501
|
Mardirossian N, Head-Gordon M. Thirty years of density functional theory in computational chemistry: an overview and extensive assessment of 200 density functionals. Mol Phys 2017. [DOI: 10.1080/00268976.2017.1333644] [Citation(s) in RCA: 709] [Impact Index Per Article: 88.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Narbe Mardirossian
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, CA, USA
| | - Martin Head-Gordon
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, CA, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
502
|
Manna D, Kesharwani MK, Sylvetsky N, Martin JML. Conventional and Explicitly Correlated ab Initio Benchmark Study on Water Clusters: Revision of the BEGDB and WATER27 Data Sets. J Chem Theory Comput 2017; 13:3136-3152. [DOI: 10.1021/acs.jctc.6b01046] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Debashree Manna
- Department of Organic Chemistry, Weizmann Institute of Science, 76100 Rechovot, Israel
| | - Manoj K. Kesharwani
- Department of Organic Chemistry, Weizmann Institute of Science, 76100 Rechovot, Israel
| | - Nitai Sylvetsky
- Department of Organic Chemistry, Weizmann Institute of Science, 76100 Rechovot, Israel
| | - Jan M. L. Martin
- Department of Organic Chemistry, Weizmann Institute of Science, 76100 Rechovot, Israel
| |
Collapse
|
503
|
Ab initio dynamics and photoionization mass spectrometry reveal ion-molecule pathways from ionized acetylene clusters to benzene cation. Proc Natl Acad Sci U S A 2017; 114:E4125-E4133. [PMID: 28484019 DOI: 10.1073/pnas.1616464114] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The growth mechanism of hydrocarbons in ionizing environments, such as the interstellar medium (ISM), and some combustion conditions remains incompletely understood. Ab initio molecular dynamics (AIMD) simulations and molecular beam vacuum-UV (VUV) photoionization mass spectrometry experiments were performed to understand the ion-molecule growth mechanism of small acetylene clusters (up to hexamers). A dramatic dependence of product distribution on the ionization conditions is demonstrated experimentally and understood from simulations. The products change from reactive fragmentation products in a higher temperature, higher density gas regime toward a very cold collision-free cluster regime that is dominated by products whose empirical formula is (C2H2) n+, just like ionized acetylene clusters. The fragmentation products result from reactive ion-molecule collisions in a comparatively higher pressure and temperature regime followed by unimolecular decomposition. The isolated ionized clusters display rich dynamics that contain bonded C4H4+ and C6H6+ structures solvated with one or more neutral acetylene molecules. Such species contain large amounts (>2 eV) of excess internal energy. The role of the solvent acetylene molecules is to affect the barrier crossing dynamics in the potential energy surface (PES) between (C2H2)n+ isomers and provide evaporative cooling to dissipate the excess internal energy and stabilize products including the aromatic ring of the benzene cation. Formation of the benzene cation is demonstrated in AIMD simulations of acetylene clusters with n > 3, as well as other metastable C6H6+ isomers. These results suggest a path for aromatic ring formation in cold acetylene-rich environments such as parts of the ISM.
Collapse
|
504
|
Liu K, Liu J, Herbert JM. Accuracy of finite‐difference harmonic frequencies in density functional theory. J Comput Chem 2017; 38:1678-1684. [DOI: 10.1002/jcc.24811] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/19/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Kuan‐Yu Liu
- Department of Chemistry and BiochemistryThe Ohio State UniversityColumbus Ohio43210
| | - Jie Liu
- Department of Chemistry and BiochemistryThe Ohio State UniversityColumbus Ohio43210
| | - John M. Herbert
- Department of Chemistry and BiochemistryThe Ohio State UniversityColumbus Ohio43210
| |
Collapse
|
505
|
Mao Y, Shao Y, Dziedzic J, Skylaris CK, Head-Gordon T, Head-Gordon M. Performance of the AMOEBA Water Model in the Vicinity of QM Solutes: A Diagnosis Using Energy Decomposition Analysis. J Chem Theory Comput 2017; 13:1963-1979. [PMID: 28430427 DOI: 10.1021/acs.jctc.7b00089] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The importance of incorporating solvent polarization effects into the modeling of solvation processes has been well-recognized, and therefore a new generation of hybrid quantum mechanics/molecular mechanics (QM/MM) approaches that accounts for this effect is desirable. We present a fully self-consistent, mutually polarizable QM/MM scheme using the AMOEBA force field, in which the total energy of the system is variationally minimized with respect to both the QM electronic density and the MM induced dipoles. This QM/AMOEBA model is implemented through the Q-Chem/LibEFP code interface and then applied to the evaluation of solute-solvent interaction energies for various systems ranging from the water dimer to neutral and ionic solutes (NH3, NH4+, CN-) surrounded by increasing numbers of water molecules (up to 100). In order to analyze the resulting interaction energies, we also utilize an energy decomposition analysis (EDA) scheme which identifies contributions from permanent electrostatics, polarization, and van der Waals (vdW) interaction for the interaction between the QM solute and the solvent molecules described by AMOEBA. This facilitates a component-wise comparison against full QM calculations where the corresponding energy components are obtained via a modified version of the absolutely localized molecular orbitals (ALMO)-EDA. The results show that the present QM/AMOEBA model can yield reasonable solute-solvent interaction energies for neutral and cationic species, while further scrutiny reveals that this accuracy highly relies on the delicate balance between insufficiently favorable permanent electrostatics and softened vdW interaction. For anionic solutes where the charge penetration effect becomes more pronounced, the QM/MM interface turns out to be unbalanced. These results are consistent with and further elucidate our findings in a previous study using a slightly different QM/AMOEBA model ( Dziedzic et al. J. Chem. Phys. 2016 , 145 , 124106 ). The implications of these results for further refinement of this model are also discussed.
Collapse
Affiliation(s)
| | - Yihan Shao
- Department of Chemistry and Biochemistry, University of Oklahoma , Norman, Oklahoma 73019, United States
| | - Jacek Dziedzic
- School of Chemistry, University of Southampton , Highfield, Southampton SO17 1BJ, U.K.,Faculty of Applied Physics and Mathematics, Gdańsk University of Technology , Gdańsk 80-233, Poland
| | - Chris-Kriton Skylaris
- School of Chemistry, University of Southampton , Highfield, Southampton SO17 1BJ, U.K
| | | | - Martin Head-Gordon
- Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
506
|
Chai JD. Role of exact exchange in thermally-assisted-occupation density functional theory: A proposal of new hybrid schemes. J Chem Phys 2017; 146:044102. [PMID: 28147520 DOI: 10.1063/1.4974163] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We propose hybrid schemes incorporating exact exchange into thermally assisted-occupation-density functional theory (TAO-DFT) [J.-D. Chai, J. Chem. Phys. 136, 154104 (2012)] for an improved description of nonlocal exchange effects. With a few simple modifications, global and range-separated hybrid functionals in Kohn-Sham density functional theory (KS-DFT) can be combined seamlessly with TAO-DFT. In comparison with global hybrid functionals in KS-DFT, the resulting global hybrid functionals in TAO-DFT yield promising performance for systems with strong static correlation effects (e.g., the dissociation of H2 and N2, twisted ethylene, and electronic properties of linear acenes), while maintaining similar performance for systems without strong static correlation effects. Besides, a reasonably accurate description of noncovalent interactions can be efficiently achieved through the inclusion of dispersion corrections in hybrid TAO-DFT. Relative to semilocal density functionals in TAO-DFT, global hybrid functionals in TAO-DFT are generally superior in performance for a wide range of applications, such as thermochemistry, kinetics, reaction energies, and optimized geometries.
Collapse
Affiliation(s)
- Jeng-Da Chai
- Department of Physics, Center for Theoretical Sciences, and Center for Quantum Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
507
|
Witte J, Mardirossian N, Neaton JB, Head-Gordon M. Assessing DFT-D3 Damping Functions Across Widely Used Density Functionals: Can We Do Better? J Chem Theory Comput 2017; 13:2043-2052. [DOI: 10.1021/acs.jctc.7b00176] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | - Jeffrey B. Neaton
- Kavli Energy
Nanosciences
Institute at Berkeley, Berkeley, California 94720, United States
| | | |
Collapse
|
508
|
Dasgupta S, Herbert JM. Standard grids for high‐precision integration of modern density functionals: SG‐2 and SG‐3. J Comput Chem 2017; 38:869-882. [DOI: 10.1002/jcc.24761] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 01/25/2017] [Accepted: 01/30/2017] [Indexed: 02/01/2023]
Affiliation(s)
- Saswata Dasgupta
- Department of Chemistry & BiochemistryThe Ohio State UniversityColumbus Ohio43210
| | - John M. Herbert
- Department of Chemistry & BiochemistryThe Ohio State UniversityColumbus Ohio43210
| |
Collapse
|
509
|
Womack JC, Mardirossian N, Head-Gordon M, Skylaris CK. Self-consistent implementation of meta-GGA functionals for the ONETEP linear-scaling electronic structure package. J Chem Phys 2017; 145:204114. [PMID: 27908114 DOI: 10.1063/1.4967960] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Accurate and computationally efficient exchange-correlation functionals are critical to the successful application of linear-scaling density functional theory (DFT). Local and semi-local functionals of the density are naturally compatible with linear-scaling approaches, having a general form which assumes the locality of electronic interactions and which can be efficiently evaluated by numerical quadrature. Presently, the most sophisticated and flexible semi-local functionals are members of the meta-generalized-gradient approximation (meta-GGA) family, and depend upon the kinetic energy density, τ, in addition to the charge density and its gradient. In order to extend the theoretical and computational advantages of τ-dependent meta-GGA functionals to large-scale DFT calculations on thousands of atoms, we have implemented support for τ-dependent meta-GGA functionals in the ONETEP program. In this paper we lay out the theoretical innovations necessary to implement τ-dependent meta-GGA functionals within ONETEP's linear-scaling formalism. We present expressions for the gradient of the τ-dependent exchange-correlation energy, necessary for direct energy minimization. We also derive the forms of the τ-dependent exchange-correlation potential and kinetic energy density in terms of the strictly localized, self-consistently optimized orbitals used by ONETEP. To validate the numerical accuracy of our self-consistent meta-GGA implementation, we performed calculations using the B97M-V and PKZB meta-GGAs on a variety of small molecules. Using only a minimal basis set of self-consistently optimized local orbitals, we obtain energies in excellent agreement with large basis set calculations performed using other codes. Finally, to establish the linear-scaling computational cost and applicability of our approach to large-scale calculations, we present the outcome of self-consistent meta-GGA calculations on amyloid fibrils of increasing size, up to tens of thousands of atoms.
Collapse
Affiliation(s)
- James C Womack
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Narbe Mardirossian
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Martin Head-Gordon
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Chris-Kriton Skylaris
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
510
|
Pratihar S, Ma X, Homayoon Z, Barnes GL, Hase WL. Direct Chemical Dynamics Simulations. J Am Chem Soc 2017; 139:3570-3590. [DOI: 10.1021/jacs.6b12017] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Subha Pratihar
- Department
of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Xinyou Ma
- Department
of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Zahra Homayoon
- Department
of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - George L. Barnes
- Department
of Chemistry and Biochemistry, Siena College, Loudonville, New York 12211, United States
| | - William L. Hase
- Department
of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| |
Collapse
|
511
|
|
512
|
Witte J, Neaton JB, Head-Gordon M. Push it to the limit: Characterizing the convergence of common sequences of basis sets for intermolecular interactions as described by density functional theory. J Chem Phys 2017; 144:194306. [PMID: 27208948 DOI: 10.1063/1.4949536] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
With the aim of systematically characterizing the convergence of common families of basis sets such that general recommendations for basis sets can be made, we have tested a wide variety of basis sets against complete-basis binding energies across the S22 set of intermolecular interactions-noncovalent interactions of small and medium-sized molecules consisting of first- and second-row atoms-with three distinct density functional approximations: SPW92, a form of local-density approximation; B3LYP, a global hybrid generalized gradient approximation; and B97M-V, a meta-generalized gradient approximation with nonlocal correlation. We have found that it is remarkably difficult to reach the basis set limit; for the methods and systems examined, the most complete basis is Jensen's pc-4. The Dunning correlation-consistent sequence of basis sets converges slowly relative to the Jensen sequence. The Karlsruhe basis sets are quite cost effective, particularly when a correction for basis set superposition error is applied: counterpoise-corrected def2-SVPD binding energies are better than corresponding energies computed in comparably sized Dunning and Jensen bases, and on par with uncorrected results in basis sets 3-4 times larger. These trends are exhibited regardless of the level of density functional approximation employed. A sense of the magnitude of the intrinsic incompleteness error of each basis set not only provides a foundation for guiding basis set choice in future studies but also facilitates quantitative comparison of existing studies on similar types of systems.
Collapse
Affiliation(s)
- Jonathon Witte
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Jeffrey B Neaton
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Martin Head-Gordon
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| |
Collapse
|
513
|
Lao KU, Liu KY, Richard RM, Herbert JM. Understanding the many-body expansion for large systems. II. Accuracy considerations. J Chem Phys 2017; 144:164105. [PMID: 27131529 DOI: 10.1063/1.4947087] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
To complement our study of the role of finite precision in electronic structure calculations based on a truncated many-body expansion (MBE, or "n-body expansion"), we examine the accuracy of such methods in the present work. Accuracy may be defined either with respect to a supersystem calculation computed at the same level of theory as the n-body calculations, or alternatively with respect to high-quality benchmarks. Both metrics are considered here. In applications to a sequence of water clusters, (H2O)N=6-55 described at the B3LYP/cc-pVDZ level, we obtain mean absolute errors (MAEs) per H2O monomer of ∼1.0 kcal/mol for two-body expansions, where the benchmark is a B3LYP/cc-pVDZ calculation on the entire cluster. Three- and four-body expansions exhibit MAEs of 0.5 and 0.1 kcal/mol/monomer, respectively, without resort to charge embedding. A generalized many-body expansion truncated at two-body terms [GMBE(2)], using 3-4 H2O molecules per fragment, outperforms all of these methods and affords a MAE of ∼0.02 kcal/mol/monomer, also without charge embedding. GMBE(2) requires significantly fewer (although somewhat larger) subsystem calculations as compared to MBE(4), reducing problems associated with floating-point roundoff errors. When compared to high-quality benchmarks, we find that error cancellation often plays a critical role in the success of MBE(n) calculations, even at the four-body level, as basis-set superposition error can compensate for higher-order polarization interactions. A many-body counterpoise correction is introduced for the GMBE, and its two-body truncation [GMBCP(2)] is found to afford good results without error cancellation. Together with a method such as ωB97X-V/aug-cc-pVTZ that can describe both covalent and non-covalent interactions, the GMBE(2)+GMBCP(2) approach provides an accurate, stable, and tractable approach for large systems.
Collapse
Affiliation(s)
- Ka Un Lao
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Kuan-Yu Liu
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Ryan M Richard
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - John M Herbert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
514
|
Mardirossian N, Ruiz Pestana L, Womack JC, Skylaris CK, Head-Gordon T, Head-Gordon M. Use of the rVV10 Nonlocal Correlation Functional in the B97M-V Density Functional: Defining B97M-rV and Related Functionals. J Phys Chem Lett 2017; 8:35-40. [PMID: 27936759 DOI: 10.1021/acs.jpclett.6b02527] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The VV10 and rVV10 nonlocal correlation functionals are consistently implemented and assessed, with the goal of determining if the rVV10 nonlocal correlation functional can replace the VV10 nonlocal correlation functional in the recently developed B97M-V density functional, to give the B97M-rV density functional. Along the way, four density functionals are simultaneously tested: VV10, rVV10, B97M-V, and B97M-rV. An initial assessment is carried out across the S22 data set, and the short-range damping variable, b, is varied for all four density functionals in order to determine the sensitivity of the functionals to the empirical parameter. The results of this test indicate that a value of b = 6 (fortuitously the same as that in B97M-V) is suitable for B97M-rV. The functionals are then compared across an extensive database of interaction energies, and it is demonstrated that B97M-rV either matches or outperforms B97M-V for all of the tests considered. Finally, the optimization of b across the S22 data set is extended to two range-separated hybrid density functionals, ωB97X-V and ωB97M-V, and a value of b = 6.2 is recommended for both ωB97X-rV and ωB97M-rV.
Collapse
Affiliation(s)
- Narbe Mardirossian
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California , Berkeley, California 94720, United States
| | - Luis Ruiz Pestana
- Chemical Sciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - James C Womack
- School of Chemistry, University of Southampton , Highfield, Southampton SO17 1BJ, United Kingdom
| | - Chris-Kriton Skylaris
- School of Chemistry, University of Southampton , Highfield, Southampton SO17 1BJ, United Kingdom
| | - Teresa Head-Gordon
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California , Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Martin Head-Gordon
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California , Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| |
Collapse
|
515
|
Hauser AW, de Lara-Castells MP. Spatial quenching of a molecular charge-transfer process in a quantum fluid: the Cs x-C 60 reaction in superfluid helium nanodroplets. Phys Chem Chem Phys 2017; 19:1342-1351. [PMID: 27975088 DOI: 10.1039/c6cp06858h] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A recent experimental study [Renzler et al., J. Chem. Phys., 2016, 145, 181101] on superfluid helium nanodroplets reported different reactivities for Cs atoms and Cs2 dimers with C60 fullerenes inside helium droplets. Alkali metal atoms and clusters are heliophobic, therefore typically residing on the droplet surface, while fullerenes are fully immersed into the droplet. In this theoretical study, which combines standard methods of computational chemistry with orbital-free helium density functional theory, we show that the experimental findings can be interpreted in the light of a quenched electron-transfer reaction between the fullerene and the alkali dopant, which is additionally hindered by a reaction barrier stemming from the necessary extrusion of helium upon approach of the two reactants.
Collapse
Affiliation(s)
- Andreas W Hauser
- Graz University of Technology, Institute of Experimental Physics, Petersgasse 16, 8010 Graz, Austria.
| | | |
Collapse
|
516
|
Goerigk L, Hansen A, Bauer C, Ehrlich S, Najibi A, Grimme S. A look at the density functional theory zoo with the advanced GMTKN55 database for general main group thermochemistry, kinetics and noncovalent interactions. Phys Chem Chem Phys 2017; 19:32184-32215. [DOI: 10.1039/c7cp04913g] [Citation(s) in RCA: 854] [Impact Index Per Article: 106.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We present the updated and extended GMTKN55 benchmark database for more accurate and extensive energetic evaluation of density functionals and other electronic structure methods with detailed guidelines for method users.
Collapse
Affiliation(s)
- Lars Goerigk
- School of Chemistry
- The University of Melbourne
- Parkville
- Australia
| | - Andreas Hansen
- Universität Bonn
- Mulliken Center for Theoretical Chemistry
- Bonn
- Germany
| | - Christoph Bauer
- Universität Bonn
- Mulliken Center for Theoretical Chemistry
- Bonn
- Germany
| | - Stephan Ehrlich
- Universität Bonn
- Mulliken Center for Theoretical Chemistry
- Bonn
- Germany
| | - Asim Najibi
- School of Chemistry
- The University of Melbourne
- Parkville
- Australia
| | - Stefan Grimme
- Universität Bonn
- Mulliken Center for Theoretical Chemistry
- Bonn
- Germany
| |
Collapse
|
517
|
Wang CW, Hui K, Chai JD. Short- and long-range corrected hybrid density functionals with the D3 dispersion corrections. J Chem Phys 2016; 145:204101. [DOI: 10.1063/1.4967814] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Chih-Wei Wang
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Kerwin Hui
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Jeng-Da Chai
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
- Center for Theoretical Sciences and Center for Quantum Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
518
|
Mardirossian N, Head-Gordon M. Note: The performance of new density functionals for a recent blind test of non-covalent interactions. J Chem Phys 2016; 145:186101. [DOI: 10.1063/1.4967424] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Narbe Mardirossian
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department
of Chemistry, University of California, Berkeley, California
94720, USA
| | - Martin Head-Gordon
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department
of Chemistry, University of California, Berkeley, California
94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720,
USA
| |
Collapse
|
519
|
Mao Y, Demerdash O, Head-Gordon M, Head-Gordon T. Assessing Ion-Water Interactions in the AMOEBA Force Field Using Energy Decomposition Analysis of Electronic Structure Calculations. J Chem Theory Comput 2016; 12:5422-5437. [PMID: 27709939 DOI: 10.1021/acs.jctc.6b00764] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AMOEBA is a molecular mechanics force field that addresses some of the shortcomings of a fixed partial charge model, by including permanent atomic point multipoles through quadrupoles, as well as many-body polarization through the use of point inducible dipoles. In this work, we investigate how well AMOEBA formulates its non-bonded interactions, and how it implicitly incorporates quantum mechanical effects such as charge penetration (CP) and charge transfer (CT), for water-water and water-ion interactions. We find that AMOEBA's total interaction energies, as a function of distance and over angular scans for the water dimer and for a range of water-monovalent cations, agree well with an advanced density functional theory (DFT) model, whereas the water-halides and water-divalent cations show significant disagreement with the DFT result, especially in the compressed region when the two fragments overlap. We use a second-generation energy decomposition analysis (EDA) scheme based on absolutely localized molecular orbitals (ALMOs) to show that in the best cases AMOEBA relies on cancellation of errors by softening of the van der Waals (vdW) wall to balance permanent electrostatics that are too unfavorable, thereby compensating for the missing CP effect. CT, as another important stabilizing effect not explicitly taken into account in AMOEBA, is also found to be incorporated by the softened vdW interaction. For the water-halides and water-divalent cations, this compensatory approach is not as well executed by AMOEBA over all distances and angles, wherein permanent electrostatics remains too unfavorable and polarization is overdamped in the former while overestimated in the latter. We conclude that the DFT-based EDA approach can help refine a next-generation AMOEBA model that either realizes a better cancellation of errors for problematic cases like those illustrated here, or serves to guide the parametrization of explicit functional forms for short-range contributions from CP and/or CT.
Collapse
Affiliation(s)
- Yuezhi Mao
- Kenneth S. Pitzer Center for Theoretical Chemistry, and Department of Chemistry, University of California at Berkeley , Berkeley, California 94720, United States
| | - Omar Demerdash
- Kenneth S. Pitzer Center for Theoretical Chemistry, and Department of Chemistry, University of California at Berkeley , Berkeley, California 94720, United States
| | - Martin Head-Gordon
- Kenneth S. Pitzer Center for Theoretical Chemistry, and Department of Chemistry, University of California at Berkeley , Berkeley, California 94720, United States
| | - Teresa Head-Gordon
- Kenneth S. Pitzer Center for Theoretical Chemistry, and Department of Chemistry, University of California at Berkeley , Berkeley, California 94720, United States.,Department of Bioengineering, and Department of Chemical and Biomolecular Engineering, University of California at Berkeley , Berkeley, California 94720, United States
| |
Collapse
|
520
|
Yu HS, Li SL, Truhlar DG. Perspective: Kohn-Sham density functional theory descending a staircase. J Chem Phys 2016; 145:130901. [DOI: 10.1063/1.4963168] [Citation(s) in RCA: 204] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Haoyu S. Yu
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, USA
| | - Shaohong L. Li
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, USA
| | - Donald G. Truhlar
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, USA
| |
Collapse
|
521
|
Miyaji A, Gabe Y, Kohno M, Baba T. Generation of hydroxyl radicals and singlet oxygen during oxidation of rhododendrol and rhododendrol-catechol. J Clin Biochem Nutr 2016; 60:86-92. [PMID: 28366986 PMCID: PMC5370526 DOI: 10.3164/jcbn.16-38] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 07/10/2016] [Indexed: 12/18/2022] Open
Abstract
The generation of hydroxyl radicals and singlet oxygen during the oxidation of 4-(4-hydroxyphenyl)-2-butanol (rhododendrol) and 4-(3,4-dihydroxyphenyl)-2-butanol (rhododendrol-catechol) with mushroom tyrosinase in a phosphate buffer (pH 7.4) was examined as the model for the reactive oxygen species generation via the two rhododendrol compounds in melanocytes. The reaction was performed in the presence of 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) spin trap reagents for hydroxyl radical or 2,2,6,6-tetramethyl-4-piperidone (4-oxo-TEMP), an acceptor of singlet oxygen, and their electron spin resonances were measured. An increase in the electron spin resonances signal attributable to the adduct of DMPO reacting with the hydroxyl radical and that of 4-oxo-TEMP reacting with singlet oxygen was observed during the tyrosinase-catalyzed oxidation of rhododendrol and rhododendrol-catechol, indicating the generation of hydroxyl radical and singlet oxygen. Moreover, hydroxyl radical generation was also observed in the autoxidation of rhododendrol-catechol. We show that generation of intermediates during tyrosinase-catalyzed oxidation of rhododendrol enhances oxidative stress in melanocytes.
Collapse
Affiliation(s)
- Akimitsu Miyaji
- Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, 4259-G1-14, Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
| | - Yu Gabe
- Biological Science Laboratories, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun, Tochigi 321-3497, Japan
| | - Masahiro Kohno
- Department of Bioengineering, Tokyo Institute of Technology, 4259-G1-25, Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
| | - Toshihide Baba
- Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, 4259-G1-14, Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
| |
Collapse
|
522
|
Albaugh A, Bradshaw RT, Demerdash O, Dziedzic J, Mao Y, Margul DT, Swails J, Boateng HA, Case DA, Eastman P, Essex JW, Head-Gordon M, Pande VS, Ponder J, Shao Y, Skylaris C, Todorov IT, Tuckerman ME, Zeng Q, Head-Gordon T. Advanced Potential Energy Surfaces for Molecular Simulation. J Phys Chem B 2016; 120:9811-32. [PMID: 27513316 PMCID: PMC9113031 DOI: 10.1021/acs.jpcb.6b06414] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Advanced potential energy surfaces are defined as theoretical models that explicitly include many-body effects that transcend the standard fixed-charge, pairwise-additive paradigm typically used in molecular simulation. However, several factors relating to their software implementation have precluded their widespread use in condensed-phase simulations: the computational cost of the theoretical models, a paucity of approximate models and algorithmic improvements that can ameliorate their cost, underdeveloped interfaces and limited dissemination in computational code bases that are widely used in the computational chemistry community, and software implementations that have not kept pace with modern high-performance computing (HPC) architectures, such as multicore CPUs and modern graphics processing units (GPUs). In this Feature Article we review recent progress made in these areas, including well-defined polarization approximations and new multipole electrostatic formulations, novel methods for solving the mutual polarization equations and increasing the MD time step, combining linear-scaling electronic structure methods with new QM/MM methods that account for mutual polarization between the two regions, and the greatly improved software deployment of these models and methods onto GPU and CPU hardware platforms. We have now approached an era where multipole-based polarizable force fields can be routinely used to obtain computational results comparable to state-of-the-art density functional theory while reaching sampling statistics that are acceptable when compared to that obtained from simpler fixed partial charge force fields.
Collapse
Affiliation(s)
- Alex Albaugh
- Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720
| | - Richard T. Bradshaw
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| | - Omar Demerdash
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Jacek Dziedzic
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK
- Faculty of Applied Physics and Mathematics, Gdansk University of Technology, Poland
| | - Yuezhi Mao
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Daniel T. Margul
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Jason Swails
- Department of Chemistry and Chemical Biology and BioMaPS Institute, Rutgers University, Piscataway, New Jersey 08854-8066, United States
| | - Henry A. Boateng
- Department of Mathematics, Bates College, 2 Andrews Road, Lewiston, ME 04240
| | - David A. Case
- Department of Chemistry and Chemical Biology and BioMaPS Institute, Rutgers University, Piscataway, New Jersey 08854-8066, United States
| | - Peter Eastman
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Jonathan W. Essex
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| | | | - Vijay S. Pande
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Jay Ponder
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, 63130
| | - Yihan Shao
- Q-Chem Inc., 6601 Owens Drive, Suite 105, Pleasanton, California 94588
| | - Chris Skylaris
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| | - Illian T. Todorov
- STFC Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington WA4 4AD, UK
| | - Mark E. Tuckerman
- Department of Chemistry, New York University, New York, NY 10003, USA
- Courant Institute of Mathematical Sciences, New York University, New York, NY 10003, USA
- NYU-ECNU, Center for Computational Chemistry at NYU, Shanghai, Shanghai 200062, China
| | - Qiao Zeng
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Teresa Head-Gordon
- Department of Chemistry, University of California, Berkeley, CA 94720
- Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720
- Bioengineering, University of California, Berkeley, CA 94720
| |
Collapse
|
523
|
Mardirossian N, Head-Gordon M. How Accurate Are the Minnesota Density Functionals for Noncovalent Interactions, Isomerization Energies, Thermochemistry, and Barrier Heights Involving Molecules Composed of Main-Group Elements? J Chem Theory Comput 2016; 12:4303-25. [PMID: 27537680 DOI: 10.1021/acs.jctc.6b00637] [Citation(s) in RCA: 286] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The 14 Minnesota density functionals published between the years 2005 and early 2016 are benchmarked on a comprehensive database of 4986 data points (84 data sets) involving molecules composed of main-group elements. The database includes noncovalent interactions, isomerization energies, thermochemistry, and barrier heights, as well as equilibrium bond lengths and equilibrium binding energies of noncovalent dimers. Additionally, the sensitivity of the Minnesota density functionals to the choice of basis set and integration grid is explored for both noncovalent interactions and thermochemistry. Overall, the main strength of the hybrid Minnesota density functionals is that the best ones provide very good performance for thermochemistry (e.g., M06-2X), barrier heights (e.g., M08-HX, M08-SO, MN15), and systems heavily characterized by self-interaction error (e.g., M06-2X, M08-HX, M08-SO, MN15), while the main weakness is that none of them are state-of-the-art for the full spectrum of noncovalent interactions and isomerization energies (although M06-2X is recommended from the 10 hybrid Minnesota functionals). Similarly, the main strength of the local Minnesota density functionals is that the best ones provide very good performance for thermochemistry (e.g., MN15-L), barrier heights (e.g., MN12-L), and systems heavily characterized by self-interaction error (e.g., MN12-L and MN15-L), while the main weakness is that none of them are state-of-the-art for the full spectrum of noncovalent interactions and isomerization energies (although M06-L is clearly the best from the four local Minnesota functionals). As an overall guide, M06-2X and MN15 are perhaps the most broadly useful hybrid Minnesota functionals, while M06-L and MN15-L are perhaps the most broadly useful local Minnesota functionals, although each has different strengths and weaknesses.
Collapse
Affiliation(s)
- Narbe Mardirossian
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California , Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Martin Head-Gordon
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California , Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| |
Collapse
|
524
|
Horn PR, Mao Y, Head-Gordon M. Defining the contributions of permanent electrostatics, Pauli repulsion, and dispersion in density functional theory calculations of intermolecular interaction energies. J Chem Phys 2016; 144:114107. [PMID: 27004862 DOI: 10.1063/1.4942921] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In energy decomposition analysis of Kohn-Sham density functional theory calculations, the so-called frozen (or pre-polarization) interaction energy contains contributions from permanent electrostatics, dispersion, and Pauli repulsion. The standard classical approach to separate them suffers from several well-known limitations. We introduce an alternative scheme that employs valid antisymmetric electronic wavefunctions throughout and is based on the identification of individual fragment contributions to the initial supersystem wavefunction as determined by an energetic optimality criterion. The density deformations identified with individual fragments upon formation of the initial supersystem wavefunction are analyzed along with the distance dependence of the new and classical terms for test cases that include the neon dimer, ammonia borane, water-Na(+), water-Cl(-), and the naphthalene dimer.
Collapse
Affiliation(s)
- Paul R Horn
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA and Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley, California 94720, USA
| | - Yuezhi Mao
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA and Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley, California 94720, USA
| | - Martin Head-Gordon
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA and Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley, California 94720, USA
| |
Collapse
|
525
|
Mao Y, Horn PR, Mardirossian N, Head-Gordon T, Skylaris CK, Head-Gordon M. Approaching the basis set limit for DFT calculations using an environment-adapted minimal basis with perturbation theory: Formulation, proof of concept, and a pilot implementation. J Chem Phys 2016; 145:044109. [DOI: 10.1063/1.4959125] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yuezhi Mao
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Paul R. Horn
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Narbe Mardirossian
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Teresa Head-Gordon
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, USA
- Department of Bioengineering, University of California, Berkeley, California 94720, USA
- Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Chris-Kriton Skylaris
- School of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, United Kingdom
| | - Martin Head-Gordon
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA
- Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
526
|
Jin Y, Bartlett RJ. The QTP family of consistent functionals and potentials in Kohn-Sham density functional theory. J Chem Phys 2016; 145:034107. [DOI: 10.1063/1.4955497] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yifan Jin
- Quantum Theory Project and Departments of Chemistry and Physics, University of Florida, Gainesville, Florida 32611, USA
| | - Rodney J. Bartlett
- Quantum Theory Project and Departments of Chemistry and Physics, University of Florida, Gainesville, Florida 32611, USA
| |
Collapse
|
527
|
Verma P, Bartlett RJ. Increasing the applicability of density functional theory. V. X-ray absorption spectra with ionization potential corrected exchange and correlation potentials. J Chem Phys 2016; 145:034108. [DOI: 10.1063/1.4955194] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Prakash Verma
- Quantum Theory Project, University of Florida, Gainesville, Florida 32611, USA
| | - Rodney J. Bartlett
- Quantum Theory Project, University of Florida, Gainesville, Florida 32611, USA
| |
Collapse
|
528
|
Yang T, Dangi BB, Kaiser RI, Bertels LW, Head-Gordon M. A Combined Experimental and Theoretical Study on the Formation of the 2-Methyl-1-silacycloprop-2-enylidene Molecule via the Crossed Beam Reactions of the Silylidyne Radical (SiH; X(2)Π) with Methylacetylene (CH3CCH; X(1)A1) and D4-Methylacetylene (CD3CCD; X(1)A1). J Phys Chem A 2016; 120:4872-83. [PMID: 26837568 DOI: 10.1021/acs.jpca.5b12457] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The bimolecular gas-phase reactions of the ground-state silylidyne radical (SiH; X(2)Π) with methylacetylene (CH3CCH; X(1)A1) and D4-methylacetylene (CD3CCD; X(1)A1) were explored at collision energies of 30 kJ mol(-1) under single-collision conditions exploiting the crossed molecular beam technique and complemented by electronic structure calculations. These studies reveal that the reactions follow indirect scattering dynamics, have no entrance barriers, and are initiated by the addition of the silylidyne radical to the carbon-carbon triple bond of the methylacetylene molecule either to one carbon atom (C1; [i1]/[i2]) or to both carbon atoms concurrently (C1-C2; [i3]). The collision complexes [i1]/[i2] eventually isomerize via ring-closure to the c-SiC3H5 doublet radical intermediate [i3], which is identified as the decomposing reaction intermediate. The hydrogen atom is emitted almost perpendicularly to the rotational plane of the fragmenting complex resulting in a sideways scattering dynamics with the reaction being overall exoergic by -12 ± 11 kJ mol(-1) (experimental) and -1 ± 3 kJ mol(-1) (computational) to form the cyclic 2-methyl-1-silacycloprop-2-enylidene molecule (c-SiC3H4; p1). In line with computational data, experiments of silylidyne with D4-methylacetylene (CD3CCD; X(1)A1) depict that the hydrogen is emitted solely from the silylidyne moiety but not from methylacetylene. The dynamics are compared to those of the related D1-silylidyne (SiD; X(2)Π)-acetylene (HCCH; X(1)Σg(+)) reaction studied previously in our group, and from there, we discovered that the methyl group acts primarily as a spectator in the title reaction. The formation of 2-methyl-1-silacycloprop-2-enylidene under single-collision conditions via a bimolecular gas-phase reaction augments our knowledge of the hitherto poorly understood silylidyne (SiH; X(2)Π) radical reactions with small hydrocarbon molecules leading to the synthesis of organosilicon molecules in cold molecular clouds and in carbon-rich circumstellar envelopes.
Collapse
Affiliation(s)
- Tao Yang
- Department of Chemistry, University of Hawai'i at Manoa , Honolulu, Hawaii 96822, United States
| | - Beni B Dangi
- Department of Chemistry, University of Hawai'i at Manoa , Honolulu, Hawaii 96822, United States
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawai'i at Manoa , Honolulu, Hawaii 96822, United States
| | - Luke W Bertels
- Department of Chemistry, University of California, Berkeley , Berkeley, California 94720, United States
| | - Martin Head-Gordon
- Department of Chemistry, University of California, Berkeley , Berkeley, California 94720, United States
| |
Collapse
|
529
|
Bandyopadhyay B, Stein T, Fang Y, Kostko O, White A, Head-Gordon M, Ahmed M. Probing Ionic Complexes of Ethylene and Acetylene with Vacuum-Ultraviolet Radiation. J Phys Chem A 2016; 120:5053-64. [PMID: 26983013 DOI: 10.1021/acs.jpca.6b00107] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mixed complexes of acetylene-ethylene are studied using vacuum-ultraviolet (VUV) photoionization mass spectrometry and theoretical calculations. These complexes are produced and ionized at different distances from the exit of a continuous nozzle followed by reflectron time-of-flight mass spectrometry detection. Acetylene, with a higher ionization energy (11.4 eV) than ethylene (10.6 eV), allows for tuning the VUV energy and initializing reactions either from a C2H2(+) or a C2H4(+) cation. Pure acetylene and ethylene expansions are separately carried out to compare, contrast, and hence identify products from the mixed expansion: these are C3H3(+) (m/z = 39), C4H5(+) (m/z = 53), and C5H5(+) (m/z = 65). Intensity distributions of C2H2, C2H4, their dimers and reactions products are plotted as a function of ionization distance. These distributions suggest that association mechanisms play a crucial role in product formation closer to the nozzle. Photoionization efficiency (PIE) curves of the mixed complexes demonstrate rising edges closer to both ethylene and acetylene ionization energies. We use density functional theory (ωB97X-V/aug-cc-pVTZ) to study the structures of the neutral and ionized dimers, calculate their adiabatic and vertical ionization energies, as well as the energetics of different isomers on the potential energy surface (PES). Upon ionization, vibrationally excited clusters can use the extra energy to access different isomers on the PES. At farther ionization distances from the nozzle, where the number densities are lower, unimolecular decay is expected to be the dominant mechanism. We discuss the possible decay pathways from the different isomers on the PES and examine the ones that are energetically accessible.
Collapse
Affiliation(s)
- Biswajit Bandyopadhyay
- Chemical Sciences Division, Lawrence Berkeley National Laboratory , 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Tamar Stein
- Chemical Sciences Division, Lawrence Berkeley National Laboratory , 1 Cyclotron Road, Berkeley, California 94720, United States.,Department of Chemistry, University of California Berkeley , Berkeley, California 94720, United States
| | - Yigang Fang
- Chemical Sciences Division, Lawrence Berkeley National Laboratory , 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Oleg Kostko
- Chemical Sciences Division, Lawrence Berkeley National Laboratory , 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Alec White
- Chemical Sciences Division, Lawrence Berkeley National Laboratory , 1 Cyclotron Road, Berkeley, California 94720, United States.,Department of Chemistry, University of California Berkeley , Berkeley, California 94720, United States
| | - Martin Head-Gordon
- Chemical Sciences Division, Lawrence Berkeley National Laboratory , 1 Cyclotron Road, Berkeley, California 94720, United States.,Department of Chemistry, University of California Berkeley , Berkeley, California 94720, United States
| | - Musahid Ahmed
- Chemical Sciences Division, Lawrence Berkeley National Laboratory , 1 Cyclotron Road, Berkeley, California 94720, United States
| |
Collapse
|
530
|
Mardirossian N, Head-Gordon M. ωB97M-V: A combinatorially optimized, range-separated hybrid, meta-GGA density functional with VV10 nonlocal correlation. J Chem Phys 2016; 144:214110. [DOI: 10.1063/1.4952647] [Citation(s) in RCA: 370] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- Narbe Mardirossian
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Martin Head-Gordon
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
531
|
Tran F, Stelzl J, Blaha P. Rungs 1 to 4 of DFT Jacob’s ladder: Extensive test on the lattice constant, bulk modulus, and cohesive energy of solids. J Chem Phys 2016; 144:204120. [DOI: 10.1063/1.4948636] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Fabien Tran
- Institute of Materials Chemistry, Vienna University of Technology, Getreidemarkt 9/165-TC, A-1060 Vienna, Austria
| | - Julia Stelzl
- Institute of Materials Chemistry, Vienna University of Technology, Getreidemarkt 9/165-TC, A-1060 Vienna, Austria
| | - Peter Blaha
- Institute of Materials Chemistry, Vienna University of Technology, Getreidemarkt 9/165-TC, A-1060 Vienna, Austria
| |
Collapse
|
532
|
Li YP, Bell AT, Head-Gordon M. Thermodynamics of Anharmonic Systems: Uncoupled Mode Approximations for Molecules. J Chem Theory Comput 2016; 12:2861-70. [DOI: 10.1021/acs.jctc.5b01177] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yi-Pei Li
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720-1462, United States
| | - Alexis T. Bell
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720-1462, United States
- Chemical
Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Martin Head-Gordon
- Department
of Chemistry, University of California, Berkeley, California 94720-1462, United States
- Chemical
Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
533
|
|
534
|
Grimme S, Hansen A, Brandenburg JG, Bannwarth C. Dispersion-Corrected Mean-Field Electronic Structure Methods. Chem Rev 2016; 116:5105-54. [DOI: 10.1021/acs.chemrev.5b00533] [Citation(s) in RCA: 799] [Impact Index Per Article: 88.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Stefan Grimme
- Mulliken Center for Theoretical
Chemistry, Universität Bonn, 53113 Bonn, Germany
| | - Andreas Hansen
- Mulliken Center for Theoretical
Chemistry, Universität Bonn, 53113 Bonn, Germany
| | | | - Christoph Bannwarth
- Mulliken Center for Theoretical
Chemistry, Universität Bonn, 53113 Bonn, Germany
| |
Collapse
|
535
|
Huang W, Xing DH, Lu JB, Long B, Schwarz WHE, Li J. How Much Can Density Functional Approximations (DFA) Fail? The Extreme Case of the FeO4 Species. J Chem Theory Comput 2016; 12:1525-33. [PMID: 26938575 DOI: 10.1021/acs.jctc.5b01040] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A thorough theoretical study of the relative energies of various molecular Fe·4O isomers with different oxidation states of both Fe and O atoms is presented, comparing simple Hartree-Fock through many Kohn-Sham approximations up to extended coupled cluster and DMRG multiconfiguration benchmark methods. The ground state of Fe·4O is a singlet, hexavalent iron(VI) complex (1)C2v-[Fe(VI)O2](2+)(O2)(2-), with isomers of oxidation states Fe(II), Fe(III), Fe(IV), Fe(V), and Fe(VIII) all lying slightly higher within the range of 1 eV. The disputed existence of oxidation state Fe(VIII) is discussed for isolated FeO4 molecules. Density functional theory (DFT) at various DF approximation (DFA) levels of local and gradient approaches, Hartree-Fock exchange and meta hybrids, range dependent, DFT-D and DFT+U models do not perform better for the relative stabilities of the geometric and electronic Fe·4O isomers than within 1-5 eV. The Fe·4O isomeric species are an excellent testing and validation ground for the development of density functional and wave function methods for strongly correlated multireference states, which do not seem to always follow chemical intuition.
Collapse
Affiliation(s)
- Wei Huang
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University , Beijing 100084, China
| | - Deng-Hui Xing
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University , Beijing 100084, China
| | - Jun-Bo Lu
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University , Beijing 100084, China
| | - Bo Long
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University , Beijing 100084, China
| | - W H Eugen Schwarz
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University , Beijing 100084, China
| | - Jun Li
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University , Beijing 100084, China
| |
Collapse
|
536
|
Boulmene R, Boussouf K, Prakash M, Komiha N, Al-Mogren MM, Hochlaf M. Ab Initio and DFT Studies on CO2Interacting with Znq+-Imidazole (q=0, 1, 2) Complexes: Prediction of Charge Transfer through σ- or π-Type Models. Chemphyschem 2016; 17:994-1005. [DOI: 10.1002/cphc.201501185] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Reda Boulmene
- Université Paris-Est; Laboratoire Modélisation et Simulation Multi-Échelle, MSME UMR 8208 CNRS; 5 bd Descartes 77454 Marne-la-Vallée France
| | - Karim Boussouf
- Université Paris-Est; Laboratoire Modélisation et Simulation Multi-Échelle, MSME UMR 8208 CNRS; 5 bd Descartes 77454 Marne-la-Vallée France
| | - Muthuramalingam Prakash
- Université Paris-Est; Laboratoire Modélisation et Simulation Multi-Échelle, MSME UMR 8208 CNRS; 5 bd Descartes 77454 Marne-la-Vallée France
| | - Najia Komiha
- LS3 ME-Team of theoretical chemistry and modeling; Faculty of Sciences; University Mohammed V; Rabat Morocco
| | - Muneerah M. Al-Mogren
- Chemistry Department; Faculty of Science; King Saud University; P.O. Box 2455 Riyadh 11451 Kingdom of Saudi Arabia
| | - Majdi Hochlaf
- Université Paris-Est; Laboratoire Modélisation et Simulation Multi-Échelle, MSME UMR 8208 CNRS; 5 bd Descartes 77454 Marne-la-Vallée France
| |
Collapse
|
537
|
Liu J, Herbert JM. Pair-Pair Approximation to the Generalized Many-Body Expansion: An Alternative to the Four-Body Expansion for ab Initio Prediction of Protein Energetics via Molecular Fragmentation. J Chem Theory Comput 2016; 12:572-84. [PMID: 26730608 DOI: 10.1021/acs.jctc.5b00955] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We introduce a "pair-pair" approximation to the generalized many-body expansion (pp-GMBE) as an approximation to a traditional four-body expansion, the latter of which is accurate but quickly becomes numerically unstable and ultimately intractable as the number of "bodies" (fragments) increases. The pp-GMBE method achieves a good balance between accuracy and efficiency by defining significant fragment pairs and then fragment quartets. An efficient fragmentation scheme is introduced for proteins such that the largest subsystems contain about 60 atoms. Application of the pp-GMBE method to proteins with as many as 70 amino acids (1142 atoms) reveals that pp-GMBE energies are quite faithful to those obtained when the same level of density functional theory is applied to the entire macromolecule. When combined with embedding charges obtained from natural population analysis, the pp-GMBE approach affords absolute energies that differ by 1-3 kcal/mol from full supersystem results, but it yields conformational energy profiles that are practically indistinguishable from the supersystem calculation at the same level of theory.
Collapse
Affiliation(s)
- Jie Liu
- Department of Chemistry and Biochemistry, The Ohio State University , Columbus, Ohio 43210, United States
| | - John M Herbert
- Department of Chemistry and Biochemistry, The Ohio State University , Columbus, Ohio 43210, United States
| |
Collapse
|
538
|
Brauer B, Kesharwani MK, Kozuch S, Martin JML. The S66x8 benchmark for noncovalent interactions revisited: explicitly correlated ab initio methods and density functional theory. Phys Chem Chem Phys 2016; 18:20905-25. [DOI: 10.1039/c6cp00688d] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The S66x8 dataset for noncovalent interactions of biochemical relevance has been re-examined by means of CCSD(F12*)(T), DFT, and SAPT methods.
Collapse
Affiliation(s)
- Brina Brauer
- Department of Organic Chemistry
- Weizmann Institute of Science
- 76100 Rehovot
- Israel
| | - Manoj K. Kesharwani
- Department of Organic Chemistry
- Weizmann Institute of Science
- 76100 Rehovot
- Israel
| | - Sebastian Kozuch
- Department of Chemistry
- Ben-Gurion University of the Negev
- 84105 Beer-Sheva
- Israel
| | - Jan M. L. Martin
- Department of Organic Chemistry
- Weizmann Institute of Science
- 76100 Rehovot
- Israel
| |
Collapse
|
539
|
Brandenburg JG, Caldeweyher E, Grimme S. Screened exchange hybrid density functional for accurate and efficient structures and interaction energies. Phys Chem Chem Phys 2016; 18:15519-23. [DOI: 10.1039/c6cp01697a] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
HSE-3c: a computationally efficient and numerically robust screened hybrid functional that can be applied to periodic small gap systems.
Collapse
Affiliation(s)
| | - Eike Caldeweyher
- Mulliken Center for Theoretical Chemistry
- University of Bonn
- 53115 Bonn
- Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry
- University of Bonn
- 53115 Bonn
- Germany
| |
Collapse
|
540
|
Su NQ, Xu X. Beyond energies: geometry predictions with the XYG3 type of doubly hybrid density functionals. Chem Commun (Camb) 2016; 52:13840-13860. [DOI: 10.1039/c6cc04886b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The scaled mean absolute deviations (s-MADs) of the optimized geometric parameters for covalent bondings (the CCse set), nonbonded interactions (the S22G30 set) and the transition state structures (the TSG36 set), with Tot referring to the averaged s-MAD for general performances.
Collapse
Affiliation(s)
- Neil Qiang Su
- Collaborative Innovation Center of Chemistry for Energy Materials
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- MOE Laboratory for Computational Physical Science
- Department of Chemistry
- Fudan University
| | - Xin Xu
- Collaborative Innovation Center of Chemistry for Energy Materials
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- MOE Laboratory for Computational Physical Science
- Department of Chemistry
- Fudan University
| |
Collapse
|
541
|
Manna D, Martin JML. What Are the Ground State Structures of C20 and C24? An Explicitly Correlated Ab Initio Approach. J Phys Chem A 2015; 120:153-60. [DOI: 10.1021/acs.jpca.5b10266] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Debashree Manna
- Department of Organic Chemistry, Weizmann Institute of Science, 76100 Reḥovot, Israel
| | - Jan M. L. Martin
- Department of Organic Chemistry, Weizmann Institute of Science, 76100 Reḥovot, Israel
| |
Collapse
|
542
|
Kesharwani MK, Karton A, Martin JML. Benchmark ab Initio Conformational Energies for the Proteinogenic Amino Acids through Explicitly Correlated Methods. Assessment of Density Functional Methods. J Chem Theory Comput 2015; 12:444-54. [DOI: 10.1021/acs.jctc.5b01066] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Manoj K. Kesharwani
- Department
of Organic Chemistry, Weizmann Institute of Science, 76100 Reḥovot, Israel
| | - Amir Karton
- School
of Chemistry and Biochemistry, The University of Western Australia, Perth, WA 6009, Australia
| | - Jan M. L. Martin
- Department
of Organic Chemistry, Weizmann Institute of Science, 76100 Reḥovot, Israel
| |
Collapse
|
543
|
Yang T, Dangi BB, Maksyutenko P, Kaiser RI, Bertels LW, Head-Gordon M. Combined Experimental and Theoretical Study on the Formation of the Elusive 2-Methyl-1-silacycloprop-2-enylidene Molecule under Single Collision Conditions via Reactions of the Silylidyne Radical (SiH; X(2)Π) with Allene (H2CCCH2; X(1)A1) and D4-Allene (D2CCCD2; X(1)A1). J Phys Chem A 2015; 119:12562-78. [PMID: 26535955 DOI: 10.1021/acs.jpca.5b09773] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The crossed molecular beam reactions of the ground-state silylidyne radical (SiH; X(2)Π) with allene (H2CCCH2; X(1)A1) and D4-allene (D2CCCD2; X(1)A1) were carried out at collision energies of 30 kJ mol(-1). Electronic structure calculations propose that the reaction of silylidyne with allene has no entrance barrier and is initiated by silylidyne addition to the π electron density of allene either to one carbon atom (C1/C2) or to both carbon atoms simultaneously via indirect (complex forming) reaction dynamics. The initially formed addition complexes isomerize via two distinct reaction pathways, both leading eventually to a cyclic SiC3H5 intermediate. The latter decomposes through a loose exit transition state via an atomic hydrogen loss perpendicularly to the plane of the decomposing complex (sideways scattering) in an overall exoergic reaction (experimentally: -19 ± 13 kJ mol(-1); computationally: -5 ± 3 kJ mol(-1)). This hydrogen loss yields the hitherto elusive 2-methyl-1-silacycloprop-2-enylidene molecule (c-SiC3H4), which can be derived from the closed-shell cyclopropenylidene molecule (c-C3H2) by replacing a hydrogen atom with a methyl group and the carbene carbon atom by the isovalent silicon atom. The synthesis of the 2-methyl-1-silacycloprop-2-enylidene molecule in the bimolecular gas-phase reaction of silylidyne with allene enriches our understanding toward the formation of organosilicon species in the gas phase of the interstellar medium in particular via exoergic reactions of no entrance barrier. This facile route to 2-methyl-1-silacycloprop-2-enylidene via a silylidyne radical reaction with allene opens up a versatile approach to form hitherto poorly characterized silicon-bearing species in extraterrestrial environments; this reaction class might represent the missing link, leading from silicon-bearing radicals via organosilicon chemistry eventually to silicon-carbon-rich interstellar grains even in cold molecular clouds where temperatures are as low as 10 K.
Collapse
Affiliation(s)
- Tao Yang
- Department of Chemistry, University of Hawai'i at Manoa , Honolulu, Hawaii 96822, United States.,Department of Chemistry, University of California, Berkeley , Berkeley, California 94720, United States
| | - Beni B Dangi
- Department of Chemistry, University of Hawai'i at Manoa , Honolulu, Hawaii 96822, United States.,Department of Chemistry, University of California, Berkeley , Berkeley, California 94720, United States
| | - Pavlo Maksyutenko
- Department of Chemistry, University of Hawai'i at Manoa , Honolulu, Hawaii 96822, United States.,Department of Chemistry, University of California, Berkeley , Berkeley, California 94720, United States
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawai'i at Manoa , Honolulu, Hawaii 96822, United States.,Department of Chemistry, University of California, Berkeley , Berkeley, California 94720, United States
| | - Luke W Bertels
- Department of Chemistry, University of Hawai'i at Manoa , Honolulu, Hawaii 96822, United States.,Department of Chemistry, University of California, Berkeley , Berkeley, California 94720, United States
| | - Martin Head-Gordon
- Department of Chemistry, University of Hawai'i at Manoa , Honolulu, Hawaii 96822, United States.,Department of Chemistry, University of California, Berkeley , Berkeley, California 94720, United States
| |
Collapse
|
544
|
Grimme S, Brandenburg JG, Bannwarth C, Hansen A. Consistent structures and interactions by density functional theory with small atomic orbital basis sets. J Chem Phys 2015; 143:054107. [PMID: 26254642 DOI: 10.1063/1.4927476] [Citation(s) in RCA: 563] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A density functional theory (DFT) based composite electronic structure approach is proposed to efficiently compute structures and interaction energies in large chemical systems. It is based on the well-known and numerically robust Perdew-Burke-Ernzerhoff (PBE) generalized-gradient-approximation in a modified global hybrid functional with a relatively large amount of non-local Fock-exchange. The orbitals are expanded in Ahlrichs-type valence-double zeta atomic orbital (AO) Gaussian basis sets, which are available for many elements. In order to correct for the basis set superposition error (BSSE) and to account for the important long-range London dispersion effects, our well-established atom-pairwise potentials are used. In the design of the new method, particular attention has been paid to an accurate description of structural parameters in various covalent and non-covalent bonding situations as well as in periodic systems. Together with the recently proposed three-fold corrected (3c) Hartree-Fock method, the new composite scheme (termed PBEh-3c) represents the next member in a hierarchy of "low-cost" electronic structure approaches. They are mainly free of BSSE and account for most interactions in a physically sound and asymptotically correct manner. PBEh-3c yields good results for thermochemical properties in the huge GMTKN30 energy database. Furthermore, the method shows excellent performance for non-covalent interaction energies in small and large complexes. For evaluating its performance on equilibrium structures, a new compilation of standard test sets is suggested. These consist of small (light) molecules, partially flexible, medium-sized organic molecules, molecules comprising heavy main group elements, larger systems with long bonds, 3d-transition metal systems, non-covalently bound complexes (S22 and S66×8 sets), and peptide conformations. For these sets, overall deviations from accurate reference data are smaller than for various other tested DFT methods and reach that of triple-zeta AO basis set second-order perturbation theory (MP2/TZ) level at a tiny fraction of computational effort. Periodic calculations conducted for molecular crystals to test structures (including cell volumes) and sublimation enthalpies indicate very good accuracy competitive to computationally more involved plane-wave based calculations. PBEh-3c can be applied routinely to several hundreds of atoms on a single processor and it is suggested as a robust "high-speed" computational tool in theoretical chemistry and physics.
Collapse
Affiliation(s)
- Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms Universität Bonn, Beringstraße 4, 53115 Bonn, Germany
| | - Jan Gerit Brandenburg
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms Universität Bonn, Beringstraße 4, 53115 Bonn, Germany
| | - Christoph Bannwarth
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms Universität Bonn, Beringstraße 4, 53115 Bonn, Germany
| | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms Universität Bonn, Beringstraße 4, 53115 Bonn, Germany
| |
Collapse
|
545
|
Goerigk L. Treating London-Dispersion Effects with the Latest Minnesota Density Functionals: Problems and Possible Solutions. J Phys Chem Lett 2015; 6:3891-3896. [PMID: 26722889 DOI: 10.1021/acs.jpclett.5b01591] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
It is shown that the latest Minnesota density functionals (SOGGA11, M11-L, N12, MN12-L, SOGGA11-X, M11, N12-SX, and MN12-SX) do not properly describe London-dispersion interactions. Grimme's DFT-D3 correction can solve this problem partially; however, double-counting of medium-range electron correlation can occur. For the related M06-L functional, the alternative VV10 van der Waals kernel is tested, but it experiences similar double-counting. Most functionals give unphysical dissociation curves for the argon dimer, an indication for method-inherent problems, and further investigation is recommended. These results are further evidence that the London-dispersion problem in density functional theory approximations is unlikely to be solved by mere empirical optimization of functional parameters, unless the functionals contain components that ensure the correct asymptotic long-range behavior. London dispersion is ubiquitous, which is why the reported findings are not only important for theoreticians but also a reminder to the general chemist to carefully consider their choice of method before undertaking computational studies.
Collapse
Affiliation(s)
- Lars Goerigk
- School of Chemistry, The University of Melbourne , Victoria 3010, Australia
| |
Collapse
|
546
|
Ahubelem N, Shah K, Moghtaderi B, Page AJ. Quantum Chemical Molecular Dynamics Simulations of 1,3-Dichloropropene Combustion. J Phys Chem A 2015; 119:9307-16. [PMID: 26252869 DOI: 10.1021/acs.jpca.5b06446] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Oxidative decomposition of 1,3-dichloropropene was investigated using quantum chemical molecular dynamics (QM/MD) at 1500 and 3000 K. Thermal oxidation of 1,3-dichloropropene was initiated by (1) abstraction of allylic H/Cl by O2 and (2) intra-annular C-Cl bond scission and elimination of allylic Cl. A kinetic analysis shows that (2) is the more dominant initiation pathway, in agreement with QM/MD results. These QM/MD simulations reveal new routes to the formation of major products (H2O, CO, HCl, CO2), which are propagated primarily by the chloroperoxy (ClO2), OH, and 1,3-dichloropropene derived radicals. In particular, intra-annular C-C/C-H bond dissociation reactions of intermediate aldehydes/ketones are shown to play a dominant role in the formation of CO and CO2. Our simulations demonstrate that both combustion temperature and radical concentration can influence the product yield, however not the combustion mechanism.
Collapse
Affiliation(s)
- Nwakamma Ahubelem
- Newcastle Institute for Energy and Resources, The University of Newcastle , Callaghan, NSW 2308, Australia
| | - Kalpit Shah
- Newcastle Institute for Energy and Resources, The University of Newcastle , Callaghan, NSW 2308, Australia
| | - Behdad Moghtaderi
- Newcastle Institute for Energy and Resources, The University of Newcastle , Callaghan, NSW 2308, Australia
| | - Alister J Page
- Newcastle Institute for Energy and Resources, The University of Newcastle , Callaghan, NSW 2308, Australia
| |
Collapse
|
547
|
Cazorla C. The role of density functional theory methods in the prediction of nanostructured gas-adsorbent materials. Coord Chem Rev 2015. [DOI: 10.1016/j.ccr.2015.05.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
548
|
Goldey MB, Belzunces B, Head-Gordon M. Attenuated MP2 with a Long-Range Dispersion Correction for Treating Nonbonded Interactions. J Chem Theory Comput 2015; 11:4159-68. [DOI: 10.1021/acs.jctc.5b00509] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Matthew B. Goldey
- Kenneth
S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical
Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Bastien Belzunces
- Kenneth
S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Martin Head-Gordon
- Kenneth
S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical
Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
549
|
Ioannidis EI, Kulik HJ. Towards quantifying the role of exact exchange in predictions of transition metal complex properties. J Chem Phys 2015. [DOI: 10.1063/1.4926836] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Efthymios I. Ioannidis
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Heather J. Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
550
|
Manzer S, Horn PR, Mardirossian N, Head-Gordon M. Fast, accurate evaluation of exact exchange: The occ-RI-K algorithm. J Chem Phys 2015; 143:024113. [PMID: 26178096 PMCID: PMC4506295 DOI: 10.1063/1.4923369] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 06/22/2015] [Indexed: 11/15/2022] Open
Abstract
Construction of the exact exchange matrix, K, is typically the rate-determining step in hybrid density functional theory, and therefore, new approaches with increased efficiency are highly desirable. We present a framework with potential for greatly improved efficiency by computing a compressed exchange matrix that yields the exact exchange energy, gradient, and direct inversion of the iterative subspace (DIIS) error vector. The compressed exchange matrix is constructed with one index in the compact molecular orbital basis and the other index in the full atomic orbital basis. To illustrate the advantages, we present a practical algorithm that uses this framework in conjunction with the resolution of the identity (RI) approximation. We demonstrate that convergence using this method, referred to hereafter as occupied orbital RI-K (occ-RI-K), in combination with the DIIS algorithm is well-behaved, that the accuracy of computed energetics is excellent (identical to conventional RI-K), and that significant speedups can be obtained over existing integral-direct and RI-K methods. For a 4400 basis function C68H22 hydrogen-terminated graphene fragment, our algorithm yields a 14× speedup over the conventional algorithm and a speedup of 3.3× over RI-K.
Collapse
Affiliation(s)
- Samuel Manzer
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Paul R Horn
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Narbe Mardirossian
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Martin Head-Gordon
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|