501
|
Luschnig C, Schweizer D. Nucleotide sequence of trnI(CAU) and rpl23 from Arabidopsis thaliana chloroplast genome. Nucleic Acids Res 1992; 20:3511. [PMID: 1630923 PMCID: PMC312511 DOI: 10.1093/nar/20.13.3511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- C Luschnig
- Institut für Botanik, Universität Wien, Austria
| | | |
Collapse
|
502
|
Takemura M, Oda K, Yamato K, Ohta E, Nakamura Y, Nozato N, Akashi K, Ohyama K. Gene clusters for ribosomal proteins in the mitochondrial genome of a liverwort, Marchantia polymorpha. Nucleic Acids Res 1992; 20:3199-205. [PMID: 1620617 PMCID: PMC312459 DOI: 10.1093/nar/20.12.3199] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We detected 16 genes for ribosomal proteins in the complete sequence of the mitochondrial DNA from a liverwort, Marchantia polymorpha. The genes formed two major clusters, rps12-rps7 and rps10-rpl2-rps19-rps3-rpl16-rpl5- rps14-rps8- rpl6-rps13-rps11-rps1, very similar in organization to Escherichia coli ribosomal protein operons (str and S10-spc-alpha operons, respectively). In contrast, rps2 and rps4 genes were located separately in the liverwort mitochondrial genome (the latter was part of the alpha operon in E. coli). Furthermore, several ribosomal proteins encoded by the liverwort mitochondrial genome differed substantially in size from their counterparts in E. coli and liverwort chloroplast.
Collapse
Affiliation(s)
- M Takemura
- Department of Agricultural Chemistry, Faculty of Agriculture, Kyoto University, Japan
| | | | | | | | | | | | | | | |
Collapse
|
503
|
|
504
|
Gutell RR, Schnare MN, Gray MW. A compilation of large subunit (23S- and 23S-like) ribosomal RNA structures. Nucleic Acids Res 1992; 20 Suppl:2095-109. [PMID: 1375996 PMCID: PMC333986 DOI: 10.1093/nar/20.suppl.2095] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
505
|
Harada T, Ishikawa R, Niizeki M, Saito K. Pollen-derived rice calli that have large deletions in plastid DNA do not require protein synthesis in plastids for growth. MOLECULAR & GENERAL GENETICS : MGG 1992; 233:145-50. [PMID: 1603057 DOI: 10.1007/bf00587572] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Albino rice plants derived from pollen contain plastid genomes that have suffered large-scale deletions. From the roots of albino plants, we obtained several calli containing homogeneous plastid DNA differing in the size and position of the deletion. DNA differing in the size and position of the deletion. Southern blotting and pulsed field gel electrophoresis experiments revealed that the DNAs were linear molecules having a hairpin structure at both termini, existing as monomers (19 kb) or dimers, trimers and tetramers linked to form head-to-head and tail-to-tail multimers. This characteristic form is similar to that of the vaccinia virus, in which the replication origin is thought to lie at or near the hairpin termini. Furthermore, polymerase chain reaction experiments revealed complete loss of the ribosomal RNA genes of the plastid DNA. The results suggest that plant cells can grow without translation occurring in plastids. All of the deleted plastid DNAs commonly retained the region containing the tRNA(Glu) gene (trnE), which is essential for biosynthesis of porphyrin. As porphyrin is the precursor of heme for mitochondria and other organelles, it is considered that trnE on the remnant plastid genome may be transcribed by an RNA polymerase encoded on nuclear DNA.
Collapse
Affiliation(s)
- T Harada
- Faculty of Agriculture, Hirosaki University, Japan
| | | | | | | |
Collapse
|
506
|
Arnold ML, Robinson JJ, Buckner CM, Bennet BD. Pollen dispersal and interspecific gene flow in louisiana irises. Heredity (Edinb) 1992. [DOI: 10.1038/hdy.1992.59] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
507
|
Fong SE, Surzycki SJ. Chloroplast RNA polymerase genes of Chlamydomonas reinhardtii exhibit an unusual structure and arrangement. Curr Genet 1992; 21:485-97. [PMID: 1617738 DOI: 10.1007/bf00351659] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Nucleotide sequence analysis of a 17043 base-pair (bp) region of the Chlamydomonas reinhardtii plastome indicates the presence of three open reading frames (ORFs) similar to RNA polymerase subunit genes. Two, termed rpoB1 and rpoB2, are homologous to the 5'- and 3'-halves of the Escherichia coli beta subunit gene, respectively. A third, termed rpoC2, is similar to the 3'-half of the bacterial beta' subunit gene. These genes exhibit several unusual features: (1) all three represent chimeric structures in which RNA polymerase gene sequences are juxtaposed in-frame with long sequences of unknown identity; (2) unlike their counterparts in plants and eubacteria, rpoB1 and rpoB2 are separated from rpoC2 by a long (7 kilobase-pair, kbp) region containing genes unrelated to RNA polymerase; (3) DNA homologous to the 5' half of rpoC (termed rpoC1 in other species) is not present at the 5' end of rpoC2 and could not be detected in C. reinhardtii chloroplast DNA. RNA expression could not be detected for any of the RNA polymerase genes, suggesting that they are pseudogenes or genes expressed at stages of the C. reinhardtii life-cycle not investigated. The three genes are flanked by GC-rich repeat elements. We suggest that repeat DNA-mediated chloroplast recombination events may have contributed to their unusual arrangement.
Collapse
Affiliation(s)
- S E Fong
- Department of Biology, Indiana University, Bloomington 47505
| | | |
Collapse
|
508
|
Affiliation(s)
- M Sugiura
- Center for Gene Research, Nagoya University, Japan
| |
Collapse
|
509
|
Ellenberger DL, Pieniazek NJ, Mian IS, Eberhard ML, Lammie PJ. Cloning and characterization of the Wuchereria bancrofti S15 ribosomal protein. Mol Biochem Parasitol 1992; 52:131-5. [PMID: 1625701 DOI: 10.1016/0166-6851(92)90043-j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- D L Ellenberger
- Parasitic Diseases Branch, Centers for Disease Control, US Department of Health and Human Services, Atlanta, GA 30333
| | | | | | | | | |
Collapse
|
510
|
Fong SE, Surzycki SJ. Organization and structure of plastome psbF, psbL, petG and ORF712 genes in Chlamydomonas reinhardtii. Curr Genet 1992; 21:527-30. [PMID: 1617741 DOI: 10.1007/bf00351664] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We have determined the nucleotide sequence of a 5159 base-pair (bp) region of the Chlamydomonas reinhardtii plastome containing three photoelectron transport genes, psbF, psbL and petG, and an unusual open reading frame, ORF712. The photosynthetic genes have an unprecedented arrangement, psbF and psbL are located in close proximity to petG, and are not grouped with two other genes of the cytochrome b559 locus, psbE and ORF42. ORF712, located adjacent to psbL, has homology at its 5'- and 3'-ends to the ribosomal protein rps3 gene, but contains a central 437 residue domain that lacks similarity to any other known sequence. These sequences add to the growing body of evidence that the chloroplast genome of C. reinhardtii has a significantly different gene arrangement to its counterpart in plants. The structure of ORF712 also provides another example of a phenomenon we have discovered with C. reinhardtii RNA polymerase genes (Fong and Surzycki 1992); namely, that the algal plastome contains chimeric genes in which reading frames with homology to known genes are juxtaposed in-frame with long coding regions of unknown identity.
Collapse
Affiliation(s)
- S E Fong
- Department of Biology, Indiana University, Bloomington 47505
| | | |
Collapse
|
511
|
Arizmendi JM, Runswick MJ, Skehel JM, Walker JE. NADH: ubiquinone oxidoreductase from bovine heart mitochondria. A fourth nuclear encoded subunit with a homologue encoded in chloroplast genomes. FEBS Lett 1992; 301:237-42. [PMID: 1577158 DOI: 10.1016/0014-5793(92)80248-f] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The amino acid sequence has been determined of the precursor of a nuclear encoded 20 kDa subunit of complex I from bovine heart mitochondria. The sequence of the mature protein is related to a protein of uncertain function, hitherto known as psbG, encoded in the chloroplast genomes of higher plants. Open reading frames encoding homologues of psbG have also been detected in bacteria and in the mitochondrial genome of Paramecium tetraurelia. The chloroplast psbG gene is found between ndhC and ndhJ, which encode homologues of ND3, a hydrophobic subunit of complex I encoded in the bovine mitochondrial genome, and of the nuclear encoded 30 kDa subunit of complex I. This 20 kDa protein is the eleventh out of the forty or more subunits of bovine complex I with a chloroplast encoded homologue, and its sequence provides further support for the presence in chloroplasts of a multisubunit enzyme related to complex I that could be involved in chlororespiration. The strict conservation of three cysteines suggests that the subunit might be an iron-sulphur protein.
Collapse
Affiliation(s)
- J M Arizmendi
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | | | | | | |
Collapse
|
512
|
Marty I, Meyer Y. cDNA nucleotide sequence and expression of a tobacco cytoplasmic ribosomal protein L2 gene. Nucleic Acids Res 1992; 20:1517-22. [PMID: 1579444 PMCID: PMC312232 DOI: 10.1093/nar/20.7.1517] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The ribosomal protein L2 is an essential component of the ribosomal large subunit by its relation to the peptidyl transferase reaction, subunit association and elongation factor G-GTP binding. We have isolated a 937 nucleotide long cDNA encoding a cytoplasmic ribosomal L2 protein. Its deduced protein contains 260 amino acid residues and shows 65% identity with eucaryotic RL2 but only 32% identity with the chloroplast homologue. In addition, the protein presents the PROSITE signature which matches all the 50S and 60S L2 proteins and the two residues involved in the peptidyl transferase activity. The corresponding mRNA is accumulated in young plant tissues, in growing cell suspension and in germinating seeds but is not detectable in mature plant tissues, stationary cell suspension and in dry seeds. The mRNA accumulation is correlated with the growth process. Southern blot hybridization shows that cytoplasmic ribosomal protein L2 is encoded by two types of gene which could originate from each parent. highly homologous L2 genes were also detected by Southern blots in the genomes of several monocot and dicot plant species.
Collapse
Affiliation(s)
- I Marty
- Laboratoire de Biologie Moléculaire et Physiologie Végétale, Unité associée au CNRS 565, Perpignan, France
| | | |
Collapse
|
513
|
Recipon H, Perasso R, Adoutte A, Quetier F. ATP synthase subunit c/III/9 gene sequences as a tool for interkingdom and metaphytes molecular phylogenies. J Mol Evol 1992; 34:292-303. [PMID: 1533253 DOI: 10.1007/bf00160236] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The 38 sequences of the ATPase c/III/9 gene determined in bacteria, fungi, mammals, and higher plants have been used to construct phylogenetic trees by distance matrix and parsimony methods (checked by bootstrapping); alignments have been performed on the deduced amino-acid sequences and then transferred back to the nucleotide sequences. Three lineages stand out: (1) eubacteria (except cyanobacteria and alpha purple bacteria), (2) chloroplasts, together with cyanobacteria, and (3) mitochondria together with nuclei and alpha purple bacteria. The clear monophyly of the mitochondrial/nuclear lineage, taken all together, strongly suggests that the nuclear copies of the gene now residing in the eukaryotic nucleus originate from a mitochondrial transfer. Within this lineage, metaphytes emerge late and as a cohesive group, after fungi (as a dispersed group) and metazoa, yielding an order that markedly differs from that obtained through typical RNA nuclear molecules. The possible biphyletic origin of mitochondria based on mitochondrial rRNA sequences is not evidenced by these sequences. Internal branches within both the chloroplastic and the mitochondrial lineages are consistent with botanical evolutionary schemes based on morphological characters. In spite of its relatively small size, the ATPase c/III/9 gene therefore displays remarkable properties as a phylogenetic index and adds a new tool for molecular evolutionary reconstructions, especially within the metaphytes.
Collapse
Affiliation(s)
- H Recipon
- Laboratoire de Biologie Moléculaire Végétale, URA CNRS D1128, Université Paris XI, Orsay, France
| | | | | | | |
Collapse
|
514
|
Kanno A, Hirai A. Comparative studies of the structure of chloroplast DNA from four species of Oryza: cloning and physical maps. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1992; 83:791-8. [PMID: 24202755 DOI: 10.1007/bf00226699] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/1991] [Accepted: 07/09/1991] [Indexed: 05/20/2023]
Abstract
Chloroplast DNAs (ctDNAs) were prepared from the mature green leaves of three species in the genus Oryza, namely, O. punctata (genome type BB), O. offici-nalis (CC), and O. australiensis (EE). After digestion with restriction enzymes, ctDNAs were cloned into a lambda phage vector and overlapping clone banks of the entire chloroplast genome from each of the three Oryza species were obtained. BamHI and PstI restriction maps of the ctDNAs were constructed, and the structures of the ctDNAs from O. sativa and the other three Oryza species were compared. Two types of variation were noted: the gain or loss of restriction sites, and deletion or insertion of nucleotides. We detected two independent deletions in the BamHI-3/PstI-3 fragment of O. punctata and in the BamHI-5/PstI-11 fragment of O. officinalis, each of which was shorter than the respective fragment from O. sativa, and the deletions were located in spacer regions. Short direct-repeat sequences were detected at the border of both deletions, indicating that these deletions were results of intramolecular recombination mediated by these direct repeats. Further analysis on distribution of those deletions among 15 Oryza species revealed that the deletions found in this study represent genotype-specific variations.
Collapse
Affiliation(s)
- A Kanno
- Graduate Division of Biochemical Regulation, School of Agriculture, Nagoya University, 464-01, Nagoya, Japan
| | | |
Collapse
|
515
|
Gass DA, Makaroff CA, Palmer JD. Variable intron content of the NADH dehydrogenase subunit 4 gene of plant mitochondria. Curr Genet 1992; 21:423-30. [PMID: 1525869 DOI: 10.1007/bf00351705] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The gene nad4, encoding subunit four of the mitochondrial NADH dehydrogenase complex I, has been isolated and characterized from turnip, Brassica campestris. The 8 kb turnip nad4 gene contains four exons, which potentially encode a NAD4 polypeptide of 495 amino acids, and three large group II introns. Northern analysis identifies an abundant 2 kb transcript that most likely serves as the nad4 mRNA, while several larger transcripts (putative splicing intermediates) are also detected. Analysis of the nad4 locus in three distantly related dicotyledons indicates that introns 2 and 3 are optional. Mung bean has the same nad4 organization as turnip, whereas spinach nad4 contains introns 1 and 3, and lettuce nad4 has intron 1 only. We infer that all three group II introns were present in the nad4 gene of an angiosperm common ancestor and have persisted in certain lineages for over 200 million years, with two of the introns having been lost in other lineages.
Collapse
Affiliation(s)
- D A Gass
- University of California, Berkley 94720
| | | | | |
Collapse
|
516
|
Monod C, Goldschmidt-Clermont M, Rochaix JD. Accumulation of chloroplast psbB RNA requires a nuclear factor in Chlamydomonas reinhardtii. ACTA ACUST UNITED AC 1992; 231:449-59. [PMID: 1371579 DOI: 10.1007/bf00292715] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We have isolated and characterized a nuclear mutant, 222E, in Chlamydomonas reinhardtii, which is defective in photosystem II (PSII). Polypeptide P5, the product of psbB, is not produced in this mutant, leading to a destabilization of other PSII components. The mutant specifically fails to accumulate psbB transcripts and displays an altered transcription pattern downstream of psbB. Pulse-labelling experiments suggest that mRNA stability and/or processing are affected by the alteration of a nuclear gene product in this mutant. We show that the C. reinhardtii psbB gene is co-transcribed with a small open reading frame that is highly conserved in location and amino acid sequence in land plants. The 5' and 3' termini of the psbB transcript have been mapped to 35 bases upstream of the initiation codon and approximately 600 bases downstream of the stop codon. The 3' flanking region contains two potential stem-loops, of which the larger (with an estimated free energy of -46 kcal) is near the 3' terminus of the transcript.
Collapse
Affiliation(s)
- C Monod
- Department of Molecular Biology, University of Geneva, Switzerland
| | | | | |
Collapse
|
517
|
Raubeson LA, Jansen RK. Chloroplast DNA Evidence on the Ancient Evolutionary Split in Vascular Land Plants. Science 1992; 255:1697-9. [PMID: 17749424 DOI: 10.1126/science.255.5052.1697] [Citation(s) in RCA: 121] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Two groups of extant plants, lycopsids and psilopsids, alternatively have been suggested to be the living representatives of the earliest diverging lineage in vascular plant evolution. The chloroplast DNA (cpDNA) gene order is known to contain an inversion in bryophytes and tracheophytes relative to one another. Characterization of tracheophyte cpDNAs shows that lycopsids share the gene order with bryophytes, whereas all other vascular plants share the inverted gene order. The distribution of this character provides strong support for the fundamental nature of the phylogenetic separation of lycopsids and marks the ancient evolutionary split in early vascular land plants.
Collapse
|
518
|
Rhiel E, Stirewalt VL, Gasparich GE, Bryant DA. The psaC genes of Synechococcus sp. PCC7002 and Cyanophora paradoxa: cloning and sequence analysis. Gene 1992; 112:123-8. [PMID: 1551590 DOI: 10.1016/0378-1119(92)90313-e] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The psaC genes of the cyanobacterium, Synechococcus sp. PCC7002, and of the cyanelle genome of the phylogenetically ambiguous biflagellate, Cyanophora paradoxa, were cloned, mapped and sequenced. The PsaC proteins of both species exhibit high degrees (approx. 95%) of sequence similarity to the PsaC proteins of other cyanobacteria as well as the chloroplast-encoded proteins of green algae and higher plants. The Synechococcus sp. PCC7002 psaC gene is transcribed as a monocistronic mRNA of approx. 350-400 nt, and transcription is initiated 51 nt upstream from the translational start codon. As found for the chloroplasts of higher plants, the C. paradoxa psaC gene is encoded within the small single-copy region of the cyanelle genome. In contrast to results obtained for chloroplasts and for the cyanobacterium Synechocystis sp. PCC6803, neither psaC gene is flanked by genes encoding components of the NAD(P)H dehydrogenase complex.
Collapse
Affiliation(s)
- E Rhiel
- Department of Molecular and Cell Biology, Pennsylvania State University, University Park 16802
| | | | | | | |
Collapse
|
519
|
Abstract
The genetic code, formerly thought to be frozen, is now known to be in a state of evolution. This was first shown in 1979 by Barrell et al. (G. Barrell, A. T. Bankier, and J. Drouin, Nature [London] 282:189-194, 1979), who found that the universal codons AUA (isoleucine) and UGA (stop) coded for methionine and tryptophan, respectively, in human mitochondria. Subsequent studies have shown that UGA codes for tryptophan in Mycoplasma spp. and in all nonplant mitochondria that have been examined. Universal stop codons UAA and UAG code for glutamine in ciliated protozoa (except Euplotes octacarinatus) and in a green alga, Acetabularia. E. octacarinatus uses UAA for stop and UGA for cysteine. Candida species, which are yeasts, use CUG (leucine) for serine. Other departures from the universal code, all in nonplant mitochondria, are CUN (leucine) for threonine (in yeasts), AAA (lysine) for asparagine (in platyhelminths and echinoderms), UAA (stop) for tyrosine (in planaria), and AGR (arginine) for serine (in several animal orders) and for stop (in vertebrates). We propose that the changes are typically preceded by loss of a codon from all coding sequences in an organism or organelle, often as a result of directional mutation pressure, accompanied by loss of the tRNA that translates the codon. The codon reappears later by conversion of another codon and emergence of a tRNA that translates the reappeared codon with a different assignment. Changes in release factors also contribute to these revised assignments. We also discuss the use of UGA (stop) as a selenocysteine codon and the early history of the code.
Collapse
Affiliation(s)
- S Osawa
- Department of Biology, Nagoya University, Japan
| | | | | | | |
Collapse
|
520
|
Haberhausen G, Valentin K, Zetsche K. Organization and sequence of photosynthetic genes from the plastid genome of the holoparasitic flowering plant Cuscuta reflexa. MOLECULAR & GENERAL GENETICS : MGG 1992; 232:154-61. [PMID: 1552899 DOI: 10.1007/bf00299148] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We have cloned and sequenced an area of about 6 kb of the plastid DNA (ptDNA) from the holoparasitic plant Cuscuta reflexa. This region contains (in the following order) genes for the cytochrome b6 f-complex subunit V (petG), tRNA(Val) (trnV), tRNA(Met) (trnM), the epsilon- and beta-subunit of the chloroplast ATP-synthase (atpE and atpB) and the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco; rbcL). In addition we identified other photosynthesis-related genes (atpA, petB, psaA, psbA, psbB, psbC, and psbD) in C. reflexa by heterologous hybridization. The gene arrangement of the sequenced area is, except for the petG gene, the same as in ptDNAs of other higher plants (e.g. Nicotiana tabacum). Sequence homologies between the Cuscuta genes and corresponding genes from higher plants are in the range of 90%. The only significant difference is that the rbcL gene of C. reflexa encodes a polypeptide which is 18-23 amino acids longer than in other higher plants. This is remarkable since C. reflexa has lost its ability to grow photoautotrophically. The transcript level of the rbcL gene, however, is strongly reduced as compared to tobacco. These findings are compatible with results from Western blotting analysis, where no Rubisco large subunit was detectable, and with the lack of Rubisco activity in crude extracts of C. reflexa.
Collapse
Affiliation(s)
- G Haberhausen
- Institut für Pflanzenphysiologie, Justus Liebig Universität, Giessen, FRG
| | | | | |
Collapse
|
521
|
Tsudzuki J, Nakashima K, Tsudzuki T, Hiratsuka J, Shibata M, Wakasugi T, Sugiura M. Chloroplast DNA of black pine retains a residual inverted repeat lacking rRNA genes: nucleotide sequences of trnQ, trnK, psbA, trnI and trnH and the absence of rps16. MOLECULAR & GENERAL GENETICS : MGG 1992; 232:206-14. [PMID: 1557027 DOI: 10.1007/bf00279998] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A physical map of black pine (Pinus thunbergii) chloroplast DNA (120 kb) was constructed and two separate portions of its nucleotide sequence were determined. One portion contains trnQ-UUG, ORF510, ORF83, trnK-UUU (ORF515 in the trnK intron), ORF22, psbA, trnI-CAU (on the opposing strand) and trnH-GUG, in that order. Sequence analysis of another portion revealed the presence of a 495 bp inverted repeat containing trnI-CAU and the 3' end of psbA but lacking rRNA genes. The position of trnI-CAU is unique because most chloroplast DNAs have no gene between psbA and trnH (trnI-CAU is usually located further downstream). Black pine chloroplast DNA lacks rps16, which has been found between trnQ and trnK in angiosperm chloroplast DNAs, but possesses ORF510 instead. This ORF is highly homologous to ORF513 found in the corresponding region of liverwort chloroplast DNA and ORF563 located downstream from trnT in Chlamydomonas moewusii chloroplast DNA. A possible pathway for the evolution of black pine chloroplast DNA is discussed.
Collapse
Affiliation(s)
- J Tsudzuki
- Sugiyama Jogakuen University, Nagoya, Japan
| | | | | | | | | | | | | |
Collapse
|
522
|
Handa H, Nakajima K. The gene for tRNA(Lys) is encoded in the rapeseed (Brassica napus L.) mitochondrial DNA. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1130:117-9. [PMID: 1543744 DOI: 10.1016/0167-4781(92)90475-f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The nucleotide sequence of the gene coding for tRNA(Lys) and its flanking regions from the rapeseed mitochondrial genome are presented and compared with other known tRNA(Lys) genes from plant mitochondria. This tRNA sequence can be folded into the standard cloverleaf structure model. Also, this tRNA sequence shows less similarity with its chloroplast counterparts and therefore appears to be 'native' mitochondrial tRNA.
Collapse
Affiliation(s)
- H Handa
- Department of Cell Biology, National Institute of Agrobiological Resources, Tsukuba, Japan
| | | |
Collapse
|
523
|
Elhag GA, Thomas FJ, McCreery TP, Bourque DP. Nuclear-encoded chloroplast ribosomal protein L12 of Nicotiana tabacum: characterization of mature protein and isolation and sequence analysis of cDNA clones encoding its cytoplasmic precursor. Nucleic Acids Res 1992; 20:689-97. [PMID: 1542565 PMCID: PMC312006 DOI: 10.1093/nar/20.4.689] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Poly(A)+ mRNA isolated from Nicotiana tabacum (cv. Petite Havana) leaves was used to prepare a cDNA library in the expression vector lambda gt11. Recombinant phage containing cDNAs coding for chloroplast ribosomal protein L12 were identified and sequenced. Mature tobacco L12 protein has 44% amino acid identity with ribosomal protein L7/L12 of Escherichia coli. The longest L12 cDNA (733 nucleotides) codes for a 13,823 molecular weight polypeptide with a transit peptide of 53 amino acids and a mature protein of 133 amino acids. The transit peptide and mature protein share 43% and 79% amino acid identity, respectively, with corresponding regions of spinach chloroplast ribosomal protein L12. The predicted amino terminus of the mature protein was confirmed by partial sequence analysis of HPLC-purified tobacco chloroplast ribosomal protein L12. A single L12 mRNA of about 0.8 kb was detected by hybridization of L12 cDNA to poly(A)+ and total leaf RNA. Hybridization patterns of restriction fragments of tobacco genomic DNA probed with the L12 cDNA suggested the existence of more than one gene for ribosomal protein L12. Characterization of a second cDNA with an identical L12 coding sequence but a different 3'-noncoding sequence provided evidence that at least two L12 genes are expressed in tobacco.
Collapse
Affiliation(s)
- G A Elhag
- Department of Biochemistry, University of Arizona, Tucson 85721
| | | | | | | |
Collapse
|
524
|
Abstract
tRNAs in eukaryotic nuclei and organelles are synthesized as precursors lacking the 3'-terminal CCA sequence and possessing 5' (leader) and 3' (trailer) extensions. Nucleolytic cleavage of the 3' trailer and addition of CCA are therefore required for formation of functional tRNA 3' termini. Many chloroplast tRNA genes encode a C at position 74 which is not removed during processing but which can be incorporated as the first base of the CCAOH terminus. Sequences downstream of nucleotide 74, however, are always removed. Synthetic yeast pre-tRNA(Phe) substrates containing the complete CCA74-76 sequence were processed with crude or partially purified chloroplast enzyme fractions. The 3'-extended substrates (tRNA-CCA-trailer) were cleaved exclusively between nucleotides 74 and 75 to give tRNA-COH, whereas a 3'-mature transcript (tRNA-CCAOH) was not cleaved at all. A 5'-, 3'-extended chloroplast tRNA-CAG-trailer was also processed entirely to tRNA-COH. Furthermore, a 5'-mature, 3'-extended yeast pre-tRNA(Phe) derivative, tRNA-ACA-trailer, in which C74 was replaced by A, was cleaved precisely after A74. In contrast, we found that a partially purified enzyme fraction (a nuclear/cytoplasmic activity) from wheat embryo cleaved the 3'-extended yeast tRNA(Phe) precursors between nucleotides 73 and 74 to give tRNA(OH). This specificity is consistent with that of all previously characterized nuclear enzyme preparations. We conclude that (i) chloroplast tRNA 3'-processing endonuclease cleaves after nucleotide 74 regardless of the nature of the surrounding sequences; (ii) this specificity differs from that of the plant nuclear/cytoplasmic processing nuclease, which cleaves after base 73; and (iii) since 3'-mature tRNA is not a substrate for either activity, these 3' nucleases must require substrates possessing a 3'-terminal extension that extends past nucleotide 76. This substrate specificity may prevent mature tRNA from counterproductive cleavage by the 3' processing system.
Collapse
|
525
|
Abstract
An open reading frame with significant similarity to the secY gene of Escherichia coli has been found within a ribosomal protein operon on the plastid genome of the chlorophyll c-containing alga Cryptomonas phi. The gene encodes a protein of 420 amino acids (molecular weight 46,906 daltons) and contains ten potential membrane-spanning domains, as in the E. coli homologue. This report of a secY homologue in a plastid genome provides preliminary evidence that a prokaryotic-like protein export system may be operating in plastids.
Collapse
Affiliation(s)
- S E Douglas
- Institute for Marine Biosciences, National Research Council, Halifax, Nova Scotia, Canada
| |
Collapse
|
526
|
NAM9 nuclear suppressor of mitochondrial ochre mutations in Saccharomyces cerevisiae codes for a protein homologous to S4 ribosomal proteins from chloroplasts, bacteria, and eucaryotes. Mol Cell Biol 1992. [PMID: 1729612 DOI: 10.1128/mcb.12.1.402] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report the genetic characterization, molecular cloning, and sequencing of a novel nuclear suppressor, the NAM9 gene from Saccharomyces cerevisiae, which acts on mutations of mitochondrial DNA. The strain NAM9-1 was isolated as a respiration-competent revertant of a mitochondrial mit mutant which carries the V25 ochre mutation in the oxi1 gene. Genetic characterization of the NAM9-1 mutation has shown that it is a nuclear dominant omnipotent suppressor alleviating several mutations in all four mitochondrial genes tested and has suggested its informational, and probably ribosomal, character. The NAM9 gene was cloned by transformation of the recipient oxi1-V25 mutant to respiration competence by using a gene bank from the NAM9-1 rho o strain. Orthogonal-field alternation gel electrophoresis analysis and genetic mapping localized the NAM9 gene on the right arm of chromosome XIV. Sequence analysis of the NAM9 gene showed that it encodes a basic protein of 485 amino acids with a presequence that could target the protein to the mitochondrial matrix. The N-terminal sequence of 200 amino acids of the deduced NAM9 product strongly resembles the S4 ribosomal proteins from chloroplasts and bacteria. Significant although less extensive similarity was found with ribosomal cytoplasmic proteins from lower eucaryotes, including S. cerevisiae. Chromosomal inactivation of the NAM9+ gene is not lethal to the cell but leads to respiration deficiency and loss of mitochondrial DNA integrity. We conclude that the NAM9 gene product is a mitochondrial ribosomal counterpart of S4 ribosomal proteins found in other systems and that the suppressor acts through decreasing the fidelity of translation.
Collapse
|
527
|
Oommen A, Li XQ, Gegenheimer P. Cleavage specificity of chloroplast and nuclear tRNA 3'-processing nucleases. Mol Cell Biol 1992; 12:865-75. [PMID: 1732750 PMCID: PMC364320 DOI: 10.1128/mcb.12.2.865-875.1992] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
tRNAs in eukaryotic nuclei and organelles are synthesized as precursors lacking the 3'-terminal CCA sequence and possessing 5' (leader) and 3' (trailer) extensions. Nucleolytic cleavage of the 3' trailer and addition of CCA are therefore required for formation of functional tRNA 3' termini. Many chloroplast tRNA genes encode a C at position 74 which is not removed during processing but which can be incorporated as the first base of the CCAOH terminus. Sequences downstream of nucleotide 74, however, are always removed. Synthetic yeast pre-tRNA(Phe) substrates containing the complete CCA74-76 sequence were processed with crude or partially purified chloroplast enzyme fractions. The 3'-extended substrates (tRNA-CCA-trailer) were cleaved exclusively between nucleotides 74 and 75 to give tRNA-COH, whereas a 3'-mature transcript (tRNA-CCAOH) was not cleaved at all. A 5'-, 3'-extended chloroplast tRNA-CAG-trailer was also processed entirely to tRNA-COH. Furthermore, a 5'-mature, 3'-extended yeast pre-tRNA(Phe) derivative, tRNA-ACA-trailer, in which C74 was replaced by A, was cleaved precisely after A74. In contrast, we found that a partially purified enzyme fraction (a nuclear/cytoplasmic activity) from wheat embryo cleaved the 3'-extended yeast tRNA(Phe) precursors between nucleotides 73 and 74 to give tRNA(OH). This specificity is consistent with that of all previously characterized nuclear enzyme preparations. We conclude that (i) chloroplast tRNA 3'-processing endonuclease cleaves after nucleotide 74 regardless of the nature of the surrounding sequences; (ii) this specificity differs from that of the plant nuclear/cytoplasmic processing nuclease, which cleaves after base 73; and (iii) since 3'-mature tRNA is not a substrate for either activity, these 3' nucleases must require substrates possessing a 3'-terminal extension that extends past nucleotide 76. This substrate specificity may prevent mature tRNA from counterproductive cleavage by the 3' processing system.
Collapse
Affiliation(s)
- A Oommen
- Department of Botany, University of Kansas, Lawrence 66045-2106
| | | | | |
Collapse
|
528
|
Yang DI, Feng TY, Chen CC, Lai YK. Physical maps of Nicotiana chloroplast DNA constructed by an efficient procedure. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1992; 83:515-527. [PMID: 24202600 DOI: 10.1007/bf00226542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/1990] [Accepted: 04/30/1991] [Indexed: 06/02/2023]
Abstract
The restriction profiles of chloroplast DNA (cpDNA) from Nicotiana tabacum, N. sylvestris, N. plumbaginifolia, and N. otophora were obtained with respect to AvaI, BamHI, BglI, HindIII, PstI, PvuII, SalI, and XhoI. An efficient mapping method for the construction of cpDNA physical maps in Nicotiana was established via a computer-aided analysis of the complete cpDNA sequence of N. tabacum for probe selection. The efficiency of this approach is demonstrated by the determination of cpDNA maps from N. sylvestris, N. plumbaginifolia, and N. otophora with respect to all of the above restriction endonucleases. The size and basic structure of the cpDNA from the three species are almost identical, with an addition of approximately 80 bp in N. plumbaginifolia. The restriction patterns and hence the physical maps between N. tabacum and N. sylvestris cpDNA are identical and there is no difference in the Pvull digests of cpDNA from all four species. Restriction site variations in cpDNA from different species probably result from point mutations, which create or eliminate a particular cutting site, and they were observed spanning the whole chloroplast molecule but highly concentrated in both ends of the large, single-copy region. The results presented here will be used for the forthcoming characterization of chloroplast genomes in the interspecies somatic hybrids of Nicotiana, and will be of great value in completing the exploration of the phylogenetic relationships within this already extensively studied genus.
Collapse
Affiliation(s)
- D I Yang
- Institute of Life Science, National Tsing Hua University, Hsinchu, Taiwan 30043, Republic of China
| | | | | | | |
Collapse
|
529
|
Allen JF. Protein phosphorylation in regulation of photosynthesis. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1098:275-335. [PMID: 1310622 DOI: 10.1016/s0005-2728(09)91014-3] [Citation(s) in RCA: 502] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- J F Allen
- Department of Biology, University of Oslo, Blindern, Norway
| |
Collapse
|
530
|
Wolfe KH, Morden CW, Palmer JD. Small single-copy region of plastid DNA in the non-photosynthetic angiosperm Epifagus virginiana contains only two genes. Differences among dicots, monocots and bryophytes in gene organization at a non-bioenergetic locus. J Mol Biol 1992; 223:95-104. [PMID: 1731088 DOI: 10.1016/0022-2836(92)90718-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have determined the nucleotide sequence of a 7 kb (1 kb = 10(3) base-pairs) region that includes the entire small single-copy region (SSC) of the plastid genome of Epifagus virginiana, a non-photosynthetic, parasitic flowering plant. The SSC (4.8 kb) is considerably smaller than those of photosynthetic plants due to the complete deletion of all photosynthetic, chlororespiratory and ribosomal protein genes. This leaves only two genes: a protein gene of 1738 codons whose product is unlikely to be involved in bioenergetic processes and a leucine tRNA gene (trn(LUAG)). Both genes span junctions between the inverted repeat and the SSC, with the consequence that the terminal 20 base-pairs of the repeat is transcribed in both directions and functions both as the 3' end of the tRNA gene and as an internal segment of orf1738. We find that the region of tobacco plastid DNA homologous to Epifagus orf1738 contains a single open reading frame (ORF) of 1901 codons rather than the three ORFs of 1244, 273 and 228 codons originally reported. However, we confirm that the equivalent region of the bryophyte Marchantia contains two genes (1068 and 464 codons) corresponding to the N and C-terminal portions of the dicot protein. In contrast, rice plastid DNA contains a severely truncated pseudogene at this locus.
Collapse
Affiliation(s)
- K H Wolfe
- Department of Biology, Indiana University, Bloomington 47405
| | | | | |
Collapse
|
531
|
Maerz M, Wolters J, Hofmann CJ, Sitte P, Maier UG. Plastid DNA from Pyrenomonas salina (Cryptophyceae): physical map, genes, and evolutionary implications. Curr Genet 1992; 21:73-81. [PMID: 1735127 DOI: 10.1007/bf00318658] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cryptomonads are thought to have arisen from a symbiotic association between a eukaryotic flagellated host and a eukaryotic algal symbiont, presumably related to red algae. As organellar DNAs have proven to be useful tools in elucidating phylogenetic relationships, the plastid (pt) DNA of the cryptomonad alga Pyrenomonas salina has been characterized in some detail. A restriction map of the circular 127 kb ptDNA from Pyrenomonas salina was established. An inverted repeat (IR) region of about 5 kb separates two single-copy regions of 15 and 102 kb, respectively. It contains the genes for the small and large subunit of rRNA. Ten protein genes, coding for the large subunit of ribulose-1,5-bisphosphate carboxylase, the 47 kDa, 43 kDa and 32 kDa proteins of photosystem II, the ribosomal proteins L2, S7 and S11, the elongation factor Tu, as well as the alpha- and beta-subunits of ATP synthase, have been localized on the restriction map either by hybridization of heterologous gene probes or by sequence homologies. The gene for the plastidal small subunit (SSUr) RNA has been sequenced and compared to homologous SSU regions from the cyanobacterium Anacystis nidulans and plastids from rhodophytes, chromophytes, euglenoids, chlorophytes, and land plants. A phylogenetic tree constructed with the neighborliness method and indicating a relationship of cryptomonad plastids with those of red algae is presented.
Collapse
Affiliation(s)
- M Maerz
- Institut für Biologie II, Lehrstuhl für Zellbiologie, Freiburg, Federal Republic of Germany
| | | | | | | | | |
Collapse
|
532
|
Affiliation(s)
- M W Gray
- Department of Biochemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
533
|
|
534
|
Matsubara H, Saeki K. Structural and Functional Diversity of Ferredoxins and Related Proteins. ADVANCES IN INORGANIC CHEMISTRY 1992. [DOI: 10.1016/s0898-8838(08)60065-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
535
|
Boguta M, Dmochowska A, Borsuk P, Wrobel K, Gargouri A, Lazowska J, Slonimski PP, Szczesniak B, Kruszewska A. NAM9 nuclear suppressor of mitochondrial ochre mutations in Saccharomyces cerevisiae codes for a protein homologous to S4 ribosomal proteins from chloroplasts, bacteria, and eucaryotes. Mol Cell Biol 1992; 12:402-12. [PMID: 1729612 PMCID: PMC364135 DOI: 10.1128/mcb.12.1.402-412.1992] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We report the genetic characterization, molecular cloning, and sequencing of a novel nuclear suppressor, the NAM9 gene from Saccharomyces cerevisiae, which acts on mutations of mitochondrial DNA. The strain NAM9-1 was isolated as a respiration-competent revertant of a mitochondrial mit mutant which carries the V25 ochre mutation in the oxi1 gene. Genetic characterization of the NAM9-1 mutation has shown that it is a nuclear dominant omnipotent suppressor alleviating several mutations in all four mitochondrial genes tested and has suggested its informational, and probably ribosomal, character. The NAM9 gene was cloned by transformation of the recipient oxi1-V25 mutant to respiration competence by using a gene bank from the NAM9-1 rho o strain. Orthogonal-field alternation gel electrophoresis analysis and genetic mapping localized the NAM9 gene on the right arm of chromosome XIV. Sequence analysis of the NAM9 gene showed that it encodes a basic protein of 485 amino acids with a presequence that could target the protein to the mitochondrial matrix. The N-terminal sequence of 200 amino acids of the deduced NAM9 product strongly resembles the S4 ribosomal proteins from chloroplasts and bacteria. Significant although less extensive similarity was found with ribosomal cytoplasmic proteins from lower eucaryotes, including S. cerevisiae. Chromosomal inactivation of the NAM9+ gene is not lethal to the cell but leads to respiration deficiency and loss of mitochondrial DNA integrity. We conclude that the NAM9 gene product is a mitochondrial ribosomal counterpart of S4 ribosomal proteins found in other systems and that the suppressor acts through decreasing the fidelity of translation.
Collapse
Affiliation(s)
- M Boguta
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw
| | | | | | | | | | | | | | | | | |
Collapse
|
536
|
Affiliation(s)
- D J Cummings
- Department of Microbiology and Immunology, University of Colorado School of Medicine, Denver 80262
| |
Collapse
|
537
|
Abstract
It has been proposed that those plants which contain photosynthetic plastids surrounded by more than two membranes have arisen through secondary endosymbiotic events. Molecular evidence confirms this proposal, but the nature of the endosymbiont(s) and the number of endosymbioses remain unresolved. Whether plastids arose from one type of prokaryotic ancestor or multiple types is the subject of some controversy. In order to try to resolve this question, the plastid gene content and arrangement has been studied from a cryptomonad alga. Most of the gene clusters common to photosynthetic prokaryotes and plastids are preserved and seventeen genes which are not found on the plastid genomes of land plants have been found. Together with previously published phylogenetic analyses of plastid genes, the present data support the notion that the type of prokaryote involved in the initial endosymbiosis was from within the cyanobacterial assemblage and that an early divergence giving rise to the green plant lineage and the rhodophyte lineage resulted in the differences in plastid gene content and sequence between these two groups. Multiple secondary endosymbiotic events involving a eukaryotic (probably rhodophytic alga) and different hosts are hypothesized to have occurred subsequently, giving rise to the chromophyte, cryptophyte and euglenophyte lineages.
Collapse
Affiliation(s)
- S E Douglas
- Institute for Marine Biosciences, National Research Council, Halifax, Nova Scotia, Canada
| |
Collapse
|
538
|
Comparison of Chloroplast and Mitochondrial Genome Evolution in Plants. PLANT GENE RESEARCH 1992. [DOI: 10.1007/978-3-7091-9138-5_3] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
539
|
Morden CW, Delwiche CF, Kuhsel M, Palmer JD. Gene phylogenies and the endosymbiotic origin of plastids. Biosystems 1992; 28:75-90. [PMID: 1292669 DOI: 10.1016/0303-2647(92)90010-v] [Citation(s) in RCA: 93] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The endosymbiotic origin of chloroplasts from cyanobacteria has long been suspected and has been confirmed in recent years by many lines of evidence. Debate now is centered on whether plastids are derived from a single endosymbiotic event or from multiple events involving several photosynthetic prokaryotes and/or eukaryotes. Phylogenetic analysis was undertaken using the inferred amino acid sequences from the genes psbA, rbcL, rbcS, tufA and atpB and a published analysis (Douglas and Turner, 1991) of nucleotide sequences of small subunit (SSU) rRNA to examine the relationships among purple bacteria, cyanobacteria and the plastids of non-green algae (including rhodophytes, chromophytes, a cryptophyte and a glaucophyte), green algae, euglenoids and land plants. Relationships within and among groups are generally consistent among all the trees; for example, prochlorophytes cluster with cyanobacteria (and not with green plastids) in each of the trees and rhodophytes are ancestral to or the sister group of the chromophyte algae. One notable exception is that Euglenophytes are associated with the green plastid lineage in psbA, rbcL, rbcS and tufA trees and with the non-green plastid lineage in SSU rRNA trees. Analysis of psbA, tufA, atpB and SSU rRNA sequences suggests that only a single bacterial endosympbiotic event occurred leading to plastids in the various algal and plant lineages. In contrast, analysis of rbcL and rbcS sequences strongly suggests that plastids are polyphyletic in origin, with plastids being derived independently from both purple bacteria and cyanobacteria. A hypothesis consistent with these discordant trees is that a single bacterial endosymbiotic event occurred leading to all plastids, followed by the lateral transfer of the rbcLS operon from a purple bacterium to a rhodophyte.
Collapse
Affiliation(s)
- C W Morden
- Department of Botany, University of Hawaii, Honolulu 96822
| | | | | | | |
Collapse
|
540
|
|
541
|
Ohyama K. Organization and Expression of Genes of Plastid Chromosomes from Non-Angiospermous Land Plants and Green Algae. ACTA ACUST UNITED AC 1992. [DOI: 10.1007/978-3-7091-9138-5_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
|
542
|
Ye LH, Li YQ, Fukami-Kobayashi K, Go M, Konishi T, Watanabe A, Sugiura M. Diversity of a ribonucleoprotein family in tobacco chloroplasts: two new chloroplast ribonucleoproteins and a phylogenetic tree of ten chloroplast RNA-binding domains. Nucleic Acids Res 1991; 19:6485-90. [PMID: 1721701 PMCID: PMC329204 DOI: 10.1093/nar/19.23.6485] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Two new ribonucleoproteins (RNPs) have been identified from a tobacco chloroplast lysate. These two proteins (cp29A and cp29B) are nuclear-encoded and have a less affinity to single-stranded DNA as compared with three other chloroplast RNPs (cp28, cp31 and cp33) previously isolated. DNA sequencing revealed that both contain two consensus sequence-type homologous RNA-binding domains (CS-RBDs) and a very acidic amino-terminal domain but shorter than that of cp28, cp31 and cp33. Comparison of cp29A and cp29B showed a 19 amino acid insertion in the region separating the two CS-RBDs in cp29B. This insertion results in three tandem repeats of a glycine-rich sequence of 10 amino acids, which is a novel feature in RNPs. The two proteins are encoded by different single nuclear genes and no alternatively spliced transcripts could be identified. We constructed a phylogenetic tree for the ten chloroplast CS-RBDs. These results suggest that there is a sizable RNP family in chloroplasts and the diversity was mainly generated through a series of gene duplications rather than through alternative pre-mRNA splicing. The gene for cp29B contains three introns. The first and second introns interrupt the first CS-RBD and the third intron does the second CS-RBD. The position of the first intron site is the same as that in the human hnRNP A1 protein gene.
Collapse
Affiliation(s)
- L H Ye
- Center for Gene Research, Nagoya University, Japan
| | | | | | | | | | | | | |
Collapse
|
543
|
Reith M, Munholland J. An hsp70 homolog is encoded on the plastid genome of the red alga, Porphyra umbilicalis. FEBS Lett 1991; 294:116-20. [PMID: 1720741 DOI: 10.1016/0014-5793(91)81355-c] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A PCR experiment using Porphyra umbilicalis DNA as the template and degenerate oligonucleotides representing conserved regions of hsp70 amino acid sequences generated a 1 kb product that hybridized exclusively to the plastid DNA of this red alga. DNA sequencing of two contiguous EcoRI plastid DNA clones revealed a 620 amino acid open reading frame with 71% identity to the dnaK gene of the cyanobacterium, Synechocystis 6803. Northern hybridization experiments detected a 2.3 kb transcript that is present in control (15 degrees C) cultures and increases approximately 7-fold upon heat shock (75 minutes at 30 degrees C).
Collapse
Affiliation(s)
- M Reith
- Institute for Marine Biosciences, National Research Council of Canada, Nova Scotia
| | | |
Collapse
|
544
|
Richards CM, Hinman SB, Boyer CD, Hardison RC. Survey of plastid RNA abundance during tomato fruit ripening: the amounts of RNA from the ORF 2280 region increase in chromoplasts. PLANT MOLECULAR BIOLOGY 1991; 17:1179-88. [PMID: 1718481 DOI: 10.1007/bf00028734] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
A comprehensive survey of the levels of plastid RNAs at progressive stages of tomato fruit ripening was conducted by hybridizing total RNA with labeled Pst I fragments that cover almost the entire tomato plastid genome and with gene-specific probes. Two different cultivars of tomato (Lycopersicon esculentum Mill.) were examined, Traveler 76 and Count II. One of the tomato probes, P7, revealed a pronounced increase in the amount of an 8.3 kb RNA in ripe fruit. The homologous region of the tobacco plastid genome contains several genes for ribosomal proteins and a large unidentified open reading frame (2280 codons). Little change was observed in the levels of many transcripts during ripening. However, in some cases (e.g. psbA and psbC/D) the amount of RNA decreased during ripening of Count II but showed little or no change in Traveler 76. The contrast between Traveler 76 and Count II tomatoes shows that the level of plastid transcripts can vary substantially during fruit ripening with no obvious effect on the chloroplast to chromoplast transition. The large RNA from the P7 region may encode a protein that functions predominantly in chromoplasts.
Collapse
Affiliation(s)
- C M Richards
- Department of Molecular and Cell Biology, Pennsylvania State University, University Park 16802
| | | | | | | |
Collapse
|
545
|
Taylor GW, Wolfe KH, Morden CW, dePamphilis CW, Palmer JD. Lack of a functional plastid tRNA(Cys) gene is associated with loss of photosynthesis in a lineage of parasitic plants. Curr Genet 1991; 20:515-8. [PMID: 1723664 DOI: 10.1007/bf00334780] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We recently reported that the gene for chloroplast tRNA(Cys)(GCA) is a pseudogene in the plastid DNA of Epifagus virginiana, a non-photosynthetic parasitic flowering plant in the family Orobanchaceae. Since this is the only tRNA(Cys) gene in the plastid genome, and since Epifagus appears to possess a functional plastid translational apparatus, it seems probable that nuclear-encoded tRNAs are imported into plastids to effect translation. In this study we have surveyed species closely related to Epifagus to establish how widespread the loss of this tRNA gene has been. We find that Conopholis americana, another non-photosynthetic parasite, lacks the gene altogether, but that seven closely-related photosynthetic plants (both parasitic and free-living) maintain an intact chloroplast tRNA(Cys) gene. Thus, the tRNA(Cys) gene appears to have become non-functional at the same time that photosynthetic ability was lost. This may be because the levels of putatively imported tRNAs are sufficient to meet the demands of plastid gene expression under nonphotosynthetic conditions only.
Collapse
Affiliation(s)
- G W Taylor
- Department of Biology, Indiana University, Bloomington 47405
| | | | | | | | | |
Collapse
|
546
|
Wang SL, Liu XQ. The plastid genome of Cryptomonas phi encodes an hsp70-like protein, a histone-like protein, and an acyl carrier protein. Proc Natl Acad Sci U S A 1991; 88:10783-7. [PMID: 1961745 PMCID: PMC53015 DOI: 10.1073/pnas.88.23.10783] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The plastid genome of Cryptomonas phi, a cryptomonad alga, contains three genes that have not previously been found in any organellar genome. Each of these genes encodes a functional class of organellar gene product not previously reported. The first gene, dnaK, encodes a polypeptide of the hsp70 heat shock protein family. The predicted amino acid sequence of the DnaK protein is 54% identical to that of the Escherichia coli hsp70 protein (DnaK), 50-53% identical to that of two nucleus-encoded mitochondrial hsp70 proteins, and 43-46% identical to that of several eukaryotic cytoplasmic members of the hsp70 protein family. The second gene, hlpA, encodes a polypeptide resembling bacterial histone-like proteins. The predicted amino acid sequence of the HlpA protein is 25-53% identical to that of several bacterial histone-like proteins, and the identity increases to 39-76% over a conserved region corresponding to the long arm that binds DNA. The third gene, acpA, encodes an acyl carrier protein, which is a key cofactor in the synthesis and metabolism of fatty acids. Its predicted amino acid sequence is 36-59% identical to that of eubacterial and plant chloroplast (nucleus-encoded) acyl carrier proteins.
Collapse
Affiliation(s)
- S L Wang
- Canadian Institute for Advanced Research, Department of Biochemistry, Dalhousie University, Halifax, NS
| | | |
Collapse
|
547
|
Fukuchi M, Shikanai T, Kossykh VG, Yamada Y. Analysis of nuclear sequences homologous to the B4 plasmid-like DNA of rice mitochondria; evidence for sequence transfer from mitochondria to nuclei. Curr Genet 1991; 20:487-94. [PMID: 1782676 DOI: 10.1007/bf00334777] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Nuclear sequences homologous to the plasmid-like DNA, B4, were analyzed in the Japonica rice variety, Fujiminori. Homologous sequences existed at several positions in the nuclear genome, but each contained only a portion of the B4 sequence. It was impossible to reconstruct the entire sequence of B4 even by collating all the homologous sequences. Overlaps between some of the B4 sequences present in the nuclear genome resulted in parts of the sequence being represented more than once. These features indicate that nuclear sequences homologous to B4 are not the origin of B4 and that they have been transferred from mitochondria and integrated into the nuclear genome. Five other foreign sequences originating in the chloroplast or mitochondrial genome were found within 1 kb of the B4-homologous sequences. Structural analysis is consistent with the hypothesis that the DNA sequences were transferred via RNA.
Collapse
Affiliation(s)
- M Fukuchi
- Department of Agricultural Chemistry, Faculty of Agriculture, Kyoto University, Japan
| | | | | | | |
Collapse
|
548
|
Douwe de Boer A, Weisbeek PJ. Chloroplast protein topogenesis: import, sorting and assembly. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1071:221-53. [PMID: 1958688 DOI: 10.1016/0304-4157(91)90015-o] [Citation(s) in RCA: 172] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- A Douwe de Boer
- Department of Molecular Cell Biology, University of Utrecht, The Netherlands
| | | |
Collapse
|
549
|
Nagano Y, Matsuno R, Sasaki Y. Sequence and transcriptional analysis of the gene cluster trnQ-zfpA-psaI-ORF231-petA in pea chloroplasts. Curr Genet 1991; 20:431-6. [PMID: 1807835 DOI: 10.1007/bf00317074] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A 5.1 kb segment of pea chloroplast DNA containing the upstream region of petA was sequenced. RNAs produced from this DNA were characterized. This region encodes putative genes for psbK, trnQ, zfpA, psaI, ORF231, and petA. These genes are all on the same reading strand except for psbK. The gene organization is somewhat different from that of tobacco, rice, and liverwort, which lack the psbK-trnQ genes in this region and contain ORF184/185. Northern blot and primer extension analysis show that the pea transcript covers the zfpA-psaI-ORF231-petA gene cluster and trnQ. These results indicated that the psbK-trnQ genes have been rearranged and a new transcription unit was formed.
Collapse
Affiliation(s)
- Y Nagano
- Department of Food Science and Technology, Faculty of Agriculture, Kyoto University, Japan
| | | | | |
Collapse
|
550
|
Newman SM, Gillham NW, Harris EH, Johnson AM, Boynton JE. Targeted disruption of chloroplast genes in Chlamydomonas reinhardtii. MOLECULAR & GENERAL GENETICS : MGG 1991; 230:65-74. [PMID: 1745243 DOI: 10.1007/bf00290652] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have developed an efficient procedure for the disruption of Chlamydomonas chloroplast genes. Wild-type C. reinhardtii cells were bombarded with microprojectiles coated with a mixture of two plasmids, one encoding selectable, antibiotic-resistance mutations in the 16S ribosomal RNA gene and the other containing either the atpB or rbcL photosynthetic gene inactivated by an insertion of 0.48 kb of yeast DNA in the coding sequence. Antibiotic-resistant transformants were selected under conditions permissive for growth of non-photosynthetic mutants. Approximately half of these transformants were initially heteroplasmic for copies of the disrupted atpB or rbcL genes integrated into the recipient chloroplast genome but still retained photosynthetic competence. A small fraction of the transformants (1.1% for atpB; 4.3% for rbcL) were nonphotosynthetic and homoplasmic for the disrupted gene at the time they were isolated. Single cell cloning of the initially heteroplasmic transformants also yielded nonphotosynthetic segregants that were homoplasmic for the disrupted gene. Polypeptide products of the disrupted atpB and rbcL genes could not be detected using immunoblotting techniques. We believe that any nonessential Chlamydomonas chloroplast gene, such as those involved in photosynthesis, should be amenable to gene disruption by cotransformation. The method should prove useful for the introduction of site-specific mutations into chloroplast genes and flanking regulatory sequences with a view to elucidating their function.
Collapse
Affiliation(s)
- S M Newman
- Department of Botany, Duke University, Durham, NC 27706
| | | | | | | | | |
Collapse
|