501
|
PI3K Blockade by Ad-PTEN Inhibits Invasion and Induces Apoptosis in Radial Growth Phase and Metastatic Melanoma Cells. Mol Med 2002. [DOI: 10.1007/bf03402025] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
502
|
Oki S, Limnander A, Danial NN, Rothman PB. Functional involvement of Akt signaling downstream of Jak1 in v-Abl-induced activation of hematopoietic cells. Blood 2002; 100:966-73. [PMID: 12130510 DOI: 10.1182/blood.v100.3.966] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Activation of intracellular signaling pathways is important for cellular transformation and tumorigenesis. The nonreceptor tyrosine kinases Jak1 and Jak3, which bind to the v-Abl oncoprotein, are constitutively activated in cells transformed with the Abelson murine leukemia virus. A mutant of p160 v-Abl lacking the Jak1-binding region (v-Abl Delta858-1080) has a significant defect in Jak/STAT (signal transducers and activators of transcription) activation, cytokine-independent cell growth/survival, and tumorigenesis. To identify the pathways downstream of Jak kinases in v-Abl-mediated signaling, we examined the activation of several signaling molecules by p160 v-Abl or the v-Abl Delta858-1080 mutant. We demonstrate that, in addition to the decreased Ras activation, signaling through phosphatidylinositol-3 kinase and Akt are impaired in cells expressing mutant v-Abl. The proliferative defect of v-Abl Delta858-1080 was rescued by activated v-Akt and was also moderately rescued by activated v-H-Ras. However, constitutive active phosphatidylinositol-3 kinase (p110CAAX) did not complement this effect. Cells expressing v-Abl Delta858-1080 demonstrated reduced tumor formation in nude mice. In contrast, cells coexpressing v-Akt with v-Abl Delta858-1080 demonstrated reduced latency and increased frequency of tumor formation in nude nice compared with cells expressing v-Abl Delta858-1080 alone, whereas v-H-Ras or p110CAAX had minimum effects on tumor formation. These results suggest that Jak1-dependent Akt activation is important in v-Abl-mediated transformation.
Collapse
Affiliation(s)
- Shinji Oki
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032-3702, USA
| | | | | | | |
Collapse
|
503
|
Squarize CH, Castilho RM, Santos Pinto D. Immunohistochemical evidence of PTEN in oral squamous cell carcinoma and its correlation with the histological malignancy grading system. J Oral Pathol Med 2002; 31:379-84. [PMID: 12224530 DOI: 10.1034/j.1600-0714.2002.00142.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
PTEN is a tumor suppressor gene that encodes a dual phosphatase protein capable of modulating membrane receptors and interaction of the cell and extracellular stimuli. PTEN regulates cell physiology such as division, differentiation/apoptosis and also migration and adhesion. The expression of PTEN was evaluated by immunohistochemistry in OSCC and compared to a well-established histological malignancy grading system. The well-differentiated OSCC were 59.1% and poorly differentiated were 40.9%. According to PTEN expression, the cases were 45.5% positive (the entire tumor showed stained), 22.7% mixed (both negative and positive cells were present) and 31.8% negative (no staining was seen in the tumor cells). PTEN expression in OSCC was related to the malignancy grade (P < 0.0005). Aggressive tumors with a high score of malignancy did not express PTEN, and clearly, the PTEN expression was present in the epithelium adjacent to the tumor. Negative cells were in the invasion border of the tumor. This result suggests that PTEN is related to histologic pattern and biological behavior of OSCC and may be a used as a prognostic marker in the future. The role of PTEN during carcinogenesis and as a biomarker should be further investigated.
Collapse
Affiliation(s)
- Cristiane Helena Squarize
- Department of Oral Pathology, School of Dentistry, University of São Paulo, Sao Paulo, 05508-900, Brazil
| | | | | |
Collapse
|
504
|
Manning BD, Tee AR, Logsdon MN, Blenis J, Cantley LC. Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol Cell 2002; 10:151-62. [PMID: 12150915 DOI: 10.1016/s1097-2765(02)00568-3] [Citation(s) in RCA: 1217] [Impact Index Per Article: 52.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The S/T-protein kinases activated by phosphoinositide 3-kinase (PI3K) regulate a myriad of cellular processes. Here, we show that an approach using a combination of biochemistry and bioinformatics can identify substrates of these kinases. This approach identifies the tuberous sclerosis complex-2 gene product, tuberin, as a potential target of Akt/PKB. We demonstrate that, upon activation of PI3K, tuberin is phosphorylated on consensus recognition sites for PI3K-dependent S/T kinases. Moreover, Akt/PKB can phosphorylate tuberin in vitro and in vivo. We also show that S939 and T1462 of tuberin are PI3K-regulated phosphorylation sites and that T1462 is constitutively phosphorylated in PTEN(-/-) tumor-derived cell lines. Finally, we find that a tuberin mutant lacking the major PI3K-dependent phosphorylation sites can block the activation of S6K1, suggesting a means by which the PI3K-Akt pathway regulates S6K1 activity.
Collapse
Affiliation(s)
- Brendan D Manning
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
505
|
Bastola DR, Pahwa GS, Lin MF, Cheng PW. Downregulation of PTEN/MMAC/TEP1 expression in human prostate cancer cell line DU145 by growth stimuli. Mol Cell Biochem 2002; 236:75-81. [PMID: 12190124 DOI: 10.1023/a:1016191913274] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Genetic alterations and/or deletion of the tumor suppressor gene PTEN/MMAC/TEP1 occur in many types of human cancer including prostate cancer. We describe the production of monoclonal antibody against recombinant human PTEN and the study of PTEN gene and protein expression in three commercially available human prostate cancer cell lines, PC-3, LNCaP, and DU 145. Northern blotting analyses showed that LNCaP and DU145 but not PC-3 cells expressed PTEN mRNA. However, Western blotting analyses using a monoclonal antibody against PTEN demonstrated the expression of PTEN protein in DU145 but not LNCaP cells. In DU 145 cells, PTEN expression at both the mRNA and protein levels inversely correlated with serum concentrations and levels of PKB/Akt phosphorylation. In addition, the basal activity of PKB/Akt as indicated by level of phosphorylation was higher in prostate cancer cells which do not express PTEN than that in the cells expressing wild type PTEN. Thus, PTEN may play a critical role in regulating cellular signaling in prostate cancer cells.
Collapse
Affiliation(s)
- Dhundy R Bastola
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha 68198-4525, USA
| | | | | | | |
Collapse
|
506
|
Wang L, Ignat A, Axiotis CA. Differential expression of the PTEN tumor suppressor protein in fetal and adult neuroendocrine tissues and tumors: progressive loss of PTEN expression in poorly differentiated neuroendocrine neoplasms. Appl Immunohistochem Mol Morphol 2002; 10:139-46. [PMID: 12051632 DOI: 10.1097/00129039-200206000-00008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Genetic alteration and loss of expression of tumor suppressor gene PTEN has been found in carcinomas of the breast, prostate, and endometrium, as well as in gliomas. PTEN expression in neural crest/neuroendocrine (NC/NE) tissues and in neoplasms has not been reported. This study examines PTEN expression in embryonal, fetal, and adult tissues by immunohistochemistry. The authors found high PTEN expression in embryonal, fetal, and adult NC/NE tissues. The authors also study the PTEN expression in NC/NE neoplasms (N = 37), including 5 melanocytic nevi, 2 melanomas, 9 carcinoids, 2 moderately differentiated neuroendocrine carcinomas, 13 poorly differentiated neuroendocrine carcinomas, 2 paragangliomas, 2 pheochromocytomas, 2 medullary thyroid carcinomas, and 1 neuroblastoma. All carcinoid tumors and melanocytic nevi showed moderate or strong immunostaining for PTEN. In contrast, the majority of poorly differentiated neuroendocrine carcinomas (7 of 13) were negative for PTEN (54%); the remainder showed diminished reactivity. The two melanomas studied were also negative for PTEN immunostaining. The paragangliomas, pheochromocytomas, medullary thyroid carcinomas, and neuroblastoma all showed a strong PTEN stain. The authors postulate that PTEN is a differentiation marker for NC/NE tissue and tumors and that loss of PTEN expression may represent an important step in the progression of NE tumors.
Collapse
Affiliation(s)
- Luoquan Wang
- Department of Pathology, State University of New York, Brooklyn 11202-2098, USA
| | | | | |
Collapse
|
507
|
Stiles B, Gilman V, Khanzenzon N, Lesche R, Li A, Qiao R, Liu X, Wu H. Essential role of AKT-1/protein kinase B alpha in PTEN-controlled tumorigenesis. Mol Cell Biol 2002; 22:3842-51. [PMID: 11997518 PMCID: PMC133830 DOI: 10.1128/mcb.22.11.3842-3851.2002] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2001] [Revised: 01/08/2002] [Accepted: 02/15/2002] [Indexed: 11/20/2022] Open
Abstract
PTEN is mutated at high frequency in many primary human cancers and several familial cancer predisposition disorders. Activation of AKT is a common event in tumors in which the PTEN gene has been inactivated. We previously showed that deletion of the murine Pten gene in embryonic stem (ES) cells led to increased phosphatidylinositol triphosphate (PIP(3)) accumulation, enhanced entry into S phase, and better cell survival. Since PIP(3) controls multiple signaling molecules, it was not clear to what degree the observed phenotypes were due to deregulated AKT activity. In this study, we mutated Akt-1 in Pten(-/-) ES cells to directly assess the role of AKT-1 in PTEN-controlled cellular processes, such as cell proliferation, cell survival, and tumorigenesis in nude mice. We showed that AKT-1 is one of the major downstream effectors of PTEN in ES cells and that activation of AKT-1 is required for both the cell survival and cell proliferation phenotypes observed in Pten(-/-) ES cells. Deletion of Akt-1 partially reverses the aggressive growth of Pten(-/-) ES cells in vivo, suggesting that AKT-1 plays an essential role in PTEN-controlled tumorigenesis.
Collapse
Affiliation(s)
- Bangyan Stiles
- Howard Hughes Medical Institute and Department of Molecular and Medical Pharmacology, UCLA School of Medicine, Los Angeles, California 90095-1735, USA
| | | | | | | | | | | | | | | |
Collapse
|
508
|
Abstract
Shallow gradients of chemoattractants, sensed by G protein-linked signaling pathways, elicit localized binding of PH domains specific for PI(3,4,5)P3 at sites on the membrane where rearrangements of the cytoskeleton and pseudopod extension occur. Disruption of the PI 3-phosphatase, PTEN, in Dictyostelium discoideum dramatically prolonged and broadened the PH domain relocation and actin polymerization responses, causing the cells lacking PTEN to follow a circuitous route toward the attractant. Exogenously expressed PTEN-GFP localized to the surface membrane at the rear of the cell. Membrane localization required a putative PI(4,5)P2 binding motif and was required for chemotaxis. These results suggest that specific phosphoinositides direct actin polymerization to the cell's leading edge and regulation of PTEN through a feedback loop plays a critical role in gradient sensing and directional migration.
Collapse
Affiliation(s)
- Miho Iijima
- Department of Cell Biology, Johns Hopkins University, School of Medicine, 21205, Baltimore, MD, USA
| | | |
Collapse
|
509
|
Olashaw N, Pledger WJ. Paradigms of growth control: relation to Cdk activation. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2002; 2002:re7. [PMID: 12034920 DOI: 10.1126/stke.2002.134.re7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The cyclin-dependent kinases (CDKs) play a key role in cell cycle control, and in this review, we focus on the events that regulate their activities. Emphasis is placed on the CDKs that function during the G(1) phase of the cell cycle and on the CDK inhibitor p27(Kip1). We discuss how CDK activation relates to two basic concepts of cell cycle regulation: (i) the need for multiple mitogens for the proliferation of nontransformed cells and (ii) the inhibitory effect of high culture density on proliferative capacity. We also describe how Cdk2 modulates the expression of the alpha subunit of the interleukin-2 receptor in T cells, and address the question of whether p27(Kip1) functions as an activator or inhibitor of the CDKs associated with the D cyclins.
Collapse
Affiliation(s)
- Nancy Olashaw
- Molecular Oncology Program, H. Lee Moffitt Cancer Center and Research Institute, Department of Interdisciplinary Oncology, University of South Florida College of Medicine, Tampa, FL 33612, USA
| | | |
Collapse
|
510
|
|
511
|
Abstract
Protein kinase B or Akt (PKB/Akt) is a serine/threonine kinase, which in mammals comprises three highly homologous members known as PKBalpha (Akt1), PKBbeta (Akt2), and PKBgamma (Akt3). PKB/Akt is activated in cells exposed to diverse stimuli such as hormones, growth factors, and extracellular matrix components. The activation mechanism remains to be fully characterised but occurs downstream of phosphoinositide 3-kinase (PI-3K). PI-3K generates phosphatidylinositol-3,4,5-trisphosphate (PIP(3)), a lipid second messenger essential for the translocation of PKB/Akt to the plasma membrane where it is phosphorylated and activated by phosphoinositide-dependent kinase-1 (PDK-1) and possibly other kinases. PKB/Akt phosphorylates and regulates the function of many cellular proteins involved in processes that include metabolism, apoptosis, and proliferation. Recent evidence indicates that PKB/Akt is frequently constitutively active in many types of human cancer. Constitutive PKB/Akt activation can occur due to amplification of PKB/Akt genes or as a result of mutations in components of the signalling pathway that activates PKB/Akt. Although the mechanisms have not yet been fully characterised, constitutive PKB/Akt signalling is believed to promote proliferation and increased cell survival and thereby contributing to cancer progression. This review surveys recent developments in understanding the mechanisms and consequences of PKB/Akt activation in human malignancy.
Collapse
Affiliation(s)
- Karleen M Nicholson
- Division of Cancer Studies, School of Medicine, University of Manchester, G.38, Stopford Building, Oxford Road, M13 9PT, Manchester, UK
| | | |
Collapse
|
512
|
Li L, Liu F, Salmonsen RA, Turner TK, Litofsky NS, Di Cristofano A, Pandolfi PP, Jones SN, Recht LD, Ross AH. PTEN in neural precursor cells: regulation of migration, apoptosis, and proliferation. Mol Cell Neurosci 2002; 20:21-9. [PMID: 12056837 DOI: 10.1006/mcne.2002.1115] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
PTEN is a lipid phosphatase, and PTEN mutations are associated with gliomas, macrocephaly, and mental deficiencies. We have used PTEN +/- mice to assess PTEN's role in subventricular zone (SVZ) precursor cells. For cultured SVZ neurosphere cells, haploinsufficiency for PTEN increases phosphorylation of Akt and forkhead transcription factor and slightly enhances proliferation. Based on a filter penetration assay, PTEN +/- cells are substantially more migratory and invasive than +/+ cells. The +/- cells also are more resistant to H(2)O(2)-induced apoptosis. Analysis of PTEN +/- and +/+ mice by BrdU labeling reveals no difference in the rate of cell proliferation in the SVZ. Exit of BrdU-labeled cells from the SVZ and radial migration to the outer layers of the olfactory bulb are more rapid for +/- cells. These observations indicate that PTEN regulates SVZ precursor cell function and is particularly important for migration and apoptosis in response to oxidative stress.
Collapse
Affiliation(s)
- Li Li
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester 01605, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
513
|
Flachon V, Tonoli H, Selmi-Ruby S, Durand C, Rabilloud R, Rousset B, Munari-Silem Y. Thyroid cell proliferation in response to forced expression of gap junction proteins. Eur J Cell Biol 2002; 81:243-52. [PMID: 12067060 DOI: 10.1078/0171-9335-00245] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gap junctions are known to play a role in the control of cell proliferation, and connexins (Cx) are considered to be tumor suppressors. However, the effects of Cx on cell proliferation are dependent on the Cx which is expressed and on the cell type under consideration. We previously found that restoration of cell-to-cell communication by stable transfection of two independent thyroid-derived cell lines, FRTL-5 and FRT cells, with the Cx32 gene induced a marked reduction of their proliferation rate. This study aimed i) at determining whether Cx43, which is coexpressed with Cx32 by thyroid epithelial cells, exerts the same action as Cx32 on cell proliferation and ii) at identifying alterations of the cell cycle control system that might account for the Cx32-induced proliferation slowdown in thyrocytes. In contrast with previous data on different epithelial cell types, we report that restoration of intercellular communication in FRTL-5 and FRT cells by stable expression of Cx43 did not modify their proliferation properties. Cell cycle analyses revealed that the Cx32-induced proliferation slow-down was related to a lengthening of the G1 phase. The level of expression of two regulatory proteins of the Cip/Kip cyclin-dependent kinase inhibitor family, p27kip1 and p2cip1, was increased in the two cell lines expressing Cx32. In conclusion, Cx32 and Cx43, physiologically coexpressed by thyrocytes, have a differential impact on thyroid cell proliferation in vitro. The cyclin-dependent kinase inhibitors, p27kip1 and p21cip1 might represent cell cycle effectors relaying the down-regulatory effect of Cx32 on the proliferation of thyroid epithelial cells.
Collapse
Affiliation(s)
- Virginie Flachon
- Institut National de la Santé et de la Recherche Médicale, Faculté de Médecine Lyon-RTH Laennec, France
| | | | | | | | | | | | | |
Collapse
|
514
|
Levine RA, Forest T, Smith C. Tumor suppressor PTEN is mutated in canine osteosarcoma cell lines and tumors. Vet Pathol 2002; 39:372-8. [PMID: 12014501 DOI: 10.1354/vp.39-3-372] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Canine osteosarcoma (OS) cell lines contain mutations that directly or indirectly inactivate the tumor suppressor genes p53 and retinoblastoma. Another important tumor suppressor, PTEN, is mutated in many human cancers. To determine whether inactivation of PTEN plays a role in the pathogenesis of canine OS, we studied its expression in canine OS cell lines and tumors. Four of five canine OS cell lines (CO2, C03, CO5, and CO7) constitutively express high levels of the phosphorylated form of Akt, an indirect indicator of aberrant PTEN expression. PTEN protein is essentially absent from three of these cell lines (CO2, CO5, and CO7), whereas C03 contains a potentially inactivating amino acid substitution in PTEN at codon 340. Genomic hybridization experiments indicate that CO2, CO5, and CO7 contain large deletions within the PTEN gene. Ten of 15 OS tumors exhibit variable or negative PTEN staining. Evaluation of a PTEN-negative staining tumor by Southern blotting indicates that the PTEN gene is deleted in this tumor. These results indicate that PTEN is mutated or downregulated in a high percentage of canine OS cell lines and tumors and likely plays an important role in the pathogenesis of the disease.
Collapse
MESH Headings
- Animals
- Blotting, Northern/veterinary
- Blotting, Southern/veterinary
- Blotting, Western/veterinary
- Bone Neoplasms/genetics
- Bone Neoplasms/pathology
- Bone Neoplasms/veterinary
- DNA, Neoplasm/chemistry
- DNA, Neoplasm/genetics
- Dog Diseases/pathology
- Dogs
- Female
- Gene Expression Regulation, Neoplastic
- Immunohistochemistry/veterinary
- Male
- Mutation
- Nucleic Acid Hybridization
- Osteosarcoma/genetics
- Osteosarcoma/pathology
- Osteosarcoma/veterinary
- PTEN Phosphohydrolase
- Phosphoric Monoester Hydrolases/biosynthesis
- Phosphoric Monoester Hydrolases/genetics
- Phosphoric Monoester Hydrolases/metabolism
- RNA, Neoplasm/chemistry
- RNA, Neoplasm/genetics
- Sequence Analysis, DNA
- Tumor Cells, Cultured
- Tumor Suppressor Proteins/biosynthesis
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/metabolism
Collapse
Affiliation(s)
- R A Levine
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| | | | | |
Collapse
|
515
|
Schmidt-Weber CB, Wohlfahrt JG, Akdis CA, Blaser K. The phosphatidylinositol phosphatase PTEN is under control of costimulation and regulates proliferation in human T cells. Eur J Immunol 2002; 32:1196-204. [PMID: 11932928 DOI: 10.1002/1521-4141(200204)32:4<1196::aid-immu1196>3.0.co;2-k] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The phosphatidylinositol phosphatase gene PTEN is a dual specific phosphatase acting on phospho amino acids but also on three phosphorylated inositol phospholipids. Present results demonstrate that PTEN is inducible by costimulatory signals in human CD4(+) T cells. PTEN expression was up-regulated on RNA and protein level in freshly isolated human CD4(+) T cells following stimulation with CD28 or CD2. In contrast, PTEN expression was high but remained CD28 and CD2 unresponsive in lymphoma cells. Intracellular staining revealed PTEN expression in CD4(+) T cell populations stimulated with anti-CD28 or anti-CD28 / anti-CD3. Stimulation with anti-CD3 alone did not induce PTEN expression. Inhibition of PTEN expression by antisense oligonucleotides in CD4(+) T cells stimulated with non-mitogenic anti-CD28 resulted in massively increased proliferation, which was sensitive to the phosphatidylinositol 3-kinase (PI3 K) inhibitor wortmannin. Although CD28 and CD2 induce PI3 K signal transduction, wortmannin did not block PTEN up-regulation by CD28 or CD2 indicating that PTEN gene expression is PI3 K independent. These results demonstrate that PTEN negatively controls costimulatory signals by antagonizing PI3 K activity in the absence of TCR engagement.
Collapse
MESH Headings
- Adult
- Androstadienes/pharmacology
- CD2 Antigens/physiology
- CD28 Antigens/physiology
- CD4-Positive T-Lymphocytes/cytology
- CD4-Positive T-Lymphocytes/enzymology
- Cell Cycle
- Cell Division/physiology
- Cells, Cultured/cytology
- Cells, Cultured/enzymology
- Enzyme Activation
- Enzyme Induction
- Enzyme Inhibitors/pharmacology
- Humans
- Lymphocyte Activation
- Lymphoma, T-Cell/genetics
- Lymphoma, T-Cell/metabolism
- Lymphoma, T-Cell/pathology
- Oligodeoxyribonucleotides, Antisense/pharmacology
- PTEN Phosphohydrolase
- Phosphatidylinositol 3-Kinases/physiology
- Phosphoinositide-3 Kinase Inhibitors
- Phosphoric Monoester Hydrolases/biosynthesis
- Phosphoric Monoester Hydrolases/genetics
- Phosphoric Monoester Hydrolases/physiology
- RNA, Messenger/biosynthesis
- Receptors, Antigen, T-Cell/immunology
- Signal Transduction/drug effects
- Thionucleotides/pharmacology
- Tumor Cells, Cultured/cytology
- Tumor Cells, Cultured/enzymology
- Tumor Suppressor Proteins/biosynthesis
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/physiology
- Wortmannin
Collapse
|
516
|
Abstract
The PTEN tumour suppressor protein is a phosphoinositide 3-phosphatase that, by metabolising phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3)), acts in direct antagonism to growth factor stimulated PI 3-kinases. A wealth of data has now illuminated pathways that can be controlled by PTEN through PtdIns(3,4,5)P(3), some of which, when deregulated, give a selective advantage to tumour cells. Early studies of PTEN showed that its activity was able to promote cell cycle arrest and apoptosis and inhibit cell motility, but more recent data have identified other functional consequences of PTEN action, such as effects on the regulation of angiogenesis. The structure of PTEN includes several features not seen in related protein phosphatases, which adapt the enzyme to act efficiently as a lipid phosphatase, including a C2 domain tightly associated with the phosphatase domain, and a broader and deeper active site pocket. Several pieces of data indicate that PTEN is a principal regulator of the cellular levels of PtdIns(3,4,5)P(3), but work is only just beginning to uncover mechanisms by which the cellular activity of PTEN can be controlled. There also remains the vexing question of whether any of PTEN's cellular functions reflect its evolutionary roots as a member of the protein tyrosine phosphatase superfamily.
Collapse
Affiliation(s)
- Nick R Leslie
- Division of Cell Signalling, School of Life Sciences, Medical Sciences Institute, University of Dundee, DD1 5EH Scotland, Dundee, UK.
| | | |
Collapse
|
517
|
Wang H, Douglas W, Lia M, Edelmann W, Kucherlapati R, Podsypanina K, Parsons R, Ellenson LH. DNA mismatch repair deficiency accelerates endometrial tumorigenesis in Pten heterozygous mice. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 160:1481-6. [PMID: 11943731 PMCID: PMC1867211 DOI: 10.1016/s0002-9440(10)62573-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PTEN mutation and microsatellite instability are two of the most common genetic alterations in uterine endometrioid carcinoma. Furthermore, previous studies have suggested an association between the two alterations, however the basis and consequence of the association is not understood. Recently it has been shown that 100% of female Pten(+/-) mice develop complex atypical hyperplasia by 32 weeks of age that progresses to endometrial carcinoma in approximately 20 to 25% of mice at 40 weeks. In an attempt to expand this mouse model of endometrial tumorigenesis and to further our understanding of the association betweenPten mutations and DNA mismatch repair deficiency, we generated Ptenheterozygous, Mlh1-null (mismatch repair deficient) mice. Significantly, the majority ofPten(+/-)/Mlh1(-/-)mice developed polypoid lesions in the endometrium at 6 to 9 weeks of age. By 14 to 18 weeks, all of the double-mutant mice had lesions histologically similar to those seen inPten(+/-) mice, and two of them exhibited invasive disease. Moreover, the frequency of loss of the wild-type Pten allele in the double-mutant mice at 14 to 18 weeks was similar to that seen in lesions from 40-week-old Pten(+/-) mice. Taken together, our results indicate that DNA mismatch repair deficiency can accelerate endometrial tumorigenesis inPten heterozygous mice and suggests that loss of the wild-type Pten allele is involved in the development/progression of tumors in this setting.
Collapse
Affiliation(s)
- Hong Wang
- Department of Pathology, Weill Medical Collegeof Cornell University, New York
| | | | | | | | | | | | | | | |
Collapse
|
518
|
Huang J, Kontos CD. PTEN modulates vascular endothelial growth factor-mediated signaling and angiogenic effects. J Biol Chem 2002; 277:10760-6. [PMID: 11784722 DOI: 10.1074/jbc.m110219200] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Phosphatidylinositol 3-kinase is activated by vascular endothelial growth factor (VEGF), and many of the angiogenic cellular responses of VEGF are regulated by the lipid products of phosphatidylinositol 3-kinase. The tumor suppressor PTEN has been shown to down-regulate phosphatidylinositol 3-kinase signaling, yet the effects of PTEN on VEGF-mediated signaling and angiogenesis are unknown. Inhibition of endogenous PTEN in cultured endothelial cells by adenovirus-mediated overexpression of a dominant negative PTEN mutant (PTEN-C/S) enhanced VEGF-mediated Akt phosphorylation, and this effect correlated with decreases in caspase-3 cleavage, caspase-3 activity, and DNA degradation after induction of apoptosis with tumor necrosis factor-alpha. Overexpression of PTEN-C/S also enhanced VEGF-mediated endothelial cell proliferation and migration. In contrast, overexpression of wild-type PTEN inhibited the anti-apoptotic, proliferative, and chemotactic effects of VEGF. Moreover, PTEN-C/S increased the length of vascular sprouts in the rat aortic ring assay and modulated VEGF-mediated tube formation in an in vitro angiogenesis assay, whereas PTEN-wild type inhibited these effects. Taken together, these findings demonstrate that PTEN potently modulates VEGF-mediated signaling and function and that PTEN is a viable target in therapeutic approaches to promote or inhibit angiogenesis.
Collapse
Affiliation(s)
- Jianhua Huang
- Department of Medicine, Division of Cardiology and Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
519
|
Nguyen KT, Zong CS, Uttamsingh S, Sachdev P, Bhanot M, Le MT, Chan JLK, Wang LH. The role of phosphatidylinositol 3-kinase, rho family GTPases, and STAT3 in Ros-induced cell transformation. J Biol Chem 2002; 277:11107-15. [PMID: 11799110 DOI: 10.1074/jbc.m108166200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Using loss-of-function mutants of Ros and inducible epidermal growth factor receptor-Ros chimeras we investigated the role of various signaling pathways in Ros-induced cell transformation. Inhibition of the mitogen-activated protein kinase (MAPK) pathway with the MEK (MAP/extracellular signal-regulated kinase kinase) inhibitor PD98059 had little effect on the Ros-induced monolayer and anchorage-independent growth of chicken embryo fibroblasts and NIH3T3 cells even though more than 70% of the MAPK was inhibited. In contrast, inhibiting the phosphatidylinositol 3-kinase (PI3K) pathway with the drug LY294002, a dominant negative mutant of PI3K, Deltap85, or the phosphatidylinositol phosphatase PTEN (phosphatase and tensin homologue deleted in chromosome ten) resulted in a dramatic reduction of v-Ros- and epidermal growth factor receptor-Ros-promoted anchorage-independent growth of chicken embryo fibroblasts and NIH3T3 cells, respectively. Parallel and downstream components of PI3K signaling such as the Rho family GTPases (Rac, Rho, Cdc42) and the survival factor Akt were all shown to contribute to Ros-induced anchorage-independent growth, although Rac appeared to be less important for Ros-induced colony formation in NIH3T3 cells. Furthermore, the transformation-attenuated v-Ros mutants F419 and DI could be complemented by constitutively active mutants of PI3K and Akt. Finally, we found that overexpressing a constitutively active mutant of STAT3 (STAT3C) conferred a resistance to the inhibition of Ros-induced anchorage-independent growth by LY294002, suggesting a possible overlap of functions between PI3K and STAT3 signaling in mediating Ros-induced anchorage-independent growth.
Collapse
Affiliation(s)
- Kevin T Nguyen
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | | | | | |
Collapse
|
520
|
Abstract
Protein tyrosine phosphatases (PTPs) are a diverse group of enzymes that contain a highly conserved active site motif, Cys-x5-Arg (Cx5R). The PTP superfamily enzymes, which include tyrosine-specific, dual specificity, low-molecular-weight, and Cdc25 phosphatases, are key mediators of a wide variety of cellular processes, including growth, metabolism, differentiation, motility, and programmed cell death. The PTEN/MMAC1/TEP1 gene was originally identified as a candidate tumor suppressor gene located on human chromosome 10q23; it encodes a protein with sequence similarity to PTPs and tensin. Recent studies have demonstrated that PTEN plays an essential role in regulating signaling pathways involved in cell growth and apoptosis, and mutations in the PTEN gene are now known to cause tumorigenesis in a number of human tissues. In addition, germ line mutations in the PTEN gene also play a major role in the development of Cowden and Bannayan-Zonana syndromes, in which patients often suffer from increased risk of breast and thyroid cancers. Biochemical studies of the PTEN phosphatase have revealed a molecular mechanism by which tumorigenesis may be caused in individuals with PTEN mutations. Unlike most members of the PTP superfamily, PTEN utilizes the phosphoinositide second messenger, phosphatidylinositol 3,4,5-trisphosphate (PIP3), as its physiologic substrate. This inositol lipid is an important regulator of cell growth and survival signaling through the Ser/Thr protein kinases PDK1 and Akt. By specifically dephosphorylating the D3 position of PIP3, the PTEN tumor suppressor functions as a negative regulator of signaling processes downstream of this lipid second messenger. Mutations that impair PTEN function result in a marked increase in cellular levels of PIP3 and constitutive activation of Akt survival signaling pathways, leading to inhibition of apoptosis, hyperplasia, and tumor formation. Certain structural features of PTEN contribute to its specificity for PIP3, as well as its role(s) in regulating cellular proliferation and apoptosis. Recently, myotubularin, a second PTP superfamily enzyme associated with human disease, has also been shown to utilize a phosphoinositide as its physiologic substrate.
Collapse
Affiliation(s)
- T Maehama
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0606, USA.
| | | | | |
Collapse
|
521
|
Vanhaesebroeck B, Leevers SJ, Ahmadi K, Timms J, Katso R, Driscoll PC, Woscholski R, Parker PJ, Waterfield MD. Synthesis and function of 3-phosphorylated inositol lipids. Annu Rev Biochem 2002; 70:535-602. [PMID: 11395417 DOI: 10.1146/annurev.biochem.70.1.535] [Citation(s) in RCA: 1218] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The 3-phosphorylated inositol lipids fulfill roles as second messengers by interacting with the lipid binding domains of a variety of cellular proteins. Such interactions can affect the subcellular localization and aggregation of target proteins, and through allosteric effects, their activity. Generation of 3-phosphoinositides has been documented to influence diverse cellular pathways and hence alter a spectrum of fundamental cellular activities. This review is focused on the 3-phosphoinositide lipids, the synthesis of which is acutely triggered by extracellular stimuli, the enzymes responsible for their synthesis and metabolism, and their cell biological roles. Much knowledge has recently been gained through structural insights into the lipid kinases, their interaction with inhibitors, and the way their 3-phosphoinositide products interact with protein targets. This field is now moving toward a genetic dissection of 3-phosphoinositide action in a variety of model organisms. Such approaches will reveal the true role of the 3-phosphoinositides at the organismal level in health and disease.
Collapse
Affiliation(s)
- B Vanhaesebroeck
- Ludwig Institute for Cancer Research, Riding House Street, London W1W 7BS.
| | | | | | | | | | | | | | | | | |
Collapse
|
522
|
Stocker H, Andjelkovic M, Oldham S, Laffargue M, Wymann MP, Hemmings BA, Hafen E. Living with lethal PIP3 levels: viability of flies lacking PTEN restored by a PH domain mutation in Akt/PKB. Science 2002; 295:2088-91. [PMID: 11872800 DOI: 10.1126/science.1068094] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The phosphoinositide phosphatase PTEN is mutated in many human cancers. Although the role of PTEN has been studied extensively, the relative contributions of its numerous potential downstream effectors to deregulated growth and tumorigenesis remain uncertain. We provide genetic evidence in Drosophila melanogaster for the paramount importance of the protein kinase Akt [also called protein kinase B (PKB)] in mediating the effects of increased phosphatidylinositol 3,4,5-trisphosphate (PIP3) concentrations that are caused by the loss of PTEN function. A mutation in the pleckstrin homology (PH) domain of Akt that reduces its affinity for PIP3 sufficed to rescue the lethality of flies devoid of PTEN activity. Thus, Akt appears to be the only critical target activated by increased PIP3 concentrations in Drosophila.
Collapse
Affiliation(s)
- Hugo Stocker
- Zoologisches Institut der Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
523
|
Kim MJ, Cardiff RD, Desai N, Banach-Petrosky WA, Parsons R, Shen MM, Abate-Shen C. Cooperativity of Nkx3.1 and Pten loss of function in a mouse model of prostate carcinogenesis. Proc Natl Acad Sci U S A 2002; 99:2884-9. [PMID: 11854455 PMCID: PMC122442 DOI: 10.1073/pnas.042688999] [Citation(s) in RCA: 240] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Mouse models have provided significant insights into the molecular mechanisms of tumor suppressor gene function. Here we use mouse models of prostate carcinogenesis to demonstrate that the Nkx3.1 homeobox gene undergoes epigenetic inactivation through loss of protein expression. Loss of function of Nkx3.1 in mice cooperates with loss of function of the Pten tumor suppressor gene in cancer progression. This cooperativity results in the synergistic activation of Akt (protein kinase B), a key modulator of cell growth and survival. Our findings underscore the significance of interactions between tissue-specific regulators such as Nkx3.1 and broad-spectrum tumor suppressors such as Pten in contributing to the distinct phenotypes of different cancers.
Collapse
Affiliation(s)
- Minjung J Kim
- Center for Advanced Biotechnology and Medicine and Department of Neuroscience, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | |
Collapse
|
524
|
Abstract
The PTEN/MMAC1/TEP1 gene (phosphatase and tensin homolog deleted on chromosome 10/mutated in multiple advanced cancers/TGF-beta regulated and epithelial cell enriched phosphatase 1), which regulates the signaling pathways of Akt, is a novel tumor suppressor gene implicated in multiple cancers. Because a number of tumor suppressor genes are known to be silenced by aberrant promoter methylation, we examined the methylation status of the 5' CpG islands of PTEN using methylation-specific PCR. The altered expression of PTEN in 310 gastric carcinomas was analyzed by immunohistochemical staining using tissue-array and clinicopathologic profiles related to PTEN expression were characterized. Of 310 consecutive gastric carcinomas, 62 cases (20%) showed expression loss of PTEN. Altered PTEN expression was significantly associated with tumor depth and size, lymphatic invasion, advanced stage, pTNM stage, and patient survival (p < 0.001). The promoter methylation frequency of PTEN was found to be present in 26 (39%) of 66 cases examined, and 19 (73%) of 26 gastric cancer tissues showing promoter methylation exhibited the loss of PTEN expression. Abnormalities in the expression of PTEN significantly correlated with promoter methylation (p < 0.001). In conclusion, silencing of the PTEN gene occurs frequently in gastric carcinoma and aberrant promoter methylation is a major mechanism of silencing of the PTEN gene. The abnormalities of the PTEN gene are associated with tumor progression, metastasis, and survival.
Collapse
Affiliation(s)
- Young-Hwa Kang
- Cancer Research Institute, Seoul National University College of Medicine and BK21 Project for Medicine, Dentistry and Pharmacy, Seoul, Korea
| | | | | |
Collapse
|
525
|
Affiliation(s)
- Key-Sun Kim
- Life Sciences Division, KIST, Cheongyang Box 131, Seoul 130-650, Korea.
| |
Collapse
|
526
|
Abstract
The serine/threonine kinase Akt has been intensely studied for its role in growth factor-mediated cell survival for the past 5 years. On the other hand, the ongoing research effort has recently uncovered novel regulatory mechanisms and downstream effectors of Akt that demonstrate the involvement of Akt in other cellular functions such as cell cycle progression, angiogenesis, and cancer cell invasion/metastasis. Furthermore, recent studies using whole model organisms suggest additional roles for Akt in important diseases such as aging and diabetes. The following review addresses these recent advances in the understanding of Akt function.
Collapse
Affiliation(s)
- Dohoon Kim
- National Creative Research Initiatives Center for Cell Growth Regulation, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Taejon 305-701, Korea
| | | |
Collapse
|
527
|
Abstract
The development of cancer requires multiple genetic alterations perturbing distinct cellular pathways. In human cancers, these alterations often arise owing to mutations in tumor-suppressor genes whose normal function is to either inhibit the proliferation, apoptosis, or differentiation of cells, or maintain their genomic integrity. Mouse models for tumor suppressors frequently provide definitive evidence for the antitumorigenic functions of these genes. In addition, animal models permit the identification of previously unsuspected roles of these genes in development and differentiation. The availability of null and tissue-specific mouse mutants for tumor-suppressor genes has greatly facilitated our understanding of the mechanisms leading to cancer. In this review, we describe mouse models for tumor-suppressor genes.
Collapse
Affiliation(s)
- R Hakem
- Amgen Institute, Ontario Cancer Institute and the University of Toronto, Toronto, Ontario, Canada M5G 2C1
| | | |
Collapse
|
528
|
Katso R, Okkenhaug K, Ahmadi K, White S, Timms J, Waterfield MD. Cellular function of phosphoinositide 3-kinases: implications for development, homeostasis, and cancer. Annu Rev Cell Dev Biol 2002; 17:615-75. [PMID: 11687500 DOI: 10.1146/annurev.cellbio.17.1.615] [Citation(s) in RCA: 948] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The phosphoinositide 3-kinase (PI3K) family of enzymes is recruited upon growth factor receptor activation and produces 3' phosphoinositide lipids. The lipid products of PI3K act as second messengers by binding to and activating diverse cellular target proteins. These events constitute the start of a complex signaling cascade, which ultimately results in the mediation of cellular activities such as proliferation, differentiation, chemotaxis, survival, trafficking, and glucose homeostasis. Therefore, PI3Ks play a central role in many cellular functions. The factors that determine which cellular function is mediated are complex and may be partly attributed to the diversity that exists at each level of the PI3K signaling cascade, such as the type of stimulus, the isoform of PI3K, or the nature of the second messenger lipids. Numerous studies have helped to elucidate some of the key factors that determine cell fate in the context of PI3K signaling. For example, the past two years has seen the publication of many transgenic and knockout mouse studies where either PI3K or its signaling components are deregulated. These models have helped to build a picture of the role of PI3K in physiology and indeed there have been a number of surprises. This review uses such models as a framework to build a profile of PI3K function within both the cell and the organism and focuses, in particular, on the role of PI3K in cell regulation, immunity, and development. The evidence for the role of deregulated PI3K signaling in diseases such as cancer and diabetes is reviewed.
Collapse
Affiliation(s)
- R Katso
- Ludwig Institute for Cancer Research, 91 Riding House Street, London, W1W 7BS, England.
| | | | | | | | | | | |
Collapse
|
529
|
|
530
|
Abreu MT, Arnold ET, Chow JY, Barrett KE. Phosphatidylinositol 3-kinase-dependent pathways oppose Fas-induced apoptosis and limit chloride secretion in human intestinal epithelial cells. Implications for inflammatory diarrheal states. J Biol Chem 2001; 276:47563-74. [PMID: 11551934 DOI: 10.1074/jbc.m106226200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The epithelial lining of the intestine serves as a barrier to lumenal bacteria and can be compromised by pathologic Fas-mediated epithelial apoptosis. Phosphatidylinositol (PI)3-kinase signaling has been described to limit apoptosis in other systems. We hypothesized that PI3-kinase-dependent pathways regulate Fas-mediated apoptosis and barrier function in intestiynal epithelial cells (IEC). IEC lines (HT-29 and T84) were exposed to agonist anti-Fas antibody in the presence or absence of chemical inhibitors of PI3-kinase (LY294002 and wortmannin). Apoptosis, barrier function, changes in short circuit current (DeltaI(sc)), and expression of adhesion molecules were assessed. Inhibition of PI3-kinase strongly sensitized IEC to Fas-mediated apoptosis. Expression of constitutively active Akt, a principal downstream effector of the PI3-kinase pathway, protected against Fas-mediated apoptosis to an extent that was comparable with expression of a genetic caspase inhibitor, p35. PI3-kinase inhibition sensitized to apoptosis by increasing and accelerating Fas-mediated caspase activation. Inhibition of PI3-kinase combined with cross-linking Fas was associated with increased permeability to molecules that were <400 Da but not those that were >3,000 Da. Inhibition of PI3-kinase resulted in chloride secretion that was augmented by cross-linking Fas. Confocal analyses revealed polymerization of actin and maintenance of epithelial cell adhesion molecule-mediated interactions in monolayers exposed to anti-Fas antibody in the context of PI3-kinase inhibition. PI3-kinase-dependent pathways, especially Akt, protect IEC against Fas-mediated apoptosis. Inhibition of PI3-kinase in the context of Fas signaling results in increased chloride secretion and barrier dysfunction. These findings suggest that agonists of PI3-kinase such as growth factors may have a dual effect on intestinal inflammation by protecting epithelial cells against immune-mediated apoptosis and limiting chloride secretory diarrhea.
Collapse
Affiliation(s)
- M T Abreu
- Inflammatory Bowel Disease Center and Burns and Allen Research Institute, Cedars-Sinai Medical Center, 8631 West 3rd Street, Suite 245E, Los Angeles, CA 90048, USA.
| | | | | | | |
Collapse
|
531
|
Gerland LM, Ffrench M, Magaud JP. [Cyclin dependent kinase inhibitors and replicative senescence]. PATHOLOGIE-BIOLOGIE 2001; 49:830-9. [PMID: 11776695 DOI: 10.1016/s0369-8114(01)00249-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Replicative senescence is defined for human diploid fibroblasts in culture as a cell growth arrest appearing beyond 50 +/- 10 population doublings and associated with telomeres' shortening. This phenomenon shows an increased expression of growth cell inhibitors: p21Waf1 described as an universal CDK inhibitor and p16INK4a as a specific inhibitor for both G1 phase kinases CDK4 and CDK6. The cell proliferation inhibitor p14ARF, product of INK4a/ARF locus is involved in replicative senescence too. Overexpression or homozygotic deletion of these inhibitors demonstrated their role in senescence induction. These proteins are involved in two different metabolic pathways, the first including p53, represented by E2F, ARF, MDM2, p53, p21Waf1, and the second concerning pRb and p16INK4a. These two pathways present numerous interactions and the polymerase (PARP) in relation with p53 and activated by telomere shortening might represent via p21Waf1 a link between this shortening and cell cycle control. An another metabolic pathway involving PTEN and p27KIP1 is discussed in senescent-like phenotype induction, but its activity in replicative senescent is uncertain.
Collapse
Affiliation(s)
- L M Gerland
- Laboratoire de cytologie analytique (Inserm U 453), faculté de médecine, 69373 Lyon, France
| | | | | |
Collapse
|
532
|
Backman SA, Stambolic V, Suzuki A, Haight J, Elia A, Pretorius J, Tsao MS, Shannon P, Bolon B, Ivy GO, Mak TW. Deletion of Pten in mouse brain causes seizures, ataxia and defects in soma size resembling Lhermitte-Duclos disease. Nat Genet 2001; 29:396-403. [PMID: 11726926 DOI: 10.1038/ng782] [Citation(s) in RCA: 377] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Initially identified in high-grade gliomas, mutations in the PTEN tumor-suppressor are also found in many sporadic cancers and a few related autosomal dominant hamartoma syndromes. PTEN is a 3'-specific phosphatidylinositol-3,4,5-trisphosphate (PI(3,4,5)P3) phosphatase and functions as a negative regulator of PI3K signaling. We generated a tissue-specific deletion of the mouse homolog Pten to address its role in brain function. Mice homozygous for this deletion (PtenloxP/loxP;Gfap-cre), developed seizures and ataxia by 9 wk and died by 29 wk. Histological analysis showed brain enlargement in PtenloxP/loxP;Gfap-cre mice as a consequence of primary granule-cell dysplasia in the cerebellum and dentate gyrus. Pten mutant cells showed a cell-autonomous increase in soma size and elevated phosphorylation of Akt. These data represent the first evidence for the role of Pten and Akt in cell size regulation in mammals and provide an animal model for a human phakomatosis condition, Lhermitte-Duclos disease (LDD).
Collapse
Affiliation(s)
- S A Backman
- Department of Medical Biophysics, University of Toronto and Ontario Cancer Institute, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
533
|
Abstract
Lung cancer develops slowly over many years from the sequential accumulation of gene alterations in susceptible pulmonary cells. The global epidemic of tobacco addiction has accelerated the incidence of lung cancer and has now focused increased attention on this disease worldwide. This review will briefly outline some of the tumor suppressor gene pathways that are known or suspected to play an important role in the development of this deadly malignancy.
Collapse
Affiliation(s)
- F J Kaye
- Genetics Branch, Center for Cancer Research, National Cancer Institute-Navy Oncology and National Naval Medical Center, Naval Hospital, Building 8/Room 5105, Bethesda, MD 20889, USA.
| |
Collapse
|
534
|
Kwon CH, Zhu X, Zhang J, Knoop LL, Tharp R, Smeyne RJ, Eberhart CG, Burger PC, Baker SJ. Pten regulates neuronal soma size: a mouse model of Lhermitte-Duclos disease. Nat Genet 2001; 29:404-11. [PMID: 11726927 DOI: 10.1038/ng781] [Citation(s) in RCA: 359] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Somatic inactivation of PTEN occurs in different human tumors including glioblastoma, endometrial carcinoma and prostate carcinoma. Germline mutations in PTEN result in a range of phenotypic abnormalities that occur with variable penetrance, including neurological features such as macrocephaly, seizures, ataxia and Lhermitte-Duclos disease (also described as dysplastic gangliocytoma of the cerebellum). Homozygous deletion of Pten causes embryonic lethality in mice. To investigate function in the brain, we used Cre-loxP technology to selectively inactivate Pten in specific mouse neuronal populations. Loss of Pten resulted in progressive macrocephaly and seizures. Neurons lacking Pten expressed high levels of phosphorylated Akt and showed a progressive increase in soma size without evidence of abnormal proliferation. Cerebellar abnormalities closely resembled the histopathology of human Lhermitte-Duclos disease. These results indicate that Pten regulates neuronal size in vivo in a cell-autonomous manner and provide new insights into the etiology of Lhermitte-Duclos disease.
Collapse
Affiliation(s)
- C H Kwon
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 332 North Lauderdale, Memphis, Tennessee 38105, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
535
|
Grossmann ME, Huang H, Tindall DJ. Androgen receptor signaling in androgen-refractory prostate cancer. J Natl Cancer Inst 2001; 93:1687-97. [PMID: 11717329 DOI: 10.1093/jnci/93.22.1687] [Citation(s) in RCA: 379] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Prostate cancer is the second most prevalent cancer in males in the United States. Standard therapy relies on removing, or blocking the actions of, androgens. In most cases, this therapy results in a regression of the cancer because the prostate and most primary prostate tumors depend on androgens for growth and the avoidance of apoptosis. However, a portion of the cancers eventually relapse, at which point they are termed "androgen refractory" and can no longer be cured by conventional therapy of any type. The precise molecular events that lead from androgen-sensitive prostate cancer to androgen-refractory prostate cancer are, therefore, of great interest. This review seeks to identify specific molecular events that may be linked directly to the progression to androgen-refractory cancer. Some of the mechanisms appear to involve the androgen receptor (AR) directly and include mutations in, or amplification of, the AR gene in a manner that allows the AR to respond to low doses of androgens, other steroids, or antiandrogens. In a less direct manner, coactivators may increase the sensitivity of the AR to androgens and even other nonandrogenic substances through a number of mechanisms. Additional indirect mechanisms that do not result from mutation of the AR may involve activation of the AR by peptide growth factors or cytokines or may involve bypassing the AR entirely via other cellular pathways. Identification of the role of these mechanisms in the progression to androgen-refractory prostate cancer is critical for developing therapies capable of curing this disease.
Collapse
Affiliation(s)
- M E Grossmann
- Department of Urology, Mayo Clinic, Rochester, MN, USA
| | | | | |
Collapse
|
536
|
Mosser VA, Li Y, Quon MJ. PTEN does not modulate GLUT4 translocation in rat adipose cells under physiological conditions. Biochem Biophys Res Commun 2001; 288:1011-7. [PMID: 11689011 DOI: 10.1006/bbrc.2001.5876] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
PTEN is a 3'-inositol lipid phosphatase that dephosphorylates products of PI 3-kinase. Since PI 3-kinase is required for many metabolic actions of insulin, we investigated the role of PTEN in insulin-stimulated translocation of GLUT4. In control rat adipose cells, we observed a approximately 2-fold increase in cell surface GLUT4 upon maximal insulin stimulation. Overexpression of wild-type PTEN abolished this response to insulin. Translocation of GLUT4 in cells overexpressing PTEN mutants without lipid phosphatase activity was similar to that observed in control cells. Overexpression of PTEN-CBR3 (mutant with disrupted membrane association domain) partially impaired translocation of GLUT4. In Cos-7 cells, overexpression of wild-type PTEN had no effect on ERK2 phosphorylation in response to acute insulin stimulation. However, Elk-1 phosphorylation in response to chronic insulin treatment was significantly decreased. Thus, when PTEN is overexpressed, both its lipid phosphatase activity and subcellular localization play a role in antagonizing metabolic actions of insulin that are dependent on PI 3-kinase but independent of MAP kinase. However, because translocation of GLUT4 in cells overexpressing a dominant inhibitory PTEN mutant (C124S) was similar to that of control cells, we conclude that endogenous PTEN may not modulate metabolic functions of insulin under normal physiological conditions.
Collapse
Affiliation(s)
- V A Mosser
- Cardiology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
537
|
Flusberg DA, Numaguchi Y, Ingber DE. Cooperative control of Akt phosphorylation, bcl-2 expression, and apoptosis by cytoskeletal microfilaments and microtubules in capillary endothelial cells. Mol Biol Cell 2001; 12:3087-94. [PMID: 11598193 PMCID: PMC60157 DOI: 10.1091/mbc.12.10.3087] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Capillary endothelial cells can be switched between growth and apoptosis by modulating their shape with the use of micropatterned adhesive islands. The present study was carried out to examine whether cytoskeletal filaments contribute to this response. Disruption of microfilaments or microtubules with the use of cytochalasin D or nocodazole, respectively, led to levels of apoptosis in capillary cells equivalent to that previously demonstrated by inducing cell rounding with the use of micropatterned culture surfaces containing small (<20 microm in diameter) circular adhesive islands coated with fibronectin. Simultaneous disruption of microfilaments and microtubules led to more pronounced cell rounding and to enhanced levels of apoptosis approaching that observed during anoikis in fully detached (suspended) cells, indicating that these two cytoskeletal filament systems can cooperate to promote cell survival. Western blot analysis revealed that the protein kinase Akt, which is known to be critical for control of cell survival became dephosphorylated during cell rounding induced by disruption of the cytoskeleton, and that this was accompanied by a decrease in bcl-2 expression as well as a subsequent increase in caspase activation. This ability of the cytoskeleton to control capillary endothelial cell survival may be important for understanding the relationship among extracellular matrix turnover, cell shape changes, and apoptosis during angiogenesis inhibition.
Collapse
Affiliation(s)
- D A Flusberg
- Department of Surgery, Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
538
|
Minet E, Michel G, Mottet D, Raes M, Michiels C. Transduction pathways involved in Hypoxia-Inducible Factor-1 phosphorylation and activation. Free Radic Biol Med 2001; 31:847-55. [PMID: 11585703 DOI: 10.1016/s0891-5849(01)00657-8] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hypoxia-Inducible Factor-1 (HIF-1) is a transcription factor which is activated by hypoxia and involved in the adaptative response of the cell to oxygen deprivation. During hypoxic stress, HIF-1 triggers the overexpression of genes coding for glycolytic enzymes and angiogenic factors. To be active HIF-1 must be phosphorylated. HIF-1 is a substrate for various kinase pathways including PI-3K and the MAP kinases ERK and p38. Several transduction pathways have been proposed which act downstream of putative oxygen sensors and lead to the activation of these kinases. In this review, we summarize some of the latest advances describing the possible signaling pathways leading to HIF-1 phosphorylation and subsequent activation. The physiological relevance of these regulations is also discussed.
Collapse
Affiliation(s)
- E Minet
- Laboratoire de Biochimie et Biologie Cellulaire, Facultés Universitaires Notre-Dame de la Paix, 61 rue de Bruxelles, 5000 Namur, Belgium
| | | | | | | | | |
Collapse
|
539
|
Abstract
Cell proliferation is controlled not only by soluble mitogens but also by components of the extracellular matrix (ECM) such as fibronectin, to which cells adhere via the integrin family of transmembrane receptors. Input from both growth factor receptors and integrins is required to stimulate progression through the G1 phase of the cell cycle, via induction of G1 cyclins and suppression of inhibitors of the G1 cyclin-dependent kinases. Extensive crosstalk takes place between integrin and growth factor receptor signaling pathways, and mitogenic signaling is weak and transient in the absence of integrin-mediated cell adhesion. In normal untransformed cells, all of the important mitogenic signal transduction cascades, namely those downstream of the Ras and Rho family small GTPases and the phosphoinositide 3-OH kinase-PKB/Akt pathway, are regulated by integrin-mediated cell adhesion. As a result, these cells are anchorage-dependent for growth. In contrast, constitutive activity of each of these pathways has been reported in cancer cells, which not only reduces their mitogen dependence but also allows these cells to grow in an anchorage-independent fashion.
Collapse
Affiliation(s)
- E H Danen
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | | |
Collapse
|
540
|
Abstract
Tumors of the central nervous system (CNS) can be devastating because they often affect children, are difficult to treat, and frequently cause mental impairment or death. New insights into the causes and potential treatment of CNS tumors have come from discovering connections with genes that control cell growth, differentiation, and death during normal development. Links between tumorigenesis and normal development are illustrated by three common CNS tumors: retinoblastoma, glioblastoma, and medulloblastoma. For example, the retinoblastoma (Rb) tumor suppressor protein is crucial for control of normal neuronal differentiation and apoptosis. Excessive activity of the epidermal growth factor receptor and loss of the phosphatase PTEN are associated with glioblastoma, and both genes are required for normal growth and development. The membrane protein Patched1 (Ptc1), which controls cell fate in many tissues, regulates cell growth in the cerebellum, and reduced Ptc1 function contributes to medulloblastoma. Just as elucidating the mechanisms that control normal development can lead to the identification of new cancer-related genes and signaling pathways, studies of tumor biology can increase our understanding of normal development. Learning that Ptc1 is a medulloblastoma tumor suppressor led directly to the identification of the Ptc1 ligand, Sonic hedgehog, as a powerful mitogen for cerebellar granule cell precursors. Much remains to be learned about the genetic events that lead to brain tumors and how each event regulates cell cycle progression, apoptosis, and differentiation. The prospects for beneficial work at the boundary between oncology and developmental biology are great.
Collapse
Affiliation(s)
- R Wechsler-Reya
- Department of Developmental Biology and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305-5329, USA.
| | | |
Collapse
|
541
|
Kubiatowski T, Jang T, Lachyankar MB, Salmonsen R, Nabi RR, Quesenberry PJ, Litofsky NS, Ross AH, Recht LD. Association of increased phosphatidylinositol 3-kinase signaling with increased invasiveness and gelatinase activity in malignant gliomas. J Neurosurg 2001; 95:480-8. [PMID: 11565871 DOI: 10.3171/jns.2001.95.3.0480] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECT Glioblastoma multiforme is the most malignant of the primary brain tumors and aggressively infiltrates surrounding brain tissue, resulting in distant foci within the central nervous system, thereby rendering this tumor surgically incurable. The recent findings that both phosphatidylinositol 3-kinase (PI 3-K) and the phosphatase and tensin homolog (PTEN) regulate tumor cell invasiveness have led the authors to surmise that these lipid signaling molecules might play a role in regulating matrix metalloproteinases (MMPs), which are essential for tumor cell invasion. METHODS Using the C6 glioma cell line, which does not express measurable amounts of PTEN protein and in which in vitro invasiveness is MMP dependent, the authors determined that in vitro glioma cell invasiveness was significantly reduced when cells were preincubated overnight with LY294002 or wortmannin, two specific inhibitors of PI 3-K signaling. Next, using gelatin zymography, it was noted that these compounds significantly inhibited MMP-2 and MMP-9 activities. Moreover, the decrease in MMP activity correlated with the decrease in PI 3-K activity, as assessed by Akt phosphorylation. Finally, using semiquantitative reverse transcriptase-polymerase chain reaction, the authors demonstrated that LY294002 decreased messenger (m)RNA levels for both MMPs. Thus, these in vitro data indicate that PI 3-K signaling modulates gelatinase activity at the level of mRNA. Using immunostaining of phosphorylated Akt (p-Akt) as a measure of PI 3-K activity, the authors next assessed rat brains implanted with C6 cells. Compared with surrounding brain, there was marked p-Akt staining in C6 glioma cells and in neurons immediately adjacent to the tumor, but not in normal brain. The p-Akt staining in tumors was especially intense in perivascular areas. Using double-labeling techniques, colocalization of p-Akt with MMP-2 and MMP-9 was also noted in perivascular tumor areas. CONCLUSIONS The increase in p-Akt staining within these PTEN-deficient gliomas is consistent with what would be predicted from unchecked PI 3-K signaling. Furthermore, the immunohistochemically detected colocalization of p-Akt and MMP-2 and MMP-9 supports the authors' in vitro studies and the proposed linkage between PI 3-K signaling and MMP activity in gliomas.
Collapse
Affiliation(s)
- T Kubiatowski
- Department of Surgery, University of Massachusetts Medical Center, Worcester 01655, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
542
|
Eapen AK, Henry MK, Quelle DE, Quelle FW. Dna damage-induced G(1) arrest in hematopoietic cells is overridden following phosphatidylinositol 3-kinase-dependent activation of cyclin-dependent kinase 2. Mol Cell Biol 2001; 21:6113-21. [PMID: 11509654 PMCID: PMC87328 DOI: 10.1128/mcb.21.18.6113-6121.2001] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Exposure of hematopoietic cells to DNA-damaging agents induces p53-independent cell cycle arrest at a G(1) checkpoint. Previously, we have shown that this growth arrest can be overridden by cytokine growth factors, such as erythropoietin or interleukin-3, through activation of a phosphatidylinositol 3-kinase (PI 3-kinase)/Akt-dependent signaling pathway. Here, we show that gamma-irradiated murine myeloid 32D cells arrest in G(1) with active cyclin D-cyclin-dependent kinase 4 (Cdk4) but with inactive cyclin E-Cdk2 kinases. The arrest was associated with elevated levels of the Cdk inhibitors p21(Cip1) and p27(Kip1), yet neither was associated with Cdk2. Instead, irradiation-induced inhibition of cyclin E-Cdk2 correlated with absence of the activating threonine-160 phosphorylation on Cdk2. Cytokine treatment of irradiated cells induced Cdk2 phosphorylation and activation, and cells entered into S phase despite sustained high-level expression of p21 and p27. Notably, the PI 3-kinase inhibitor, LY294002, completely blocked cytokine-induced Cdk2 activation and cell growth in irradiated 32D cells but not in nonirradiated cells. Together, these findings demonstrate a novel mechanism underlying the DNA damage-induced G(1) arrest of hematopoietic cells, that is, inhibition of Cdk2 phosphorylation and activation. These observations link PI 3-kinase signaling pathways with the regulation of Cdk2 activity.
Collapse
Affiliation(s)
- A K Eapen
- Department of Pharmacology, The University of Iowa College of Medicine, Iowa City, Iowa 52242, USA
| | | | | | | |
Collapse
|
543
|
Neshat MS, Mellinghoff IK, Tran C, Stiles B, Thomas G, Petersen R, Frost P, Gibbons JJ, Wu H, Sawyers CL. Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR. Proc Natl Acad Sci U S A 2001; 98:10314-9. [PMID: 11504908 PMCID: PMC56958 DOI: 10.1073/pnas.171076798] [Citation(s) in RCA: 787] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Recent evidence places the FRAP/mTOR kinase downstream of the phosphatidyl inositol 3-kinase/Akt-signaling pathway, which is up-regulated in multiple cancers because of loss of the PTEN tumor suppressor gene. We performed biological and biochemical studies to determine whether PTEN-deficient cancer cells are sensitive to pharmacologic inhibition of FRAP/mTOR by using the rapamycin derivative CCI-779. In vitro and in vivo studies of isogenic PTEN(+/+) and PTEN(-/-) mouse cells as well as human cancer cells with defined PTEN status showed that the growth of PTEN null cells was blocked preferentially by pharmacologic FRAP/mTOR inhibition. Enhanced tumor growth caused by constitutive activation of Akt in PTEN(+/+) cells also was reversed by CCI-779 treatment, indicating that FRAP/mTOR functions downstream of Akt in tumorigenesis. Loss of PTEN correlated with increased S6 kinase activity and phosphorylation of ribosomal S6 protein, providing evidence for activation of the FRAP/mTOR pathway in these cells. Differential sensitivity to CCI-779 was not explained by differences in biochemical blockade of the FRAP/mTOR pathway, because S6 phosphorylation was inhibited in sensitive and resistant cell lines. These results provide rationale for testing FRAP/mTOR inhibitors in PTEN null human cancers.
Collapse
Affiliation(s)
- M S Neshat
- Department of Medicine, University of California School of Medicine, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
544
|
Podsypanina K, Lee RT, Politis C, Hennessy I, Crane A, Puc J, Neshat M, Wang H, Yang L, Gibbons J, Frost P, Dreisbach V, Blenis J, Gaciong Z, Fisher P, Sawyers C, Hedrick-Ellenson L, Parsons R. An inhibitor of mTOR reduces neoplasia and normalizes p70/S6 kinase activity in Pten+/- mice. Proc Natl Acad Sci U S A 2001; 98:10320-5. [PMID: 11504907 PMCID: PMC56959 DOI: 10.1073/pnas.171060098] [Citation(s) in RCA: 487] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
PTEN phosphatase acts as a tumor suppressor by negatively regulating the phosphoinositide 3-kinase (PI3K) signaling pathway. It is unclear which downstream components of this pathway are necessary for oncogenic transformation. In this report we show that transformed cells of PTEN(+/-) mice have elevated levels of phosphorylated Akt and activated p70/S6 kinase associated with an increase in proliferation. Pharmacological inactivation of mTOR/RAFT/FRAP reduced neoplastic proliferation, tumor size, and p70/S6 kinase activity, but did not affect the status of Akt. These data suggest that p70/S6K and possibly other targets of mTOR contribute significantly to tumor development and that inhibition of these proteins may be therapeutic for cancer patients with deranged PI3K signaling.
Collapse
Affiliation(s)
- K Podsypanina
- Institute of Cancer Genetics, Department of Pathology and Medicine, College of Physicians and Surgeons, Columbia University, 1150 St. Nicholas Avenue, Russ Berrie Pavilion, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
545
|
Abstract
The serine/threonine protein kinase PKB (also known as Akt) is thought to be a key mediator of signal transduction processes. The identification of PKB substrates and the role PKB phosphorylation plays in regulating these molecules have been a major focus of research in recent years. A recently developed motif-profile scoring algorithm that can be used to scan the genome for potential PKB substrates is therefore a useful tool, although additional considerations, such as the evolutionary conservation of the phosphorylation site, must also be taken into account. Recent evidence indicates that PKB plays a key role in cancer progression by stimulating cell proliferation and inhibiting apoptosis and is also probably a key mediator of insulin signalling. These findings indicate that PKB is likely to be a hot drug target for the treatment of cancer, diabetes and stroke. There are, however, a number of pitfalls of methodologies currently employed to study PKB function, and therefore caution should be used in interpretation of such experiments.
Collapse
Affiliation(s)
- M A Lawlor
- MRC Protein Phosphorylation Unit, Department of Life Sciences, University of Dundee, UK
| | | |
Collapse
|
546
|
Henry MK, Lynch JT, Eapen AK, Quelle FW. DNA damage-induced cell-cycle arrest of hematopoietic cells is overridden by activation of the PI-3 kinase/Akt signaling pathway. Blood 2001; 98:834-41. [PMID: 11468186 DOI: 10.1182/blood.v98.3.834] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Exposure of hematopoietic cells to DNA-damaging agents induces cell-cycle arrest at G1 and G2/M checkpoints. Previously, it was shown that DNA damage-induced growth arrest of hematopoietic cells can be overridden by treatment with cytokine growth factors, such as erythropoietin (EPO) or interleukin-3 (IL-3). Here, the cytokine-activated signaling pathways required to override G1 and G2/M checkpoints induced by gamma-irradiation (gamma-IR) are characterized. Using factor-dependent myeloid cells stably expressing EPO receptor (EPO-R) mutants, it is shown that removal of a minimal domain required for PI-3K signaling abrogated the ability of EPO to override gamma-IR-induced cell-cycle arrest. Similarly, the ability of cytokines to override gamma-IR-induced arrest was abolished by an inhibitor of PI-3K (LY294002) or by overexpression of dominant-negative Akt. Moreover, the ability of EPO to override these checkpoints in cells expressing defective EPO-R mutants could be restored by overexpression of a constitutively active Akt. Thus, activation of a PI-3K/Akt signaling pathway is required for cytokine-dependent suppression of DNA-damage induced checkpoints. Together, these findings suggest a novel role for PI-3K/Akt pathways in the modulation of growth arrest responses to DNA damage in hematopoietic cells. (Blood. 2001;98:834-841)
Collapse
Affiliation(s)
- M K Henry
- Department of Pharmacology, The University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
547
|
Stambolic V, MacPherson D, Sas D, Lin Y, Snow B, Jang Y, Benchimol S, Mak TW. Regulation of PTEN transcription by p53. Mol Cell 2001; 8:317-25. [PMID: 11545734 DOI: 10.1016/s1097-2765(01)00323-9] [Citation(s) in RCA: 699] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PTEN tumor suppressor is frequently mutated in human cancers and is a negative regulator of PI3'K/PKB/Akt-dependent cellular survival. Investigation of the human genomic PTEN locus revealed a p53 binding element directly upstream of the PTEN gene. Deletion and mutation analyses showed that this element is necessary for inducible transactivation of PTEN by p53. A p53-independent element controlling constitutive expression of PTEN was also identified. In contrast to p53 mutant cell lines, induction of p53 in primary and tumor cell lines with wild-type p53 increased PTEN mRNA levels. PTEN was required for p53-mediated apoptosis in immortalized mouse embryonic fibroblasts. Our results reveal a unique role for p53 in regulation of cellular survival and an interesting connection in tumor suppressor signaling.
Collapse
Affiliation(s)
- V Stambolic
- Amgen Research Institute and, Ontario Cancer Institute, 620 University Avenue, Ontario, Toronto, Canada
| | | | | | | | | | | | | | | |
Collapse
|
548
|
Schaller MD. Biochemical signals and biological responses elicited by the focal adhesion kinase. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1540:1-21. [PMID: 11476890 DOI: 10.1016/s0167-4889(01)00123-9] [Citation(s) in RCA: 427] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The focal adhesion kinase, FAK, is an important component of an integrin-dependent signaling pathway, which functions to transmit signals from the extracellular matrix into the cytoplasm. FAK is an essential gene product, since the fak-/- mouse exhibits embryonic lethality. A number of important biological processes, including cell motility and cell survival, are controlled by integrin-dependent signals and FAK has been implicated in regulating these processes. This review will focus upon recent findings providing insight into the mechanisms by which FAK transmits biochemical signals and elicits biological effects.
Collapse
Affiliation(s)
- M D Schaller
- Department of Cell and Developmental Biology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill 27599, USA.
| |
Collapse
|
549
|
Leslie NR, Bennett D, Gray A, Pass I, Hoang-Xuan K, Downes CP. Targeting mutants of PTEN reveal distinct subsets of tumour suppressor functions. Biochem J 2001; 357:427-35. [PMID: 11439092 PMCID: PMC1221969 DOI: 10.1042/0264-6021:3570427] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The tumour suppressor protein PTEN (phosphatase and tensin homolog deleted on chromosome 10) is a lipid phosphatase which can antagonize the phosphoinositide 3-kinase (PI 3-kinase) signalling pathway, promoting apoptosis and inhibiting cell-cycle progression and cell motility. We show that very little cellular PTEN is associated with the plasma membrane, but that artificial membrane-targeting of PTEN enhances its inhibition of signalling to protein kinase B (PKB). Evidence for potential targeting of PTEN to the membrane through PDZ domain-mediated protein-protein interactions led us to use a PTEN enzyme with a deletion of the C-terminal PDZ-binding sequence, that retains full phosphatase activity against soluble substrates, and to analyse the efficiency of this mutant in different cellular assays. The extreme C-terminal PDZ-binding sequence was dispensable for the efficient down-regulation of cellular PtdIns(3,4,5)P3 levels and a number of PI 3-kinase-dependent signalling activities, including PKB and p70S6K. However, the PDZ-binding sequence was required for the efficient inhibition of cell spreading. The data show that a PTEN mutation, similar to those found in some tumours, affects some functions of the protein but not others, and implicate the deregulation of PTEN-dependent processes other than PKB activation in the development of some tumours. Significantly, this hypothesis is supported by data showing low levels of PKB phosphorylation in a glioblastoma sample carrying a mutation in the extreme C-terminus of PTEN compared with tumours carrying phosphatase-inactivating mutations of the enzyme. Our data show that deregulation of PKB is not a universal feature of tumours carrying PTEN mutations and implicate other processes that may be deregulated in these tumours.
Collapse
Affiliation(s)
- N R Leslie
- Division of Signal Transduction Therapy, Department of Biochemistry, University of Dundee, Dundee DD1 5EH, Scotland, UK.
| | | | | | | | | | | |
Collapse
|
550
|
Abstract
Reversible protein phosphorylation is the most common mechanism for cellular regulation in eukaryotic systems. Indeed, approximately 5% of the Arabidopsis genome encodes protein kinases and phosphatases. Among the thousands of such enzymes, only a small fraction has been examined experimentally. Studies have demonstrated that Ser/Thr phosphorylation and dephosphorylation play a key role in the regulation of plant physiology and development. However, function of tyrosine phosphorylation, despite the overwhelming importance in animals, has not been systematically studied in higher plants. As a result, it is still controversial whether tyrosine phosphorylation is important in plant signal transduction. Recently, the first two protein tyrosine phosphatases (PTPs) from a higher plant were characterized. A diverse group of genes encoding putative PTPs have been identified from the Arabidopsis genome sequence databases. Genetic analyses of various PTPs are underway and preliminary results have provided evidence that these PTPs serve critical functions in plant responses to stress signals and in plant development.
Collapse
Affiliation(s)
- Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Julie Ting
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Rajeev Gupta
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|