501
|
Morin D, Grasland B, Vallée-Réhel K, Dufau C, Haras D. On-line high-performance liquid chromatography-mass spectrometric detection and quantification of N-acylhomoserine lactones, quorum sensing signal molecules, in the presence of biological matrices. J Chromatogr A 2003; 1002:79-92. [PMID: 12885081 DOI: 10.1016/s0021-9673(03)00730-1] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A protocol using reversed-phase liquid chromatography coupled with positive-ion electrospray ionization and ion trap mass spectrometry is described for the identification and quantification of N-acylhomoserine lactones (HSLs) in crude cell-free supernatants of bacterial cultures. The HSLs are produced by gram-negative bacteria and act as intercellular signals inducing density-dependent gene expression. Compared with the multi-step procedures previously reported, which included chemical extraction, purification and the use of Escherichia coli HSL biosensors, this on-line LC-MS-MS method is fast and detects 11 HSLs. Its speed and robustness allow the analysis of a large number of samples without loss of performance (no signal variation for a control sample after 90 chromatographic injections). The selectivity is based on the MS-MS fragment ions of the molecular [M+H]- ions and on their relative intensities. For quantification, the m/z 102 ion, specific for the lactone ring and detected with a good signal-to-noise ratio, allows low detection limits even in complex matrix samples (0.28 up to 9.3 pmol). Moreover, this method allows the quantification of 11 HSLs whatever their chemical structure, substituted or not. The protocol was applied to Vibrio vulnificus, a marine bacterium. Six HSLs were detected and quantified with relative standard deviations for repeatability of < 10%.
Collapse
Affiliation(s)
- Danièle Morin
- Laboratoire de Biologie et Chimie Moléculaires, Université de Bretagne-Sud, B.P. 92116, F-56321 Lorient Cedex, France.
| | | | | | | | | |
Collapse
|
502
|
Paggi RA, Martone CB, Fuqua C, De Castro RE. Detection of quorum sensing signals in the haloalkaliphilic archaeon Natronococcus occultus. FEMS Microbiol Lett 2003; 221:49-52. [PMID: 12694909 DOI: 10.1016/s0378-1097(03)00174-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Bacteria communicate at high cell density through quorum sensing, however, there are no reports about this mechanism in archaea. The archaeon Natronococcus occultus produces an extracellular protease at the end of growth. Early production of protease activity was observed when a low density culture was incubated with late exponential conditioned medium suggesting the presence of factor(s) inducing this activity. Conditioned medium and ethyl acetate extracts corresponding to the transition from exponential to stationary phase showed a positive signal in Agrobacterium biosensor. We report the detection of potential autoinducer molecules of the acylated homoserine lactone type in the archaeon N. occultus. These molecules may be responsible for the production/activation of extracellular protease.
Collapse
Affiliation(s)
- Roberto A Paggi
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, CC 1245, 7600 Mar del Plata, Argentina.
| | | | | | | |
Collapse
|
503
|
Luo ZQ, Smyth AJ, Gao P, Qin Y, Farrand SK. Mutational analysis of TraR. Correlating function with molecular structure of a quorum-sensing transcriptional activator. J Biol Chem 2003; 278:13173-82. [PMID: 12569101 DOI: 10.1074/jbc.m210035200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TraR, the quorum-sensing activator of the Agrobacterium tumefaciens Ti plasmid conjugation system, induces gene expression in response to its quormone, N-(3-oxooctanoyl)-L-homoserine lactone. Ligand binding results in dimerization of TraR and is required for its activity. Analysis of N- and C-terminal deletion mutants of TraR localized the quormone-binding domain to a region between residues 39 and 140 and the primary dimerization domain to a region between residues 119 and 156. The dominant-negative properties of these mutants predicted a second dimerization domain at the C terminus of the protein. Analysis of fusions of N-terminal fragments of TraR to lambda cI' confirmed the dimerization activity of these two domains. Fifteen single amino acid substitution mutants of TraR defective in dimerization were isolated. According to the analysis of these mutants, Asp-70 and Gly-113 are essential for quormone binding, whereas Ala-38 and Ala-105 are important, but not essential. Additional residues located within the N-terminal half of TraR, including three located in alpha-helix 9, contribute to dimerization, but are not required for ligand binding. These results and the recently reported crystal structure of TraR are consistent with and complement each other and together define some of the structural and functional relationships of this quorum-sensing activator.
Collapse
Affiliation(s)
- Zhao-Qing Luo
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | |
Collapse
|
504
|
Thompson LS, Webb JS, Rice SA, Kjelleberg S. The alternative sigma factor RpoN regulates the quorum sensing gene rhlI in Pseudomonas aeruginosa. FEMS Microbiol Lett 2003; 220:187-95. [PMID: 12670680 DOI: 10.1016/s0378-1097(03)00097-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The rhl quorum sensing (QS) circuit of Pseudomonas aeruginosa is known to regulate the expression of a number of virulence factors. This study investigates the regulation of rhlI, encoding the auto-inducer synthase RhlI responsible for the synthesis of N-butryl-L-homoserine lactone (BHL). A putative RpoN binding site was located upstream, in the promoter region of rhlI. Utilising a rhlI-lacZ transcriptional reporter, we demonstrate that under certain media conditions RpoN is a positive regulator of rhlI transcription. Measurements of BHL in extracted supernatant showed that the transcriptional patterns were reflected in the BHL levels, which were reduced in the rpoN mutant. Elastase and pyocyanin, known to be regulated by the rhl QS circuit, were shown to be reduced in a RpoN deficient strain. However, exogenous addition of BHL to the rpoN mutant did not restore these phenotypes suggesting that other regulatory factors apart from BHL are involved. Consistent with other rhl regulated phenotypes, we found that a rpoN mutant strain forms a biofilm that is different from that of the wild-type but similar to that displayed by a rhlI mutant.
Collapse
Affiliation(s)
- Lyndal S Thompson
- School of Bio-technology and Bio-molecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | | | | | | |
Collapse
|
505
|
Tun-Garrido C, Bustos P, González V, Brom S. Conjugative transfer of p42a from rhizobium etli CFN42, which is required for mobilization of the symbiotic plasmid, is regulated by quorum sensing. J Bacteriol 2003; 185:1681-92. [PMID: 12591886 PMCID: PMC148057 DOI: 10.1128/jb.185.5.1681-1692.2003] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhizobium etli CFN42 contains six plasmids. Only one of them, p42a, is self-conjugative at high frequency. This plasmid is strictly required for mobilization of the symbiotic plasmid (pSym). To study the transfer mechanism of p42a, a self-transmissible cosmid clone containing its transfer region was isolated. Its sequence showed that most of the tra genes are highly similar to genes of Agrobacterium tumefaciens pTiC58 and other related plasmids. Four putative regulatory genes were identified; three of these (traI, traR, and cinR) belong to the LuxR-LuxI family. Mutagenesis of these genes confirmed their requirement for p42a transfer. We found that the conjugative transfer of p42a is dependent on quorum sensing, and consequently pSym transfer also was found to be similarly regulated, establishing a complex link between environmental conditions and pSym transfer. Although R. etli has been shown to produce different N-acyl-homoserine lactones, only one of them, a 3-oxo-C(8)-homoserine lactone encoded by the traI gene described here, was involved in transfer. Mutagenesis of the fourth regulatory gene, traM, had no effect on transfer. Analysis of transcriptional fusions of the regulatory genes to a reporter gene suggests a complex regulation scheme for p42a conjugative transfer. Conjugal transfer gene expression was found to be directly upregulated by TraR and the 3-oxo-C(8)-homoserine lactone synthesized by TraI. The traI gene was autoregulated by these elements and positively regulated by CinR, while cinR expression required traI. Finally, we did not detect expression of traM, indicating that in p42a TraM may be expressed so weakly that it cannot inhibit conjugal transfer, leading to the unrepressed transfer of p42a.
Collapse
Affiliation(s)
- Cristina Tun-Garrido
- Programa de Genética Molecular de Plásmidos Bacterianos, Centro de Investigación Sobre Fijación de Nitrógeno, UNAM, Cuernavaca, Morelos, Mexico.
| | | | | | | |
Collapse
|
506
|
Schmidt-Eisenlohr H, Gast A, Baron C. Inactivation of gacS does not affect the competitiveness of Pseudomonas chlororaphis in the Arabidopsis thaliana rhizosphere. Appl Environ Microbiol 2003; 69:1817-26. [PMID: 12620875 PMCID: PMC150057 DOI: 10.1128/aem.69.3.1817-1826.2003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Quorum-sensing-controlled processes are considered to be important for the competitiveness of microorganisms in the rhizosphere. They affect cell-cell communication, biofilm formation, and antibiotic production, and the GacS-GacA two-component system plays a role as a key regulator. In spite of the importance of this system for the regulation of various processes, strains with a Gac(-) phenotype are readily recovered from natural habitats. To analyze the influence of quorum sensing and the influence of the production of the antibiotic phenazine-1-carboxamide on rhizosphere colonization by Pseudomonas chlororaphis, a gnotobiotic system based on Arabidopsis thaliana seedlings in soil was investigated. Transposon insertion mutants of P. chlororaphis isolate SPR044 carrying insertions in different genes required for the production of N-acyl-homoserine lactones and phenazine-1-carboxamide were generated. Analysis of solitary rhizosphere colonization revealed that after prolonged growth, the population of the wild type was significantly larger than that of the homoserine lactone-negative gacS mutant and that of a phenazine-1-carboxamide-overproducing strain. In cocultivation experiments, however, the population size of the gacS mutant was similar to that of the wild type after extended growth in the rhizosphere. A detailed analysis of growth kinetics was performed to explain this phenomenon. After cells grown to the stationary phase were transferred to fresh medium, the gacS mutant had a reduced lag phase, and production of the stationary-phase-specific sigma factor RpoS was strongly reduced. This may provide a relative competitive advantage in cocultures with other bacteria, because it permits faster reinitiation of growth after a change to nutrient-rich conditions. In addition, delayed entry into the stationary phase may allow more efficient nutrient utilization. Thus, GacS-GacA-regulated processes are not absolutely required for efficient rhizosphere colonization in populations containing the wild type and Gac(-) mutants.
Collapse
Affiliation(s)
- Heike Schmidt-Eisenlohr
- Bereich Mikrobiologie, Department Biologie I, Ludwig-Maximilians-Universität München, D-80638 Munich, Germany
| | | | | |
Collapse
|
507
|
Heinz EB, Streit WR. Biotin limitation in Sinorhizobium meliloti strain 1021 alters transcription and translation. Appl Environ Microbiol 2003; 69:1206-13. [PMID: 12571048 PMCID: PMC143622 DOI: 10.1128/aem.69.2.1206-1213.2003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Most Sinorhizobium meliloti strains lack several key genes involved in microbial biotin biosynthesis, and it is assumed that this may be a special adaptation which allows the microbe to down-regulate metabolic activities in the absence of a host plant. To further explore this hypothesis, we employed two different strategies. (i) Searches of the S. meliloti genome database in combination with the construction of nine different gusA reporter fusions identified three genes involved in a biotin starvation response in this microbe. A gene coding for a protein-methyl carboxyl transferase (pcm) exhibited 13.6-fold-higher transcription under biotin-limiting conditions than cells grown in the presence of 40 nM biotin. Consistent with this observation, biotin-limiting conditions resulted in a significantly decreased survival of pcm mutant cells compared to parental cells or cells grown in the presence of 40 nM biotin. Further studies indicated that the autoinducer synthase gene, sinI, was transcribed at a 4.5-fold-higher level in early stationary phase in biotin-starved cells than in biotin-supplemented cells. Lastly, we observed that open reading frame smc02283, which codes for a putative copper resistance protein (CopC), was 21-fold down-regulated in response to biotin starvation. (ii) In a second approach, proteome analysis identified 10 proteins which were significantly down-regulated under the biotin-limiting conditions. Among the proteins identified by using matrix-assisted laser desorption ionization-time of flight mass spectrometry were the pi subunit of the RNA polymerase and the 50S ribosomal protein L7/L12 (L8) subunit, indicating that biotin-limiting conditions generally affect transcription and translation in S. meliloti.
Collapse
Affiliation(s)
- Elke B Heinz
- Institut für Mikrobiologie und Genetik der Universität Göttingen, D-37077 Göttingen, Germany
| | | |
Collapse
|
508
|
Smith JN, Ahmer BMM. Detection of other microbial species by Salmonella: expression of the SdiA regulon. J Bacteriol 2003; 185:1357-66. [PMID: 12562806 PMCID: PMC142872 DOI: 10.1128/jb.185.4.1357-1366.2003] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella, Escherichia, and Klebsiella do not encode any recognized type of N-acylhomoserine lactone (AHL) synthase, and consistent with this, they do not synthesize AHLs under any conditions tested. However, they do encode an AHL receptor of the LuxR family, named SdiA. MudJ fusions in four loci are known to respond to plasmid-encoded sdiA in Salmonella, but only the rck locus has been described. Here we report the location and sequence analysis of the remaining three loci. The srg-6::MudJ is within gtgA of the gifsy-2 prophage, and the srg-7::MudJ is within PSLT61 of the virulence plasmid. Both fusions are in the antisense orientation. The third fusion, srgE5::MudJ, is within a horizontally acquired gene of unknown function at 33.6 centisomes that we have named srgE. Previously, sdiA expressed from its natural position in the chromosome was demonstrated to activate a plasmid-based transcriptional fusion to the rck promoter in response to AHL production by other bacterial species. However, the MudJ fusions did not respond to chromosomal sdiA. Here we report that MudJ fusions to three of the four loci (not srg-6) are activated by AHL in an sdiA-dependent manner during growth in motility agar (0.25% agar) but not during growth in top agar (0.7% agar) or on agar plates (1.2% agar). In motility agar, the srgE promoter responds to sdiA at 30 degrees C and higher while the rck and srg-7 promoters respond only at 37 or 42 degrees C. Substantial AHL-independent SdiA activity was observed at 30 degrees C but not at 37 degrees C.
Collapse
Affiliation(s)
- Jenée N Smith
- Department of Microbiology, The Ohio State University, Columbus Ohio 43210, USA
| | | |
Collapse
|
509
|
Flagan S, Ching WK, Leadbetter JR. Arthrobacter strain VAI-A utilizes acyl-homoserine lactone inactivation products and stimulates quorum signal biodegradation by Variovorax paradoxus. Appl Environ Microbiol 2003; 69:909-16. [PMID: 12571011 PMCID: PMC143678 DOI: 10.1128/aem.69.2.909-916.2003] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many Proteobacteria produce acyl-homoserine lactones (acyl-HSLs) and employ them as dedicated cell-to-cell signals in a process known as quorum sensing. Previously, Variovorax paradoxus VAI-C was shown to utilize diverse acyl-HSLs as sole sources of energy and nitrogen. We describe here the properties of a second isolate, Arthrobacter strain VAI-A, obtained from the same enrichment culture that yielded V. paradoxus VAI-C. Although strain VAI-A grew rapidly and exponentially on a number of substrates, it grew only slowly and aberrantly (i.e., linearly) in media amended with oxohexanoyl-HSL as the sole energy source. Increasing the culture pH markedly improved the growth rate in media containing this substrate but did not abolish the aberrant kinetics. The observed growth was remarkably similar to the known kinetics of the pH-influenced half-life of acyl-HSLs, which decay chemically to yield the corresponding acyl-homoserines. Strain VAI-A grew rapidly and exponentially when provided with an acyl-homoserine as the sole energy or nitrogen source. The isolate was also able to utilize HSL as a sole source of nitrogen but not as energy for growth. V. paradoxus, known to release HSL as a product of quorum signal degradation, was examined for the ability to support the growth of Arthrobacter strain VAI-A in defined cocultures. It did. Moreover, the acyl-HSL-dependent growth rate and yield of the coculture were dramatically superior to those of the monocultures. This suggested that the original coenrichment of these two organisms from the same soil sample was not coincidental and that consortia may play a role in quorum signal turnover and mineralization. The fact that Arthrobacter strain VAI-A utilizes the two known nitrogenous degradation products of acyl-HSLs, acyl-homoserine and HSL, begins to explain why none of the three compounds are known to accumulate in the environment.
Collapse
Affiliation(s)
- Suvi Flagan
- Environmental Science and Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | | | | |
Collapse
|
510
|
He X, Chang W, Pierce DL, Seib LO, Wagner J, Fuqua C. Quorum sensing in Rhizobium sp. strain NGR234 regulates conjugal transfer (tra) gene expression and influences growth rate. J Bacteriol 2003; 185:809-22. [PMID: 12533456 PMCID: PMC142814 DOI: 10.1128/jb.185.3.809-822.2003] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2002] [Accepted: 10/31/2002] [Indexed: 11/20/2022] Open
Abstract
Rhizobium sp. strain NGR234 forms symbiotic, nitrogen-fixing nodules on a wide range of legumes via functions largely encoded by the plasmid pNGR234a. The pNGR234a sequence revealed a region encoding plasmid replication (rep) and conjugal transfer (tra) functions similar to those encoded by the rep and tra genes from the tumor-inducing (Ti) plasmids of Agrobacterium tumefaciens, including homologues of the Ti plasmid quorum-sensing regulators TraI, TraR, and TraM. In A. tumefaciens, TraI, a LuxI-type protein, catalyzes synthesis of the acylated homoserine lactone (acyl-HSL) N-3-oxo-octanoyl-L-homoserine lactone (3-oxo-C8-HSL). TraR binds 3-oxo-C8-HSL and activates expression of Ti plasmid tra and rep genes, increasing conjugation and copy number at high population densities. TraM prevents this activation under noninducing conditions. Although the pNGR234a TraR, TraI, and TraM appear to function similarly to their A. tumefaciens counterparts, the TraR and TraM orthologues are not cross-functional, and the quorum-sensing systems have differences. NGR234 TraI synthesizes an acyl-HSL likely to be 3-oxo-C8-HSL, but traI mutants and a pNGR234a-cured derivative produce low levels of a similar acyl-HSL and another, more hydrophobic signal molecule. TraR activates expression of several pNGR234a tra operons in response to 3-oxo-C8-HSL and is inhibited by TraM. However, one of the pNGR234a tra operons is not activated by TraR, and conjugal efficiency is not affected by TraR and 3-oxo-C8-HSL. The growth rate of NGR234 is significantly decreased by TraR and 3-oxo-C8-HSL through functions encoded elsewhere in the NGR234 genome.
Collapse
Affiliation(s)
- Xuesong He
- Department of Biology, Indiana University, 1001 E. 3rd Street, Bloomington, IN 47405, USA
| | | | | | | | | | | |
Collapse
|
511
|
Steidle A, Allesen-Holm M, Riedel K, Berg G, Givskov M, Molin S, Eberl L. Identification and characterization of an N-acylhomoserine lactone-dependent quorum-sensing system in Pseudomonas putida strain IsoF. Appl Environ Microbiol 2002; 68:6371-82. [PMID: 12450862 PMCID: PMC134430 DOI: 10.1128/aem.68.12.6371-6382.2002] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent reports have shown that several strains of Pseudomonas putida produce N-acylhomoserine lactones (AHLs). These signal molecules enable bacteria to coordinately express certain phenotypic traits in a density-dependent manner in a process referred to as quorum sensing. In this study we have cloned a genomic region of the plant growth-promoting P. putida strain IsoF that, when present in trans, provoked induction of a bioluminescent AHL reporter plasmid. Sequence analysis identified a gene cluster consisting of four genes: ppuI and ppuR, whose predicted amino acid sequences are highly similar to proteins of the LuxI-LuxR family, an open reading frame (ORF) located in the intergenic region between ppuI and ppuR with significant homology to rsaL from Pseudomonas aeruginosa, and a gene, designated ppuA, present upstream of ppuR, the deduced amino acid sequence of which shows similarity to long-chain fatty acid coenzyme A ligases from various organisms. Using a transcriptional ppuA::luxAB fusion we demonstrate that expression of ppuA is AHL dependent. Furthermore, transcription of the AHL synthase ppuI is shown to be subject to quorum-sensing regulation, creating a positive feedback loop. Sequencing of the DNA regions flanking the ppu gene cluster indicated that the four genes form an island in the suhB-PA3819 intergenic region of the currently sequenced P. putida strain KT2440. Moreover, we provide evidence that the ppu genes are not present in other AHL-producing P. putida strains, indicating that this gene cluster is so far unique for strain IsoF. While the wild-type strain formed very homogenous biofilms, both a ppuI and a ppuA mutant formed structured biofilms with characteristic microcolonies and water-filled channels. These results suggest that the quorum-sensing system influences biofilm structural development.
Collapse
Affiliation(s)
- Anette Steidle
- Department of Microbiology, TUM, D-85350 Freising, Germany
| | | | | | | | | | | | | |
Collapse
|
512
|
Hoang TT, Sullivan SA, Cusick JK, Schweizer HP. Beta-ketoacyl acyl carrier protein reductase (FabG) activity of the fatty acid biosynthetic pathway is a determining factor of 3-oxo-homoserine lactone acyl chain lengths. MICROBIOLOGY (READING, ENGLAND) 2002; 148:3849-3856. [PMID: 12480888 DOI: 10.1099/00221287-148-12-3849] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The two acyl-homoserine lactones (AHLs) N-(butyryl)-L-homoserine lactone and N-[3-oxododecanoyl]-L-homoserine lactone (3-oxo-C(12)-HSL) are required for quorum sensing in Pseudomonas aeruginosa. These AHLs derive their invariant lactone rings from S-adenosylmethionine and their variable acyl chains from the cellular acyl-acyl carrier protein (ACP) pool. This reaction is catalysed by specific AHL synthases, which exhibit acyl chain specificity. Culture supernatants of P. aeruginosa contain multiple 3-oxo-AHLs that differ in their acyl chain lengths but their physiological role, if any, remains unknown. An in vitro fatty acid-3-oxo-AHL synthesis system was established utilizing purified P. aeruginosa Fab proteins, ACP and the LasI 3-oxo-AHL synthase. In the presence of excess protein, substrates and cofactors, this system produced almost exclusively 3-oxo-C(12)-HSL. When the beta-ketoacyl-ACP reductase (FabG) catalysed step was made rate-limiting by switching from the preferred NADPH cofactor to NADH, increased levels of short chain 3-oxo-AHLs were produced, presumably because shorter-chain ketoacyl-ACPs accumulated and thus became LasI substrates. Consistent with these in vitro observations, a fabG(Ts) mutant produced increased amounts of 3-oxo-AHLs in vivo. Thus, in vitro and in vivo evidence indicated that modulation of FabG activity of the fatty acid biosynthetic pathway may determine the acyl chain lengths of these 3-oxo-AHLs and that the LasI 3-oxo-AHL synthase is sufficient for their synthesis.
Collapse
Affiliation(s)
- Tung T Hoang
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682A, USA1
| | - Sarah A Sullivan
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682A, USA1
| | - John K Cusick
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682A, USA1
| | - Herbert P Schweizer
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682A, USA1
| |
Collapse
|
513
|
Zhu H, Thuruthyil SJ, Willcox MDP. Determination of quorum-sensing signal molecules and virulence factors of Pseudomonas aeruginosa isolates from contact lens-induced microbial keratitis. J Med Microbiol 2002; 51:1063-1070. [PMID: 12466404 DOI: 10.1099/0022-1317-51-12-1063] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The virulence of Pseudomonas aeruginosa in contact lens-induced microbial keratitis has been linked to various extracellular and cell-associated bacterial products, such as proteases and toxins. Recently, a group of bacterial signal molecules, N-acyl-homoserine lactones (AHLs), has been reported to play an important role in the regulation of the production of several bacterial virulence factors in P. aeruginosa. The aim of this study was to determine the signal molecules produced by P. aeruginosa keratitis strains, and to elucidate any possible correlation between the production of signal molecules and the expression of phenotypic characteristics, including protease production, bacterial invasion and acute cytotoxic activity. The presence and profiles of AHLs in ocular P. aeruginosa isolates were analysed by a combination of thin-layer chromatography and bioassay. All 17 keratitis isolates produced AHLs. There were differences both in the amounts and the types of AHL production in the various phenotypes of isolates. High levels of AHLs were found among the isolates with high protease activity and invasiveness. Acutely cytotoxic isolates displayed low AHL and protease activities. Invasive strains were more common than cytotoxic strains from keratitis patients. These results suggest that quorum-sensing systems of P. aeruginosa display a complexity even within the same species, and the production of certain AHL signal molecules may be associated with certain phenotypes in P. aeruginosa.
Collapse
Affiliation(s)
- Hua Zhu
- Cooperative Research Center for Eye Research and Technology, University of New South Wales, UNSW, Sydney, NSW 2052, Australia
| | - Sophy J Thuruthyil
- Cooperative Research Center for Eye Research and Technology, University of New South Wales, UNSW, Sydney, NSW 2052, Australia
| | - Mark D P Willcox
- Cooperative Research Center for Eye Research and Technology, University of New South Wales, UNSW, Sydney, NSW 2052, Australia
| |
Collapse
|
514
|
Marketon MM, Gronquist MR, Eberhard A, González JE. Characterization of the Sinorhizobium meliloti sinR/sinI locus and the production of novel N-acyl homoserine lactones. J Bacteriol 2002; 184:5686-95. [PMID: 12270827 PMCID: PMC139616 DOI: 10.1128/jb.184.20.5686-5695.2002] [Citation(s) in RCA: 175] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sinorhizobium meliloti is a soil bacterium which can establish a nitrogen-fixing symbiosis with the legume Medicago sativa. Recent work has identified a pair of genes, sinR and sinI, which represent a potential quorum-sensing system and are responsible for the production of N-acyl homoserine lactones (AHLs) in two S. meliloti strains, Rm1021 and Rm41. In this work, we characterize the sinRI locus and show that these genes are responsible for the synthesis of several long-chain AHLs ranging from 12 to 18 carbons in length. Four of these, 3-oxotetradecanoyl HL, 3-oxohexadecenoyl HL, hexadecenoyl HL, and octadecanoyl HL, have novel structures. This is the first report of AHLs having acyl chains longer than 14 carbons. We show that a disruption in sinI eliminates these AHLs and that a sinR disruption results in only basal levels of the AHLs. Moreover, the same sinI and sinR mutations also lead to a decrease in the number of pink nodules during nodulation assays, as well as a slight delay in the appearance of pink nodules, indicating a role for quorum sensing in symbiosis. We also show that sinI and sinR mutants are still capable of producing several short-chain AHLs, one of which was identified as octanoyl HL. We believe that these short-chain AHLs are evidence of a second quorum-sensing system in Rm1021, which we refer to here as the mel system, for "S. meliloti."
Collapse
Affiliation(s)
- Melanie M Marketon
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, Texas 75083-0688, USA
| | | | | | | |
Collapse
|
515
|
Gram L, Ravn L, Rasch M, Bruhn JB, Christensen AB, Givskov M. Food spoilage--interactions between food spoilage bacteria. Int J Food Microbiol 2002; 78:79-97. [PMID: 12222639 DOI: 10.1016/s0168-1605(02)00233-7] [Citation(s) in RCA: 580] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Food spoilage is a complex process and excessive amounts of foods are lost due to microbial spoilage even with modern day preservation techniques. Despite the heterogeneity in raw materials and processing conditions, the microflora that develops during storage and in spoiling foods can be predicted based on knowledge of the origin of the food, the substrate base and a few central preservation parameters such as temperature, atmosphere, a(w) and pH. Based on such knowledge, more detailed sensory, chemical and microbiological analysis can be carried out on the individual products to determine the actual specific spoilage organism. Whilst the chemical and physical parameters are the main determining factors for selection of spoilage microorganisms, a level of refinement may be found in some products in which the interactive behavior of microorganisms may contribute to their growth and/or spoilage activity. This review gives three such examples. We describe the competitive advantage of Pseudomonas spp. due to the production of iron-chelating siderophores, the generation of substrates for spoilage reactions by one organism from another microorganism (so-called metabiosis) and the up-regulation of phenotypes potentially involved in spoilage through cell-to-cell communication. In particular, we report for the first time the widespread occurrence of N-acyl homoserine lactones (AHL) in stored and spoiling fresh foods and we discuss the potential implications for spoilage and food preservation.
Collapse
Affiliation(s)
- Lone Gram
- Department of Seafood Research, Danish Institute for Fisheries Research, Lyngby.
| | | | | | | | | | | |
Collapse
|
516
|
Miller MB, Skorupski K, Lenz DH, Taylor RK, Bassler BL. Parallel quorum sensing systems converge to regulate virulence in Vibrio cholerae. Cell 2002; 110:303-14. [PMID: 12176318 DOI: 10.1016/s0092-8674(02)00829-2] [Citation(s) in RCA: 477] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The marine bacterium Vibrio harveyi possesses two quorum sensing systems (System 1 and System 2) that regulate bioluminescence. Although the Vibrio cholerae genome sequence reveals that a V. harveyi-like System 2 exists, it does not predict the existence of a V. harveyi-like System 1 or any obvious quorum sensing-controlled target genes. In this report we identify and characterize the genes encoding an additional V. cholerae autoinducer synthase and its cognate sensor. Analysis of double mutants indicates that a third as yet unidentified sensory circuit exists in V. cholerae. This quorum sensing apparatus is unusually complex, as it is composed of at least three parallel signaling channels. We show that in V. cholerae these communication systems converge to control virulence.
Collapse
Affiliation(s)
- Melissa B Miller
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | | | | | |
Collapse
|
517
|
Gram L, Grossart HP, Schlingloff A, Kiørboe T. Possible quorum sensing in marine snow bacteria: production of acylated homoserine lactones by Roseobacter strains isolated from marine snow. Appl Environ Microbiol 2002; 68:4111-6. [PMID: 12147515 PMCID: PMC123997 DOI: 10.1128/aem.68.8.4111-4116.2002] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report here, for the first time, that bacteria associated with marine snow produce communication signals involved in quorum sensing in gram-negative bacteria. Four of 43 marine microorganisms isolated from marine snow were found to produce acylated homoserine lactones (AHLs) in well diffusion and thin-layer chromatographic assays based on the Agrobacterium tumefaciens reporter system. Three of the AHL-producing strains were identified by 16S ribosomal DNA gene sequence analysis as Roseobacter spp., and this is the first report of AHL production by these alpha-PROTEOBACTERIA: It is likely that AHLs in Roseobacter species and other marine snow bacteria govern phenotypic traits (biofilm formation, exoenzyme production, and antibiotic production) which are required mainly when the population reaches high densities, e.g., in the marine snow community.
Collapse
Affiliation(s)
- Lone Gram
- Department of Seafood Research, Danish Institute for Fisheries Research, DK-2800 Kgs. Lyngby, Denmark.
| | | | | | | |
Collapse
|
518
|
Wilkinson A, Danino V, Wisniewski-Dyé F, Lithgow JK, Downie JA. N-acyl-homoserine lactone inhibition of rhizobial growth is mediated by two quorum-sensing genes that regulate plasmid transfer. J Bacteriol 2002; 184:4510-9. [PMID: 12142421 PMCID: PMC135255 DOI: 10.1128/jb.184.16.4510-4519.2002] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The growth of some strains of Rhizobium leguminosarum bv. viciae is inhibited by N-(3-hydroxy-7-cis tetradecenoyl)-L-homoserine lactone (3OH-C(14:1)-HSL), which was previously known as the small bacteriocin before its characterization as an N-acyl homoserine lactone (AHL). Tn5-induced mutants of R. leguminosarum bv. viciae resistant to 3OH-C(14:1)-HSL were isolated, and mutations in two genes were identified. These genes, bisR and triR, which both encode LuxR-type regulators required for plasmid transfer, were found downstream of an operon containing trb genes involved in the transfer of the symbiotic plasmid pRL1JI. The first gene in this operon is traI, which encodes an AHL synthase, and the trbBCDEJKLFGHI genes were found between traI and bisR. Mutations in bisR, triR, traI, or trbL blocked plasmid transfer. Using gene fusions, it was demonstrated that bisR regulates triR in response to the presence of 3OH-C(14:1)-HSL. In turn, triR is then required for the induction of the traI-trb operon required for plasmid transfer. bisR also represses expression of cinI, which is chromosomally located and determines the level of production of 3OH-C(14:1)-HSL. The cloned bisR and triR genes conferred 3OH-C(14:1)-HSL sensitivity to strains of R. leguminosarum bv. viciae normally resistant to this AHL. Furthermore, bisR and triR made Agrobacterium tumefaciens sensitive to R. leguminosarum bv. viciae strains producing 3OH-C(14:1)-HSL. Analysis of patterns of growth inhibition using mutant strains and synthetic AHLs revealed that maximal growth inhibition required, in addition to 3OH-C(14:1)-HSL, the presence of other AHLs such as N-octanoyl-L-homoserine lactone and/or N-(3-oxo-octanoyl)-L-homoserine lactone. In an attempt to identify the causes of growth inhibition, a strain of R. leguminosarum bv. viciae carrying cloned bisR and triR was treated with an AHL extract containing 3OH-C(14:1)-HSL. N-terminal sequencing of induced proteins revealed one with significant similarity to the protein translation factor Ef-Ts.
Collapse
Affiliation(s)
- A Wilkinson
- John Innes Centre, Norwich NR4 7UH, United Kingdom
| | | | | | | | | |
Collapse
|
519
|
Lewenza S, Visser MB, Sokol PA. Interspecies communication between Burkholderia cepacia and Pseudomonas aeruginosa. Can J Microbiol 2002; 48:707-16. [PMID: 12381027 DOI: 10.1139/w02-068] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Burkholderia cepacia and Pseudomonas aeruginosa are opportunistic pathogens that commonly cause pulmonary infections in cystic fibrosis patients and occasionally co-infect patients' lungs. Both organisms possess quorum-sensing systems dependent on N-acyl homoserine lactone (N-acyl-HSL). Cross-feeding assays demonstrated that P. aeruginosa and B. cepacia were able to utilize heterologous N-acyl-HSL signaling molecules. The ability of quorum-sensing genes from one species to complement the respective quorum-sensing mutations in the heterologous species was also examined. These studies suggest that B. cepacia CepR can use N-acyl-HSLs synthesized by RhlI and LasI and that P. aeruginosa LasR and RhlR can use N-acyl-HSLs synthesized by CepI. It is possible that a mixed bacterial population of B. cepacia and P. aeruginosa can coordinately regulate some of their virulence factors and influence the progression of lung disease due to infection with these organisms.
Collapse
Affiliation(s)
- Shawn Lewenza
- Department of Microbiology and Infectious Diseases, University of Calgary Health Sciences Center, AB, Canada
| | | | | |
Collapse
|
520
|
Abstract
Sinorhizobium meliloti is a free-living soil bacterium which is capable of establishing a symbiotic relationship with the alfalfa plant (Medicago sativa). This symbiosis involves a network of bacterium-host signaling, as well as the potential for bacterium-bacterium communication, such as quorum sensing. In this study, we characterized the production of N-acyl homoserine lactones (AHLs) by two commonly used S. meliloti strains, AK631 and Rm1021. We found that AK631 produces at least nine different AHLs, while Rm1021 produces only a subset of these molecules. To address the difference in AHL patterns between the strains, we developed a novel screening method to identify the genes affecting AHL synthesis. With this screening method, chromosomal groEL (groELc) was shown to be required for synthesis of the AHLs that are unique to AK631 but not for synthesis of the AHLs that are made by both AK631 and Rm1021. We then used the screening procedure to identify a mutation in a gene homologous to traM of Agrobacterium tumefaciens, which was able to suppress the phenotype of the groELc mutation. A traR homolog was identified immediately upstream of traM, and we propose that its gene product requires a functional groELc for activity and is also responsible for inducing the synthesis of the AHLs that are unique to AK631. We show that the traR/traM locus is part of a quorum-sensing system unique to AK631 and propose that this locus is involved in regulating conjugal plasmid transfer. We also present evidence for the existence of a second quorum-sensing system, sinR/sinI, which is present in both AK631 and Rm1021.
Collapse
Affiliation(s)
- Melanie M Marketon
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, Texas 75083-0688, USA
| | | |
Collapse
|
521
|
Taminiau B, Daykin M, Swift S, Boschiroli ML, Tibor A, Lestrate P, De Bolle X, O'Callaghan D, Williams P, Letesson JJ. Identification of a quorum-sensing signal molecule in the facultative intracellular pathogen Brucella melitensis. Infect Immun 2002; 70:3004-11. [PMID: 12010991 PMCID: PMC128001 DOI: 10.1128/iai.70.6.3004-3011.2002] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2001] [Revised: 01/15/2002] [Accepted: 03/21/2002] [Indexed: 11/20/2022] Open
Abstract
Brucella melitensis is a gram-negative alpha2-proteobacterium responsible for abortion in goats and for Malta fever in humans. This facultative intracellular pathogen invades and survives within both professional and nonprofessional phagocytes. A dichloromethane extract of spent culture supernatant from B. melitensis induces bioluminescence in an Escherichia coli acyl-homoserine lactone (acyl-HSL) biosensor strain based upon the activity of the LasR protein of Pseudomonas aeruginosa. HPLC fractionation of the extract, followed by mass spectrometry, identified the major active molecule as N-dodecanoylhomoserine lactone (C12-HSL). This is the first report of the production of an acyl-HSL by an intracellular pathogen. The addition of synthetic C12-HSL to an early log phase culture of either B. melitensis or Brucella suis 1330 reduces the transcription of the virB operon, which contains virulence genes known to be required for intracellular survival. This mimics events seen during the stationary phase of growth and suggests that quorum sensing may play a role in the control of virulence in Brucella.
Collapse
Affiliation(s)
- Bernard Taminiau
- Unité de Recherche en Biologie Moléculaire (URBM), Laboratoire d'Immunologie et Microbiologie, Facultés Universitaires Notre-Dame de la Paix, 5000 Namur, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
522
|
Erickson DL, Nsereko VL, Morgavi DP, Selinger LB, Rode LM, Beauchemin KA. Evidence of quorum sensing in the rumen ecosystem: detection of N-acyl homoserine lactone autoinducers in ruminal contents. Can J Microbiol 2002; 48:374-8. [PMID: 12030712 DOI: 10.1139/w02-022] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Acyl-homoserine lactone (AHL) based quorum-sensing systems are widespread among gram-negative bacteria, particularly in association with plants and animals. As yet, there have been no reports of AHL signaling in the anaerobic rumen environment, an ecosystem of great complexity in which cell-cell signaling is likely to occur. We detected multiple AHL autoinducers in the rumen contents of 6 out of 8 cattle fed a representative selection of diets. The signals were not associated with feed. Surprisingly, no pure cultures produced AHLs in vitro when grown under the laboratory conditions we tested. Our observations suggest that either (a) a factor specific to the rumen ecosystem is required for the rumen isolates we tested to produce AHLs or (b) a strain (or strains) that we were not able to culture but which grows to a high cell density in the rumen produces the AHLs we detected.
Collapse
Affiliation(s)
- D L Erickson
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, AB
| | | | | | | | | | | |
Collapse
|
523
|
Erickson DL, Endersby R, Kirkham A, Stuber K, Vollman DD, Rabin HR, Mitchell I, Storey DG. Pseudomonas aeruginosa quorum-sensing systems may control virulence factor expression in the lungs of patients with cystic fibrosis. Infect Immun 2002; 70:1783-90. [PMID: 11895939 PMCID: PMC127834 DOI: 10.1128/iai.70.4.1783-1790.2002] [Citation(s) in RCA: 224] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Individuals with cystic fibrosis (CF) are commonly colonized with Pseudomonas aeruginosa. The chronic infections caused by P. aeruginosa are punctuated by acute exacerbations of the lung disease, which lead to significant morbidity and mortality. As regulators of virulence determinants, P. aeruginosa quorum-sensing systems may be active in the chronic lung infections associated with CF. We have examined the levels of autoinducer molecules and transcript accumulation from the bacterial populations found in the lungs of patients with CF. We detected biologically active levels of N-(3-oxododecanoyl)-L-homoserine (3-oxo-C12-HSL) and N-butyryl-L-homoserine lactone (C4-HSL) in sputum from CF patients. Interestingly, it appears that C4-HSL is less frequently detected than 3-oxo-C12-HSL in the lungs of patients with CF. We also examined the transcription of the autoinducer synthase gene lasI and showed that it is frequently expressed in the lungs of patients with CF. We observed a significant correlation between the expression of lasI and four target genes of the Las quorum-sensing system. Taken together, our results indicate that quorum-sensing systems are active and may control virulence factor expression in the lungs of patients with CF.
Collapse
Affiliation(s)
- David L Erickson
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | | | | | | | | | | | | | | |
Collapse
|
524
|
Reimmann C, Ginet N, Michel L, Keel C, Michaux P, Krishnapillai V, Zala M, Heurlier K, Triandafillu K, Harms H, Défago G, Haas D. Genetically programmed autoinducer destruction reduces virulence gene expression and swarming motility in Pseudomonas aeruginosa PAO1. MICROBIOLOGY (READING, ENGLAND) 2002; 148:923-932. [PMID: 11932439 DOI: 10.1099/00221287-148-4-923] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Virulence in the opportunistic human pathogen Pseudomonas aeruginosa is controlled by cell density via diffusible signalling molecules ('autoinducers') of the N-acylhomoserine lactone (AHL) type. Two Bacillus sp. isolates (A23 and A24) with AHL-degrading activity were identified among a large collection of rhizosphere bacteria. From isolate A24 a gene was cloned which was similar to the aiiA gene, encoding an AHL lactonase in another Bacillus strain. Expression of the aiiA homologue from isolate A24 in P. aeruginosa PAO1 reduced the amount of the quorum sensing signal N-oxododecanoyl-L-homoserine lactone and completely prevented the accumulation of the second AHL signal, N-butyryl-L-homoserine lactone. This strongly reduced AHL content correlated with a markedly decreased expression and production of several virulence factors and cytotoxic compounds such as elastase, rhamnolipids, hydrogen cyanide and pyocyanin, and strongly reduced swarming. However, no effect was observed on flagellar swimming or on twitching motility, and aiiA expression did not affect bacterial adhesion to a polyvinylchloride surface. In conclusion, introduction of an AHL degradation gene into P. aeruginosa could block cell-cell communication and exoproduct formation, but failed to interfere with surface colonization.
Collapse
Affiliation(s)
- Cornelia Reimmann
- Laboratoire de Biologie Microbienne, Université de Lausanne, CH-1015 Lausanne, Switzerland1
| | - Nathalie Ginet
- Laboratoire de Biologie Microbienne, Université de Lausanne, CH-1015 Lausanne, Switzerland1
| | - Laurent Michel
- Laboratoire de Biologie Microbienne, Université de Lausanne, CH-1015 Lausanne, Switzerland1
| | - Christoph Keel
- Laboratoire de Biologie Microbienne, Université de Lausanne, CH-1015 Lausanne, Switzerland1
| | - Patrick Michaux
- Laboratoire de Biologie Microbienne, Université de Lausanne, CH-1015 Lausanne, Switzerland1
| | - Viji Krishnapillai
- Laboratoire de Biologie Microbienne, Université de Lausanne, CH-1015 Lausanne, Switzerland1
| | - Marcello Zala
- Institut für Pflanzenwissenschaften/Phytopathologie, ETH Zürich, CH-8092 Zürich, Switzerland2
| | - Karin Heurlier
- Laboratoire de Biologie Microbienne, Université de Lausanne, CH-1015 Lausanne, Switzerland1
| | | | - Hauke Harms
- IATE-Pédologie, EPFL, CH 1015 Lausanne, Switzerland3
| | - Geneviève Défago
- Institut für Pflanzenwissenschaften/Phytopathologie, ETH Zürich, CH-8092 Zürich, Switzerland2
| | - Dieter Haas
- Laboratoire de Biologie Microbienne, Université de Lausanne, CH-1015 Lausanne, Switzerland1
| |
Collapse
|
525
|
Wisniewski-Dyé F, Jones J, Chhabra SR, Downie JA. raiIR genes are part of a quorum-sensing network controlled by cinI and cinR in Rhizobium leguminosarum. J Bacteriol 2002; 184:1597-606. [PMID: 11872711 PMCID: PMC134902 DOI: 10.1128/jb.184.6.1597-1606.2002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Analysis of N-acyl-L-homoserine lactones (AHLs) produced by Rhizobium leguminosarum bv. viciae indicated that there may be a network of quorum-sensing regulatory systems producing multiple AHLs in this species. Using a strain lacking a symbiosis plasmid, which carries some of the quorum-sensing genes, we isolated mutations in two genes (raiI and raiR) that are required for production of AHLs. The raiIR genes are located adjacent to dad genes (involved in D-alanine catabolism) on a large indigenous plasmid. RaiR is predicted to be a typical LuxR-type quorum-sensing regulator and is required for raiI expression. The raiR gene was expressed at a low level, possibly from a constitutive promoter, and its expression was increased under the influence of the upstream raiI promoter. Using gene fusions and analysis of AHLs produced, we showed that expression of raiI is strongly reduced in strains carrying mutations in cinI or cinR, genes which determine a higher-level quorum-sensing system that is required for normal expression of raiIR. The product of CinI, N-(3-hydroxy-7-cis tetradecenoyl) homoserine lactone, can induce raiR-dependent raiI expression, although higher levels of expression are induced by other AHLs. Expression of raiI in a strain of Agrobacterium that makes no AHLs resulted in the identification of N-(3-hydroxyoctanoyl)-L-homoserine lactone (3OH,C(8)-HSL) as the major product of RaiI, although other AHLs that comigrate with N-hexanoyl-, N-heptanoyl-, and N-octanoyl-homoserine lactones were also made at low levels. The raiI gene was strongly induced by 3OH,C(8)-HSL (the product of RaiI) but could also be induced by other AHLs, suggesting that the raiI promoter can be activated by other quorum-sensing systems within a network of regulation which also involves AHLs determined by genes on the symbiotic plasmid. Thus, the raiIR and cinIR genes are part of a complex regulatory network that influences AHL biosynthesis in R. leguminosarum.
Collapse
|
526
|
Heeb S, Blumer C, Haas D. Regulatory RNA as mediator in GacA/RsmA-dependent global control of exoproduct formation in Pseudomonas fluorescens CHA0. J Bacteriol 2002; 184:1046-56. [PMID: 11807065 PMCID: PMC134805 DOI: 10.1128/jb.184.4.1046-1056.2002] [Citation(s) in RCA: 266] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Pseudomonas fluorescens CHA0, an antagonist of root-pathogenic fungi, the GacS/GacA two-component system tightly controls the expression of antifungal secondary metabolites and exoenzymes at a posttranscriptional level, involving the RNA-binding protein and global regulator of secondary metabolism RsmA. This protein was purified from P. fluorescens, and RNA bound to it was converted to cDNA, which served as a probe to isolate the corresponding chromosomal locus, rsmZ. This gene encoded a regulatory RNA of 127 nucleotides and a truncated form lacking 35 nucleotides at the 3' end. Expression of rsmZ depended on GacA, increased with increasing population density, and was stimulated by the addition of a solvent-extractable extracellular signal produced by strain CHA0 at the end of exponential growth. This signal appeared to be unrelated to N-acyl-homoserine lactones. A conserved upstream element in the rsmZ promoter, but not the stress sigma factor RpoS, was involved in rsmZ expression. Overexpression of rsmZ effectively suppressed the negative effect of gacS and gacA mutations on target genes, i.e., hcnA (for hydrogen cyanide synthase) and aprA (for the major exoprotease). Mutational inactivation of rsmZ resulted in reduced expression of these target genes in the presence of added signal. Overexpression of rsmA had a similar, albeit stronger negative effect. These results support a model in which GacA upregulates the expression of regulatory RNAs, such as RsmZ of strain CHA0, in response to a bacterial signal. By a titration effect, RsmZ may then alleviate the repressing activity of RsmA on the expression of target mRNAs.
Collapse
Affiliation(s)
- Stephan Heeb
- Laboratoire de Biologie Microbienne, Université de Lausanne, CH-1015 Lausanne, Switzerland
| | | | | |
Collapse
|
527
|
Byers JT, Lucas C, Salmond GPC, Welch M. Nonenzymatic turnover of an Erwinia carotovora quorum-sensing signaling molecule. J Bacteriol 2002; 184:1163-71. [PMID: 11807077 PMCID: PMC134803 DOI: 10.1128/jb.184.4.1163-1171.2002] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2001] [Accepted: 11/09/2001] [Indexed: 11/20/2022] Open
Abstract
The production of virulence factors and carbapenem antibiotic in the phytopathogen Erwinia carotovora is under the control of quorum sensing. The quorum-sensing signaling molecule, N-(3-oxohexanoyl)-L-homoserine lactone (OHHL), accumulates in log-phase culture supernatants of E. carotovora but diminishes in concentration during the stationary phase. In this study, we show that the diminution in OHHL was not due to sequestration of the ligand by the cells, although some partitioning did occur. Rather, it was caused by degradation of the molecule. The rate of stationary-phase degradation of OHHL was as rapid as the rate of log-phase accumulation of the ligand, but it was nonenzymatic and led to a decrease in the expression of selected genes known to be under the control of quorum sensing. The degradation of OHHL was dependent on the pH of the supernatant, which increased as the growth curve progressed in cultures grown in Luria-Bertani medium from pH 7 to approximately 8.5. OHHL became unstable over a narrow pH range (pH 7 to 8). Instability was increased at high temperatures even at neutral pH but could be prevented at the growth temperature (30 degrees C) by buffering the samples at pH 6.8. These results may provide a rationale for the observation that an early response of plants which are under attack by Erwinia is to activate a proton pump which alkalizes the site of infection to a pH of >8.2.
Collapse
Affiliation(s)
- Joseph T Byers
- Department of Biochemistry, Cambridge University, CB2 1QW, Cambridge, United Kingdom
| | | | | | | |
Collapse
|
528
|
Abstract
Quorum sensing is the regulation of gene expression in response to fluctuations in cell-population density. Quorum sensing bacteria produce and release chemical signal molecules called autoinducers that increase in concentration as a function of cell density. The detection of a minimal threshold stimulatory concentration of an autoinducer leads to an alteration in gene expression. Gram-positive and Gram-negative bacteria use quorum sensing communication circuits to regulate a diverse array of physiological activities. These processes include symbiosis, virulence, competence, conjugation, antibiotic production, motility, sporulation, and biofilm formation. In general, Gram-negative bacteria use acylated homoserine lactones as autoinducers, and Gram-positive bacteria use processed oligo-peptides to communicate. Recent advances in the field indicate that cell-cell communication via autoinducers occurs both within and between bacterial species. Furthermore, there is mounting data suggesting that bacterial autoinducers elicit specific responses from host organisms. Although the nature of the chemical signals, the signal relay mechanisms, and the target genes controlled by bacterial quorum sensing systems differ, in every case the ability to communicate with one another allows bacteria to coordinate the gene expression, and therefore the behavior, of the entire community. Presumably, this process bestows upon bacteria some of the qualities of higher organisms. The evolution of quorum sensing systems in bacteria could, therefore, have been one of the early steps in the development of multicellularity.
Collapse
Affiliation(s)
- M B Miller
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544-1014, USA.
| | | |
Collapse
|
529
|
Daniels R, De Vos DE, Desair J, Raedschelders G, Luyten E, Rosemeyer V, Verreth C, Schoeters E, Vanderleyden J, Michiels J. The cin quorum sensing locus of Rhizobium etli CNPAF512 affects growth and symbiotic nitrogen fixation. J Biol Chem 2002; 277:462-8. [PMID: 11677232 DOI: 10.1074/jbc.m106655200] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rhizobium etli CNPAF512 produces an autoinducer that inhibits growth of Rhizobium leguminosarum bv. viciae 248 and activates the Agrobacterium tumefaciens tra reporter system. Production of this compound in R. etli is dependent on two genes, named cinR and cinI, postulated to code for a transcriptional regulator and an autoinducer synthase, respectively. NMR analysis of the purified molecule indicates that the R. etli autoinducer produced by CinI is a saturated long chain 3-hydroxy-acyl-homoserine lactone, abbreviated as 3OH-(slc)-HSL. Using cin-gusA fusions, expression of cinI and cinR was shown to be growth phase-dependent. Deletion analysis of the cinI promoter region indicates that a regulatory element negatively controls cinI expression. Mutational analysis revealed that expression of the cinI gene is positively regulated by the CinR/3OH-(slc)-HSL complex. Besides 3OH-(slc)-HSL, R. etli produces at least six other autoinducer molecules, for which the structures have not yet been revealed, and of which the synthesis requires the previously identified raiI and raiR genes. At least three different autoinducers, including a compound co-migrating with 3OH-(slc)-HSL, are produced in R. etli bacteroids isolated from bean nodules. This is further substantiated by the observation that cinI and cinR are both expressed under symbiotic conditions. Acetylene reduction activity of nodules induced by the cin mutants was reduced with 60-70% compared with wild-type nodules, indicating that the R. etli 3OH-(slc)-HSL is involved in the symbiotic process. This was further confirmed by transmission electron microscopy of nodules induced by the wild type and the cinI mutant. Symbiosomes carrying cinI mutant bacteroids did not fully differentiate compared with wild-type symbiosomes. Finally, it was observed that the cinR gene and raiR control growth of R. etli.
Collapse
Affiliation(s)
- Ruth Daniels
- Centre of Microbial and Plant Genetics, Katholicke Universitat Leuven, Kasteelpark Arenberg 20, B-3001 Heverlee, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
530
|
Steidle A, Sigl K, Schuhegger R, Ihring A, Schmid M, Gantner S, Stoffels M, Riedel K, Givskov M, Hartmann A, Langebartels C, Eberl L. Visualization of N-acylhomoserine lactone-mediated cell-cell communication between bacteria colonizing the tomato rhizosphere. Appl Environ Microbiol 2001; 67:5761-70. [PMID: 11722933 PMCID: PMC93370 DOI: 10.1128/aem.67.12.5761-5770.2001] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Given that a large proportion of the bacteria colonizing the roots of plants is capable of producing N-acyl-L-homoserine lactone (AHL) molecules, it appears likely that these bacterial pheromones may serve as signals for communication between cells of different species. In this study, we have developed and characterized novel Gfp-based monitor strains that allow in situ visualization of AHL-mediated communication between individual cells in the plant rhizosphere. For this purpose, three Gfp-based AHL sensor plasmids that respond to different spectra of AHL molecules were transferred into AHL-negative derivatives of Pseudomonas putida IsoF and Serratia liquefaciens MG1, two strains that are capable of colonizing tomato roots. These AHL monitor strains were used to visualize communication between defined bacterial populations in the rhizosphere of axenically grown tomato plants. Furthermore, we integrated into the chromosome of AHL-negative P. putida strain F117 an AHL sensor cassette that responds to the presence of long-chain AHLs with the expression of Gfp. This monitor strain was used to demonstrate that the indigenous bacterial community colonizing the roots of tomato plants growing in nonsterile soil produces AHL molecules. The results strongly support the view that AHL signal molecules serve as a universal language for communication between the different bacterial populations of the rhizosphere consortium.
Collapse
Affiliation(s)
- A Steidle
- Lehrstuhl für Mikrobiologie, Technische Universität München, D-85350 Freising, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
531
|
Sauer K, Camper AK. Characterization of phenotypic changes in Pseudomonas putida in response to surface-associated growth. J Bacteriol 2001; 183:6579-89. [PMID: 11673428 PMCID: PMC95489 DOI: 10.1128/jb.183.22.6579-6589.2001] [Citation(s) in RCA: 277] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The formation of complex bacterial communities known as biofilms begins with the interaction of planktonic cells with a surface. A switch between planktonic and sessile growth is believed to result in a phenotypic change in bacteria. In this study, a global analysis of physiological changes of the plant saprophyte Pseudomonas putida following 6 h of attachment to a silicone surface was carried out by analysis of protein profiles and by mRNA expression patterns. Two-dimensional (2-D) gel electrophoresis revealed 15 proteins that were up-regulated following bacterial adhesion and 30 proteins that were down-regulated. N-terminal sequence analyses of 11 of the down-regulated proteins identified a protein with homology to the ABC transporter, PotF; an outer membrane lipoprotein, NlpD; and five proteins that were homologous to proteins involved in amino acid metabolism. cDNA subtractive hybridization revealed 40 genes that were differentially expressed following initial attachment of P. putida. Twenty-eight of these genes had known homologs. As with the 2-D gel analysis, NlpD and genes involved in amino acid metabolism were identified by subtractive hybridization and found to be down-regulated following surface-associated growth. The gene for PotB was up-regulated, suggesting differential expression of ABC transporters following attachment to this surface. Other genes that showed differential regulation were structural components of flagella and type IV pili, as well as genes involved in polysaccharide biosynthesis. Immunoblot analysis of PilA and FliC confirmed the presence of flagella in planktonic cultures but not in 12- or 24-h biofilms. In contrast, PilA was observed in 12-h biofilms but not in planktonic culture. Recent evidence suggests that quorum sensing by bacterial homoserine lactones (HSLs) may play a regulatory role in biofilm development. To determine if similar protein profiles occurred during quorum sensing and during early biofilm formation, HSLs extracted from P. putida and pure C(12)-HSL were added to 6-h planktonic cultures of P. putida, and cell extracts were analyzed by 2-D gel profiles. Differential expression of 16 proteins was observed following addition of HSLs. One protein, PotF, was found to be down-regulated by both surface-associated growth and by HSL addition. The other 15 proteins did not correspond to proteins differentially expressed by surface-associated growth. The results presented here demonstrate that P. putida undergoes a global change in gene expression following initial attachment to a surface. Quorum sensing may play a role in the initial attachment process, but other sensory processes must also be involved in these phenotypic changes.
Collapse
Affiliation(s)
- K Sauer
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana 59717, USA
| | | |
Collapse
|
532
|
Pessi G, Williams F, Hindle Z, Heurlier K, Holden MT, Cámara M, Haas D, Williams P. The global posttranscriptional regulator RsmA modulates production of virulence determinants and N-acylhomoserine lactones in Pseudomonas aeruginosa. J Bacteriol 2001; 183:6676-83. [PMID: 11673439 PMCID: PMC95500 DOI: 10.1128/jb.183.22.6676-6683.2001] [Citation(s) in RCA: 262] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Posttranscriptional control is known to contribute to the regulation of secondary metabolism and virulence determinants in certain gram-negative bacteria. Here we report the isolation of a Pseudomonas aeruginosa gene which encodes a global translational regulatory protein, RsmA (regulator of secondary metabolites). Overexpression of rsmA resulted in a substantial reduction in the levels of extracellular products, including protease, elastase, and staphylolytic (LasA protease) activity as well as the PA-IL lectin, hydrogen cyanide (HCN), and the phenazine pigment pyocyanin. While inactivation of rsmA in P. aeruginosa had only minor effects on the extracellular enzymes and the PA-IL lectin, the production of HCN and pyocyanin was enhanced during the exponential phase. The influence of RsmA on N-acylhomoserine lactone-mediated quorum sensing was determined by assaying the levels of N-(3-oxododecanoyl)homoserine lactone (3-oxo-C12-HSL) and N-butanoylhomoserine lactone (C4-HSL) produced by the rsmA mutant and the rsmA-overexpressing strain. RsmA exerted a negative effect on the synthesis of both 3-oxo-C12-HSL and C4-HSL, which was confirmed by using lasI and rhlI translational fusions. These data also highlighted the temporal expression control of the lasI gene, which was induced much earlier and to a higher level during the exponential growth phase in an rsmA mutant. To investigate whether RsmA modulates HCN production solely via quorum-sensing control, hcn translational fusions were employed to monitor the regulation of the cyanide biosynthesis genes (hcnABC). RsmA was shown to exert an additional negative effect on cyanogenesis posttranscriptionally by acting on a region surrounding the hcnA ribosome-binding site. This suggests that, in P. aeruginosa, RsmA functions as a pleiotropic posttranscriptional regulator of secondary metabolites directly and also indirectly by modulating the quorum-sensing circuitry.
Collapse
Affiliation(s)
- G Pessi
- Laboratoire de Biologie Microbienne, Université de Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
533
|
Michael B, Smith JN, Swift S, Heffron F, Ahmer BM. SdiA of Salmonella enterica is a LuxR homolog that detects mixed microbial communities. J Bacteriol 2001; 183:5733-42. [PMID: 11544237 PMCID: PMC95466 DOI: 10.1128/jb.183.19.5733-5742.2001] [Citation(s) in RCA: 225] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proteins of the LuxR family detect the presence of N-acylhomoserine lactones (AHLs) and regulate transcription accordingly. When AHLs are synthesized by the same species that detects them, the system allows a bacterium to measure the population density of its own species, a phenomenon known as quorum sensing. The sdiA genes of Escherichia coli and Salmonella enterica serovar Typhimurium are predicted to encode LuxR homologs. However, these species do not appear to synthesize AHLs or any other molecule detected by SdiA. It has previously been demonstrated that overexpression of sdiA results in the activation of the ftsQAZ locus in E. coli and four other loci in Salmonella serovar Typhimurium. Here we report that transcriptional fusions to these five loci fall into two classes. The first class requires overexpression of sdiA for activation. The second class responds to sdiA expressed from its natural position in the chromosome if the appropriate AHLs are added to the culture. The only member of the second class is a series of Prck-luxCDABE fusions in Salmonella serovar Typhimurium. SdiA responds with highest sensitivity to AHLs that have a keto modification at the third carbon and an acyl chain length of 6 or 8 (half-maximal response between 1 and 5 nM). Growth of Salmonella in proximity to species known to synthesize these AHLs results in sdiA-dependent activation of the Prck-luxCDABE fusions. SdiA appears to be the first AHL receptor discovered that detects signals emanating exclusively from other species.
Collapse
Affiliation(s)
- B Michael
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210-1292, USA
| | | | | | | | | |
Collapse
|
534
|
Huber B, Riedel K, Hentzer M, Heydorn A, Gotschlich A, Givskov M, Molin S, Eberl L. The cep quorum-sensing system of Burkholderia cepacia H111 controls biofilm formation and swarming motility. MICROBIOLOGY (READING, ENGLAND) 2001; 147:2517-2528. [PMID: 11535791 DOI: 10.1099/00221287-147-9-2517] [Citation(s) in RCA: 325] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Burkholderia cepacia and Pseudomonas aeruginosa often co-exist as mixed biofilms in the lungs of patients suffering from cystic fibrosis (CF). Here, the isolation of random mini-Tn5 insertion mutants of B. cepacia H111 defective in biofilm formation on an abiotic surface is reported. It is demonstrated that one of these mutants no longer produces N-acylhomoserine lactones (AHLs) due to an inactivation of the cepR gene. cepR and the cepI AHL synthase gene together constitute the cep quorum-sensing system of B. cepacia. By using a gene replacement method, two defined mutants, H111-I and H111-R, were constructed in which cepI and cepR, respectively, had been inactivated. These mutants were used to demonstrate that biofilm formation by B. cepacia H111 requires a functional cep quorum-sensing system. A detailed quantitative analysis of the biofilm structures formed by wild-type and mutant strains suggested that the quorum-sensing system is not involved in the regulation of initial cell attachment, but rather controls the maturation of the biofilm. Furthermore, it is shown that B. cepacia is capable of swarming motility, a form of surface translocation utilized by various bacteria to rapidly colonize appropriate substrata. Evidence is provided that swarming motility of B. cepacia is quorum-sensing-regulated, possibly through the control of biosurfactant production. Complementation of the cepR mutant H111-R with different biosurfactants restored swarming motility while biofilm formation was not significantly increased. This result suggests that swarming motility per se is not essential for biofilm formation on abiotic surfaces.
Collapse
Affiliation(s)
- Birgit Huber
- Lehrstuhl für Mikrobiologie, Technische Universität München, Am Hochanger 4, 85350 Freising, Germany1
| | - Kathrin Riedel
- Lehrstuhl für Mikrobiologie, Technische Universität München, Am Hochanger 4, 85350 Freising, Germany1
| | - Morten Hentzer
- Department of Microbiology, DTU, Building 301, 2800 Lyngby, Denmark2
| | - Arne Heydorn
- Department of Microbiology, DTU, Building 301, 2800 Lyngby, Denmark2
| | - Astrid Gotschlich
- Lehrstuhl für Mikrobiologie, Technische Universität München, Am Hochanger 4, 85350 Freising, Germany1
| | - Michael Givskov
- Department of Microbiology, DTU, Building 301, 2800 Lyngby, Denmark2
| | - Søren Molin
- Department of Microbiology, DTU, Building 301, 2800 Lyngby, Denmark2
| | - Leo Eberl
- Lehrstuhl für Mikrobiologie, Technische Universität München, Am Hochanger 4, 85350 Freising, Germany1
| |
Collapse
|
535
|
El-Sayed AK, Hothersall J, Thomas CM. Quorum-sensing-dependent regulation of biosynthesis of the polyketide antibiotic mupirocin in Pseudomonas fluorescens NCIMB 10586. MICROBIOLOGY (READING, ENGLAND) 2001; 147:2127-2139. [PMID: 11495990 DOI: 10.1099/00221287-147-8-2127] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mupirocin (pseudomonic acid) is a polyketide antibiotic, targeting isoleucyl-tRNA synthase, and produced by Pseudomonas fluorescens NCIMB 10586. It is used clinically as a topical treatment for staphylococcal infections, particularly in contexts where there is a problem with methicillin-resistant Staphylococcus aureus (MRSA). In studying the mupirocin biosynthetic cluster the authors identified two putative regulatory genes, mupR and mupI, whose predicted amino acid sequences showed significant identity to proteins involved in quorum-sensing-dependent regulatory systems such as LasR/LuxR (transcriptional activators) and LasI/LuxI (synthases for N-acylhomoserine lactones--AHLs--that activate LasR/LuxR). Inactivation by deletion mutations using a suicide vector strategy confirmed the requirement for both genes in mupirocin biosynthesis. Cross-feeding experiments between bacterial strains as well as solvent extraction showed that, as predicted, wild-type P. fluorescens NCIMB 10586 produces a diffusible substance that overcomes the defect of a mupI mutant. Use of biosensor strains showed that the MupI product can activate the Pseudomonas aeruginosa lasRlasI system and that P. aeruginosa produces one or more compounds that can replace the MupI product. Insertion of a xylE reporter gene into mupA, the first ORF of the mupirocin biosynthetic operon, showed that together mupR/mupI control expression of the operon in such a way that the cluster is switched on late in exponential phase and in stationary phase.
Collapse
Affiliation(s)
- A Kassem El-Sayed
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK1
| | - Joanne Hothersall
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK1
| | - Christopher M Thomas
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK1
| |
Collapse
|
536
|
Whitehead NA, Barnard AM, Slater H, Simpson NJ, Salmond GP. Quorum-sensing in Gram-negative bacteria. FEMS Microbiol Rev 2001; 25:365-404. [PMID: 11524130 DOI: 10.1111/j.1574-6976.2001.tb00583.x] [Citation(s) in RCA: 927] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
It has become increasingly and widely recognised that bacteria do not exist as solitary cells, but are colonial organisms that exploit elaborate systems of intercellular communication to facilitate their adaptation to changing environmental conditions. The languages by which bacteria communicate take the form of chemical signals, excreted from the cells, which can elicit profound physiological changes. Many types of signalling molecules, which regulate diverse phenotypes across distant genera, have been described. The most common signalling molecules found in Gram-negative bacteria are N-acyl derivatives of homoserine lactone (acyl HSLs). Modulation of the physiological processes controlled by acyl HSLs (and, indeed, many of the non-acyl HSL-mediated systems) occurs in a cell density- and growth phase-dependent manner. Therefore, the term 'quorum-sensing' has been coined to describe this ability of bacteria to monitor cell density before expressing a phenotype. In this paper, we review the current state of research concerning acyl HSL-mediated quorum-sensing. We also describe two non-acyl HSL-based systems utilised by the phytopathogens Ralstonia solanacearum and Xanthomonas campestris.
Collapse
Affiliation(s)
- N A Whitehead
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Building O, Downing Site, CB2 1QW, Cambridge, UK
| | | | | | | | | |
Collapse
|
537
|
Milton DL, Chalker VJ, Kirke D, Hardman A, Cámara M, Williams P. The LuxM homologue VanM from Vibrio anguillarum directs the synthesis of N-(3-hydroxyhexanoyl)homoserine lactone and N-hexanoylhomoserine lactone. J Bacteriol 2001; 183:3537-47. [PMID: 11371516 PMCID: PMC95229 DOI: 10.1128/jb.183.12.3537-3547.2001] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio anguillarum, which causes terminal hemorrhagic septicemia in fish, was previously shown to possess a LuxRI-type quorum-sensing system (vanRI) and to produce N-(3-oxodecanoyl)homoserine lactone (3-oxo-C10-HSL). However, a vanI null mutant still activated N-acylhomoserine lactone (AHL) biosensors, indicating the presence of an additional quorum-sensing circuit in V. anguillarum. In this study, we have characterized this second system. Using high-pressure liquid chromatography in conjunction with mass spectrometry and chemical analysis, we identified two additional AHLs as N-hexanoylhomoserine lactone (C6-HSL) and N-(3-hydroxyhexanoyl)homoserine lactone (3-hydroxy-C6-HSL). Quantification of each AHL present in stationary-phase V. anguillarum spent culture supernatants indicated that 3-oxo-C10-HSL, 3-hydroxy-C6-HSL, and C6-HSL are present at approximately 8.5, 9.5, and 0.3 nM, respectively. Furthermore, vanM, the gene responsible for the synthesis of these AHLs, was characterized and shown to be homologous to the luxL and luxM genes, which are required for the production of N-(3-hydroxybutanoyl)homoserine lactone in Vibrio harveyi. However, resequencing of the V. harveyi luxL/luxM junction revealed a sequencing error present in the published sequence, which when corrected resulted in a single open reading frame (termed luxM). Downstream of vanM, we identified a homologue of luxN (vanN) that encodes a hybrid sensor kinase which forms part of a phosphorelay cascade involved in the regulation of bioluminescence in V. harveyi. A mutation in vanM abolished the production of C6-HSL and 3-hydroxy-C6-HSL. In addition, production of 3-oxo-C10-HSL was abolished in the vanM mutant, suggesting that 3-hydroxy-C6-HSL and C6-HSL regulate the production of 3-oxo-C10-HSL via vanRI. However, a vanN mutant displayed a wild-type AHL profile. Neither mutation affected either the production of proteases or virulence in a fish infection model. These data indicate that V. anguillarum possesses a hierarchical quorum sensing system consisting of regulatory elements homologous to those found in both V. fischeri (the LuxRI homologues VanRI) and V. harveyi (the LuxMN homologues, VanMN).
Collapse
Affiliation(s)
- D L Milton
- Department of Cell and Molecular Biology, Umeå University, S-901 87 Umeå, Sweden.
| | | | | | | | | | | |
Collapse
|
538
|
Hornby JM, Jensen EC, Lisec AD, Tasto JJ, Jahnke B, Shoemaker R, Dussault P, Nickerson KW. Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Appl Environ Microbiol 2001; 67:2982-92. [PMID: 11425711 PMCID: PMC92970 DOI: 10.1128/aem.67.7.2982-2992.2001] [Citation(s) in RCA: 679] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The inoculum size effect in the dimorphic fungus Candida albicans results from production of an extracellular quorum-sensing molecule (QSM). This molecule prevents mycelial development in both a growth morphology assay and a differentiation assay using three chemically distinct triggers for germ tube formation (GTF): L-proline, N-acetylglucosamine, and serum (either pig or fetal bovine). In all cases, the presence of QSM prevents the yeast-to-mycelium conversion, resulting in actively budding yeasts without influencing cellular growth rates. QSM exhibits general cross-reactivity within C. albicans in that supernatants from strain A72 are active on five other strains of C. albicans and vice versa. The QSM excreted by C. albicans is farnesol (C(15)H(26)O; molecular weight, 222.37). QSM is extracellular, and is produced continuously during growth and over a temperature range from 23 to 43 degrees C, in amounts roughly proportional to the CFU/milliliter. Production is not dependent on the type of carbon source nor nitrogen source or on the chemical nature of the growth medium. Both commercial mixed isomer and (E,E)-farnesol exhibited QSM activity (the ability to prevent GTF) at a level sufficient to account for all the QSM activity present in C. albicans supernatants, i.e., 50% GTF at ca. 30 to 35 microM. Nerolidol was ca. two times less active than farnesol. Neither geraniol (C(10)), geranylgeraniol (C(20)), nor farnesyl pyrophosphate had any QSM activity.
Collapse
Affiliation(s)
- J M Hornby
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588-0666, USA
| | | | | | | | | | | | | | | |
Collapse
|
539
|
Lutter E, Lewenza S, Dennis JJ, Visser MB, Sokol PA. Distribution of quorum-sensing genes in the Burkholderia cepacia complex. Infect Immun 2001; 69:4661-6. [PMID: 11402012 PMCID: PMC98545 DOI: 10.1128/iai.69.7.4661-4666.2001] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The distribution of quorum-sensing genes among strains from seven genomovars of the Burkholderia cepacia complex was examined by PCR. cepR and cepI were amplified from B. cepacia genomovars I and III, B. stabilis, and B. vietnamiensis. cepR was also amplified from B. multivorans and B. cepacia genomovar VI. bviIR were amplified from B. vietnamiensis. All genomovars produced N-octanoyl-L-homoserine lactone and N-hexanoyl-L-homoserine lactone. B. vietnamiensis and B. cepacia genomovar VII produced additional N-acyl-L-homoserine lactones.
Collapse
Affiliation(s)
- E Lutter
- Department of Microbiology and Infectious Diseases, University of Calgary Health Sciences Center, Calgary, Alberta, Canada T2N 4N1
| | | | | | | | | |
Collapse
|
540
|
Luo ZQ, Farrand SK. The Agrobacterium tumefaciens rnd homolog is required for TraR-mediated quorum-dependent activation of Ti plasmid tra gene expression. J Bacteriol 2001; 183:3919-30. [PMID: 11395455 PMCID: PMC95274 DOI: 10.1128/jb.183.13.3919-3930.2001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2001] [Accepted: 04/09/2001] [Indexed: 11/20/2022] Open
Abstract
Conjugal transfer of Agrobacterium tumefaciens Ti plasmids is regulated by quorum sensing via TraR and its cognate autoinducer, N-(3-oxo-octanoyl)-L-homoserine lactone. We isolated four Tn5-induced mutants of A. tumefaciens C58 deficient in TraR-mediated activation of tra genes on pTiC58DeltaaccR. These mutations also affected the growth of the bacterium but had no detectable influence on the expression of two tester gene systems that are not regulated by quorum sensing. In all four mutants Tn5 was inserted in a chromosomal open reading frame (ORF) coding for a product showing high similarity to RNase D, coded for by rnd of Escherichia coli, an RNase known to be involved in tRNA processing. The wild-type allele of the rnd homolog cloned from C58 restored the two phenotypes to each mutant. Several ORFs, including a homolog of cya2, surround A. tumefaciens rnd, but none of these genes exerted a detectable effect on the expression of the tra reporter. In the mutant, traR was expressed from the Ti plasmid at a level about twofold lower than that in NT1. The expression of tra, but not the growth rate, was partially restored by increasing the copy number of traR or by disrupting traM, a Ti plasmid gene coding for an antiactivator specific for TraR. The mutation in rnd also slightly reduced expression of two tested vir genes but had no detectable effect on tumor induction by this mutant. Our data suggest that the defect in tra gene induction in the mutants results from lowered levels of TraR. In turn, production of sufficient amounts of TraR apparently is sensitive to a cellular function requiring RNase D.
Collapse
Affiliation(s)
- Z Q Luo
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | |
Collapse
|
541
|
Zhu H, Thuruthyil SJ, Willcox MD. Production of N-acyl homoserine lactones by gram-negative bacteria isolated from contact lens wearers. Clin Exp Ophthalmol 2001; 29:150-2. [PMID: 11446456 DOI: 10.1046/j.1442-9071.2001.00397.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The purpose of this study was to investigate the production of N-acyl-homoserine lactone (AHL) signal molecules in ocular gram-negative bacteria. A total of 91 ocular strains isolated from contact lens adverse response patients and asymptomatic subjects were used in the study. These included Acinetobacter, Aeromonas hydrophila, Escherichia coli, Haemophilus influenzae, Klebsiella oxytoca, Pseudomonas aeruginosa, Serratia liquefaciens, Serratia marcescens, and Stenotrophomonas maltophilia. The biosensor strains Chromobacterium violaceum mutant CV026 and Agrobacterium tumefaciens A136 were used for detection of AHL signal molecules. The majority of A. hydrophila, P. aeruginosa, and S. liquefaciens strains produced more than one AHL molecule. Serratia marcescens strains were AHL positive only under detection of A136. The rest of the test species did not show any AHL production under the current detection system. These findings indicate that AHL-mediated quorum-sensing systems are present in some of the ocular bacteria, and the different signal molecules may be involved with the quorum-sensing pathway in the other bacterial species.
Collapse
Affiliation(s)
- H Zhu
- Cooperative Research Centre for Eye Research and Technology, The University of New South Wales, Sydney, Australia.
| | | | | |
Collapse
|
542
|
Gotschlich A, Huber B, Geisenberger O, Tögl A, Steidle A, Riedel K, Hill P, Tümmler B, Vandamme P, Middleton B, Camara M, Williams P, Hardman A, Eberl L. Synthesis of multiple N-acylhomoserine lactones is wide-spread among the members of the Burkholderia cepacia complex. Syst Appl Microbiol 2001; 24:1-14. [PMID: 11403388 DOI: 10.1078/0723-2020-00013] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Seventy strains of the Burkholderia cepacia complex, which currently comprises six genomic species, were tested for their ability to produce N-acylhomoserine lactone (AHL) signal molecules. Using thin layer chromatography in conjunction with a range of AHL biosensors, we show that most strains primarily produce two AHLs, namely N-octanoylhomoserine lactone (C8-HSL) and N-hexanoylhomoserine lactone (C6-HSL). Furthermore, some strains belonging to B. vietnamiensis (genomovar V) produce additional long chain AHL molecules with acyl chains ranging from C10 to C14. For B. vietnamiensis R-921 the structure of the most abundant long chain AHL was confirmed as N-decanoylhomoserine lactone (C10-HSL) by liquid chromatography-mass spectrometry (LC-MS) in combination with total chemical synthesis. Interestingly, a number of strains, most notably all representatives of B. multivorans (genomovar II), did not produce AHLs at least under the growth conditions used in this study. All strains were also screened for the production of extracellular lipase, chitinase, protease, and siderophores. However, no correlation between the AHL production and the synthesis of these exoproducts was apparent. Southern blot analysis showed that all the B. cepacia complex strains investigated, including the AHL-negative strains, possess genes homologous to the C8-HSL synthase cepI and to cepR, which encodes the cognate receptor protein. The nucleotide sequence of the cepI and cepR genes from one representative strain from each of the six genomovars was determined. Furthermore, the cepI genes from the different genomovars were expressed in Escherichia coli and it is demonstrated that all genes encode functional proteins that direct the synthesis of C8-HSL and C6-HSL. Given that cepI from the B. multivorans strain encodes a functional AHL synthase, yet detectable levels of AHLs were not produced by the wild-type, this suggests that additional regulatory functions may be present in members of this genomovar that negatively affect expression of cepI.
Collapse
Affiliation(s)
- A Gotschlich
- Lehrstuhl für Mikrobiologie, Technische Universität München, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
543
|
Lewenza S, Sokol PA. Regulation of ornibactin biosynthesis and N-acyl-L-homoserine lactone production by CepR in Burkholderia cepacia. J Bacteriol 2001; 183:2212-8. [PMID: 11244059 PMCID: PMC95126 DOI: 10.1128/jb.183.7.2212-2218.2001] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The CepR-CepI quorum-sensing system has been shown to regulate production of the siderophore ornibactin, extracellular proteases, and N-octanoyl-homoserine-L-lactone (OHL) in Burkholderia cepacia strain K56-2. To examine the effect of cepIR on production of other siderophores, cepR mutants were constructed in strains that produce pyochelin in addition to salicylic acid and ornibactins. Pc715j-R1 (cepR::tp) hyperproduced ornibactin but produced parental levels of pyochelin and salicylic acid, suggesting that CepR is a negative regulator of ornibactin synthesis but not pyochelin or salicylic acid. Pc715j-R1 was also protease deficient and OHL negative. The effects of cepR on ornibactin biosynthetic genes were examined by constructing cepR pvdA-lacZ and cepR pvdD-lacZ mutants and monitoring beta-galactosidase activity. There was an increase in expression of pvdA in the cepR mutant compared to the level in its parent strain in both low- and high-iron media during stationary phase. When the outer membrane protein profiles of a cepR mutant and the wild-type strain were compared on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, there did not appear to be any difference in levels of expression of the ornibactin receptor. Experiments with cepI-lacZ and cepR-lacZ transcriptional fusions indicated that cepI was not expressed in the cepR mutant and that cepR acts as a negative regulator of its own expression. By a thin-layer chromatography assay for N-acyl homoserine lactones, OHL and N-hexanoyl-L-homoserine lactone (HHL) were detectable in K56-2 and Pc715j, both wild-type strains. OHL was not detectable and HHL was only weakly detectable in the cepI and cepR mutants. These results suggest that CepR is both a positive and negative transcriptional regulator and that CepR may influence the expression of ornibactin biosynthetic genes in addition to the expression of the cepIR quorum-sensing system.
Collapse
Affiliation(s)
- S Lewenza
- Department of Microbiology and Infectious Diseases, University of Calgary Health Sciences Center, Calgary, Alberta, Canada T2N 4N1
| | | |
Collapse
|
544
|
Ravn L, Christensen AB, Molin S, Givskov M, Gram L. Methods for detecting acylated homoserine lactones produced by Gram-negative bacteria and their application in studies of AHL-production kinetics. J Microbiol Methods 2001; 44:239-51. [PMID: 11240047 DOI: 10.1016/s0167-7012(01)00217-2] [Citation(s) in RCA: 209] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the process of evaluating the role of acylated homoserine lactones (AHLs) in food-spoiling Gram-negative bacteria, we have combined a range of bacterial AHL monitor systems to determine the AHL-profile and the kinetics of AHL-production. AHL production from 148 strains of Enterobacteriaceae isolated from foods was tested using Escherichia coli pSB403 (LuxR), Agrobacterium tumefaciens A136 (TraR) and both induction and inhibition of Chromobacterium violaceum CV026 (CviR). All strains except one was found to produce AHL(s). In no case could a single monitor system identify more than 64% of the Enterobacteriaceae as AHL-producers, showing that the simultaneous use of monitor strains is required in the process of screening bacterial populations for AHL-production. AHLs from 20 selected strains were profiled by thin layer chromatography. Most strains produced more than one AHL with 3-N-oxo-hexanoyl homoserine lactone being the most prominent. It was found that the simultaneous use of monitor strains in the top-layer was necessary for the detection of (presumably) all the AHLs. An agar well-diffusion assay based on A. tumefaciens pDZLR4 was used for quantifying AHLs from bacterial supernatants and enabled an assessment of the kinetics of AHL-production of 3 strains (Serratia proteamaculans strain B5a, Erwinia carotovora ATCC 39048 and V. fischeri strain MJ-1). As expected, the production of AHL (OHHL) and luminescence in Vibrio fischeri strain MJ-1 increased faster than growth indicating up-regulation of the AHL regulated phenotype and auto-induction of AHL production. In contrast, production kinetics of AHL (OHHL) in the two Enterobacteriaceae indicated lack of auto-induction.
Collapse
Affiliation(s)
- L Ravn
- Department of Seafood Research, Danish Institute for Fisheries Research, Søltofts Plads, c/o Technical University of Denmark bldg. 221, DK-2800 Kgs. Lyngby, Denmark.
| | | | | | | | | |
Collapse
|
545
|
González RH, Nusblat A, Nudel BC. Detection and characterization of quorum sensing signal molecules in Acinetobacter strains. Microbiol Res 2001; 155:271-7. [PMID: 11297357 DOI: 10.1016/s0944-5013(01)80004-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Quorum sensing is a widespread regulatory mechanism among Gram-negative bacteria. In this study, Acinetobacter strains were assayed for the presence of quorum sensing signal molecules capable of activating N-acylhomoserine lactone biosensors. By using an Agrobacterium tumefaciens reporter strain it was shown that all the cultures produced two to four detectable signal molecules with different chromatographic patterns. In A. calcoaceticus BD413 supernatants four compounds were detected in a time-dependent manner, and maximal activity was reached at stationary phase. The number of signal molecules was dependent on medium composition; typically, cultures in minimal medium displayed one or two more signals, as compared to complex medium. None of the Acinetobacter supematants showed autoinduction activity with an Chromobacterium violaceum reporter strain, neither in direct or competition assays.
Collapse
Affiliation(s)
- R H González
- Department of Industrial Microbiology and Biotechnology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Argentina
| | | | | |
Collapse
|
546
|
Elasri M, Delorme S, Lemanceau P, Stewart G, Laue B, Glickmann E, Oger PM, Dessaux Y. Acyl-homoserine lactone production is more common among plant-associated Pseudomonas spp. than among soilborne Pseudomonas spp. Appl Environ Microbiol 2001; 67:1198-209. [PMID: 11229911 PMCID: PMC92714 DOI: 10.1128/aem.67.3.1198-1209.2001] [Citation(s) in RCA: 187] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A total of 137 soilborne and plant-associated bacterial strains belonging to different Pseudomonas species were tested for their ability to synthesize N-acyl-homoserine lactones (NAHL). Fifty-four strains synthesized NAHL. Interestingly, NAHL production appears to be more common among plant-associated than among soilborne Pseudomonas spp. Indeed, 40% of the analyzed Pseudomonas syringae strains produced NAHL which were identified most often as the short-chain NAHL, N-hexanoyl-L-homoserine lactone, N-(3-oxo-hexanoyl)-homoserine lactone, and N-(3-oxo-octanoyl)-L-homoserine lactone (no absolute correlation between genomospecies of P. syringae and their ability to produce NAHL could be found). Six strains of fluorescent pseudomonads, belonging to the species P. chlororaphis, P. fluorescens, and P. putida, isolated from the plant rhizosphere produced different types of NAHL. In contrast, none of the strains isolated from soil samples were shown to produce NAHL. The gene encoding the NAHL synthase in P. syringae pv. maculicola was isolated by complementation of an NAHL-deficient Chromobacterium mutant. Sequence analysis revealed the existence of a luxI homologue that we named psmI. This gene is sufficient to confer NAHL synthesis upon its bacterial host and has strong homology to psyI and ahlI, two genes involved in NAHL production in P. syringae pv. tabaci and P. syringae pv. syringae, respectively. We identified another open reading frame that we termed psmR, transcribed convergently in relation to psmI and partly overlapping psmI; this gene encodes a putative LuxR regulatory protein. This gene organization, with luxI and luxR homologues facing each other and overlapping, has been found so far only in the enteric bacteria Erwinia and Pantoea and in the related species P. syringae pv. tabaci.
Collapse
Affiliation(s)
- M Elasri
- Institut des Sciences Végétales, CNRS UPR040, 91198 Gif-sur-Yvette Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
547
|
Andersen JB, Heydorn A, Hentzer M, Eberl L, Geisenberger O, Christensen BB, Molin S, Givskov M. gfp-based N-acyl homoserine-lactone sensor systems for detection of bacterial communication. Appl Environ Microbiol 2001; 67:575-85. [PMID: 11157219 PMCID: PMC92623 DOI: 10.1128/aem.67.2.575-585.2001] [Citation(s) in RCA: 231] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In order to perform single-cell analysis and online studies of N-acyl homoserine lactone (AHL)-mediated communication among bacteria, components of the Vibrio fischeri quorum sensor encoded by luxR-P(luxI) have been fused to modified versions of gfpmut3* genes encoding unstable green fluorescent proteins. Bacterial strains harboring this green fluorescent sensor detected a broad spectrum of AHL molecules and were capable of sensing the presence of 5 nM N-3-oxohexanoyl-L-homoserine lactone in the surroundings. In combination with epifluorescent microscopy, the sensitivity of the sensor enabled AHL detection at the single-cell level and allowed for real-time measurements of fluctuations in AHL concentrations. This green fluorescent AHL sensor provides a state-of-the-art tool for studies of communication between the individuals present in mixed bacterial communities.
Collapse
Affiliation(s)
- J B Andersen
- Department of Microbiology, The Technical University of Denmark, DK-2800 Lyngby, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
548
|
Qin Y, Luo ZQ, Smyth AJ, Gao P, Beck von Bodman S, Farrand SK. Quorum-sensing signal binding results in dimerization of TraR and its release from membranes into the cytoplasm. EMBO J 2000; 19:5212-21. [PMID: 11013223 PMCID: PMC302097 DOI: 10.1093/emboj/19.19.5212] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2000] [Revised: 08/01/2000] [Accepted: 08/07/2000] [Indexed: 11/13/2022] Open
Abstract
Promoter binding by TraR and LuxR, the activators of two bacterial quorum-sensing systems, requires their cognate acyl-homoserine lactone (acyl-HSL) signals, but the role the signal plays in activating these transcription factors is not known. Soluble active TraR, when purified from cells grown with the acyl-HSL, contained bound signal and was solely in dimer form. However, genetic and cross-linking studies showed that TraR is almost exclusively in monomer form in cells grown without signal. Adding signal resulted in dimerization of the protein in a concentration-dependent manner. In the absence of signal, monomer TraR localized to the inner membrane while growth with the acyl-HSL resulted in the appearance of dimer TraR in the cytoplasmic compartment. Affinity chromatography indicated that the N-terminus of TraR from cells grown without signal is hidden. Analysis of heterodimers formed between TraR and its deletion mutants localized the dimerization domain to a region between residues 49 and 156. We conclude that binding signal drives dimerization of TraR and its release from membranes into the cytoplasm.
Collapse
Affiliation(s)
- Y Qin
- Department of Crop Sciences, 1201 West Gregory Drive, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | | | |
Collapse
|
549
|
Laue BE, Jiang Y, Chhabra SR, Jacob S, Stewart GSAB, Hardman A, Downie JA, O'Gara F, Williams P. The biocontrol strain Pseudomonas fluorescens F113 produces the Rhizobium small bacteriocin, N-(3-hydroxy-7-cis-tetradecenoyl)homoserine lactone, via HdtS, a putative novel N-acylhomoserine lactone synthase. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 10):2469-2480. [PMID: 11021923 DOI: 10.1099/00221287-146-10-2469] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Several different species of Pseudomonas: produce N:-acylhomoserine lactones (AHLs), quorum-sensing signal molecules which are involved in the cell-density-dependent control of secondary metabolite and virulence gene expression. When Pseudomonas fluorescens F113 was cross-streaked against AHL biosensors capable of sensitively detecting either short (C(4)-C(8)) or long (C(10)-C(14)) acyl chain AHLs, no activity was detectable. However, by extracting cell-free stationary-phase culture supernatants with dichloromethane followed by reverse-phase HPLC, three distinct fractions were obtained capable of activating the AHL biosensors. Three AHLs were subsequently characterized using high-resolution MS and chemical synthesis. These were (i) N:-(3-hydroxy-7-cis-tetradecenoyl)homoserine lactone (3OH, C(14:1)-HSL), a molecule previously known as the Rhizobium leguminosarum small bacteriocin as a consequence of its growth inhibitory properties, (ii) N:-decanoylhomoserine lactone (C(10)-HSL) and (iii) N:-hexanoylhomoserine lactone (C(6)-HSL). A gene (hdtS) capable of directing synthesis of all three P. fluorescens AHLs in Escherichia coli was cloned and sequenced. In vitro transcription/translation of hdtS yielded a protein of approximately 33 kDa capable of directing the synthesis of 3OH, C(14:1)-HSL, C(10)-HSL and C(6)-HSL in E. coli. HdtS does not belong to either of the known AHL synthase families (LuxI or LuxM) and is related to the lysophosphatidic acid acyltransferase family. HdtS may therefore constitute a member of a third protein family capable of AHL biosynthesis.
Collapse
Affiliation(s)
- Bridget E Laue
- School of Pharmaceutical Sciences, University of Nottingham, Nottingham NG7 2RD, UK1
| | - Yan Jiang
- School of Pharmaceutical Sciences, University of Nottingham, Nottingham NG7 2RD, UK1
| | - Siri Ram Chhabra
- School of Pharmaceutical Sciences, University of Nottingham, Nottingham NG7 2RD, UK1
| | - Sinead Jacob
- Biomerit Research Centre, Department of Microbiology, National University of Ireland, Cork, Ireland2
| | - Gordon S A B Stewart
- School of Pharmaceutical Sciences, University of Nottingham, Nottingham NG7 2RD, UK1
| | - Andrea Hardman
- School of Pharmaceutical Sciences, University of Nottingham, Nottingham NG7 2RD, UK1
| | | | - Fergal O'Gara
- Biomerit Research Centre, Department of Microbiology, National University of Ireland, Cork, Ireland2
| | - Paul Williams
- School of Pharmaceutical Sciences, University of Nottingham, Nottingham NG7 2RD, UK1
| |
Collapse
|
550
|
Charlton TS, de Nys R, Netting A, Kumar N, Hentzer M, Givskov M, Kjelleberg S. A novel and sensitive method for the quantification of N-3-oxoacyl homoserine lactones using gas chromatography-mass spectrometry: application to a model bacterial biofilm. Environ Microbiol 2000; 2:530-41. [PMID: 11233161 DOI: 10.1046/j.1462-2920.2000.00136.x] [Citation(s) in RCA: 235] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A method is reported for the quantification of 3-oxoacyl homoserine lactones (3-oxo AHLs), a major class of quorum-sensing signals found in Gram-negative bacteria. It is based on the conversion of 3-oxo AHLs to their pentafluorobenzyloxime derivatives followed by gas chromatography-mass spectrometry (electron capture-negative ion). The method used [13C16]-N-3-oxo-dodecanoyl homoserine lactone ([13C16]-OdDHL) as the internal standard, and its validity was tested by spiking the supernatant and cell fractions with three levels of 3-oxo AHLs, i.e. 1, 10 and 100 ng per sample. These showed the method to be both sensitive (S/N ratio >10:1 for 1 ng) and accurate. The assay was applied to the biofilm and effluent of a green fluorescent protein (GFP)-expressing strain of Pseudomonas aeruginosa (6294) culture grown in flow cells. Biofilm volume was determined for three replicate flow cells by confocal scanning laser microscopy. OdDHL was detected in the biofilm at 632 +/- 381 microM and the effluent at 14 +/- 3 nM. The biofilm concentration is the highest level so far reported for an AHL in a wild-type bacterial system. The next most abundant 3-oxo AHL in the biofilm and effluent was N-3-oxo-tetradecanoyl homoserine lactone (OtDHL) at 40 +/- 15 microM and 1.5 +/- 0.7 nM respectively. OtDHL is unreported for P. aeruginosa and has an activity equivalent to OdDHL in a lasR bioassay. Two other 3-oxo AHLs were detected at lower concentrations: N3-oxo-decanoyl homoserine lactone (ODHL) in the biofilm (3 +/- 2 microM) and effluent (1 +/- 0.1 nM); and N-3-oxo-octanoyl homoserine lactone (OOHL) in the effluent (0.1 +/- 0.1 nM).
Collapse
Affiliation(s)
- T S Charlton
- School of Microbiology and Immunology, University of New South Wales, Australia
| | | | | | | | | | | | | |
Collapse
|