501
|
Alegria MC, Docena C, Khater L, Ramos CHI, da Silva ACR, Farah CS. New protein-protein interactions identified for the regulatory and structural components and substrates of the type III Secretion system of the phytopathogen Xanthomonas axonopodis Pathovar citri. J Bacteriol 2004; 186:6186-97. [PMID: 15342589 PMCID: PMC515140 DOI: 10.1128/jb.186.18.6186-6197.2004] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2004] [Accepted: 06/11/2004] [Indexed: 01/01/2023] Open
Abstract
We have initiated a project to identify protein-protein interactions involved in the pathogenicity of the bacterial plant pathogen Xanthomonas axonopodis pv. citri. Using a yeast two-hybrid system based on Gal4 DNA-binding and activation domains, we have focused on identifying interactions involving subunits, regulators, and substrates of the type III secretion system coded by the hrp (for hypersensitive response and pathogenicity), hrc (for hrp conserved), and hpa (for hrp associated) genes. We have identified several previously uncharacterized interactions involving (i) HrpG, a two-component system response regulator responsible for the expression of X. axonopodis pv. citri hrp operons, and XAC0095, a previously uncharacterized protein encountered only in Xanthomonas spp.; (ii) HpaA, a protein secreted by the type III secretion system, HpaB, and the C-terminal domain of HrcV; (iii) HrpB1, HrpD6, and HrpW; and (iv) HrpB2 and HrcU. Homotropic interactions were also identified for the ATPase HrcN. These newly identified protein-protein interactions increase our understanding of the functional integration of phytopathogen-specific type III secretion system components and suggest new hypotheses regarding the molecular mechanisms underlying Xanthomonas pathogenicity.
Collapse
Affiliation(s)
- Marcos C. Alegria
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Centro de Biologia Molecular Estrutural, Laboratório Nacional de Luz Síncrotron, Departamento de Bioquímica, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Cassia Docena
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Centro de Biologia Molecular Estrutural, Laboratório Nacional de Luz Síncrotron, Departamento de Bioquímica, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Leticia Khater
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Centro de Biologia Molecular Estrutural, Laboratório Nacional de Luz Síncrotron, Departamento de Bioquímica, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Carlos H. I. Ramos
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Centro de Biologia Molecular Estrutural, Laboratório Nacional de Luz Síncrotron, Departamento de Bioquímica, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Ana C. R. da Silva
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Centro de Biologia Molecular Estrutural, Laboratório Nacional de Luz Síncrotron, Departamento de Bioquímica, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Chuck S. Farah
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Centro de Biologia Molecular Estrutural, Laboratório Nacional de Luz Síncrotron, Departamento de Bioquímica, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| |
Collapse
|
502
|
Flint JL, Kowalski JC, Karnati PK, Derbyshire KM. The RD1 virulence locus of Mycobacterium tuberculosis regulates DNA transfer in Mycobacterium smegmatis. Proc Natl Acad Sci U S A 2004; 101:12598-603. [PMID: 15314236 PMCID: PMC515103 DOI: 10.1073/pnas.0404892101] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2004] [Indexed: 11/18/2022] Open
Abstract
Conjugal DNA transfer occurs by an atypical mechanism in Mycobacterium smegmatis. The transfer system is chromosomally encoded and requires recipient recombination functions for both chromosome and plasmid transfer. Cis-acting sequences have been identified that confer mobility on nontransferable plasmids, but these are larger and have different properties to canonical oriT sites found in bacterial plasmids. To identify trans-acting factors required for mediating DNA transfer, a library of transposon insertion mutants was generated in the donor strain, and individual mutants were screened for their effect on transfer. From this screen, a collection of insertion mutants was isolated that increased conjugation frequencies relative to wild type. Remarkably, the mutations map to a 25-kb region of the M. smegmatis chromosome that is syntenous with the RD1 region of Mycobacterium tuberculosis, which is considered to be the primary attenuating deletion in the related vaccine strain Mycobacterium bovis bacillus Calmette-Guérin. The genes of the RD1 region encode a secretory apparatus responsible for exporting Cfp10- and Esat-6, both potent antigens and virulence factors. In crosses using two M. smegmatis donors, we show that wild-type cells can suppress the elevated transfer phenotype of mutant donors, which is consistent with the secretion of a factor that suppresses conjugation. Most importantly, the RD1 region of M. tuberculosis complements the conjugation phenotype of the RD1 mutants in M. smegmatis. Our results indicate that the M. tuberculosis and M. smegmatis RD1 regions are functionally equivalent and provide a unique perspective on the role of this critical secretion apparatus.
Collapse
Affiliation(s)
- Jessica L Flint
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, University at Albany, Albany, NY 12201, USA
| | | | | | | |
Collapse
|
504
|
Cascales E, Christie PJ. Definition of a bacterial type IV secretion pathway for a DNA substrate. Science 2004; 304:1170-3. [PMID: 15155952 PMCID: PMC3882297 DOI: 10.1126/science.1095211] [Citation(s) in RCA: 289] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Bacteria use conjugation systems, a subfamily of the type IV secretion systems, to transfer DNA to recipient cells. Despite 50 years of research, the architecture and mechanism of action of the channel mediating DNA transfer across the bacterial cell envelope remains obscure. By use of a sensitive, quantifiable assay termed transfer DNA immunoprecipitation (TrIP), we identify contacts between a DNA substrate (T-DNA) and 6 of 12 components of the VirB/D4 conjugation system of the phytopathogen Agrobacterium tumefaciens. Our results define the translocation pathway for a DNA substrate through a bacterial conjugation machine, specifying the contributions of each subunit of the secretory apparatus to substrate passage.
Collapse
|
507
|
H. pylori: the plastic pathogen. Nat Rev Microbiol 2004. [DOI: 10.1038/nrmicro809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
508
|
Abstract
Bacteria use type IV secretion systems (T4SS) to translocate macromolecular substrates destined for bacterial, plant or human target cells. The T4SS are medically important, contributing to virulence-gene spread, genome plasticity and the alteration of host cellular processes during infection. The T4SS are ancestrally related to bacterial conjugation machines, but present-day functions include (i) conjugal transfer of DNA by cell-to-cell contact, (ii) translocation of effector molecules to eukaryotic target cells, and (iii) DNA uptake from or release to the extracellular milieu. Rapid progress has been made toward identification of type IV secretion substrates and the requirements for substrate recognition.
Collapse
Affiliation(s)
- Zhiyong Ding
- Department of Microbiology and Molecular Genetics, The University of Texas-Houston Medical School, Houston, TX 77030, USA
| | | | | |
Collapse
|