatitis C virus (HCV) RNA. eIF5B promotes joining of 60S ribosomal subunits to 40S ribosomal subunits bound by initiator tRNA (Met-tRNAi(Met)). However, the exact molecular mechanism by which eIF5B acts has not been established. Here we present cryo-EM reconstructions of the mammalian 80S-HCV-IRES-Met-tRNAi(Met)-eIF5B-GMPPNP complex. We obtained two substates distinguished by the rotational state of the ribosomal subunits and the configuration of initiator tRNA in the peptidyl (P) site. Accordingly, a combination of conformational changes in the 80S ribosome and in initiator tRNA facilitates binding of the Met-tRNAi(Met) to the 60S P site and redefines the role of eIF5B as a tRNA-reorientation factor.
Collapse
|
508
|
Onoa B, Schneider AR, Brooks MD, Grob P, Nogales E, Geissler PL, Niyogi KK, Bustamante C. Atomic force microscopy of photosystem II and its unit cell clustering quantitatively delineate the mesoscale variability in Arabidopsis thylakoids. PLoS One 2014; 9:e101470. [PMID: 25007326 PMCID: PMC4090009 DOI: 10.1371/journal.pone.0101470] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 06/06/2014] [Indexed: 11/25/2022] Open
Abstract
Photoautotrophic organisms efficiently regulate absorption of light energy to sustain photochemistry while promoting photoprotection. Photoprotection is achieved in part by triggering a series of dissipative processes termed non-photochemical quenching (NPQ), which depend on the re-organization of photosystem (PS) II supercomplexes in thylakoid membranes. Using atomic force microscopy, we characterized the structural attributes of grana thylakoids from Arabidopsis thaliana to correlate differences in PSII organization with the role of SOQ1, a recently discovered thylakoid protein that prevents formation of a slowly reversible NPQ state. We developed a statistical image analysis suite to discriminate disordered from crystalline particles and classify crystalline arrays according to their unit cell properties. Through detailed analysis of the local organization of PSII supercomplexes in ordered and disordered phases, we found evidence that interactions among light-harvesting antenna complexes are weakened in the absence of SOQ1, inducing protein rearrangements that favor larger separations between PSII complexes in the majority (disordered) phase and reshaping the PSII crystallization landscape. The features we observe are distinct from known protein rearrangements associated with NPQ, providing further support for a role of SOQ1 in a novel NPQ pathway. The particle clustering and unit cell methodology developed here is generalizable to multiple types of microscopy and will enable unbiased analysis and comparison of large data sets.
Collapse
Affiliation(s)
- Bibiana Onoa
- California Institute for Quantitative Biosciences, University of California, Berkeley, California, United States of America
| | - Anna R. Schneider
- Biophysics Graduate Group, University of California, Berkeley, California, United States of America
| | - Matthew D. Brooks
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
- Howard Hughes Medical Institute, University of California, Berkeley, California, United States of America
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Patricia Grob
- Howard Hughes Medical Institute, University of California, Berkeley, California, United States of America
| | - Eva Nogales
- California Institute for Quantitative Biosciences, University of California, Berkeley, California, United States of America
- Howard Hughes Medical Institute, University of California, Berkeley, California, United States of America
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Phillip L. Geissler
- California Institute for Quantitative Biosciences, University of California, Berkeley, California, United States of America
- Biophysics Graduate Group, University of California, Berkeley, California, United States of America
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Department of Chemistry, University of California, Berkeley, California, United States of America
| | - Krishna K. Niyogi
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
- Howard Hughes Medical Institute, University of California, Berkeley, California, United States of America
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Carlos Bustamante
- California Institute for Quantitative Biosciences, University of California, Berkeley, California, United States of America
- Howard Hughes Medical Institute, University of California, Berkeley, California, United States of America
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
- Department of Physics, University of California, Berkeley, California, United States of America
- Kavli Energy NanoSciences Institute at the University of California, Berkeley and the Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
509
|
Russo CJ, Passmore LA. Robust evaluation of 3D electron cryomicroscopy data using tilt-pairs. J Struct Biol 2014; 187:112-118. [PMID: 25016098 PMCID: PMC4136738 DOI: 10.1016/j.jsb.2014.06.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 06/17/2014] [Accepted: 06/20/2014] [Indexed: 11/29/2022]
Abstract
Determining the structure of a protein complex using electron microscopy requires the calculation of a 3D density map from 2D images of single particles. Since the individual images are taken at low electron dose to avoid radiation damage, they are noisy and difficult to align with each other. This can result in incorrect maps, making validation essential. Pairs of electron micrographs taken at known angles to each other (tilt-pairs) can be used to measure the accuracy of assigned projection orientations and verify the soundness of calculated maps. Here we establish a statistical framework for evaluating images and density maps using tilt-pairs. The directional distribution of such angular data is modelled using a Fisher distribution on the unit sphere. This provides a simple, quantitative and easily comparable metric, the concentration parameter κ, for evaluating the quality of datasets and density maps that is independent of the data collection and analysis methods. A large κ is indicative of good agreement between the particle images and the 3D density map. For structure validation, we recommend κ>10 and a p-value <0.01. The statistical framework herein allows one to objectively answer the question: Is a reconstructed density map correct within a particular confidence interval?
Collapse
Affiliation(s)
- Christopher J Russo
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| | - Lori A Passmore
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
510
|
Preis A, Heuer A, Barrio-Garcia C, Hauser A, Eyler DE, Berninghausen O, Green R, Becker T, Beckmann R. Cryoelectron microscopic structures of eukaryotic translation termination complexes containing eRF1-eRF3 or eRF1-ABCE1. Cell Rep 2014; 8:59-65. [PMID: 25001285 PMCID: PMC6813808 DOI: 10.1016/j.celrep.2014.04.058] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 03/01/2014] [Accepted: 04/03/2014] [Indexed: 10/29/2022] Open
Abstract
Termination and ribosome recycling are essential processes in translation. In eukaryotes, a stop codon in the ribosomal A site is decoded by a ternary complex consisting of release factors eRF1 and guanosine triphosphate (GTP)-bound eRF3. After GTP hydrolysis, eRF3 dissociates, and ABCE1 can bind to eRF1-loaded ribosomes to stimulate peptide release and ribosomal subunit dissociation. Here, we present cryoelectron microscopic (cryo-EM) structures of a pretermination complex containing eRF1-eRF3 and a termination/prerecycling complex containing eRF1-ABCE1. eRF1 undergoes drastic conformational changes: its central domain harboring the catalytically important GGQ loop is either packed against eRF3 or swung toward the peptidyl transferase center when bound to ABCE1. Additionally, in complex with eRF3, the N-terminal domain of eRF1 positions the conserved NIKS motif proximal to the stop codon, supporting its suggested role in decoding, yet it appears to be delocalized in the presence of ABCE1. These results suggest that stop codon decoding and peptide release can be uncoupled during termination.
Collapse
Affiliation(s)
- Anne Preis
- Gene Center Munich, Department of Biochemistry, Feodor-Lynen-Strasse 25, University of Munich, 81377 Munich, Germany; Center for Integrated Protein Science Munich, Department of Biochemistry, Feodor-Lynen-Strasse 25, University of Munich, 81377 Munich, Germany
| | - Andre Heuer
- Gene Center Munich, Department of Biochemistry, Feodor-Lynen-Strasse 25, University of Munich, 81377 Munich, Germany; Center for Integrated Protein Science Munich, Department of Biochemistry, Feodor-Lynen-Strasse 25, University of Munich, 81377 Munich, Germany
| | - Clara Barrio-Garcia
- Gene Center Munich, Department of Biochemistry, Feodor-Lynen-Strasse 25, University of Munich, 81377 Munich, Germany; Center for Integrated Protein Science Munich, Department of Biochemistry, Feodor-Lynen-Strasse 25, University of Munich, 81377 Munich, Germany
| | - Andreas Hauser
- Gene Center Munich, Department of Biochemistry, Feodor-Lynen-Strasse 25, University of Munich, 81377 Munich, Germany; Center for Integrated Protein Science Munich, Department of Biochemistry, Feodor-Lynen-Strasse 25, University of Munich, 81377 Munich, Germany
| | - Daniel E Eyler
- Howard Hughes Medical Institute, Chevy Chase, MD 20815-6789, USA; Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Otto Berninghausen
- Gene Center Munich, Department of Biochemistry, Feodor-Lynen-Strasse 25, University of Munich, 81377 Munich, Germany; Center for Integrated Protein Science Munich, Department of Biochemistry, Feodor-Lynen-Strasse 25, University of Munich, 81377 Munich, Germany
| | - Rachel Green
- Howard Hughes Medical Institute, Chevy Chase, MD 20815-6789, USA; Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Thomas Becker
- Gene Center Munich, Department of Biochemistry, Feodor-Lynen-Strasse 25, University of Munich, 81377 Munich, Germany; Center for Integrated Protein Science Munich, Department of Biochemistry, Feodor-Lynen-Strasse 25, University of Munich, 81377 Munich, Germany.
| | - Roland Beckmann
- Gene Center Munich, Department of Biochemistry, Feodor-Lynen-Strasse 25, University of Munich, 81377 Munich, Germany; Center for Integrated Protein Science Munich, Department of Biochemistry, Feodor-Lynen-Strasse 25, University of Munich, 81377 Munich, Germany.
| |
Collapse
|
511
|
Ueno H, Bui KH, Ishikawa T, Imai Y, Yamaguchi T, Ishikawa T. Structure of dimeric axonemal dynein in cilia suggests an alternative mechanism of force generation. Cytoskeleton (Hoboken) 2014; 71:412-22. [PMID: 24953776 DOI: 10.1002/cm.21180] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 06/03/2014] [Accepted: 06/04/2014] [Indexed: 11/11/2022]
Abstract
The mechanism by which the two different heads of the ciliary outer dynein arm produce force to translocate the microtubule during beating is still unknown. In this report we use cryo-electron tomography and image processing to analyze the conformational changes and the relative abundance of each conformation of the two dynein heads from mouse respiratory cilia. In the absence of nucleotides the majority of dynein dimers are in the apo form and both heads are tightly packed, whereas they are dissociated and move independently in the presence of nucleotides. The head of the external outer arm dynein heavy chain has a diagonal shift toward both the neighboring B-tubule and the proximal end of the axoneme, while the head of the internal heavy chain shifts only longitudinally toward the proximal end. In the presence of nucleotides a significant number of the dynein dimers have two heads overlapped in the proximal shifting form or overlapped in the apo form. During ciliary bending axonemal dynein translocates microtubules by moving with short steps and two heads stay at the same position longer than cytoplasmic dynein. This demonstrates that the step of the outer arm dynein dimer is not dominated by the hand-over-hand motion, but also indicates the difference between axonemal dynein and cytoplasmic dynein.
Collapse
Affiliation(s)
- Hironori Ueno
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland; International Advanced Research and Education Organization (IAREO), Tohoku University, Miyagi, Japan; Molecular Function & Life Siciences, Aichi University of Education, Aichi, Japan
| | | | | | | | | | | |
Collapse
|
512
|
Gardian Z, Litvín R, Bína D, Vácha F. Supramolecular organization of fucoxanthin-chlorophyll proteins in centric and pennate diatoms. PHOTOSYNTHESIS RESEARCH 2014; 121:79-86. [PMID: 24715699 DOI: 10.1007/s11120-014-9998-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 03/24/2014] [Indexed: 06/03/2023]
Abstract
Fucoxanthin-chlorophyll proteins (FCP) are the major light-harvesting proteins of diatom algae, a major contributor to marine carbon fixation. FCP complexes from representatives of centric (Cyclotella meneghiniana) and pennate (Phaeodactylum tricornutum) diatoms were prepared by sucrose gradient centrifugation and studied by means of electron microscopy followed by single particle analysis. The oligomeric FCP from a centric diatom were observed to take the form of unusual chain-like or circular shapes, a very unique supramolecular assembly for such antennas. The existence of the often disputed oligomeric form of FCP in pennate diatoms has been confirmed. Contrary to the centric diatom FCP, pennate diatom FCP oligomers are very similar to oligomeric antennas from related heterokont (Stramenopila) algae. Evolutionary aspects of the presence of novel light-harvesting protein arrangement in centric diatoms are discussed.
Collapse
Affiliation(s)
- Zdenko Gardian
- Institute of Plant Molecular Biology, Biology Centre ASCR, Branisovska 31, 37005, Ceske Budejovice, Czech Republic
| | | | | | | |
Collapse
|
513
|
Initial bridges between two ribosomal subunits are formed within 9.4 milliseconds, as studied by time-resolved cryo-EM. Proc Natl Acad Sci U S A 2014; 111:9822-7. [PMID: 24958863 DOI: 10.1073/pnas.1406744111] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Association of the two ribosomal subunits during the process of translation initiation is a crucial step of protein synthesis. The two subunits (30S and 50S) of the bacterial 70S ribosome are held together by 12 dynamic bridges involving RNA-RNA, RNA-protein, and protein-protein interactions. The process of bridge formation, such as whether all these bridges are formed simultaneously or in a sequential order, is poorly understood. To understand such processes, we have developed and implemented a class of microfluidic devices that mix two components to completion within 0.4 ms and spray the mixture in the form of microdroplets onto an electron microscopy grid, yielding a minimum reaction time of 9.4 ms before cryofixation. Using these devices, we have obtained cryo-EM data corresponding to reaction times of 9.4 and 43 ms and have determined 3D structures of ribosomal subunit association intermediates. Molecular analyses of the cryo-EM maps reveal that eight intersubunit bridges (bridges B1a, B1b, B2a, B2b, B3, B7a, B7b, and B8) form within 9.4 ms, whereas the remaining four bridges (bridges B2c, B4, B5, and B6) take longer than 43 ms to form, suggesting that bridges are formed in a stepwise fashion. Our approach can be used to characterize sequences of various dynamic functional events on complex macromolecular assemblies such as ribosomes.
Collapse
|
514
|
Shukla AK, Westfield GH, Xiao K, Reis RI, Huang LY, Tripathi-Shukla P, Qian J, Li S, Blanc A, Oleskie AN, Dosey AM, Su M, Liang CR, Gu LL, Shan JM, Chen X, Hanna R, Choi M, Yao XJ, Klink BU, Kahsai AW, Sidhu SS, Koide S, Penczek PA, Kossiakoff AA, Woods VL, Kobilka BK, Skiniotis G, Lefkowitz RJ. Visualization of arrestin recruitment by a G-protein-coupled receptor. Nature 2014; 512:218-222. [PMID: 25043026 PMCID: PMC4134437 DOI: 10.1038/nature13430] [Citation(s) in RCA: 401] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 04/30/2014] [Indexed: 12/11/2022]
Abstract
G Protein Coupled Receptors (GPCRs) are critically regulated by β-arrestins (βarrs), which not only desensitize G protein signaling but also initiate a G protein independent wave of signaling1-5. A recent surge of structural data on a number of GPCRs, including the β2 adrenergic receptor (β2AR)-G protein complex, has provided novel insights into the structural basis of receptor activation6-11. Lacking however has been complementary information on recruitment of βarrs to activated GPCRs primarily due to challenges in obtaining stable receptor-βarr complexes for structural studies. Here, we devised a strategy for forming and purifying a functional β2AR-βarr1 complex that allowed us to visualize its architecture by single particle negative stain electron microscopy (EM) and to characterize the interactions between β2AR and βarr1 using hydrogen-deuterium exchange mass spectrometry (HDXMS) and chemical cross-linking. EM 2D averages and 3D reconstructions reveal bimodal binding of βarr1 to the β2AR, involving two separate sets of interactions, one with the phosphorylated carboxy-terminus of the receptor and the other with its seven-transmembrane core. Areas of reduced HDX together with identification of cross-linked residues suggest engagement of the finger loop of βarr1 with the seven-transmembrane core of the receptor. In contrast, focal areas of increased HDX indicate regions of increased dynamics in both N and C domains of βarr1 when coupled to the β2AR. A molecular model of the β2AR-βarr signaling complex was made by docking activated βarr1 and β2AR crystal structures into the EM map densities with constraints provided by HDXMS and cross-linking, allowing us to obtain valuable insights into the overall architecture of a receptor-arrestin complex. The dynamic and structural information presented herein provides a framework for better understanding the basis of GPCR regulation by arrestins.
Collapse
Affiliation(s)
- Arun K Shukla
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Gerwin H Westfield
- Life Sciences Institute and Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Kunhong Xiao
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Rosana I Reis
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Li-Yin Huang
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Prachi Tripathi-Shukla
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Jiang Qian
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Sheng Li
- Department of Chemistry, University of California at San Diego, La Jolla, CA 92093, USA
| | - Adi Blanc
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Austin N Oleskie
- Life Sciences Institute and Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Anne M Dosey
- Life Sciences Institute and Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Min Su
- Life Sciences Institute and Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Cui-Rong Liang
- School of Pharmaceutical & Life Sciences, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Ling-Ling Gu
- School of Pharmaceutical & Life Sciences, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Jin-Ming Shan
- School of Pharmaceutical & Life Sciences, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Xin Chen
- School of Pharmaceutical & Life Sciences, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Rachel Hanna
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Minjung Choi
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Xiao Jie Yao
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Bjoern U Klink
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Alem W Kahsai
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Sachdev S Sidhu
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Shohei Koide
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, USA
| | - Pawel A Penczek
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School at Houston, Houston, TX 77054, USA
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, USA
| | - Virgil L Woods
- Department of Chemistry, University of California at San Diego, La Jolla, CA 92093, USA
| | - Brian K Kobilka
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, California 94305, USA
| | - Georgios Skiniotis
- Life Sciences Institute and Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Robert J Lefkowitz
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA.,Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA.,Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
515
|
Visualization of a polytopic membrane protein during SecY-mediated membrane insertion. Nat Commun 2014; 5:4103. [PMID: 24912953 DOI: 10.1038/ncomms5103] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 05/13/2014] [Indexed: 01/16/2023] Open
Abstract
The biogenesis of polytopic membrane proteins occurs co-translationally on ribosomes that are tightly bound to a membrane-embedded protein-conducting channel: the Sec-complex. The path that is followed by nascent proteins inside the ribosome and the Sec-complex is relatively well established; however, it is not clear what the fate of the N-terminal transmembrane domains (TMDs) of polytopic membrane proteins is when the C-terminal TMDs domains are not yet synthesized. Here, we present the sub-nanometer cryo-electron microscopy structure of an in vivo generated ribosome-SecY complex that carries a membrane insertion intermediate of proteorhodopsin (PR). The structure reveals a pre-opened Sec-complex and the first two TMDs of PR already outside the SecY complex directly in front of its proposed lateral gate. Thus, our structure is in agreement with positioning of N-terminal TMDs at the periphery of SecY, and in addition, it provides clues for the molecular mechanism underlying membrane protein topogenesis.
Collapse
|
516
|
Lu A, Magupalli VG, Ruan J, Yin Q, Atianand MK, Vos MR, Schröder GF, Fitzgerald KA, Wu H, Egelman EH. Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes. Cell 2014; 156:1193-1206. [PMID: 24630722 DOI: 10.1016/j.cell.2014.02.008] [Citation(s) in RCA: 1038] [Impact Index Per Article: 94.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 12/04/2013] [Accepted: 02/03/2014] [Indexed: 12/27/2022]
Abstract
Inflammasomes elicit host defense inside cells by activating caspase-1 for cytokine maturation and cell death. AIM2 and NLRP3 are representative sensor proteins in two major families of inflammasomes. The adaptor protein ASC bridges the sensor proteins and caspase-1 to form ternary inflammasome complexes, achieved through pyrin domain (PYD) interactions between sensors and ASC and through caspase activation and recruitment domain (CARD) interactions between ASC and caspase-1. We found that PYD and CARD both form filaments. Activated AIM2 and NLRP3 nucleate PYD filaments of ASC, which, in turn, cluster the CARD of ASC. ASC thus nucleates CARD filaments of caspase-1, leading to proximity-induced activation. Endogenous NLRP3 inflammasome is also filamentous. The cryoelectron microscopy structure of ASC(PYD) filament at near-atomic resolution provides a template for homo- and hetero-PYD/PYD associations, as confirmed by structure-guided mutagenesis. We propose that ASC-dependent inflammasomes in both families share a unified assembly mechanism that involves two successive steps of nucleation-induced polymerization. PAPERFLICK:
Collapse
Affiliation(s)
- Alvin Lu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Venkat Giri Magupalli
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Jianbin Ruan
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Qian Yin
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Maninjay K Atianand
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Matthijn R Vos
- FEI Company, Nanoport Europe, 5651 GG Eindhoven, the Netherlands
| | - Gunnar F Schröder
- Institute of Complex Systems, Forschungszentrum Jülich, 52425 Jülich, Germany; Physics Department, Heinrich-Heine Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Katherine A Fitzgerald
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA.
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
517
|
Lasso G, Yu LPC, Gil D, Lázaro M, Tong L, Valle M. Functional conformations for pyruvate carboxylase during catalysis explored by cryoelectron microscopy. Structure 2014; 22:911-22. [PMID: 24882745 DOI: 10.1016/j.str.2014.04.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 04/20/2014] [Accepted: 04/24/2014] [Indexed: 01/15/2023]
Abstract
The tetrameric enzyme pyruvate carboxylase (PC), a biotin-dependent carboxylase, produces oxaloacetate by two consecutive reactions that take place in distant active sites. Previous crystal structures revealed two different configurations for PC tetramers, the so-called symmetric and asymmetric, which were understood as characteristic molecular architectures for PC from different organisms. We have analyzed PC samples from Staphylococcus aureus while the enzyme generates oxaloacetate, expecting PC tetramers to display the conformational landscape relevant for its functioning. Using cryoelectron microscopy (cryo-EM) and sorting techniques, we detect previously defined symmetric and asymmetric architectures, demonstrating that PC maps both arrangements by large conformational changes. Furthermore, we observe that each configuration is coupled to one of the two consecutive enzymatic reactions. The findings describe the structural transitions relevant for the allosteric control of the multifunctional PC and demonstrate that by cryo-EM and classification, we can characterize freely working macromolecules.
Collapse
Affiliation(s)
- Gorka Lasso
- Structural Biology Unit, Center for Cooperative Research in Biosciences, CIC bioGUNE, 48160 Derio, Spain
| | - Linda P C Yu
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - David Gil
- Structural Biology Unit, Center for Cooperative Research in Biosciences, CIC bioGUNE, 48160 Derio, Spain
| | - Melisa Lázaro
- Structural Biology Unit, Center for Cooperative Research in Biosciences, CIC bioGUNE, 48160 Derio, Spain
| | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Mikel Valle
- Structural Biology Unit, Center for Cooperative Research in Biosciences, CIC bioGUNE, 48160 Derio, Spain; Department of Biochemistry and Molecular Biology, University of the Basque Country, P.O. Box 644, 48080 Bilbao, Spain.
| |
Collapse
|
518
|
Woodward JD, Wepf RA. Macromolecular 3D SEM reconstruction strategies: signal to noise ratio and resolution. Ultramicroscopy 2014; 144:43-9. [PMID: 24830764 DOI: 10.1016/j.ultramic.2014.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 04/16/2014] [Accepted: 04/21/2014] [Indexed: 10/25/2022]
Abstract
Three-dimensional scanning electron microscopy generates quantitative volumetric structural data from SEM images of macromolecules. This technique provides a quick and easy way to define the quaternary structure and handedness of protein complexes. Here, we apply a variety of preparation and imaging methods to filamentous actin in order to explore the relationship between resolution, signal-to-noise ratio, structural preservation and dataset size. This information can be used to define successful imaging strategies for different applications.
Collapse
Affiliation(s)
- J D Woodward
- Department of Molecular and Cell Biology, University of Cape Town, South Africa; Electron Microscope Unit, University of Cape Town, South Africa.
| | - R A Wepf
- Electron Microscopy (EMEZ), ETH, Zürich, Switzerland
| |
Collapse
|
519
|
Cryo-EM near-atomic structure of a dsRNA fungal virus shows ancient structural motifs preserved in the dsRNA viral lineage. Proc Natl Acad Sci U S A 2014; 111:7641-6. [PMID: 24821769 DOI: 10.1073/pnas.1404330111] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Viruses evolve so rapidly that sequence-based comparison is not suitable for detecting relatedness among distant viruses. Structure-based comparisons suggest that evolution led to a small number of viral classes or lineages that can be grouped by capsid protein (CP) folds. Here, we report that the CP structure of the fungal dsRNA Penicillium chrysogenum virus (PcV) shows the progenitor fold of the dsRNA virus lineage and suggests a relationship between lineages. Cryo-EM structure at near-atomic resolution showed that the 982-aa PcV CP is formed by a repeated α-helical core, indicative of gene duplication despite lack of sequence similarity between the two halves. Superimposition of secondary structure elements identified a single "hotspot" at which variation is introduced by insertion of peptide segments. Structural comparison of PcV and other distantly related dsRNA viruses detected preferential insertion sites at which the complexity of the conserved α-helical core, made up of ancestral structural motifs that have acted as a skeleton, might have increased, leading to evolution of the highly varied current structures. Analyses of structural motifs only apparent after systematic structural comparisons indicated that the hallmark fold preserved in the dsRNA virus lineage shares a long (spinal) α-helix tangential to the capsid surface with the head-tailed phage and herpesvirus viral lineage.
Collapse
|
520
|
Wang X, Sun Q, Ding Z, Ji J, Wang J, Kong X, Yang J, Cai G. Redefining the modular organization of the core Mediator complex. Cell Res 2014; 24:796-808. [PMID: 24810298 PMCID: PMC4085763 DOI: 10.1038/cr.2014.64] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 02/13/2014] [Accepted: 03/13/2014] [Indexed: 01/24/2023] Open
Abstract
The Mediator complex plays an essential role in the regulation of eukaryotic transcription. The Saccharomyces cerevisiae core Mediator comprises 21 subunits, which are organized into Head, Middle and Tail modules. Previously, the Head module was assigned to a distinct dense domain at the base, and the Middle and Tail modules were identified to form a tight structure above the Head module, which apparently contradicted findings from many biochemical and functional studies. Here, we compared the structures of the core Mediator and its subcomplexes, especially the first 3D structure of the Head + Middle modules, which permitted an unambiguous assignment of the three modules. Furthermore, nanogold labeling pinpointing four Mediator subunits from different modules conclusively validated the modular assignment, in which the Head and Middle modules fold back on one another and form the upper portion of the core Mediator, while the Tail module forms a distinct dense domain at the base. The new modular model of the core Mediator has reconciled the previous inconsistencies between the structurally and functionally defined Mediator modules. Collectively, these analyses completely redefine the modular organization of the core Mediator, which allow us to integrate the structural and functional information into a coherent mechanism for the Mediator's modularity and regulation in transcription initiation.
Collapse
Affiliation(s)
- Xuejuan Wang
- School of Life Sciences, University of Science and Technology of China, 443 Huang-Shan Road, Hefei, Anhui 230027, China
| | - Qianqian Sun
- School of Life Sciences, University of Science and Technology of China, 443 Huang-Shan Road, Hefei, Anhui 230027, China
| | - Zhenrui Ding
- School of Life Sciences, University of Science and Technology of China, 443 Huang-Shan Road, Hefei, Anhui 230027, China
| | - Jinhua Ji
- School of Life Sciences, University of Science and Technology of China, 443 Huang-Shan Road, Hefei, Anhui 230027, China
| | - Jianye Wang
- School of Life Sciences, University of Science and Technology of China, 443 Huang-Shan Road, Hefei, Anhui 230027, China
| | - Xiao Kong
- School of Life Sciences, University of Science and Technology of China, 443 Huang-Shan Road, Hefei, Anhui 230027, China
| | - Jianghong Yang
- School of Life Sciences, University of Science and Technology of China, 443 Huang-Shan Road, Hefei, Anhui 230027, China
| | - Gang Cai
- 1] School of Life Sciences, University of Science and Technology of China, 443 Huang-Shan Road, Hefei, Anhui 230027, China [2] Hefei National Laboratory for Physical Sciences at the Microscale, Center for Integrative Imaging, 443 Huang-Shan Road, Hefei, Anhui 230027, China [3] Center for Biomedical Engineering, University of Science and Technology of China, 443 Huang-Shan Road, Hefei, Anhui 230027, China
| |
Collapse
|
521
|
Clausen CH, Brooks MD, Li TD, Grob P, Kemalyan G, Nogales E, Niyogi KK, Fletcher DA. Dynamic mechanical responses of Arabidopsis thylakoid membranes during PSII-specific illumination. Biophys J 2014; 106:1864-70. [PMID: 24806918 PMCID: PMC4017268 DOI: 10.1016/j.bpj.2014.03.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 02/25/2014] [Accepted: 03/10/2014] [Indexed: 10/25/2022] Open
Abstract
Remodeling of thylakoid membranes in response to illumination is an important process for the regulation of photosynthesis. We investigated the thylakoid network from Arabidopsis thaliana using atomic force microscopy to capture dynamic changes in height, elasticity, and viscosity of isolated thylakoid membranes caused by changes in illumination. We also correlated the mechanical response of the thylakoid network with membrane ultrastructure using electron microscopy. We find that the elasticity of the thylakoid membranes increases immediately upon PSII-specific illumination, followed by a delayed height change. Direct visualization by electron microscopy confirms that there is a significant change in the packing repeat distance of the membrane stacks in response to illumination. Although experiments with Gramicidin show that the change in elasticity depends primarily on the transmembrane pH gradient, the height change requires both the pH gradient and STN7-kinase-dependent phosphorylation of LHCII. Our studies indicate that lumen expansion in response to illumination is not simply a result of the influx of water, and we propose a dynamic model in which protein interactions within the lumen drive these changes.
Collapse
Affiliation(s)
- Casper H Clausen
- Bioengineering Department, University of California, Berkeley, California
| | - Matthew D Brooks
- Department of Plant and Microbial Biology, University of California, Berkeley, California; Howard Hughes Medical Institute, University of California, Berkeley, California
| | - Tai-De Li
- Bioengineering Department, University of California, Berkeley, California
| | - Patricia Grob
- Howard Hughes Medical Institute, University of California, Berkeley, California
| | - Gigi Kemalyan
- Howard Hughes Medical Institute, University of California, Berkeley, California
| | - Eva Nogales
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California; Molecular and Cell Biology Department, University of California, Berkeley, California; Howard Hughes Medical Institute, University of California, Berkeley, California
| | - Krishna K Niyogi
- Department of Plant and Microbial Biology, University of California, Berkeley, California; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California; Howard Hughes Medical Institute, University of California, Berkeley, California
| | - Daniel A Fletcher
- Bioengineering Department, University of California, Berkeley, California; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California.
| |
Collapse
|
522
|
Carroni M, Kummer E, Oguchi Y, Wendler P, Clare DK, Sinning I, Kopp J, Mogk A, Bukau B, Saibil HR. Head-to-tail interactions of the coiled-coil domains regulate ClpB activity and cooperation with Hsp70 in protein disaggregation. eLife 2014; 3:e02481. [PMID: 24843029 PMCID: PMC4023160 DOI: 10.7554/elife.02481] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The hexameric AAA+ chaperone ClpB reactivates aggregated proteins in cooperation with the Hsp70 system. Essential for disaggregation, the ClpB middle domain (MD) is a coiled-coil propeller that binds Hsp70. Although the ClpB subunit structure is known, positioning of the MD in the hexamer and its mechanism of action are unclear. We obtained electron microscopy (EM) structures of the BAP variant of ClpB that binds the protease ClpP, clearly revealing MD density on the surface of the ClpB ring. Mutant analysis and asymmetric reconstructions show that MDs adopt diverse positions in a single ClpB hexamer. Adjacent, horizontally oriented MDs form head-to-tail contacts and repress ClpB activity by preventing Hsp70 interaction. Tilting of the MD breaks this contact, allowing Hsp70 binding, and releasing the contact in adjacent subunits. Our data suggest a wavelike activation of ClpB subunits around the ring.DOI: http://dx.doi.org/10.7554/eLife.02481.001.
Collapse
Affiliation(s)
- Marta Carroni
- Department of Crystallography, Birkbeck College, University of London, London, United Kingdom
| | - Eva Kummer
- Zentrum für Molekulare Biologie, Universität Heidelberg, Heidelberg, Germany
| | - Yuki Oguchi
- Zentrum für Molekulare Biologie, Universität Heidelberg, Heidelberg, Germany
| | - Petra Wendler
- Gene Center, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Daniel K Clare
- Department of Crystallography, Birkbeck College, University of London, London, United Kingdom
| | - Irmgard Sinning
- Biochemie-Zentrum, Universität Heidelberg, Heidelberg, Germany
| | - Jürgen Kopp
- Biochemie-Zentrum, Universität Heidelberg, Heidelberg, Germany
| | - Axel Mogk
- Zentrum für Molekulare Biologie, Universität Heidelberg, Heidelberg, Germany
| | - Bernd Bukau
- Zentrum für Molekulare Biologie, Universität Heidelberg, Heidelberg, Germany
| | - Helen R Saibil
- Department of Crystallography, Birkbeck College, University of London, London, United Kingdom
| |
Collapse
|
523
|
Low HH, Gubellini F, Rivera-Calzada A, Braun N, Connery S, Dujeancourt A, Lu F, Redzej A, Fronzes R, Orlova EV, Waksman G. Structure of a type IV secretion system. Nature 2014; 508:550-553. [PMID: 24670658 PMCID: PMC3998870 DOI: 10.1038/nature13081] [Citation(s) in RCA: 233] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 01/27/2014] [Indexed: 02/08/2023]
Abstract
Bacterial type IV secretion systems translocate virulence factors into eukaryotic cells, distribute genetic material between bacteria and have shown potential as a tool for the genetic modification of human cells. Given the complex choreography of the substrate through the secretion apparatus, the molecular mechanism of the type IV secretion system has proved difficult to dissect in the absence of structural data for the entire machinery. Here we use electron microscopy to reconstruct the type IV secretion system encoded by the Escherichia coli R388 conjugative plasmid. We show that eight proteins assemble in an intricate stoichiometric relationship to form an approximately 3 megadalton nanomachine that spans the entire cell envelope. The structure comprises an outer membrane-associated core complex connected by a central stalk to a substantial inner membrane complex that is dominated by a battery of 12 VirB4 ATPase subunits organized as side-by-side hexameric barrels. Our results show a secretion system with markedly different architecture, and consequently mechanism, to other known bacterial secretion systems.
Collapse
Affiliation(s)
- Harry H. Low
- Institute of Structural and Molecular Biology, UCL and Birkbeck, Malet Street, London, WC1E 7HX, UK
| | - Francesca Gubellini
- Institut Pasteur, G5 Biologie structurale de la sécrétion bactérienne and UMR 3528-CNRS, 25 rue du Docteur Roux, 75015 Paris, France
| | - Angel Rivera-Calzada
- Institute of Structural and Molecular Biology, UCL and Birkbeck, Malet Street, London, WC1E 7HX, UK
| | - Nathalie Braun
- Institute of Structural and Molecular Biology, UCL and Birkbeck, Malet Street, London, WC1E 7HX, UK
| | - Sarah Connery
- Institute of Structural and Molecular Biology, UCL and Birkbeck, Malet Street, London, WC1E 7HX, UK
| | - Annick Dujeancourt
- Institut Pasteur, G5 Biologie structurale de la sécrétion bactérienne and UMR 3528-CNRS, 25 rue du Docteur Roux, 75015 Paris, France
| | - Fang Lu
- Institute of Structural and Molecular Biology, UCL and Birkbeck, Malet Street, London, WC1E 7HX, UK
| | - Adam Redzej
- Institute of Structural and Molecular Biology, UCL and Birkbeck, Malet Street, London, WC1E 7HX, UK
| | - Rémi Fronzes
- Institut Pasteur, G5 Biologie structurale de la sécrétion bactérienne and UMR 3528-CNRS, 25 rue du Docteur Roux, 75015 Paris, France
| | - Elena V. Orlova
- Institute of Structural and Molecular Biology, UCL and Birkbeck, Malet Street, London, WC1E 7HX, UK
| | - Gabriel Waksman
- Institute of Structural and Molecular Biology, UCL and Birkbeck, Malet Street, London, WC1E 7HX, UK
| |
Collapse
|
524
|
Özkan E, Chia PH, Wang RR, Goriatcheva N, Borek D, Otwinowski Z, Walz T, Shen K, Garcia KC. Extracellular architecture of the SYG-1/SYG-2 adhesion complex instructs synaptogenesis. Cell 2014; 156:482-94. [PMID: 24485456 PMCID: PMC3962013 DOI: 10.1016/j.cell.2014.01.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 09/04/2013] [Accepted: 01/06/2014] [Indexed: 01/29/2023]
Abstract
SYG-1 and SYG-2 are multipurpose cell adhesion molecules (CAMs) that have evolved across all major animal taxa to participate in diverse physiological functions, ranging from synapse formation to formation of the kidney filtration barrier. In the crystal structures of several SYG-1 and SYG-2 orthologs and their complexes, we find that SYG-1 orthologs homodimerize through a common, bispecific interface that similarly mediates an unusual orthogonal docking geometry in the heterophilic SYG-1/SYG-2 complex. C. elegans SYG-1's specification of proper synapse formation in vivo closely correlates with the heterophilic complex affinity, which appears to be tuned for optimal function. Furthermore, replacement of the interacting domains of SYG-1 and SYG-2 with those from CAM complexes that assume alternative docking geometries or the introduction of segmental flexibility compromised synaptic function. These results suggest that SYG extracellular complexes do not simply act as "molecular velcro" and that their distinct structural features are important in instructing synaptogenesis. PAPERFLICK:
Collapse
Affiliation(s)
- Engin Özkan
- Department of Molecular and Cellular Physiology and Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Poh Hui Chia
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Ruiqi Rachel Wang
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Natalia Goriatcheva
- Department of Molecular and Cellular Physiology and Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dominika Borek
- Departments of Biochemistry and Biophysics, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Zbyszek Otwinowski
- Departments of Biochemistry and Biophysics, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Thomas Walz
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Kang Shen
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - K Christopher Garcia
- Department of Molecular and Cellular Physiology and Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
525
|
O'Sullivan ML, Martini F, von Daake S, Comoletti D, Ghosh A. LPHN3, a presynaptic adhesion-GPCR implicated in ADHD, regulates the strength of neocortical layer 2/3 synaptic input to layer 5. Neural Dev 2014; 9:7. [PMID: 24739570 PMCID: PMC3996519 DOI: 10.1186/1749-8104-9-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 03/31/2014] [Indexed: 11/18/2022] Open
Abstract
Background Latrophilins (LPHNs) are a small family of neuronal adhesion-GPCRs originally discovered as receptors for the black widow spider toxin α-latrotoxin. Mutations in LPHN3 have recently been identified as risk factors for attention deficit hyperactivity disorder (ADHD) in humans, but their physiological function has remained elusive. In this study, we tested two hypotheses regarding LPHN3 function: (1) LPHN3 regulates synaptic transmission by modulating probability of release; and (2) LPHN3 controls synapse development and the abundance of synapses. Results We manipulated LPHN3 expression in mouse layer 2/3 (L2/3) pyramidal neurons and examined the consequences on the L2/3 to L5 cortical microcircuit. Employing an optogenetic strategy combined with shRNA knockdown of LPHN3, we found that LPHN3 did not influence probability of release at synapses formed by L2/3 neurons onto L5 pyramidal cells. The strength of L2/3 afferent input to L5, however, was weakened by loss of LPHN3. Using Synaptophysin-GFP as an anatomical marker of presynaptic terminals, we found that the density of synapses formed by L2/3 axons in L5 was reduced when LPHN3 was lost. Finally, we investigated the structural organization of the extracellular domain of LPHN3. We used single particle negative stain electron microscopy to image the extracellular domain of LPHN3 and showed that the Olfactomedin and Lectin domains form a globular domain on an elongated stalk. Cell-based binding experiments with mutant proteins revealed that the Olfactomedin domain was required for binding to FLRT3, whereas both the Olfactomedin and Lectin domains were involved in binding to Teneurin 1. Mutant LPHN3 lacking the Olfactomedin domain was not capable of rescuing the deficit in presynaptic density following knockdown of endogenous LPHN3. Conclusions We find that LPHN3 regulates the number of synapses formed by L2/3 neurons in L5 and the strength of synaptic drive from the L2/3-L5 pathway. The Olfactomedin domain of LPHN3 is required for this effect on synapse number and binding to its postsynaptic ligand FLRT3. We propose that LPHN3 functions in synaptic development and is important in determining the connectivity rates between principal neurons in the cortex.
Collapse
Affiliation(s)
| | | | | | | | - Anirvan Ghosh
- Neurobiology Section, Division of Biology, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
526
|
Fragile X mental retardation protein regulates translation by binding directly to the ribosome. Mol Cell 2014; 54:407-417. [PMID: 24746697 DOI: 10.1016/j.molcel.2014.03.023] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/18/2014] [Accepted: 03/10/2014] [Indexed: 11/23/2022]
Abstract
Fragile X syndrome (FXS) is the most common form of inherited mental retardation, and it is caused by loss of function of the fragile X mental retardation protein (FMRP). FMRP is an RNA-binding protein that is involved in the translational regulation of several neuronal mRNAs. However, the precise mechanism of translational inhibition by FMRP is unknown. Here, we show that FMRP inhibits translation by binding directly to the L5 protein on the 80S ribosome. Furthermore, cryoelectron microscopic reconstruction of the 80S ribosome⋅FMRP complex shows that FMRP binds within the intersubunit space of the ribosome such that it would preclude the binding of tRNA and translation elongation factors on the ribosome. These findings suggest that FMRP inhibits translation by blocking the essential components of the translational machinery from binding to the ribosome.
Collapse
|
527
|
Yokom AL, Morishima Y, Lau M, Su M, Glukhova A, Osawa Y, Southworth DR. Architecture of the nitric-oxide synthase holoenzyme reveals large conformational changes and a calmodulin-driven release of the FMN domain. J Biol Chem 2014; 289:16855-65. [PMID: 24737326 DOI: 10.1074/jbc.m114.564005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Nitric-oxide synthase (NOS) is required in mammals to generate NO for regulating blood pressure, synaptic response, and immune defense. NOS is a large homodimer with well characterized reductase and oxygenase domains that coordinate a multistep, interdomain electron transfer mechanism to oxidize l-arginine and generate NO. Ca(2+)-calmodulin (CaM) binds between the reductase and oxygenase domains to activate NO synthesis. Although NOS has long been proposed to adopt distinct conformations that alternate between interflavin and FMN-heme electron transfer steps, structures of the holoenzyme have remained elusive and the CaM-bound arrangement is unknown. Here we have applied single particle electron microscopy (EM) methods to characterize the full-length of the neuronal isoform (nNOS) complex and determine the structural mechanism of CaM activation. We have identified that nNOS adopts an ensemble of open and closed conformational states and that CaM binding induces a dramatic rearrangement of the reductase domain. Our three-dimensional reconstruction of the intact nNOS-CaM complex reveals a closed conformation and a cross-monomer arrangement with the FMN domain rotated away from the NADPH-FAD center, toward the oxygenase dimer. This work captures, for the first time, the reductase-oxygenase structural arrangement and the CaM-dependent release of the FMN domain that coordinates to drive electron transfer across the domains during catalysis.
Collapse
Affiliation(s)
- Adam L Yokom
- From the Department of Biological Chemistry, the Program in Chemical Biology, and
| | | | | | - Min Su
- the Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
| | | | | | - Daniel R Southworth
- From the Department of Biological Chemistry, the Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
528
|
Márquez G, Pinto A, Alamo L, Baumann B, Ye F, Winkler H, Taylor K, Padrón R. A method for 3D-reconstruction of a muscle thick filament using the tilt series images of a single filament electron tomogram. J Struct Biol 2014; 186:265-72. [PMID: 24727133 DOI: 10.1016/j.jsb.2014.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 03/19/2014] [Accepted: 04/04/2014] [Indexed: 10/25/2022]
Abstract
Myosin interacting-heads (MIH) motifs are visualized in 3D-reconstructions of thick filaments from striated muscle. These reconstructions are calculated by averaging methods using images from electron micrographs of grids prepared using numerous filament preparations. Here we propose an alternative method to calculate the 3D-reconstruction of a single thick filament using only a tilt series images recorded by electron tomography. Relaxed thick filaments, prepared from tarantula leg muscle homogenates, were negatively stained. Single-axis tilt series of single isolated thick filaments were obtained with the electron microscope at a low electron dose, and recorded on a CCD camera by electron tomography. An IHRSR 3D-recontruction was calculated from the tilt series images of a single thick filament. The reconstruction was enhanced by including in the search stage dual tilt image segments while only single tilt along the filament axis is usually used, as well as applying a band pass filter just before the back projection. The reconstruction from a single filament has a 40 Å resolution and clearly shows the presence of MIH motifs. In contrast, the electron tomogram 3D-reconstruction of the same thick filament - calculated without any image averaging and/or imposition of helical symmetry - only reveals MIH motifs infrequently. This is - to our knowledge - the first application of the IHRSR method to calculate a 3D reconstruction from tilt series images. This single filament IHRSR reconstruction method (SF-IHRSR) should provide a new tool to assess structural differences between well-ordered thick (or thin) filaments in a grid by recording separately their electron tomograms.
Collapse
Affiliation(s)
- G Márquez
- Centro de Biología Estructural, Instituto Venezolano de Investigaciones Científicas (IVIC), Apdo. 20632, Caracas 1020A, Venezuela.
| | - A Pinto
- Centro de Biología Estructural, Instituto Venezolano de Investigaciones Científicas (IVIC), Apdo. 20632, Caracas 1020A, Venezuela.
| | - L Alamo
- Centro de Biología Estructural, Instituto Venezolano de Investigaciones Científicas (IVIC), Apdo. 20632, Caracas 1020A, Venezuela.
| | - B Baumann
- Institute of Molecular Biophysics, Florida State University, 91 Chieftan way, Tallahassee, FL 32306-4380, USA.
| | - F Ye
- Institute of Molecular Biophysics, Florida State University, 91 Chieftan way, Tallahassee, FL 32306-4380, USA.
| | - H Winkler
- Institute of Molecular Biophysics, Florida State University, 91 Chieftan way, Tallahassee, FL 32306-4380, USA.
| | - K Taylor
- Institute of Molecular Biophysics, Florida State University, 91 Chieftan way, Tallahassee, FL 32306-4380, USA.
| | - R Padrón
- Centro de Biología Estructural, Instituto Venezolano de Investigaciones Científicas (IVIC), Apdo. 20632, Caracas 1020A, Venezuela.
| |
Collapse
|
529
|
Dukes MJ, Thomas R, Damiano J, Klein KL, Balasubramaniam S, Kayandan S, Riffle JS, Davis RM, McDonald SM, Kelly DF. Improved microchip design and application for in situ transmission electron microscopy of macromolecules. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2014; 20:338-345. [PMID: 24331164 DOI: 10.1017/s1431927613013858] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Understanding the fundamental properties of macromolecules has enhanced the development of emerging technologies used to improve biomedical research. Currently, there is a critical need for innovative platforms that can illuminate the function of biomedical reagents in a native environment. To address this need, we have developed an in situ approach to visualize the dynamic behavior of biomedically relevant macromolecules at the nanoscale. Newly designed silicon nitride devices containing integrated "microwells" were used to enclose active macromolecular specimens in liquid for transmission electron microscopy imaging purposes.We were able to successfully examine novel magnetic resonance imaging contrast reagents, micelle suspensions, liposome carrier vehicles, and transcribing viral assemblies. With each specimen tested, the integrated microwells adequately maintained macromolecules in discrete local environments while enabling thin liquid layers to be produced.
Collapse
Affiliation(s)
| | | | | | - Kate L Klein
- 2 Department of Mechanical Engineering, University of the District of Columbia, Washington, DC 20008, USA
| | | | - Sanem Kayandan
- 3 Macromolecules and Interfaces Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Judy S Riffle
- 3 Macromolecules and Interfaces Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Richey M Davis
- 3 Macromolecules and Interfaces Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Sarah M McDonald
- 6 Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, VA 24016, USA
| | - Deborah F Kelly
- 3 Macromolecules and Interfaces Institute, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
530
|
Chaban Y, Boekema EJ, Dudkina NV. Structures of mitochondrial oxidative phosphorylation supercomplexes and mechanisms for their stabilisation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:418-26. [DOI: 10.1016/j.bbabio.2013.10.004] [Citation(s) in RCA: 200] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Revised: 10/01/2013] [Accepted: 10/15/2013] [Indexed: 01/13/2023]
|
531
|
Nicoll AJ, Panico S, Freir DB, Wright D, Terry C, Risse E, Herron CE, O'Malley T, Wadsworth JDF, Farrow MA, Walsh DM, Saibil HR, Collinge J. Amyloid-β nanotubes are associated with prion protein-dependent synaptotoxicity. Nat Commun 2014; 4:2416. [PMID: 24022506 PMCID: PMC3908552 DOI: 10.1038/ncomms3416] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 08/07/2013] [Indexed: 12/21/2022] Open
Abstract
Growing evidence suggests water-soluble, non-fibrillar forms of amyloid-β protein (Aβ) have important roles in Alzheimer’s disease with toxicities mimicked by synthetic Aβ1–42. However, no defined toxic structures acting via specific receptors have been identified and roles of proposed receptors, such as prion protein (PrP), remain controversial. Here we quantify binding to PrP of Aβ1–42 after different durations of aggregation. We show PrP-binding and PrP-dependent inhibition of long-term potentiation (LTP) correlate with the presence of protofibrils. Globular oligomers bind less avidly to PrP and do not inhibit LTP, whereas fibrils inhibit LTP in a PrP-independent manner. That only certain transient Aβ assemblies cause PrP-dependent toxicity explains conflicting reports regarding the involvement of PrP in Aβ-induced impairments. We show that these protofibrils contain a defined nanotubular structure with a previously unidentified triple helical conformation. Blocking the formation of Aβ nanotubes or their interaction with PrP might have a role in treatment of Alzheimer’s disease. Prion protein has been suggested to bind toxic amyloid-ß oligomers. Nicoll et al. demonstrate that binding to prion protein and prion protein-dependent synaptotoxicity correlate with the presence of a tubular form of amyloid-ß with a defined triple helical structure.
Collapse
Affiliation(s)
- Andrew J Nicoll
- Medical Research Council Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
532
|
Thompson PM, Tolbert CE, Shen K, Kota P, Palmer SM, Plevock KM, Orlova A, Galkin VE, Burridge K, Egelman EH, Dokholyan NV, Superfine R, Campbell SL. Identification of an actin binding surface on vinculin that mediates mechanical cell and focal adhesion properties. Structure 2014; 22:697-706. [PMID: 24685146 DOI: 10.1016/j.str.2014.03.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 02/04/2014] [Accepted: 03/04/2014] [Indexed: 11/30/2022]
Abstract
Vinculin, a cytoskeletal scaffold protein essential for embryogenesis and cardiovascular function, localizes to focal adhesions and adherens junctions, connecting cell surface receptors to the actin cytoskeleton. While vinculin interacts with many adhesion proteins, its interaction with filamentous actin regulates cell morphology, motility, and mechanotransduction. Disruption of this interaction lowers cell traction forces and enhances actin flow rates. Although a model for the vinculin:actin complex exists, we recently identified actin-binding deficient mutants of vinculin outside sites predicted to bind actin and developed an alternative model to better define this actin-binding surface, using negative-stain electron microscopy (EM), discrete molecular dynamics, and mutagenesis. Actin-binding deficient vinculin variants expressed in vinculin knockout fibroblasts fail to rescue cell-spreading defects and reduce cellular response to external force. These findings highlight the importance of this actin-binding surface and provide the molecular basis for elucidating additional roles of this interaction, including actin-induced conformational changes that promote actin bundling.
Collapse
Affiliation(s)
- Peter M Thompson
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Molecular and Cellular Biophysics Program, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Caitlin E Tolbert
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kai Shen
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Pradeep Kota
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Molecular and Cellular Biophysics Program, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sean M Palmer
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Molecular and Cellular Biophysics Program, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Karen M Plevock
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Molecular and Cellular Biophysics Program, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Albina Orlova
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
| | - Vitold E Galkin
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
| | - Keith Burridge
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
| | - Nikolay V Dokholyan
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Richard Superfine
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sharon L Campbell
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
533
|
Distinct docking and stabilization steps of the Pseudopilus conformational transition path suggest rotational assembly of type IV pilus-like fibers. Structure 2014; 22:685-96. [PMID: 24685147 DOI: 10.1016/j.str.2014.03.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 02/28/2014] [Accepted: 03/04/2014] [Indexed: 01/07/2023]
Abstract
The closely related bacterial type II secretion (T2S) and type IV pilus (T4P) systems are sophisticated machines that assemble dynamic fibers promoting protein transport, motility, or adhesion. Despite their essential role in virulence, the molecular mechanisms underlying helical fiber assembly remain unknown. Here, we use electron microscopy and flexible modeling to study conformational changes of PulG pili assembled by the Klebsiella oxytoca T2SS. Neural network analysis of 3,900 pilus models suggested a transition path toward low-energy conformations driven by progressive increase in fiber helical twist. Detailed predictions of interprotomer contacts along this path were tested by site-directed mutagenesis, pilus assembly, and protein secretion analyses. We demonstrate that electrostatic interactions between adjacent protomers (P-P+1) in the membrane drive pseudopilin docking, while P-P+3 and P-P+4 contacts determine downstream fiber stabilization steps. These results support a model of a spool-like assembly mechanism for fibers of the T2SS-T4P superfamily.
Collapse
|
534
|
Diebolder CA, Beurskens FJ, de Jong RN, Koning RI, Strumane K, Lindorfer MA, Voorhorst M, Ugurlar D, Rosati S, Heck AJR, van de Winkel JGJ, Wilson IA, Koster AJ, Taylor RP, Saphire EO, Burton DR, Schuurman J, Gros P, Parren PWHI. Complement is activated by IgG hexamers assembled at the cell surface. Science 2014; 343:1260-3. [PMID: 24626930 DOI: 10.1126/science.1248943] [Citation(s) in RCA: 576] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Complement activation by antibodies bound to pathogens, tumors, and self antigens is a critical feature of natural immune defense, a number of disease processes, and immunotherapies. How antibodies activate the complement cascade, however, is poorly understood. We found that specific noncovalent interactions between Fc segments of immunoglobulin G (IgG) antibodies resulted in the formation of ordered antibody hexamers after antigen binding on cells. These hexamers recruited and activated C1, the first component of complement, thereby triggering the complement cascade. The interactions between neighboring Fc segments could be manipulated to block, reconstitute, and enhance complement activation and killing of target cells, using all four human IgG subclasses. We offer a general model for understanding antibody-mediated complement activation and the design of antibody therapeutics with enhanced efficacy.
Collapse
Affiliation(s)
- Christoph A Diebolder
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, 3584 CH Utrecht, Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
535
|
Leidig C, Thoms M, Holdermann I, Bradatsch B, Berninghausen O, Bange G, Sinning I, Hurt E, Beckmann R. 60S ribosome biogenesis requires rotation of the 5S ribonucleoprotein particle. Nat Commun 2014; 5:3491. [PMID: 24662372 DOI: 10.1038/ncomms4491] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 02/22/2014] [Indexed: 01/23/2023] Open
Abstract
During eukaryotic ribosome biogenesis, nascent ribosomal RNA (rRNA) forms pre-ribosomal particles containing ribosomal proteins and assembly factors. Subsequently, these immature rRNAs are processed and remodelled. Little is known about the premature assembly states of rRNAs and their structural rearrangement during ribosome biogenesis. Using cryo-EM we characterize a pre-60S particle, where the 5S rRNA and its associated ribosomal proteins L18 and L5 (5S ribonucleoprotein (RNP)) are rotated by almost 180° when compared with the mature subunit. Consequently, neighbouring 25S rRNA helices that protrude from the base of the central protuberance are deformed. This altered topology is stabilized by nearby assembly factors (Rsa4 and Nog1), which were identified by fitting their three-dimensional structures into the cryo-EM density. We suggest that the 5S RNP performs a semicircular movement during 60S biogenesis to adopt its final position, fulfilling a chaperone-like function in guiding the flanking 25S rRNA helices of the central protuberance to their final topology.
Collapse
Affiliation(s)
- Christoph Leidig
- Gene Center and Center of Integrated Protein Science Munich (CiPS-M), Department of Chemistry and Biochemistry, University of Munich, 81377 Munich, Germany
| | - Matthias Thoms
- Heidelberg University Biochemistry Center (BZH), 69120 Heidelberg, Germany
| | - Iris Holdermann
- Heidelberg University Biochemistry Center (BZH), 69120 Heidelberg, Germany
| | - Bettina Bradatsch
- Heidelberg University Biochemistry Center (BZH), 69120 Heidelberg, Germany
| | - Otto Berninghausen
- Gene Center and Center of Integrated Protein Science Munich (CiPS-M), Department of Chemistry and Biochemistry, University of Munich, 81377 Munich, Germany
| | - Gert Bange
- 1] Heidelberg University Biochemistry Center (BZH), 69120 Heidelberg, Germany [2]
| | - Irmgard Sinning
- Heidelberg University Biochemistry Center (BZH), 69120 Heidelberg, Germany
| | - Ed Hurt
- Heidelberg University Biochemistry Center (BZH), 69120 Heidelberg, Germany
| | - Roland Beckmann
- Gene Center and Center of Integrated Protein Science Munich (CiPS-M), Department of Chemistry and Biochemistry, University of Munich, 81377 Munich, Germany
| |
Collapse
|
536
|
Arenz S, Ramu H, Gupta P, Berninghausen O, Beckmann R, Vázquez-Laslop N, Mankin AS, Wilson DN. Molecular basis for erythromycin-dependent ribosome stalling during translation of the ErmBL leader peptide. Nat Commun 2014; 5:3501. [PMID: 24662426 DOI: 10.1038/ncomms4501] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 02/24/2014] [Indexed: 11/09/2022] Open
Abstract
In bacteria, ribosome stalling during translation of ErmBL leader peptide occurs in the presence of the antibiotic erythromycin and leads to induction of expression of the downstream macrolide resistance methyltransferase ErmB. The lack of structures of drug-dependent stalled ribosome complexes (SRCs) has limited our mechanistic understanding of this regulatory process. Here we present a cryo-electron microscopy structure of the erythromycin-dependent ErmBL-SRC. The structure reveals that the antibiotic does not interact directly with ErmBL, but rather redirects the path of the peptide within the tunnel. Furthermore, we identify a key peptide-ribosome interaction that defines an important relay pathway from the ribosomal tunnel to the peptidyltransferase centre (PTC). The PTC of the ErmBL-SRC appears to adopt an uninduced state that prevents accommodation of Lys-tRNA at the A-site, thus providing structural basis for understanding how the drug and the nascent peptide cooperate to inhibit peptide bond formation and induce translation arrest.
Collapse
Affiliation(s)
- Stefan Arenz
- Gene Center, Department for Biochemistry, University of Munich, Feodor-Lynen Strasse 25, 81377 Munich, Germany
| | - Haripriya Ramu
- Center for Pharmaceutical Biotechnology, University of Illinois, Chicago, Illinois 60607, USA
| | - Pulkit Gupta
- Center for Pharmaceutical Biotechnology, University of Illinois, Chicago, Illinois 60607, USA
| | - Otto Berninghausen
- Gene Center, Department for Biochemistry, University of Munich, Feodor-Lynen Strasse 25, 81377 Munich, Germany
| | - Roland Beckmann
- 1] Gene Center, Department for Biochemistry, University of Munich, Feodor-Lynen Strasse 25, 81377 Munich, Germany [2] Center for integrated Protein Science Munich (CiPSM), University of Munich, Feodor-Lynen Strasse 25, 81377 Munich, Germany
| | - Nora Vázquez-Laslop
- Center for Pharmaceutical Biotechnology, University of Illinois, Chicago, Illinois 60607, USA
| | - Alexander S Mankin
- Center for Pharmaceutical Biotechnology, University of Illinois, Chicago, Illinois 60607, USA
| | - Daniel N Wilson
- 1] Gene Center, Department for Biochemistry, University of Munich, Feodor-Lynen Strasse 25, 81377 Munich, Germany [2] Center for integrated Protein Science Munich (CiPSM), University of Munich, Feodor-Lynen Strasse 25, 81377 Munich, Germany
| |
Collapse
|
537
|
Limits of structural plasticity in a picornavirus capsid revealed by a massively expanded equine rhinitis A virus particle. J Virol 2014; 88:6093-9. [PMID: 24648455 PMCID: PMC4093863 DOI: 10.1128/jvi.01979-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The Picornaviridae family of small, nonenveloped viruses includes major pathogens of humans and animals. They have positive-sense, single-stranded RNA genomes, and the mechanism(s) by which these genomes are introduced into cells to initiate infection remains poorly understood. The structures of presumed uncoating intermediate particles of several picornaviruses show limited expansion and some increased porosity compared to the mature virions. Here, we present the cryo-electron microscopy structure of native equine rhinitis A virus (ERAV), together with the structure of a massively expanded ERAV particle, each at ∼17–Å resolution. The expanded structure has large pores on the particle 3-fold axes and has lost the RNA genome and the capsid protein VP4. The expanded structure thus illustrates both the limits of structural plasticity in such capsids and a plausible route by which genomic RNA might exit. IMPORTANCE Picornaviruses are important animal and human pathogens that protect their genomic RNAs within a protective protein capsid. Upon infection, this genomic RNA must be able to leave the capsid to initiate a new round of infection. We describe here the structure of a unique, massively expanded state of equine rhinitis A virus that provides insight into how this exit might occur.
Collapse
|
538
|
Zehr EA, Kraemer JA, Erb ML, Coker JKC, Montabana EA, Pogliano J, Agard DA. The structure and assembly mechanism of a novel three-stranded tubulin filament that centers phage DNA. Structure 2014; 22:539-48. [PMID: 24631461 DOI: 10.1016/j.str.2014.02.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 01/31/2014] [Accepted: 02/11/2014] [Indexed: 10/25/2022]
Abstract
Tubulins are a universally conserved protein superfamily that carry out diverse biological roles by assembling filaments with very different architectures. The underlying basis of this structural diversity is poorly understood. Here, we determine a 7.1 Å cryo-electron microscopy reconstruction of the bacteriophage-encoded PhuZ filament and provide molecular-level insight into its cooperative assembly mechanism. The PhuZ family of tubulins is required to actively center the phage within infected host cells, facilitating efficient phage replication. Our reconstruction and derived model reveal the first example of a three-stranded tubulin filament. We show that the elongated C-terminal tail simultaneously stabilizes both longitudinal and lateral interactions, which in turn define filament architecture. Identified interaction surfaces are conserved within the PhuZ family, and their mutagenesis compromises polymerization in vitro and in vivo. Combining kinetic modeling of PhuZ filament assembly and structural data, we suggest a common filament structure and assembly mechanism for the PhuZ family of tubulins.
Collapse
Affiliation(s)
- Elena A Zehr
- Department of Biochemistry and Biophysics and the Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - James A Kraemer
- Department of Biochemistry and Biophysics and the Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Marcella L Erb
- Division of Biological Sciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Joanna K C Coker
- Division of Biological Sciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Elizabeth A Montabana
- Department of Biochemistry and Biophysics and the Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Joe Pogliano
- Division of Biological Sciences, University of California, San Diego, San Diego, CA 92093, USA
| | - David A Agard
- Department of Biochemistry and Biophysics and the Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
539
|
Chen TL, Hsieh DN, Hung H, Tu IP, Wu PS, Wu YM, Chang WH, Huang SY. $\gamma$-SUP: A clustering algorithm for cryo-electron microscopy images of asymmetric particles. Ann Appl Stat 2014. [DOI: 10.1214/13-aoas680] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
540
|
Tsybovsky Y, Palczewski K. Expression, purification and structural properties of ABC transporter ABCA4 and its individual domains. Protein Expr Purif 2014; 97:50-60. [PMID: 24583180 DOI: 10.1016/j.pep.2014.02.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 02/18/2014] [Accepted: 02/19/2014] [Indexed: 12/13/2022]
Abstract
ABCA4 is a member of the A subfamily of ATP-binding cassette transporters that consists of large integral membrane proteins implicated in inherited human diseases. ABCA4 assists in the clearance of N-retinylidene-phosphatidylethanolamine, a potentially toxic by-product of the visual cycle formed in photoreceptor cells during light perception. Structural and functional studies of this protein have been hindered by its large size, membrane association, and domain complexity. Although mammalian, insect and bacterial systems have been used for expression of ABCA4 and its individual domains, the structural relevance of resulting proteins to the native transporter has yet to be established. We produced soluble domains of ABCA4 in Escherichia coli and Saccharomyces cerevisiae and the full-length transporter in HEK293 cells. Electron microscopy and size exclusion chromatography were used to assess the conformational homogeneity and structure of these proteins. We found that isolated ABCA4 domains formed large, heterogeneous oligomers cross-linked with non-specific disulphide bonds. Incomplete folding of cytoplasmic domain 2 was proposed based on fluorescence spectroscopy results. In contrast, full-length human ABCA4 produced in mammalian cells was found structurally equivalent to the native protein obtained from bovine photoreceptors. These findings offer recombinantly expressed full-length ABCA4 as an appropriate object for future detailed structural and functional characterization.
Collapse
Affiliation(s)
- Yaroslav Tsybovsky
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA
| | - Krzysztof Palczewski
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA.
| |
Collapse
|
541
|
Wasilewski S, Rosenthal PB. Web server for tilt-pair validation of single particle maps from electron cryomicroscopy. J Struct Biol 2014; 186:122-31. [PMID: 24582855 DOI: 10.1016/j.jsb.2014.02.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 02/18/2014] [Accepted: 02/19/2014] [Indexed: 11/16/2022]
Abstract
Three-dimensional structures of biological assemblies may be calculated from images of single particles obtained by electron cryomicroscopy. A key step is the correct determination of the orientation of the particle in individual image projections. A useful tool for validation of the quality of a 3D map and its consistency with images is tilt-pair analysis. In a successful tilt-pair test, the relative angle between orientations assigned to each image of a tilt-pair agrees with the known relative rotation angle of the microscope specimen holder during the experiment. To make the procedure easy to apply to the increasing number of single particle maps, we have developed software and a web server for tilt-pair analysis. The tilt-pair analysis program reports the overall agreement of the assigned orientations with the known tilt angle and axis of the experiment and the distribution of tilt transformations for individual particles recorded in a single image field. We illustrate application of the validation tool to several single particle specimens and describe how to interpret the scores.
Collapse
Affiliation(s)
- Sebastian Wasilewski
- Division of Physical Biochemistry, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom
| | - Peter B Rosenthal
- Division of Physical Biochemistry, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom.
| |
Collapse
|
542
|
Balasubramaniam S, Kayandan S, Lin YN, Kelly DF, House MJ, Woodward RC, St Pierre TG, Riffle JS, Davis RM. Toward design of magnetic nanoparticle clusters stabilized by biocompatible diblock copolymers for T₂-weighted MRI contrast. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:1580-1587. [PMID: 24479874 DOI: 10.1021/la403591z] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We report the fabrication of magnetic particles comprised of clusters of iron oxide nanoparticles, 7.4 nm mean diameter, stabilized by a biocompatible, amphiphilic diblock copolymer, poly(ethylene oxide-b-D,L-lactide). Particles with quantitative incorporation of up to 40 wt % iron oxide and hydrodynamic sizes in the range of 80-170 nm were prepared. The particles consist of hydrophobically modified iron oxide nanoparticles within the core-forming polylactide block with the poly(ethylene oxide) forming a corona to afford aqueous dispersibility. The transverse relaxivities (r2) increased with average particle size and exceeded 200 s(-1) mM Fe(-1) at 1.4 T and 37 °C for iron oxide loadings above 30 wt %. These experimental relaxivities typically agreed to within 15% with the values predicted using analytical models of transverse relaxivity and cluster (particle core) size distributions derived from cryo-TEM measurements. Our results show that the theoretical models can be used for the rational design of biocompatible MRI contrast agents with tailored compositions and size distributions.
Collapse
Affiliation(s)
- Sharavanan Balasubramaniam
- Macromolecules and Interfaces Institute, ‡Department of Chemistry, and §Department of Chemical Engineering, Virginia Tech , Blacksburg, Virginia 24061, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
543
|
Single-particle EM reveals the higher-order domain architecture of soluble guanylate cyclase. Proc Natl Acad Sci U S A 2014; 111:2960-5. [PMID: 24516165 DOI: 10.1073/pnas.1400711111] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Soluble guanylate cyclase (sGC) is the primary nitric oxide (NO) receptor in mammals and a central component of the NO-signaling pathway. The NO-signaling pathways mediate diverse physiological processes, including vasodilation, neurotransmission, and myocardial functions. sGC is a heterodimer assembled from two homologous subunits, each comprised of four domains. Although crystal structures of isolated domains have been reported, no structure is available for full-length sGC. We used single-particle electron microscopy to obtain the structure of the complete sGC heterodimer and determine its higher-order domain architecture. Overall, the protein is formed of two rigid modules: the catalytic dimer and the clustered Per/Art/Sim and heme-NO/O2-binding domains, connected by a parallel coiled coil at two hinge points. The quaternary assembly demonstrates a very high degree of flexibility. We captured hundreds of individual conformational snapshots of free sGC, NO-bound sGC, and guanosine-5'-[(α,β)-methylene]triphosphate-bound sGC. The molecular architecture and pronounced flexibility observed provides a significant step forward in understanding the mechanism of NO signaling.
Collapse
|
544
|
Jinek M, Jiang F, Taylor DW, Sternberg SH, Kaya E, Ma E, Anders C, Hauer M, Zhou K, Lin S, Kaplan M, Iavarone AT, Charpentier E, Nogales E, Doudna JA. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science 2014; 343:1247997. [PMID: 24505130 PMCID: PMC4184034 DOI: 10.1126/science.1247997] [Citation(s) in RCA: 821] [Impact Index Per Article: 74.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Type II CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) systems use an RNA-guided DNA endonuclease, Cas9, to generate double-strand breaks in invasive DNA during an adaptive bacterial immune response. Cas9 has been harnessed as a powerful tool for genome editing and gene regulation in many eukaryotic organisms. We report 2.6 and 2.2 angstrom resolution crystal structures of two major Cas9 enzyme subtypes, revealing the structural core shared by all Cas9 family members. The architectures of Cas9 enzymes define nucleic acid binding clefts, and single-particle electron microscopy reconstructions show that the two structural lobes harboring these clefts undergo guide RNA-induced reorientation to form a central channel where DNA substrates are bound. The observation that extensive structural rearrangements occur before target DNA duplex binding implicates guide RNA loading as a key step in Cas9 activation.
Collapse
Affiliation(s)
- Martin Jinek
- Department of Biochemistry, University of Zurich, CH-8057 Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
545
|
Katz G, Benkarroum Y, Wei H, Rice WJ, Bucher D, Alimova A, Katz A, Klukowska J, Herman GT, Gottlieb P. Morphology of influenza B/Lee/40 determined by cryo-electron microscopy. PLoS One 2014; 9:e88288. [PMID: 24516628 PMCID: PMC3916419 DOI: 10.1371/journal.pone.0088288] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 01/07/2014] [Indexed: 12/22/2022] Open
Abstract
Cryo-electron microscopy projection image analysis and tomography is used to describe the overall architecture of influenza B/Lee/40. Algebraic reconstruction techniques with utilization of volume elements (blobs) are employed to reconstruct tomograms of this pleomorphic virus and distinguish viral surface spikes. The purpose of this research is to examine the architecture of influenza type B virions by cryo-electron tomography and projection image analysis. The aims are to explore the degree of ribonucleoprotein disorder in irregular shaped virions; and to quantify the number and distribution of glycoprotein surface spikes (hemagglutinin and neuraminidase) on influenza B. Projection image analysis of virion morphology shows that the majority (∼83%) of virions are spherical with an average diameter of 134±19 nm. The aspherical virions are larger (average diameter = 155±47 nm), exhibit disruption of the ribonucleoproteins, and show a partial loss of surface protein spikes. A count of glycoprotein spikes indicates that a typical 130 nm diameter type B virion contains ∼460 surface spikes. Configuration of the ribonucleoproteins and surface glycoprotein spikes are visualized in tomogram reconstructions and EM densities visualize extensions of the spikes into the matrix. The importance of the viral matrix in organization of virus structure through interaction with the ribonucleoproteins and the anchoring of the glycoprotein spikes to the matrix is demonstrated.
Collapse
Affiliation(s)
- Garrett Katz
- Department of Microbiology and Immunology, Sophie Davis School of Biomedical Education, The City College of New York, New York, New York, United States of America
| | - Younes Benkarroum
- Department of Computer Science, The Graduate Center, City University of New York, New York, New York, United States of America
| | - Hui Wei
- Department of Microbiology and Immunology, Sophie Davis School of Biomedical Education, The City College of New York, New York, New York, United States of America
| | - William J. Rice
- The New York Structural Biology Center, New York, New York, United States of America
| | - Doris Bucher
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, United States of America
| | - Alexandra Alimova
- Department of Microbiology and Immunology, Sophie Davis School of Biomedical Education, The City College of New York, New York, New York, United States of America
| | - Al Katz
- Department of Physics, The City College of New York, New York, New York, United States of America
| | - Joanna Klukowska
- Department of Computer Science, The Graduate Center, City University of New York, New York, New York, United States of America
| | - Gabor T. Herman
- Department of Computer Science, The Graduate Center, City University of New York, New York, New York, United States of America
| | - Paul Gottlieb
- Department of Microbiology and Immunology, Sophie Davis School of Biomedical Education, The City College of New York, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
546
|
Gogala M, Becker T, Beatrix B, Armache JP, Barrio-Garcia C, Berninghausen O, Beckmann R. Structures of the Sec61 complex engaged in nascent peptide translocation or membrane insertion. Nature 2014; 506:107-10. [DOI: 10.1038/nature12950] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 12/10/2013] [Indexed: 12/18/2022]
|
547
|
Orlando BJ, McDougle DR, Lucido MJ, Eng ET, Graham LA, Schneider C, Stokes DL, Das A, Malkowski MG. Cyclooxygenase-2 catalysis and inhibition in lipid bilayer nanodiscs. Arch Biochem Biophys 2014; 546:33-40. [PMID: 24503478 DOI: 10.1016/j.abb.2014.01.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 01/15/2014] [Accepted: 01/24/2014] [Indexed: 11/26/2022]
Abstract
Cyclooxygenases (COX-1 and COX-2) oxygenate arachidonic acid (AA) to generate prostaglandins. The enzymes associate with one leaflet of the membrane bilayer. We utilized nanodisc technology to investigate the function of human (hu) COX-2 and murine (mu) COX-2 in a lipid bilayer environment. huCOX-2 and muCOX-2 were incorporated into nanodiscs composed of POPC, POPS, DOPC, or DOPS phospholipids. Size-exclusion chromatography and negative stain electron microscopy confirm that a single COX-2 homodimer is incorporated into the nanodisc scaffold. Nanodisc-reconstituted COX-2 exhibited similar kinetic profiles for the oxygenation of AA, eicosapentaenoic acid, and 1-arachidonoyl glycerol compared to those derived using detergent solubilized enzyme. Moreover, changing the phospholipid composition of the nanodisc did not alter the ability of COX-2 to oxygenate AA or to be inhibited by various nonselective NSAIDs or celecoxib. The cyclooxygenase activity of nanodisc-reconstituted COX-2 was reduced by aspirin acetylation and potentiated by the nonsubstrate fatty acid palmitic acid to the same extent as detergent solubilized enzyme, independent of phospholipid composition. The stabilization and maintenance of activity afforded by the incorporation of the enzyme into nanodiscs generates a native-like lipid bilayer environment to pursue studies of COX utilizing solution-based techniques that are otherwise not tractable in the presence of detergents.
Collapse
Affiliation(s)
- Benjamin J Orlando
- Department of Structural Biology, The State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Daniel R McDougle
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA; Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA; Department of Bioengineering and Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Michael J Lucido
- Department of Structural Biology, The State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Edward T Eng
- New York Structural Biology Center, New York, NY 10027, USA
| | - Leigh Ann Graham
- Division of Clinical Pharmacology, Department of Pharmacology, Vanderbilt University Medical School, Nashville, TN 37232, USA
| | - Claus Schneider
- Division of Clinical Pharmacology, Department of Pharmacology, Vanderbilt University Medical School, Nashville, TN 37232, USA
| | - David L Stokes
- New York Structural Biology Center, New York, NY 10027, USA
| | - Aditi Das
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA; Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA; Department of Bioengineering and Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Michael G Malkowski
- Department of Structural Biology, The State University of New York at Buffalo, Buffalo, NY 14203, USA; Hauptman-Woodward Medical Research Institute, Buffalo, NY 14203, USA.
| |
Collapse
|
548
|
Myosin-binding protein C displaces tropomyosin to activate cardiac thin filaments and governs their speed by an independent mechanism. Proc Natl Acad Sci U S A 2014; 111:2170-5. [PMID: 24477690 DOI: 10.1073/pnas.1316001111] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Myosin-binding protein C (MyBP-C) is an accessory protein of striated muscle thick filaments and a modulator of cardiac muscle contraction. Defects in the cardiac isoform, cMyBP-C, cause heart disease. cMyBP-C includes 11 Ig- and fibronectin-like domains and a cMyBP-C-specific motif. In vitro studies show that in addition to binding to the thick filament via its C-terminal region, cMyBP-C can also interact with actin via its N-terminal domains, modulating thin filament motility. Structural observations of F-actin decorated with N-terminal fragments of cMyBP-C suggest that cMyBP-C binds to actin close to the low Ca(2+) binding site of tropomyosin. This suggests that cMyBP-C might modulate thin filament activity by interfering with tropomyosin regulatory movements on actin. To determine directly whether cMyBP-C binding affects tropomyosin position, we have used electron microscopy and in vitro motility assays to study the structural and functional effects of N-terminal fragments binding to thin filaments. 3D reconstructions suggest that under low Ca(2+) conditions, cMyBP-C displaces tropomyosin toward its high Ca(2+) position, and that this movement corresponds to thin filament activation in the motility assay. At high Ca(2+), cMyBP-C had little effect on tropomyosin position and caused slowing of thin filament sliding. Unexpectedly, a shorter N-terminal fragment did not displace tropomyosin or activate the thin filament at low Ca(2+) but slowed thin filament sliding as much as the larger fragments. These results suggest that cMyBP-C may both modulate thin filament activity, by physically displacing tropomyosin from its low Ca(2+) position on actin, and govern contractile speed by an independent molecular mechanism.
Collapse
|
549
|
Shigematsu H, Iida K, Nakano M, Chaudhuri P, Iida H, Nagayama K. Structural characterization of the mechanosensitive channel candidate MCA2 from Arabidopsis thaliana. PLoS One 2014; 9:e87724. [PMID: 24475319 PMCID: PMC3903776 DOI: 10.1371/journal.pone.0087724] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 12/30/2013] [Indexed: 11/19/2022] Open
Abstract
Mechanosensing in plants is thought to be governed by sensory complexes containing a Ca²⁺-permeable, mechanosensitive channel. The plasma membrane protein MCA1 and its paralog MCA2 from Arabidopsis thaliana are involved in mechanical stress-induced Ca²⁺ influx and are thus considered as candidates for such channels or their regulators. Both MCA1 and MCA2 were functionally expressed in Sf9 cells using a baculovirus system in order to elucidate their molecular natures. Because of the abundance of protein in these cells, MCA2 was chosen for purification. Purified MCA2 in a detergent-solubilized state formed a tetramer, which was confirmed by chemical cross-linking. Single-particle analysis of cryo-electron microscope images was performed to depict the overall shape of the purified protein. The three-dimensional structure of MCA2 was reconstructed at a resolution of 26 Å from 5,500 particles and appears to comprise a small transmembrane region and large cytoplasmic region.
Collapse
Affiliation(s)
- Hideki Shigematsu
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - Kazuko Iida
- Biomembrane Laboratory, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| | - Masataka Nakano
- Department of Biology, Tokyo Gakugei University, Koganei, Tokyo, Japan
| | - Pratima Chaudhuri
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - Hidetoshi Iida
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- Department of Biology, Tokyo Gakugei University, Koganei, Tokyo, Japan
| | - Kuniaki Nagayama
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- Department of Physiological Sciences, Graduate University for Advanced Studies, Okazaki, Aichi, Japan
| |
Collapse
|
550
|
Llaguno MC, Xu H, Shi L, Huang N, Zhang H, Liu Q, Jiang QX. Chemically functionalized carbon films for single molecule imaging. J Struct Biol 2014; 185:405-17. [PMID: 24457027 DOI: 10.1016/j.jsb.2014.01.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 01/08/2014] [Accepted: 01/11/2014] [Indexed: 11/25/2022]
Abstract
Many biological complexes are naturally low in abundance and pose a significant challenge to their structural and functional studies. Here we describe a new method that utilizes strong oxidation and chemical linkage to introduce a high density of bioactive ligands onto nanometer-thick carbon films and enable selective enrichment of individual macromolecular complexes at subnanogram levels. The introduced ligands are physically separated. Ni-NTA, Protein G and DNA/RNA oligonucleotides were covalently linked to the carbon surface. They embody negligible mass and their stability makes the functionalized films able to survive long-term storage and tolerate variations in pH, temperature, salts, detergents, and solvents. We demonstrated the application of the new method to the electron microscopic imaging of the substrate-bound C3PO, an RNA-processing enzyme important for the RNA interference pathway. On the ssRNA-linked carbon surface, the formation of C3PO oligomers at subnanomolar concentrations likely mimics their assembly onto ssRNA substrates presented by their native partners. Interestingly, the 3D reconstructions by negative stain EM reveal a side port in the C3PO/ssRNA complex, and the 15Å cryoEM map showed extra density right above the side port, which probably represents the ssRNA. These results suggest a new way for ssRNAs to interact with the active sites of the complex. Together our data demonstrate that the surface-engineered carbon films are suitable for selectively enriching low-abundance biological complexes at nanomolar level and for developing novel applications on a large number of surface-presented molecules.
Collapse
Affiliation(s)
- Marc C Llaguno
- Department of Cell Biology, UT Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Hui Xu
- Department of Cell Biology, UT Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Liang Shi
- Department of Cell Biology, UT Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Nian Huang
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA; Department of Biophysics, UT Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Hong Zhang
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA; Department of Biophysics, UT Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Qinghua Liu
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Qiu-Xing Jiang
- Department of Cell Biology, UT Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390, USA.
| |
Collapse
|