501
|
György B, Hung ME, Breakefield XO, Leonard JN. Therapeutic applications of extracellular vesicles: clinical promise and open questions. Annu Rev Pharmacol Toxicol 2014; 55:439-464. [PMID: 25292428 DOI: 10.1146/annurev-pharmtox-010814-124630] [Citation(s) in RCA: 398] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review provides an updated perspective on rapidly proliferating efforts to harness extracellular vesicles (EVs) for therapeutic applications. We summarize current knowledge, emerging strategies, and open questions pertaining to clinical potential and translation. Potentially useful EVs comprise diverse products of various cell types and species. EV components may also be combined with liposomes and nanoparticles to facilitate manufacturing as well as product safety and evaluation. Potential therapeutic cargoes include RNA, proteins, and drugs. Strategic issues considered herein include choice of therapeutic agent, means of loading cargoes into EVs, promotion of EV stability, tissue targeting, and functional delivery of cargo to recipient cells. Some applications may harness natural EV properties, such as immune modulation, regeneration promotion, and pathogen suppression. These properties can be enhanced or customized to enable a wide range of therapeutic applications, including vaccination, improvement of pregnancy outcome, and treatment of autoimmune disease, cancer, and tissue injury.
Collapse
Affiliation(s)
- Bence György
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, Massachusetts 02114.,Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115
| | - Michelle E Hung
- Interdepartmental Biological Sciences Graduate Program, Northwestern University, Evanston, Illinois 60208
| | - Xandra O Breakefield
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, Massachusetts 02114
| | - Joshua N Leonard
- Department of Chemical and Biological Engineering, Robert H. Lurie Comprehensive Cancer Center, Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208
| |
Collapse
|
502
|
Hardaway AL, Herroon MK, Rajagurubandara E, Podgorski I. Bone marrow fat: linking adipocyte-induced inflammation with skeletal metastases. Cancer Metastasis Rev 2014; 33:527-43. [PMID: 24398857 PMCID: PMC4154371 DOI: 10.1007/s10555-013-9484-y] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adipocytes are important but underappreciated components of bone marrow microenvironment, and their numbers greatly increase with age, obesity, and associated metabolic pathologies. Age and obesity are also significant risk factors for development of metastatic prostate cancer. Adipocytes are metabolically active cells that secrete adipokines, growth factors, and inflammatory mediators; influence behavior and function of neighboring cells; and have a potential to disturb local milleu and dysregulate normal bone homeostasis. Increased marrow adiposity has been linked to bone marrow inflammation and osteoporosis of the bone, but its effects on growth and progression of prostate tumors that have metastasized to the skeleton are currently not known. This review focuses on fat-bone relationship in a context of normal bone homeostasis and metastatic tumor growth in bone. We discuss effects of marrow fat cells on bone metabolism, hematopoiesis, and inflammation. Special attention is given to CCL2- and COX-2-driven pathways and their potential as therapeutic targets for bone metastatic disease.
Collapse
Affiliation(s)
- Aimalie L. Hardaway
- Department of Pharmacology, Wayne State University School of, Medicine, 540 E. Canfield, Rm 6304, Detroit, MI 48201, USA
- Karmanos Cancer Institute, Wayne State University School of, Medicine, Detroit, MI 48201, USA
| | - Mackenzie K. Herroon
- Department of Pharmacology, Wayne State University School of, Medicine, 540 E. Canfield, Rm 6304, Detroit, MI 48201, USA
| | - Erandi Rajagurubandara
- Department of Pharmacology, Wayne State University School of, Medicine, 540 E. Canfield, Rm 6304, Detroit, MI 48201, USA
| | - Izabela Podgorski
- Department of Pharmacology, Wayne State University School of, Medicine, 540 E. Canfield, Rm 6304, Detroit, MI 48201, USA
- Karmanos Cancer Institute, Wayne State University School of, Medicine, Detroit, MI 48201, USA
| |
Collapse
|
503
|
In vitro effects of cocaine on tunneling nanotube formation and extracellular vesicle release in glioblastoma cell cultures. J Mol Neurosci 2014; 55:42-50. [PMID: 24996625 DOI: 10.1007/s12031-014-0365-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 06/26/2014] [Indexed: 12/15/2022]
Abstract
The effects of cocaine (150 nM, 300 nM, and 150 μM) on human glioblastoma cell cultures were studied on tunneling nanotube formation (1-h cocaine treatment) and extracellular vesicle release (1-, 3-, and 8-h cocaine treatment). Cocaine significantly increased the number of tunneling nanotubes only at the lowest concentration used. The release of extracellular vesicles (mainly exosomes) into the medium was stimulated by cocaine at each concentration used with a maximum effect at the highest concentration tested (150 μM). Moreover, cocaine (150 nM) significantly increased the number of vesicles with 61-80 nm diameter while at concentrations of 300 nM and 150 μM, and the smaller vesicles (30-40 nm diameter) were significantly increased with a reduction of the larger vesicles (41-60 nm diameter). A time dependence in the release of extracellular vesicles was observed. In view of the proposed role of these novel intercellular communication modes in the glial-neuronal plasticity, it seems possible that they can participate in the processes leading to cocaine addiction. The molecular target/s involved in these cocaine effects could be specific molecular components of plasma membrane lipid rafts and/or cocaine-induced modifications in cytoplasmic lipid composition.
Collapse
|
504
|
Kowal J, Tkach M, Théry C. Biogenesis and secretion of exosomes. Curr Opin Cell Biol 2014; 29:116-25. [PMID: 24959705 DOI: 10.1016/j.ceb.2014.05.004] [Citation(s) in RCA: 1329] [Impact Index Per Article: 120.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 04/17/2014] [Accepted: 05/10/2014] [Indexed: 12/19/2022]
Abstract
Although observed for several decades, the release of membrane-enclosed vesicles by cells into their surrounding environment has been the subject of increasing interest in the past few years, which led to the creation, in 2012, of a scientific society dedicated to the subject: the International Society for Extracellular Vesicles. Convincing evidence that vesicles allow exchange of complex information fuelled this rise in interest. But it has also become clear that different types of secreted vesicles co-exist, with different intracellular origins and modes of formation, and thus probably different compositions and functions. Exosomes are one sub-type of secreted vesicles. They form inside eukaryotic cells in multivesicular compartments, and are secreted when these compartments fuse with the plasma membrane. Interestingly, different families of molecules have been shown to allow intracellular formation of exosomes and their subsequent secretion, which suggests that even among exosomes different sub-types exist.
Collapse
Affiliation(s)
- Joanna Kowal
- Institut Curie, Centre de Recherche, 26 rue d'Ulm, Paris F-75248, France; INSERM U932, Paris F-75248, France
| | - Mercedes Tkach
- Institut Curie, Centre de Recherche, 26 rue d'Ulm, Paris F-75248, France; INSERM U932, Paris F-75248, France
| | - Clotilde Théry
- Institut Curie, Centre de Recherche, 26 rue d'Ulm, Paris F-75248, France; INSERM U932, Paris F-75248, France; Paris Sciences et Lettres (PSL*), Paris F-75005, France.
| |
Collapse
|
505
|
Tickner JA, Urquhart AJ, Stephenson SA, Richard DJ, O'Byrne KJ. Functions and therapeutic roles of exosomes in cancer. Front Oncol 2014; 4:127. [PMID: 24904836 PMCID: PMC4034415 DOI: 10.3389/fonc.2014.00127] [Citation(s) in RCA: 183] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 05/13/2014] [Indexed: 12/24/2022] Open
Abstract
The role of exosomes in cancer development has become the focus of much research, due to the many emerging roles possessed by exosomes. These micro-vesicles that are ubiquitously released in to the extracellular milieu, have been found to regulate immune system function, particularly in tumorigenesis, as well as conditioning future metastatic sites for the attachment and growth of tumor tissue. Through an interaction with a range of host tissue, exosomes are able to generate a pro-tumor environment that is essential for carcinogenesis. Herein, we discuss the contents of exosomes and their contribution to tumorigenesis, as well as their role in chemotherapeutic resistance and the development of novel cancer treatments and the identification of cancer biomarkers.
Collapse
Affiliation(s)
- Jacob A Tickner
- Cancer and Ageing Research Program, Translational Research Institute, Queensland University of Technology , Brisbane, QLD , Australia
| | - Aaron J Urquhart
- Cancer and Ageing Research Program, Translational Research Institute, Queensland University of Technology , Brisbane, QLD , Australia
| | - Sally-Anne Stephenson
- Eph Receptor Biology Group, Translational Research Institute, Queensland University of Technology , Brisbane, QLD , Australia
| | - Derek J Richard
- Cancer and Ageing Research Program, Translational Research Institute, Queensland University of Technology , Brisbane, QLD , Australia
| | - Kenneth J O'Byrne
- Cancer and Ageing Research Program, Translational Research Institute, Queensland University of Technology , Brisbane, QLD , Australia
| |
Collapse
|
506
|
Abstract
Myocardial infarction is a leading cause of death among all cardiovascular diseases. The analysis of molecular mechanisms by which the ischemic myocardium initiates repair and remodeling indicates that secreted soluble factors are key players in communication to local and distant tissues, such as bone marrow. Recently, actively secreted membrane vesicles, including exosomes, are being recognized as new candidates with important roles in intercellular and tissue-level communication. In this review, we critically examine the emerging role of exosomes in local and distant microcommunication mechanisms after myocardial infarction. A comprehensive understanding of the role of exosomes in cardiac repair after myocardial infarction could bridge a major gap in knowledge of the repair mechanism after myocardial injury.
Collapse
Affiliation(s)
- Susmita Sahoo
- From Feinberg Cardiovascular Research Institute, Chicago, IL (S.S., D.W.L.); Northwestern Memorial Hospital, Chicago, IL (D.W.L.); and NeoStem, Inc, New York, NY (D.W.L.)
| | | |
Collapse
|
507
|
Phuyal S, Hessvik NP, Skotland T, Sandvig K, Llorente A. Regulation of exosome release by glycosphingolipids and flotillins. FEBS J 2014; 281:2214-27. [PMID: 24605801 DOI: 10.1111/febs.12775] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 02/06/2014] [Accepted: 03/04/2014] [Indexed: 12/14/2022]
Abstract
Exosomes are released by cells after fusion of multivesicular bodies with the plasma membrane. The molecular mechanism of this process is still unclear. We investigated the role of sphingolipids and flotillins, which constitute a raft-associated family of proteins, in the release of exosomes. Interestingly, our results show that dl-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol, an inhibitor of glucosylceramide synthase, seemed to affect the composition of exosomes released from PC-3 cells. However, the inhibition of ceramide formation from the de novo pathway by fumonisin B1 did not affect exosome secretion. Moreover, in contrast to findings obtained with other cell lines published so far, inhibition of neutral sphingomyelinase 2, an enzyme that catalyzes the formation of ceramide from sphingomyelin, did not inhibit the secretion of exosomes in PC-3 cells. Finally, small interfering RNA-mediated downregulation of flotillin-1 and flotillin-2 did not significantly change the levels of released exosomes as such, but seemed to affect the composition of exosomes. In conclusion, our results reveal the involvement of glycosphingolipids and flotillins in the release of exosomes from PC-3 cells, and indicate that the role of ceramide in exosome formation may be cell-dependent.
Collapse
Affiliation(s)
- Santosh Phuyal
- Department of Biochemistry, Institute for Cancer Research, Oslo University Hospital - The Norwegian Radium Hospital, Norway; Center for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Norway
| | | | | | | | | |
Collapse
|
508
|
Abstract
Exosomes and other microvesicles are emerging as rich reservoirs of tumor-specific proteins and biomarkers for cancer detection and progression. For prostate cancer, exosomes secreted by the prostate can be isolated from prostatic secretions, seminal fluid, tissue, urine or blood for further proteomic analysis. Structurally, prostate-derived exosomes are distinct in size, membrane composition and specific prostate protein content, potentially providing a novel and easily isolatable source of biomarkers from clinical biofluids. The key to these isolation strategies will be the targeting of specific prostatic proteins expressed in these exosomes, thus requiring detailed proteomic characterizations. A summary of ongoing efforts to characterize the proteome of these unique prostate cancer-associated exosomes and their potential applications for use in biomarker assays is presented.
Collapse
Affiliation(s)
- Richard R Drake
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, MUSC Proteomics Center, Medical University of South Carolina , Charleston, SC , USA
| | | |
Collapse
|
509
|
Moldovan L, Batte KE, Trgovcich J, Wisler J, Marsh CB, Piper M. Methodological challenges in utilizing miRNAs as circulating biomarkers. J Cell Mol Med 2014; 18:371-90. [PMID: 24533657 PMCID: PMC3943687 DOI: 10.1111/jcmm.12236] [Citation(s) in RCA: 303] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 12/18/2013] [Indexed: 01/06/2023] Open
Abstract
MicroRNAs (miRNAs) have emerged as important regulators in the post-transcriptional control of gene expression. The discovery of their presence not only in tissues but also in extratissular fluids, including blood, urine and cerebro-spinal fluid, together with their changes in expression in various pathological conditions, has implicated these extracellular miRNAs as informative biomarkers of disease. However, exploiting miRNAs in this capacity requires methodological rigour. Here, we report several key procedural aspects of miRNA isolation from plasma and serum, as exemplified by research in cardiovascular and pulmonary diseases. We also highlight the advantages and disadvantages of various profiling methods to determine the expression levels of plasma- and serum-derived miRNAs. Attention to such methodological details is critical, as circulating miRNAs become diagnostic tools for various human diseases.
Collapse
Affiliation(s)
- Leni Moldovan
- Division of Pulmonary, Allergy, Critical Care, Sleep Medicine, College of Medicine, The Ohio State University, Columbus, OH, USA
| | | | | | | | | | | |
Collapse
|
510
|
Redzic JS, Ung TH, Graner MW. Glioblastoma extracellular vesicles: reservoirs of potential biomarkers. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2014; 7:65-77. [PMID: 24634586 PMCID: PMC3952682 DOI: 10.2147/pgpm.s39768] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Glioblastoma multiforme (GBM) is the most frequent and most devastating of the primary central nervous system tumors, with few patients living beyond 2 years postdiagnosis. The damage caused by the disease and our treatments for the patients often leave them physically and cognitively debilitated. Generally, GBMs appear after very short clinical histories and are discovered by imaging (using magnetic resonance imaging [MRI]), and the diagnosis is validated by pathology, following surgical resection. The treatment response and diagnosis of tumor recurrence are also tracked by MRI, but there are numerous problems encountered with these monitoring modalities, such as ambiguous interpretation and forms of pseudoprogression. Diagnostic, prognostic, and predictive biomarkers would be an immense boon in following treatment schemes and in determining recurrence, which often requires an invasive intracranial biopsy to verify imaging data. Extracellular vesicles (EVs) are stable, membrane-enclosed, virus-sized particles released from either the cell surface or from endosomal pathways that lead to the systemic release of EVs into accessible biofluids, such as serum/plasma, urine, cerebrospinal fluid, and saliva. EVs carry a wide variety of proteins, nucleic acids, lipids, and other metabolites, with many common features but with enough individuality to be able to identify the cell of origin of the vesicles. These components, if properly interrogated, could allow for the identification of tumor-derived EVs in biofluids, indicating tumor progression, relapse, or treatment failure. That knowledge would allow clinicians to continue with treatment regimens that were actually effective or to change course if the therapies were failing. Here, we review the features of GBM EVs, in terms of EV content and activities that may lead to the use of EVs as serially accessible biomarkers for diagnosis and treatment response in neuro-oncology.
Collapse
Affiliation(s)
- Jasmina S Redzic
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO, USA
| | - Timothy H Ung
- Department of Neurosurgery, School of Medicine, University of Colorado Denver, Aurora, CO, USA
| | - Michael W Graner
- Department of Neurosurgery, School of Medicine, University of Colorado Denver, Aurora, CO, USA
| |
Collapse
|
511
|
Vihervaara T, Suoniemi M, Laaksonen R. Lipidomics in drug discovery. Drug Discov Today 2014; 19:164-70. [DOI: 10.1016/j.drudis.2013.09.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 08/23/2013] [Accepted: 09/10/2013] [Indexed: 12/19/2022]
|
512
|
Sandvig K, Bergan J, Kavaliauskiene S, Skotland T. Lipid requirements for entry of protein toxins into cells. Prog Lipid Res 2014; 54:1-13. [PMID: 24462587 DOI: 10.1016/j.plipres.2014.01.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 01/15/2014] [Accepted: 01/15/2014] [Indexed: 01/05/2023]
Abstract
The plant toxin ricin and the bacterial toxin Shiga toxin both belong to a group of protein toxins having one moiety that binds to the cell surface, and another, enzymatically active moiety, that enters the cytosol and inhibits protein synthesis by inactivating ribosomes. Both toxins travel all the way from the cell surface to endosomes, the Golgi apparatus and the ER before the ribosome-inactivating moiety enters the cytosol. Shiga toxin binds to the neutral glycosphingolipid Gb3 at the cell surface and is therefore dependent on this lipid for transport into the cells, whereas ricin binds both glycoproteins and glycolipids with terminal galactose. The different steps of transport used by these toxins have specific requirements for lipid species, and with the recent developments in mass spectrometry analysis of lipids and microscopical and biochemical dissection of transport in cells, we are starting to see the complexity of endocytosis and intracellular transport. In this article we describe lipid requirements and the consequences of lipid changes for the entry and intoxication with ricin and Shiga toxin. These toxins can be a threat to human health, but can also be exploited for diagnosis and therapy, and have proven valuable as tools to study intracellular transport.
Collapse
Affiliation(s)
- Kirsten Sandvig
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway; Department of Biosciences, University of Oslo, Oslo, Norway.
| | - Jonas Bergan
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.
| | - Simona Kavaliauskiene
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway; Department of Biosciences, University of Oslo, Oslo, Norway.
| | - Tore Skotland
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
513
|
Yang X, Weng Z, Mendrick DL, Shi Q. Circulating extracellular vesicles as a potential source of new biomarkers of drug-induced liver injury. Toxicol Lett 2014; 225:401-6. [PMID: 24462978 DOI: 10.1016/j.toxlet.2014.01.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 01/07/2014] [Accepted: 01/08/2014] [Indexed: 12/11/2022]
Abstract
Like most cell types, hepatocytes constantly produce extracellular vesicles (EVs) such as exosomes and microvesicles that are released into the circulation to transport signaling molecules and cellular waste. Circulating EVs are being vigorously explored as biomarkers of diseases and toxicities, including drug-induced liver injury (DILI). Emerging data suggest that (a) blood-borne EVs contain liver-specific mRNAs and microRNAs (miRNAs), (b) the levels can be remarkably elevated in response to DILI, and (c) the increases correlate well with classical measures of liver damage. The expression profile of mRNAs in EVs and the compartmentalization of miRNAs within EVs or other blood fractions were found to be indicative of the offending drug involved in DILI, thus providing more informative assessment of liver injury than using alanine aminotransferase alone. EVs in the urine and cell culture medium were also found to contain proteins or mRNAs that were indicative of DILI. However, major improvements in EV isolation methods are needed for the discovery, evaluation, and quantification of possible DILI biomarkers in circulating EVs.
Collapse
Affiliation(s)
- Xi Yang
- Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Zuquan Weng
- Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Donna L Mendrick
- Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Qiang Shi
- Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA.
| |
Collapse
|
514
|
Abstract
Extracellular vesicles (EV), including exosomes, microvesicles and apoptotic bodies, are released from numerous cell types and are involved in intercellular communication, physiological functions and the pathology of disease. They have been shown to carry and transfer a wide range of cargo including proteins, lipids and nucleic acids. The role of EVs in cardiac physiology and heart disease is an emerging field that has produced intriguing findings in recent years. This review will outline what is currently known about EVs in the cardiovascular system, including cellular origins, functional roles and utility as biomarkers and potential therapeutics.
Collapse
Affiliation(s)
- Kirsty M Danielson
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Boston, MA
| | - Saumya Das
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Boston, MA
| |
Collapse
|
515
|
Soekmadji C, Russell PJ, Nelson CC. Exosomes in prostate cancer: putting together the pieces of a puzzle. Cancers (Basel) 2013; 5:1522-44. [PMID: 24351670 PMCID: PMC3875952 DOI: 10.3390/cancers5041522] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 10/21/2013] [Accepted: 11/01/2013] [Indexed: 01/08/2023] Open
Abstract
Exosomes have been shown to act as mediators for cell to cell communication and as a potential source of biomarkers for many diseases, including prostate cancer. Exosomes are nanosized vesicles secreted by cells and consist of proteins normally found in multivesicular bodies, RNA, DNA and lipids. As a potential source of biomarkers, exosomes have attracted considerable attention, as their protein content resembles that of their cells of origin, even though it is noted that the proteins, miRNAs and lipids found in the exosomes are not a reflective stoichiometric sampling of the contents from the parent cells. While the biogenesis of exosomes in dendritic cells and platelets has been extensively characterized, much less is known about the biogenesis of exosomes in cancer cells. An understanding of the processes involved in prostate cancer will help to further elucidate the role of exosomes and other extracellular vesicles in prostate cancer progression and metastasis. There are few methodologies available for general isolation of exosomes, however validation of those methodologies is necessary to study the role of exosomal-derived biomarkers in various diseases. In this review, we discuss “exosomes” as a member of the family of extracellular vesicles and their potential to provide candidate biomarkers for prostate cancer.
Collapse
Affiliation(s)
- Carolina Soekmadji
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Level 3 West, 37 Kent Street, Brisbane, Queensland 4102, Australia.
| | | | | |
Collapse
|
516
|
Record M, Carayon K, Poirot M, Silvente-Poirot S. Exosomes as new vesicular lipid transporters involved in cell-cell communication and various pathophysiologies. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:108-20. [PMID: 24140720 DOI: 10.1016/j.bbalip.2013.10.004] [Citation(s) in RCA: 593] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 09/29/2013] [Accepted: 10/03/2013] [Indexed: 12/14/2022]
Abstract
Exosomes are nanovesicles that have emerged as a new intercellular communication system between an intracellular compartment of a donor cell towards the periphery or an internal compartment of a recipient cell. The bioactivity of exosomes resides not only in their protein and RNA contents but also in their lipidic molecules. Exosomes display original lipids organized in a bilayer membrane and along with the lipid carriers such as fatty acid binding proteins that they contain, exosomes transport bioactive lipids. Exosomes can vectorize lipids such as eicosanoids, fatty acids, and cholesterol, and their lipid composition can be modified by in-vitro manipulation. They also contain lipid related enzymes so that they can constitute an autonomous unit of production of various bioactive lipids. Exosomes can circulate between proximal or distal cells and their fate can be regulated in part by lipidic molecules. Compared to their parental cells, exosomes are enriched in cholesterol and sphingomyelin and their accumulation in cells might modulate recipient cell homeostasis. Exosome release from cells appears to be a general biological process. They have been reported in all biological fluids from which they can be recovered and can be monitors of specific pathophysiological situations. Thus, the lipid content of circulating exosomes could be useful biomarkers of lipid related diseases. Since the first lipid analysis of exosomes ten years ago detailed knowledge of exosomal lipids has accumulated. The role of lipids in exosome fate and bioactivity and how they constitute an additional lipid transport system are considered in this review.
Collapse
Affiliation(s)
- Michel Record
- INSERM-UMR 1037, Cancer Research Center of Toulouse (CRCT), Team "Sterol Metabolism and Therapeutic Innovation in Oncology", BP3028, CHU Purpan, Toulouse F-31300, France; Institut Claudius Regaud, 20-24 Rue du Pont Saint-Pierre, 31052 Toulouse Cedex, France; Université Paul Sabatier Toulouse 3, 118 Route de Narbonne, Toulouse, France.
| | | | | | | |
Collapse
|
517
|
Bergan J, Skotland T, Sylvänne T, Simolin H, Ekroos K, Sandvig K. The ether lipid precursor hexadecylglycerol causes major changes in the lipidome of HEp-2 cells. PLoS One 2013; 8:e75904. [PMID: 24098742 PMCID: PMC3786967 DOI: 10.1371/journal.pone.0075904] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 08/20/2013] [Indexed: 01/22/2023] Open
Abstract
The ether-lipid precursor sn-1-O-hexadecylglycerol (HG) can be used to compensate for early metabolic defects in ether-lipid biosynthesis. To investigate a possible metabolic link between ether-linked phospholipids and the rest of the cellular lipidome, we incubated HEp-2 cells with HG. Mass spectrometry analysis revealed major changes in the lipidome of HG-treated cells compared to that of untreated cells or cells treated with palmitin, a control substance for HG containing an acyl group instead of the ether group. We present quantitative data for a total of 154 species from 17 lipid classes. These species are those constituting more than 2% of their lipid class for most lipid classes, but more than 1% for the ether lipids and glycosphingolipids. In addition to the expected ability of HG to increase the levels of ether-linked glycerophospholipids with 16 carbon atoms in the sn-1 position, this precursor also decreased the amounts of glycosphingolipids and increased the amounts of ceramide, phosphatidylinositol and lysophosphatidylinositol. However, incubation with palmitin, the fatty acyl analogue of HG, also increased the amounts of ceramide and phosphatidylinositols. Thus, changes in these lipid classes were not ether lipid-dependent. No major effects were observed for the other lipid classes, and cellular functions such as growth and endocytosis were unaffected. The data presented clearly demonstrate the importance of performing detailed quantitative lipidomic studies to reveal how the metabolism of ether-linked glycerophospholipids is coupled to that of glycosphingolipids and ester-linked glycerophospholipids, especially phosphatidylinositols.
Collapse
Affiliation(s)
- Jonas Bergan
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Tore Skotland
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | | | | | | | - Kirsten Sandvig
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Department of Biosciences, University of Oslo, Oslo, Norway
- * E-mail:
| |
Collapse
|
518
|
Lundell G, Holm LE, Ljunggren JG, Wasserman J. Incidence of hypothyroidism after 131I therapy for hyperthyroidism. Relation to pretherapy serum levels of T3, T4 and thyroid antibodies. J Lipid Res 1982; 59:2255-2261. [PMID: 6277151 DOI: 10.1194/jlr.r084210] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/05/2018] [Indexed: 12/13/2022] Open
Abstract
A correlation is reported between serum levels of triiodothyronine (S-T3) and thyroxine (S-T4) before treatment, as well as levels of thyroid antibodies before treatment, and the development of hypothyroidism following 131I therapy in 86 patients with hyperthyroidism. Patients with marked elevation of S-T3 or S-T4 had demonstrable antibodies to thyroid cytoplasmic antigen more often than those with normal or moderately elevated levels, and patients with markedly elevated levels of S-T3 also had a higher incidence of hypothyroidism after treatment. Patients with nodular thyroid glands and with markedly elevated levels of S-T3 required a larger number of 131I doses before no signs of hyperthyroidism persisted in comparison to those with moderately elevated levels.
Collapse
|