501
|
Saintenac C, Jiang D, Akhunov ED. Targeted analysis of nucleotide and copy number variation by exon capture in allotetraploid wheat genome. Genome Biol 2011. [PMID: 21917144 DOI: 10.1186/gb‐2011‐12‐9‐r88] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The ability of grass species to adapt to various habitats is attributed to the dynamic nature of their genomes, which have been shaped by multiple rounds of ancient and recent polyploidization. To gain a better understanding of the nature and extent of variation in functionally relevant regions of a polyploid genome, we developed a sequence capture assay to compare exonic sequences of allotetraploid wheat accessions. RESULTS A sequence capture assay was designed for the targeted re-sequencing of 3.5 Mb exon regions that surveyed a total of 3,497 genes from allotetraploid wheat. These data were used to describe SNPs, copy number variation and homoeologous sequence divergence in coding regions. A procedure for variant discovery in the polyploid genome was developed and experimentally validated. About 1% and 24% of discovered SNPs were loss-of-function and non-synonymous mutations, respectively. Under-representation of replacement mutations was identified in several groups of genes involved in translation and metabolism. Gene duplications were predominant in a cultivated wheat accession, while more gene deletions than duplications were identified in wild wheat. CONCLUSIONS We demonstrate that, even though the level of sequence similarity between targeted polyploid genomes and capture baits can bias enrichment efficiency, exon capture is a powerful approach for variant discovery in polyploids. Our results suggest that allopolyploid wheat can accumulate new variation in coding regions at a high rate. This process has the potential to broaden functional diversity and generate new phenotypic variation that eventually can play a critical role in the origin of new adaptations and important agronomic traits.
Collapse
Affiliation(s)
- Cyrille Saintenac
- Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS 66506, USA
| | | | | |
Collapse
|
502
|
Trebbi D, Maccaferri M, de Heer P, Sørensen A, Giuliani S, Salvi S, Sanguineti MC, Massi A, van der Vossen EAG, Tuberosa R. High-throughput SNP discovery and genotyping in durum wheat (Triticum durum Desf.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 123:555-69. [PMID: 21611761 DOI: 10.1007/s00122-011-1607-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Accepted: 04/26/2011] [Indexed: 05/07/2023]
Abstract
We describe the application of complexity reduction of polymorphic sequences (CRoPS(®)) technology for the discovery of SNP markers in tetraploid durum wheat (Triticum durum Desf.). A next-generation sequencing experiment was carried out on reduced representation libraries obtained from four durum cultivars. SNP validation and minor allele frequency (MAF) estimate were carried out on a panel of 12 cultivars, and the feasibility of genotyping these SNPs in segregating populations was tested using the Illumina Golden Gate (GG) technology. A total of 2,659 SNPs were identified on 1,206 consensus sequences. Among the 768 SNPs that were chosen irrespective of their genomic repetitiveness level and assayed on the Illumina BeadExpress genotyping system, 275 (35.8%) SNPs matched the expected genotypes observed in the SNP discovery phase. MAF data indicated that the overall SNP informativeness was high: a total of 196 (71.3%) SNPs had MAF >0.2, of which 76 (27.6%) showed MAF >0.4. Of these SNPs, 157 were mapped in one of two mapping populations (Meridiano × Claudio and Colosseo × Lloyd) and integrated into a common genetic map. Despite the relatively low genotyping efficiency of the GG assay, the validated CRoPS-derived SNPs showed valuable features for genomics and breeding applications such as a uniform distribution across the wheat genome, a prevailing single-locus codominant nature and a high polymorphism. Here, we report a new set of 275 highly robust genome-wide Triticum SNPs that are readily available for breeding purposes.
Collapse
Affiliation(s)
- Daniele Trebbi
- Keygene NV, Applied Research, Agro Business Park 90, 6708, PW, Wageningen, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
503
|
Zhao N, Xu L, Zhu B, Li M, Zhang H, Qi B, Xu C, Han F, Liu B. Chromosomal and genome-wide molecular changes associated with initial stages of allohexaploidization in wheat can be transit and incidental. Genome 2011; 54:692-9. [DOI: 10.1139/g11-028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Genomic instability can be induced by nascent allopolyploidization in plants. However, most previous studies have not defined to what extent the allopolyploidy-induced rapid genomic instability represents a general response, and hence important to evolution, or merely incidental events occurring stochastically in a limited number of individuals. We report here that in a newly formed allohexaploid wheat line between tetraploid wheat Triticum turgidum subsp. durum (genome BBAA) and Aegilops tauschii (genome DD) a great majority of individual plants showed chromosomal stability and exhibited a genomic constitution similar to that of the present-day Triticum aestivum (genome BBAADD). In contrast, a single individual plant was identified at S2, which exhibited chromosomal instability in both number and structure based on multicolor genomic in situ hybridization (mc-GISH) analysis. Accordingly, this plant also manifested extensive changes at the molecular level including loss and gain of DNA segments and DNA methylation repatterning. Remarkably, the chromosomal and molecular instabilities that presumably occurred at S0 to S1 and (or) in the F1 hybrid were rapidly quenched by S2 and followed by stable transgenerational inheritance. Our results suggest that these stochastic and individual-specific rapid genomic changes, albeit interesting, probably have not played a major role in the speciation and evolution of common wheat, T. aestivum.
Collapse
Affiliation(s)
- Na Zhao
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China
| | - Liying Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China
| | - Bo Zhu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China
| | - Mingjiu Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China
| | - Huakun Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China
| | - Bao Qi
- State Key Laboratory of Plant Chromosome & Cell Engineering, Institute of Genetics & Developmental Biology, Chinese Academy of Sciences, Beijing 101110, China
| | - Chunming Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China
| | - Fangpu Han
- State Key Laboratory of Plant Chromosome & Cell Engineering, Institute of Genetics & Developmental Biology, Chinese Academy of Sciences, Beijing 101110, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
504
|
Kang H, Wang Y, Fedak G, Cao W, Zhang H, Fan X, Sha L, Xu L, Zheng Y, Zhou Y. Introgression of chromosome 3Ns from Psathyrostachys huashanica into wheat specifying resistance to stripe rust. PLoS One 2011; 6:e21802. [PMID: 21760909 PMCID: PMC3132739 DOI: 10.1371/journal.pone.0021802] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 06/07/2011] [Indexed: 11/19/2022] Open
Abstract
Wheat stripe rust is a destructive disease in the cool and humid wheat-growing areas of the world. Finding diverse sources of stripe rust resistance is critical for increasing genetic diversity of resistance for wheat breeding programs. Stripe rust resistance was identified in the alien species Psathyrostachys huashanica, and a wheat-P. huashanica amphiploid line (PHW-SA) with stripe rust resistance was reported previously. In this study, a P. huashanica 3Ns monosomic addition line (PW11) with superior resistance to stripe rust was developed, which was derived from the cross between PHW-SA and wheat J-11. We evaluated the alien introgressions PW11-2, PW11-5 and PW11-8 which were derived from line PW11 for reaction to new Pst race CYR32, and used molecular and cytogenetic tools to characterize these lines. The introgressions were remarkably resistant to CYR32, suggesting that the resistance to stripe rust of the introgressions thus was controlled by gene(s) located on P. huashanica chromosome 3Ns. All derived lines were cytologically stable in term of meiotic chromosome behavior. Two 3Ns chromosomes of P. huashanica were detected in the disomic addition line PW11-2. Chromosomes 1B of substitution line PW11-5 had been replaced by a pair of P. huashanica 3Ns chromosomes. In PW11-8, a small terminal segment from P. huashanica chromosome arm 3NsS was translocated to the terminal region of wheat chromosomes 3BL. Thus, this translocated chromosome is designated T3BL-3NsS. These conclusions were further confirmed by SSR analyses. Two 3Ns-specific markers Xgwm181 and Xgwm161 will be useful to rapidly identify and trace the translocated fragments. These introgressions, which had significant characteristics of resistance to stripe rust, could be utilized as novel germplasms for wheat breeding.
Collapse
Affiliation(s)
- Houyang Kang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yi Wang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Eastern Cereal and Oilseed Research Centre, Department of Agriculture and Agriculture-Food Canada, Ottawa, Ontario, Canada
| | - George Fedak
- Eastern Cereal and Oilseed Research Centre, Department of Agriculture and Agriculture-Food Canada, Ottawa, Ontario, Canada
| | - Wenguang Cao
- Eastern Cereal and Oilseed Research Centre, Department of Agriculture and Agriculture-Food Canada, Ottawa, Ontario, Canada
| | - Haiqin Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xing Fan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lina Sha
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lili Xu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural University, Yaan, Sichuan, China
| | - Yonghong Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural University, Yaan, Sichuan, China
| |
Collapse
|
505
|
Hunt HV, Ansell SW, Russell SJ, Schneider H, Vogel JC. Dynamics of polyploid formation and establishment in the allotetraploid rock fern Asplenium majoricum. ANNALS OF BOTANY 2011; 108:143-57. [PMID: 21593062 PMCID: PMC3119625 DOI: 10.1093/aob/mcr118] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 03/28/2011] [Indexed: 05/29/2023]
Abstract
BACKGROUND AND AIMS Successful establishment of newly formed polyploid species depends on several interlinked genetic and ecological factors. These include genetic diversity within and among individuals, chromosome behaviour and fertility, novel phenotypes resulting from novel genomic make-up and expression, intercytotypic and interspecific competition, and adaptation to distinct habitats. The allotetraploid rock fern Asplenium majoricum is known from one small population in Valencia, Spain, and several larger populations on the Balearic island of Majorca. In Valencia, it occurs sympatrically with its diploid parents, A. fontanum subsp. fontanum and A. petrarchae subsp. bivalens, and their diploid hybrid A. × protomajoricum. This highly unusual situation allowed the study of polyploid genetic diversity and its relationship to the formation and establishment of nascent polyploid lineages. METHODS Genetic variation for isozyme and chloroplast DNA markers was determined for A. majoricum and A. × protomajoricum sampled thoroughly from known sites in Majorca and Valencia. Results were compared with variation determined previously for the diploid parent taxa. KEY RESULTS A highly dynamic system with recurring diploid hybrid and allotetraploid formation was discovered. High diversity in the small Valencian A. majoricum population indicates multiple de novo origins from diverse parental genotypes, but most of these lineages become extinct without becoming established. The populations on Majorca most probably represent colonization(s) from Valencia rather than an in situ origin. Low genetic diversity suggests that this colonization may have occurred only once. CONCLUSIONS There is a striking contrast in success of establishment of the Majorcan and Valencian populations of A. majoricum. Chance founding of populations in a habitat where neither A. fontanum subsp. fontanum nor A. petrarchae subsp. bivalens occurs appears to have been a key factor enabling the establishment of A. majoricum on Majorca. Successful establishment of this polyploid is probably dependent on geographic isolation from diploid progenitor competition.
Collapse
Affiliation(s)
- Harriet V Hunt
- Department of Botany, Natural History Museum, London SW7 5BD, UK.
| | | | | | | | | |
Collapse
|
506
|
Zhao N, Zhu B, Li M, Wang L, Xu L, Zhang H, Zheng S, Qi B, Han F, Liu B. Extensive and heritable epigenetic remodeling and genetic stability accompany allohexaploidization of wheat. Genetics 2011; 188:499-510. [PMID: 21515577 PMCID: PMC3176545 DOI: 10.1534/genetics.111.127688] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 04/04/2011] [Indexed: 01/06/2023] Open
Abstract
Allopolyploidy has played a prominent role in organismal evolution, particularly in angiosperms. Allohexaploidization is a critical step leading to the formation of common wheat as a new species, Triticum aestivum, as well as for bestowing its remarkable adaptability. A recent study documented that the initial stages of wheat allohexaploidization was associated with rampant genetic and epigenetic instabilities at genomic regions flanking a retrotransposon family named Veju. Although this finding is in line with the prevailing opinion of rapid genomic instability associated with nascent plant allopolyploidy, its relevance to speciation of T. aestivum remains unclear. Here, we show that genetic instability at genomic regions flanking the Veju, flanking a more abundant retroelement BARE-1, as well as at a large number of randomly sampled genomic loci, is all extremely rare or nonexistent in preselected individuals representing three sets of independently formed nascent allohexaploid wheat lines, which had a transgenerationally stable genomic constitution analogous to that of T. aestivum. In contrast, extensive and transgenerationally heritable repatterning of DNA methylation at all three kinds of genomic loci were reproducibly detected. Thus, our results suggest that rampant genetic instability associated with nascent allohexaploidization in wheat likely represents incidental and anomalous phenomena that are confined to by-product individuals inconsequential to the establishment of the newly formed plants toward speciation of T. aestivum; instead, extensive and heritable epigenetic remodeling coupled with preponderant genetic stability is generally associated with nascent wheat allohexaploidy, and therefore, more likely a contributory factor to the speciation event(s).
Collapse
Affiliation(s)
- Na Zhao
- Key Laboratory of Molecular Epigenetics of Ministry of Education and Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
- Department of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Bo Zhu
- Key Laboratory of Molecular Epigenetics of Ministry of Education and Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Mingjiu Li
- Key Laboratory of Molecular Epigenetics of Ministry of Education and Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Li Wang
- Key Laboratory of Molecular Epigenetics of Ministry of Education and Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Liying Xu
- Key Laboratory of Molecular Epigenetics of Ministry of Education and Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Huakun Zhang
- Key Laboratory of Molecular Epigenetics of Ministry of Education and Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Shuangshuang Zheng
- Key Laboratory of Molecular Epigenetics of Ministry of Education and Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Bao Qi
- State Key Laboratory of Plant Chromosome and Cell Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 101110, China
| | - Fangpu Han
- State Key Laboratory of Plant Chromosome and Cell Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 101110, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of Ministry of Education and Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
507
|
Das S, Sen M, Saha C, Chakraborty D, Das A, Banerjee M, Seal A. Isolation and expression analysis of partial sequences of heavy metal transporters from Brassica juncea by coupling high throughput cloning with a molecular fingerprinting technique. PLANTA 2011; 234:139-156. [PMID: 21394470 DOI: 10.1007/s00425-011-1376-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 02/03/2011] [Indexed: 05/30/2023]
Abstract
Heavy metal transporters play a key role in regulating metal accumulation and transport in plants. These are important candidate genes to study in metal tolerant and accumulator plants for their potential use in environmental clean up. We coupled a degenerate primer-based RT-PCR approach with a molecular fingerprinting technique based on amplified rDNA restriction analysis (ARDRA) to identify novel ESTs corresponding to heavy metal transporters from metal accumulator Brassica juncea. We utilized this technique to clone several family members of natural resistance-associated macrophage proteins (NRAMP) and yellow stripe-like proteins (YSL) in a high throughput manner to distinguish between closely related isoforms and/or allelic variants from the allopolyploid B. juncea. Partial clones of 23 Brassica juncea NRAMPs and 27 YSLs were obtained with similarity to known Arabidopsis thaliana and Noccaea (Thlaspi) caerulescens NRAMP and YSL genes. The cloned transporters showed Brassica-specific changes in domains, which can have important functional consequences. Semi-quantitative RT-PCR-based expression analysis of chosen members indicated that even closely related isoforms/allelic variants of BjNRAMP and BjYSL have distinct tissue-specific and metal-dependent expressions which might be essential for adaptive fitness and heavy metal tolerance. Consistent to this, BjYSL6.1 and BjYSL5.8 were found to show elevated expressions specifically in cadmium-treated shoots and lead-treated roots of B. juncea, respectively.
Collapse
Affiliation(s)
- Soumita Das
- Department of Biotechnology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, India
| | | | | | | | | | | | | |
Collapse
|
508
|
Shi J, Li R, Zou J, Long Y, Meng J. A dynamic and complex network regulates the heterosis of yield-correlated traits in rapeseed (Brassica napus L.). PLoS One 2011; 6:e21645. [PMID: 21747942 PMCID: PMC3128606 DOI: 10.1371/journal.pone.0021645] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Accepted: 06/07/2011] [Indexed: 01/12/2023] Open
Abstract
Although much research has been conducted, the genetic architecture of heterosis remains ambiguous. To unravel the genetic architecture of heterosis, a reconstructed F2 population was produced by random intercross among 202 lines of a double haploid population in rapeseed (Brassica napus L.). Both populations were planted in three environments and 15 yield-correlated traits were measured, and only seed yield and eight yield-correlated traits showed significant mid-parent heterosis, with the mean ranging from 8.7% (branch number) to 31.4% (seed yield). Hundreds of QTL and epistatic interactions were identified for the 15 yield-correlated traits, involving numerous variable loci with moderate effect, genome-wide distribution and obvious hotspots. All kinds of mode-of-inheritance of QTL (additive, A; partial-dominant, PD; full-dominant, D; over-dominant, OD) and epistatic interactions (additive × additive, AA; additive × dominant/dominant × additive, AD/DA; dominant × dominant, DD) were observed and epistasis, especially AA epistasis, seemed to be the major genetic basis of heterosis in rapeseed. Consistent with the low correlation between marker heterozygosity and mid-parent heterosis/hybrid performance, a considerable proportion of dominant and DD epistatic effects were negative, indicating heterozygosity was not always advantageous for heterosis/hybrid performance. The implications of our results on evolution and crop breeding are discussed.
Collapse
Affiliation(s)
- Jiaqin Shi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Ruiyuan Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jun Zou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yan Long
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jinling Meng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
- * E-mail:
| |
Collapse
|
509
|
Mur LAJ, Allainguillaume J, Catalán P, Hasterok R, Jenkins G, Lesniewska K, Thomas I, Vogel J. Exploiting the Brachypodium Tool Box in cereal and grass research. THE NEW PHYTOLOGIST 2011; 191:334-347. [PMID: 21623796 DOI: 10.1111/j.1469-8137.2011.03748.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
It is now a decade since Brachypodium distachyon (Brachypodium) was suggested as a model species for temperate grasses and cereals. Since then transformation protocols, large expressed sequence tag (EST) databases, tools for forward and reverse genetic screens, highly refined cytogenetic probes, germplasm collections and, recently, a complete genome sequence have been generated. In this review, we will describe the current status of the Brachypodium Tool Box and how it is beginning to be applied to study a range of biological traits. Further, as genomic analysis of larger cereals and forage grasses genomes are becoming easier, we will re-evaluate Brachypodium as a model species. We suggest that there remains an urgent need to employ reverse genetic and functional genomic approaches to identify the functionality of key genetic elements, which could be employed subsequently in plant breeding programmes; and a requirement for a Pooideae reference genome to aid assembling large pooid genomes. Brachypodium is an ideal system for functional genomic studies, because of its easy growth requirements, small physical stature, and rapid life cycle, coupled with the resources offered by the Brachypodium Tool Box.
Collapse
Affiliation(s)
- Luis A J Mur
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth, Wales SY23 3DA, UK
| | - Joel Allainguillaume
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth, Wales SY23 3DA, UK
| | - Pilar Catalán
- Department of Agriculture, University of Zaragoza, High Polytechnic School of Huesca, Ctra. Cuarte km 1, ES-22071 Huesca, Spain
| | - Robert Hasterok
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia, PL-40-032 Katowice, Poland
| | - Glyn Jenkins
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth, Wales SY23 3DA, UK
| | - Karolina Lesniewska
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia, PL-40-032 Katowice, Poland
| | - Ianto Thomas
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth, Wales SY23 3DA, UK
| | - John Vogel
- USDA ARS Western Regional Research Center, Albany, CA 94710 USA
| |
Collapse
|
510
|
Salina EA, Sergeeva EM, Adonina IG, Shcherban AB, Belcram H, Huneau C, Chalhoub B. The impact of Ty3-gypsy group LTR retrotransposons Fatima on B-genome specificity of polyploid wheats. BMC PLANT BIOLOGY 2011; 11:99. [PMID: 21635794 PMCID: PMC3129301 DOI: 10.1186/1471-2229-11-99] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 06/03/2011] [Indexed: 05/18/2023]
Abstract
BACKGROUND Transposable elements (TEs) are a rapidly evolving fraction of the eukaryotic genomes and the main contributors to genome plasticity and divergence. Recently, occupation of the A- and D-genomes of allopolyploid wheat by specific TE families was demonstrated. Here, we investigated the impact of the well-represented family of gypsy LTR-retrotransposons, Fatima, on B-genome divergence of allopolyploid wheat using the fluorescent in situ hybridisation (FISH) method and phylogenetic analysis. RESULTS FISH analysis of a BAC clone (BAC_2383A24) initially screened with Spelt1 repeats demonstrated its predominant localisation to chromosomes of the B-genome and its putative diploid progenitor Aegilops speltoides in hexaploid (genomic formula, BBAADD) and tetraploid (genomic formula, BBAA) wheats as well as their diploid progenitors. Analysis of the complete BAC_2383A24 nucleotide sequence (113,605 bp) demonstrated that it contains 55.6% TEs, 0.9% subtelomeric tandem repeats (Spelt1), and five genes. LTR retrotransposons are predominant, representing 50.7% of the total nucleotide sequence. Three elements of the gypsy LTR retrotransposon family Fatima make up 47.2% of all the LTR retrotransposons in this BAC. In situ hybridisation of the Fatima_2383A24-3 subclone suggests that individual representatives of the Fatima family contribute to the majority of the B-genome specific FISH pattern for BAC_2383A24. Phylogenetic analysis of various Fatima elements available from databases in combination with the data on their insertion dates demonstrated that the Fatima elements fall into several groups. One of these groups, containing Fatima_2383A24-3, is more specific to the B-genome and proliferated around 0.5-2.5 MYA, prior to allopolyploid wheat formation. CONCLUSION The B-genome specificity of the gypsy-like Fatima, as determined by FISH, is explained to a great degree by the appearance of a genome-specific element within this family for Ae. speltoides. Moreover, its proliferation mainly occurred in this diploid species before it entered into allopolyploidy.Most likely, this scenario of emergence and proliferation of the genome-specific variants of retroelements, mainly in the diploid species, is characteristic of the evolution of all three genomes of hexaploid wheat.
Collapse
Affiliation(s)
- Elena A Salina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, Lavrentieva ave. 10, Novosibirsk, 630090, Russia
| | - Ekaterina M Sergeeva
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, Lavrentieva ave. 10, Novosibirsk, 630090, Russia
| | - Irina G Adonina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, Lavrentieva ave. 10, Novosibirsk, 630090, Russia
| | - Andrey B Shcherban
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, Lavrentieva ave. 10, Novosibirsk, 630090, Russia
| | - Harry Belcram
- UMR INRA 1165 - CNRS 8114 UEVE - Unite de Recherche en Genomique Vegetale (URGV), 2, rue Gaston Cremieux, CP5708, 91057 Evry cedex, France
| | - Cecile Huneau
- UMR INRA 1165 - CNRS 8114 UEVE - Unite de Recherche en Genomique Vegetale (URGV), 2, rue Gaston Cremieux, CP5708, 91057 Evry cedex, France
| | - Boulos Chalhoub
- UMR INRA 1165 - CNRS 8114 UEVE - Unite de Recherche en Genomique Vegetale (URGV), 2, rue Gaston Cremieux, CP5708, 91057 Evry cedex, France
| |
Collapse
|
511
|
Watanabe S, Xia Z, Hideshima R, Tsubokura Y, Sato S, Yamanaka N, Takahashi R, Anai T, Tabata S, Kitamura K, Harada K. A map-based cloning strategy employing a residual heterozygous line reveals that the GIGANTEA gene is involved in soybean maturity and flowering. Genetics 2011; 188:395-407. [PMID: 21406680 PMCID: PMC3122305 DOI: 10.1534/genetics.110.125062] [Citation(s) in RCA: 254] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 03/03/2011] [Indexed: 12/17/2022] Open
Abstract
Flowering is indicative of the transition from vegetative to reproductive phase, a critical event in the life cycle of plants. In soybean (Glycine max), a flowering quantitative trait locus, FT2, corresponding to the maturity locus E2, was detected in recombinant inbred lines (RILs) derived from the varieties "Misuzudaizu" (ft2/ft2; JP28856) and "Moshidou Gong 503" (FT2/FT2; JP27603). A map-based cloning strategy using the progeny of a residual heterozygous line (RHL) from the RIL was employed to isolate the gene responsible for this quantitative trait locus. A GIGANTEA ortholog, GmGIa (Glyma10g36600), was identified as a candidate gene. A common premature stop codon at the 10th exon was present in the Misuzudaizu allele and in other near isogenic lines (NILs) originating from Harosoy (e2/e2; PI548573). Furthermore, a mutant line harboring another premature stop codon showed an earlier flowering phenotype than the original variety, Bay (E2/E2; PI553043). The e2/e2 genotype exhibited elevated expression of GmFT2a, one of the florigen genes that leads to early flowering. The effects of the E2 allele on flowering time were similar among NILs and constant under high (43°N) and middle (36°N) latitudinal regions in Japan. These results indicate that GmGIa is the gene responsible for the E2 locus and that a null mutation in GmGIa may contribute to the geographic adaptation of soybean.
Collapse
Affiliation(s)
- Satoshi Watanabe
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan
| | - Zhengjun Xia
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150040, People's Republic of China
| | | | - Yasutaka Tsubokura
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan
| | - Shusei Sato
- Kazusa DNA Research Institute, Kisarazu, Chiba 292-0812, Japan
| | - Naoki Yamanaka
- Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki 305-8686, Japan
| | - Ryoji Takahashi
- National Institute of Crop Science, Tsukuba, Ibaraki 305-8518, Japan and
| | - Toyoaki Anai
- Faculty of Agriculture, Saga University, Saga 840-8502, Japan
| | - Satoshi Tabata
- Kazusa DNA Research Institute, Kisarazu, Chiba 292-0812, Japan
| | - Keisuke Kitamura
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
| | - Kyuya Harada
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan
| |
Collapse
|
512
|
Matsuoka Y. Evolution of polyploid triticum wheats under cultivation: the role of domestication, natural hybridization and allopolyploid speciation in their diversification. PLANT & CELL PHYSIOLOGY 2011; 52:750-64. [PMID: 21317146 DOI: 10.1093/pcp/pcr018] [Citation(s) in RCA: 192] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The evolution of the polyploid Triticum wheats is distinctive in that domestication, natural hybridization and allopolyploid speciation have all had significant impacts on their diversification. In this review, I outline the phylogenetic relationships of cultivated wheats and their wild relatives and provide an overview of the recent progress and remaining issues in understanding the genetic and ecological factors that favored their evolution. An attempt is made to view the evolution of the polyploid Triticum wheats as a continuous process of diversification that was initiated by domestication of tetraploid emmer wheat and driven by various natural events ranging from interploidy introgression via hybridization to allopolyploid speciation of hexaploid common wheat, instead of viewing it as a group of discrete evolutionary processes that separately proceeded at the tetraploid and hexaploid levels. This standpoint underscores the important role of natural hybridization in the reticulate diversification of the tetraploid-hexaploid Triticum wheat complex and highlights critical, but underappreciated, issues that concern the allopolyploid speciation of common wheat.
Collapse
Affiliation(s)
- Yoshihiro Matsuoka
- Fukui Prefectural University, Matsuoka, Eiheiji, Yoshida, Fukui 910-1195, Japan.
| |
Collapse
|
513
|
Massa AN, Wanjugi H, Deal KR, O'Brien K, You FM, Maiti R, Chan AP, Gu YQ, Luo MC, Anderson OD, Rabinowicz PD, Dvorak J, Devos KM. Gene space dynamics during the evolution of Aegilops tauschii, Brachypodium distachyon, Oryza sativa, and Sorghum bicolor genomes. Mol Biol Evol 2011; 28:2537-47. [PMID: 21470968 PMCID: PMC3163431 DOI: 10.1093/molbev/msr080] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Nine different regions totaling 9.7 Mb of the 4.02 Gb Aegilops tauschii genome were sequenced using the Sanger sequencing technology and compared with orthologous Brachypodium distachyon, Oryza sativa (rice), and Sorghum bicolor (sorghum) genomic sequences. The ancestral gene content in these regions was inferred and used to estimate gene deletion and gene duplication rates along each branch of the phylogenetic tree relating the four species. The total gene number in the extant Ae. tauschii genome was estimated to be 36,371. The gene deletion and gene duplication rates and total gene numbers in the four genomes were used to estimate the total gene number in each node of the phylogenetic tree. The common ancestor of the Brachypodieae and Triticeae lineages was estimated to have had 28,558 genes, and the common ancestor of the Panicoideae, Ehrhartoideae, and Pooideae subfamilies was estimated to have had 27,152 or 28,350 genes, depending on the ancestral gene scenario. Relative to the Brachypodieae and Triticeae common ancestor, the gene number was reduced in B. distachyon by 3,026 genes and increased in Ae. tauschii by 7,813 genes. The sum of gene deletion and gene duplication rates, which reflects the rate of gene synteny loss, was correlated with the rate of structural chromosome rearrangements and was highest in the Ae. tauschii lineage and lowest in the rice lineage. The high rate of gene space evolution in the Ae. tauschii lineage accounts for the fact that, contrary to the expectations, the level of synteny between the phylogenetically more related Ae. tauschii and B. distachyon genomes is similar to the level of synteny between the Ae. tauschii genome and the genomes of the less related rice and sorghum. The ratio of gene duplication to gene deletion rates in these four grass species closely parallels both the total number of genes in a species and the overall genome size. Because the overall genome size is to a large extent a function of the repeated sequence content in a genome, we suggest that the amount and activity of repeated sequences are important factors determining the number of genes in a genome.
Collapse
Affiliation(s)
- A N Massa
- Institute of Plant Breeding, Genetics and Genomics (Department of Crop and Soil Sciences), and Department of Plant Biology, University of Georgia, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
514
|
Abstract
Wheat was one of the first crops to be domesticated more than 10,000 years ago in the Middle East. Molecular genetics and archaeological data have allowed the reconstruction of plausible domestication scenarios leading to modern cultivars. For diploid einkorn and tetraploid durum wheat, a single domestication event has likely occurred in the Karacadag Mountains, Turkey. Following a cross between tetraploid durum and diploid T. tauschii, the resultant hexaploid bread wheat was domesticated and disseminated around the Caucasian region. These polyploidisation events facilitated wheat domestication and created genetic bottlenecks, which excluded potentially adaptive alleles. With the urgent need to accelerate genetic progress to confront the challenges of climate change and sustainable agriculture, wild ancestors and old landraces represent a reservoir of underexploited genetic diversity that may be utilized through modern breeding methods. Understanding domestication processes may thus help identifying new strategies.
Collapse
Affiliation(s)
- Gilles Charmet
- UMR1095 génétique, diversité, écophysiologie des céréales, INRA Clermont-université, 234 avenue du Brézet, Clermont-Ferrand, France.
| |
Collapse
|
515
|
Özkan H, Willcox G, Graner A, Salamini F, Kilian B. Geographic distribution and domestication of wild emmer wheat (Triticum dicoccoides). GENETIC RESOURCES AND CROP EVOLUTION 2011. [PMID: 0 DOI: 10.1007/s10722-010-9581-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
|
516
|
Chao S, Dubcovsky J, Dvorak J, Luo MC, Baenziger SP, Matnyazov R, Clark DR, Talbert LE, Anderson JA, Dreisigacker S, Glover K, Chen J, Campbell K, Bruckner PL, Rudd JC, Haley S, Carver BF, Perry S, Sorrells ME, Akhunov ED. Population- and genome-specific patterns of linkage disequilibrium and SNP variation in spring and winter wheat (Triticum aestivum L.). BMC Genomics 2010; 11:727. [PMID: 21190581 PMCID: PMC3020227 DOI: 10.1186/1471-2164-11-727] [Citation(s) in RCA: 177] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 12/29/2010] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Single nucleotide polymorphisms (SNPs) are ideally suited for the construction of high-resolution genetic maps, studying population evolutionary history and performing genome-wide association mapping experiments. Here, we used a genome-wide set of 1536 SNPs to study linkage disequilibrium (LD) and population structure in a panel of 478 spring and winter wheat cultivars (Triticum aestivum) from 17 populations across the United States and Mexico. RESULTS Most of the wheat oligo pool assay (OPA) SNPs that were polymorphic within the complete set of 478 cultivars were also polymorphic in all subpopulations. Higher levels of genetic differentiation were observed among wheat lines within populations than among populations. A total of nine genetically distinct clusters were identified, suggesting that some of the pre-defined populations shared significant proportion of genetic ancestry. Estimates of population structure (F(ST)) at individual loci showed a high level of heterogeneity across the genome. In addition, seven genomic regions with elevated F(ST) were detected between the spring and winter wheat populations. Some of these regions overlapped with previously mapped flowering time QTL. Across all populations, the highest extent of significant LD was observed in the wheat D-genome, followed by lower LD in the A- and B-genomes. The differences in the extent of LD among populations and genomes were mostly driven by differences in long-range LD ( > 10 cM). CONCLUSIONS Genome- and population-specific patterns of genetic differentiation and LD were discovered in the populations of wheat cultivars from different geographic regions. Our study demonstrated that the estimates of population structure between spring and winter wheat lines can identify genomic regions harboring candidate genes involved in the regulation of growth habit. Variation in LD suggests that breeding and selection had a different impact on each wheat genome both within and among populations. The higher extent of LD in the wheat D-genome versus the A- and B-genomes likely reflects the episodes of recent introgression and population bottleneck accompanying the origin of hexaploid wheat. The assessment of LD and population structure in this assembled panel of diverse lines provides critical information for the development of genetic resources for genome-wide association mapping of agronomically important traits in wheat.
Collapse
Affiliation(s)
- Shiaoman Chao
- USDA ARS Genotyping Laboratory, Biosciences Research Laboratory, Fargo, ND, USA
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Jan Dvorak
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Ming-Cheng Luo
- Department of Plant Sciences, University of California, Davis, CA, USA
| | | | - Rustam Matnyazov
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
- Institute of Biochemistry and Genetics, RAS, Ufa Russia
| | | | - Luther E Talbert
- Department of Plant Sciences, Montana State University, Bozeman, MT, USA
| | - James A Anderson
- Dept. of Agronomy & Plant Genetics, University of Minnesota, St. Paul, MN, USA
| | | | - Karl Glover
- Plant Science Department, South Dakota State University, Brookings, SD, USA
| | - Jianli Chen
- University of Idaho Aberdeen Research & Extension Center, Aberdeen ID, USA
| | - Kim Campbell
- USDA-ARS Wheat Genetics, Quality, Physiology & Disease Research Unit, Washington State University, Pullman WA, USA
| | | | - Jackie C Rudd
- Texas AgriLife Research and Extension Center, Amarillo, TX, USA
| | - Scott Haley
- Soil and Crop Sciences Department, Colorado State University, Fort Collins, CO, USA
| | - Brett F Carver
- Oklahoma State University, Department of Plant and Soil Sciences, Stillwater, OK, USA
| | | | - Mark E Sorrells
- Plant Breeding and Genetics, Cornell University, Ithaca, NY, USA
| | - Eduard D Akhunov
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
517
|
Chao S, Dubcovsky J, Dvorak J, Luo MC, Baenziger SP, Matnyazov R, Clark DR, Talbert LE, Anderson JA, Dreisigacker S, Glover K, Chen J, Campbell K, Bruckner PL, Rudd JC, Haley S, Carver BF, Perry S, Sorrells ME, Akhunov ED. Population- and genome-specific patterns of linkage disequilibrium and SNP variation in spring and winter wheat (Triticum aestivum L.). BMC Genomics 2010. [PMID: 21190581 DOI: 10.1186/1471‐2164‐11‐727] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Single nucleotide polymorphisms (SNPs) are ideally suited for the construction of high-resolution genetic maps, studying population evolutionary history and performing genome-wide association mapping experiments. Here, we used a genome-wide set of 1536 SNPs to study linkage disequilibrium (LD) and population structure in a panel of 478 spring and winter wheat cultivars (Triticum aestivum) from 17 populations across the United States and Mexico. RESULTS Most of the wheat oligo pool assay (OPA) SNPs that were polymorphic within the complete set of 478 cultivars were also polymorphic in all subpopulations. Higher levels of genetic differentiation were observed among wheat lines within populations than among populations. A total of nine genetically distinct clusters were identified, suggesting that some of the pre-defined populations shared significant proportion of genetic ancestry. Estimates of population structure (F(ST)) at individual loci showed a high level of heterogeneity across the genome. In addition, seven genomic regions with elevated F(ST) were detected between the spring and winter wheat populations. Some of these regions overlapped with previously mapped flowering time QTL. Across all populations, the highest extent of significant LD was observed in the wheat D-genome, followed by lower LD in the A- and B-genomes. The differences in the extent of LD among populations and genomes were mostly driven by differences in long-range LD ( > 10 cM). CONCLUSIONS Genome- and population-specific patterns of genetic differentiation and LD were discovered in the populations of wheat cultivars from different geographic regions. Our study demonstrated that the estimates of population structure between spring and winter wheat lines can identify genomic regions harboring candidate genes involved in the regulation of growth habit. Variation in LD suggests that breeding and selection had a different impact on each wheat genome both within and among populations. The higher extent of LD in the wheat D-genome versus the A- and B-genomes likely reflects the episodes of recent introgression and population bottleneck accompanying the origin of hexaploid wheat. The assessment of LD and population structure in this assembled panel of diverse lines provides critical information for the development of genetic resources for genome-wide association mapping of agronomically important traits in wheat.
Collapse
Affiliation(s)
- Shiaoman Chao
- USDA ARS Genotyping Laboratory, Biosciences Research Laboratory, Fargo, ND, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
518
|
Chao S, Dubcovsky J, Dvorak J, Luo MC, Baenziger SP, Matnyazov R, Clark DR, Talbert LE, Anderson JA, Dreisigacker S, Glover K, Chen J, Campbell K, Bruckner PL, Rudd JC, Haley S, Carver BF, Perry S, Sorrells ME, Akhunov ED. Population- and genome-specific patterns of linkage disequilibrium and SNP variation in spring and winter wheat (Triticum aestivum L.). BMC Genomics 2010. [PMID: 21190581 DOI: 10.1186/s12870-015-0628-727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023] Open
Abstract
BACKGROUND Single nucleotide polymorphisms (SNPs) are ideally suited for the construction of high-resolution genetic maps, studying population evolutionary history and performing genome-wide association mapping experiments. Here, we used a genome-wide set of 1536 SNPs to study linkage disequilibrium (LD) and population structure in a panel of 478 spring and winter wheat cultivars (Triticum aestivum) from 17 populations across the United States and Mexico. RESULTS Most of the wheat oligo pool assay (OPA) SNPs that were polymorphic within the complete set of 478 cultivars were also polymorphic in all subpopulations. Higher levels of genetic differentiation were observed among wheat lines within populations than among populations. A total of nine genetically distinct clusters were identified, suggesting that some of the pre-defined populations shared significant proportion of genetic ancestry. Estimates of population structure (F(ST)) at individual loci showed a high level of heterogeneity across the genome. In addition, seven genomic regions with elevated F(ST) were detected between the spring and winter wheat populations. Some of these regions overlapped with previously mapped flowering time QTL. Across all populations, the highest extent of significant LD was observed in the wheat D-genome, followed by lower LD in the A- and B-genomes. The differences in the extent of LD among populations and genomes were mostly driven by differences in long-range LD ( > 10 cM). CONCLUSIONS Genome- and population-specific patterns of genetic differentiation and LD were discovered in the populations of wheat cultivars from different geographic regions. Our study demonstrated that the estimates of population structure between spring and winter wheat lines can identify genomic regions harboring candidate genes involved in the regulation of growth habit. Variation in LD suggests that breeding and selection had a different impact on each wheat genome both within and among populations. The higher extent of LD in the wheat D-genome versus the A- and B-genomes likely reflects the episodes of recent introgression and population bottleneck accompanying the origin of hexaploid wheat. The assessment of LD and population structure in this assembled panel of diverse lines provides critical information for the development of genetic resources for genome-wide association mapping of agronomically important traits in wheat.
Collapse
Affiliation(s)
- Shiaoman Chao
- USDA ARS Genotyping Laboratory, Biosciences Research Laboratory, Fargo, ND, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
519
|
Generality and characteristics of genetic and epigenetic changes in newly synthesized allotetraploid wheat lines. J Genet Genomics 2010; 37:737-48. [DOI: 10.1016/s1673-8527(09)60091-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 09/22/2010] [Accepted: 09/24/2010] [Indexed: 01/25/2023]
|
520
|
Ryan PR, Raman H, Gupta S, Sasaki T, Yamamoto Y, Delhaize E. The multiple origins of aluminium resistance in hexaploid wheat include Aegilops tauschii and more recent cis mutations to TaALMT1. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 64:446-55. [PMID: 20804458 DOI: 10.1111/j.1365-313x.2010.04338.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Acid soils limit plant production worldwide because their high concentrations of soluble aluminium cations (Al(3+) ) inhibit root growth. Major food crops such as wheat (Triticum aestivum L.) have evolved mechanisms to resist Al(3+) toxicity, thus enabling wider distribution. The origins of Al(3+) resistance in wheat are perplexing because all progenitors of this hexaploid species are reportedly sensitive to Al(3+) stress. The large genotypic variation for Al(3+) resistance in wheat is largely controlled by expression of an anion channel, TaALMT1, which releases malate anions from the root apices. A current hypothesis proposes that the malate anions protect this sensitive growth zone by binding to Al(3+) in the apoplasm. We investigated the evolution of this trait in wheat, and demonstrated that it has multiple independent origins that enhance Al(3+) resistance by increasing TaALMT1 expression. One origin is likely to be Aegilops tauschii while other origins occurred more recently from a series of cis mutations that have generated tandemly repeated elements in the TaALMT1 promoter. We generated transgenic plants to directly compare these promoter alleles and demonstrate that the tandemly repeated elements act to enhance gene expression. This study provides an example from higher eukaryotes in which perfect tandem repeats are linked with transcriptional regulation and phenotypic change in the context of evolutionary adaptation to a major abiotic stress.
Collapse
Affiliation(s)
- Peter R Ryan
- CSIRO Plant Industry, GPO Box 1600, Canberra, ACT 2601, Australia.
| | | | | | | | | | | |
Collapse
|
521
|
Karyotype and identification of all homoeologous chromosomes of allopolyploid Brassica napus and its diploid progenitors. Genetics 2010; 187:37-49. [PMID: 21041557 DOI: 10.1534/genetics.110.122473] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Investigating recombination of homoeologous chromosomes in allopolyploid species is central to understanding plant breeding and evolution. However, examining chromosome pairing in the allotetraploid Brassica napus has been hampered by the lack of chromosome-specific molecular probes. In this study, we establish the identification of all homoeologous chromosomes of allopolyploid B. napus by using robust molecular cytogenetic karyotypes developed for the progenitor species Brassica rapa (A genome) and Brassica oleracea (C genome). The identification of every chromosome among these three Brassica species utilized genetically mapped bacterial artificial chromosomes (BACs) from B. rapa as probes for fluorescent in situ hybridization (FISH). With this BAC-FISH data, a second karyotype was developed using two BACs that contained repetitive DNA sequences and the ubiquitous ribosomal and pericentromere repeats. Using this diagnostic probe mix and a BAC that contained a C-genome repeat in two successive hybridizations allowed for routine identification of the corresponding homoeologous chromosomes between the A and C genomes of B. napus. When applied to the B. napus cultivar Stellar, we detected one chromosomal rearrangement relative to the parental karyotypes. This robust novel chromosomal painting technique will have biological applications for the understanding of chromosome pairing, homoeologous recombination, and genome evolution in the genus Brassica and will facilitate new applied breeding technologies that rely upon identification of chromosomes.
Collapse
|
522
|
Hutcheon C, Ditt RF, Beilstein M, Comai L, Schroeder J, Goldstein E, Shewmaker CK, Nguyen T, De Rocher J, Kiser J. Polyploid genome of Camelina sativa revealed by isolation of fatty acid synthesis genes. BMC PLANT BIOLOGY 2010; 10:233. [PMID: 20977772 PMCID: PMC3017853 DOI: 10.1186/1471-2229-10-233] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 10/27/2010] [Indexed: 05/17/2023]
Abstract
BACKGROUND Camelina sativa, an oilseed crop in the Brassicaceae family, has inspired renewed interest due to its potential for biofuels applications. Little is understood of the nature of the C. sativa genome, however. A study was undertaken to characterize two genes in the fatty acid biosynthesis pathway, fatty acid desaturase (FAD) 2 and fatty acid elongase (FAE) 1, which revealed unexpected complexity in the C. sativa genome. RESULTS In C. sativa, Southern analysis indicates the presence of three copies of both FAD2 and FAE1 as well as LFY, a known single copy gene in other species. All three copies of both CsFAD2 and CsFAE1 are expressed in developing seeds, and sequence alignments show that previously described conserved sites are present, suggesting that all three copies of both genes could be functional. The regions downstream of CsFAD2 and upstream of CsFAE1 demonstrate co-linearity with the Arabidopsis genome. In addition, three expressed haplotypes were observed for six predicted single-copy genes in 454 sequencing analysis and results from flow cytometry indicate that the DNA content of C. sativa is approximately three-fold that of diploid Camelina relatives. Phylogenetic analyses further support a history of duplication and indicate that C. sativa and C. microcarpa might share a parental genome. CONCLUSIONS There is compelling evidence for triplication of the C. sativa genome, including a larger chromosome number and three-fold larger measured genome size than other Camelina relatives, three isolated copies of FAD2, FAE1, and the KCS17-FAE1 intergenic region, and three expressed haplotypes observed for six predicted single-copy genes. Based on these results, we propose that C. sativa be considered an allohexaploid. The characterization of fatty acid synthesis pathway genes will allow for the future manipulation of oil composition of this emerging biofuel crop; however, targeted manipulations of oil composition and general development of C. sativa should consider and, when possible take advantage of, the implications of polyploidy.
Collapse
Affiliation(s)
- Carolyn Hutcheon
- Targeted Growth, Inc., 2815 Eastlake Ave E Suite 300, Seattle, WA 98102, USA
| | - Renata F Ditt
- Targeted Growth, Inc., 2815 Eastlake Ave E Suite 300, Seattle, WA 98102, USA
| | - Mark Beilstein
- Dept. of Biochemistry/Biophysics, Texas A&M University, TAMU 2128 College Station, TX 77843, USA
| | - Luca Comai
- Plant Biology and Genome Center, 451 Health Sciences Drive, University of California Davis, Davis, CA 95616, USA
| | - Jesara Schroeder
- Targeted Growth, Inc., 2815 Eastlake Ave E Suite 300, Seattle, WA 98102, USA
| | - Elianna Goldstein
- Plant Biology and Genome Center, 451 Health Sciences Drive, University of California Davis, Davis, CA 95616, USA
| | | | - Thu Nguyen
- Targeted Growth, Inc., 2815 Eastlake Ave E Suite 300, Seattle, WA 98102, USA
| | - Jay De Rocher
- Targeted Growth, Inc., 2815 Eastlake Ave E Suite 300, Seattle, WA 98102, USA
| | - Jack Kiser
- Sustainable Oils, LLC, 3208 Curlew St., Davis, CA 95616, USA
| |
Collapse
|
523
|
Akhunova AR, Matniyazov RT, Liang H, Akhunov ED. Homoeolog-specific transcriptional bias in allopolyploid wheat. BMC Genomics 2010; 11:505. [PMID: 20849627 PMCID: PMC2997001 DOI: 10.1186/1471-2164-11-505] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 09/17/2010] [Indexed: 12/18/2022] Open
Abstract
Background Interaction between parental genomes is accompanied by global changes in gene expression which, eventually, contributes to growth vigor and the broader phenotypic diversity of allopolyploid species. In order to gain a better understanding of the effects of allopolyploidization on the regulation of diverged gene networks, we performed a genome-wide analysis of homoeolog-specific gene expression in re-synthesized allohexaploid wheat created by the hybridization of a tetraploid derivative of hexaploid wheat with the diploid ancestor of the wheat D genome Ae. tauschii. Results Affymetrix wheat genome arrays were used for both the discovery of divergent homoeolog-specific mutations and analysis of homoeolog-specific gene expression in re-synthesized allohexaploid wheat. More than 34,000 detectable parent-specific features (PSF) distributed across the wheat genome were used to assess AB genome (could not differentiate A and B genome contributions) and D genome parental expression in the allopolyploid transcriptome. In re-synthesized polyploid 81% of PSFs detected mid-parent levels of gene expression, and only 19% of PSFs showed the evidence of non-additive expression. Non-additive expression in both AB and D genomes was strongly biased toward up-regulation of parental type of gene expression with only 6% and 11% of genes, respectively, being down-regulated. Of all the non-additive gene expression, 84% can be explained by differences in the parental genotypes used to make the allopolyploid. Homoeolog-specific co-regulation of several functional gene categories was found, particularly genes involved in photosynthesis and protein biosynthesis in wheat. Conclusions Here, we have demonstrated that the establishment of interactions between the diverged regulatory networks in allopolyploids is accompanied by massive homoeolog-specific up- and down-regulation of gene expression. This study provides insights into interactions between homoeologous genomes and their role in growth vigor, development, and fertility of allopolyploid species.
Collapse
Affiliation(s)
- Alina R Akhunova
- Department of Plant Pathology, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS 66506, USA.
| | | | | | | |
Collapse
|
524
|
Winfield MO, Lu C, Wilson ID, Coghill JA, Edwards KJ. Plant responses to cold: Transcriptome analysis of wheat. PLANT BIOTECHNOLOGY JOURNAL 2010; 8:749-71. [PMID: 20561247 DOI: 10.1111/j.1467-7652.2010.00536.x] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Temperature and light are important environmental stimuli that have a profound influence on the growth and development of plants. Wheat varieties can be divided on the basis of whether they require an extended period of cold to flower (vernalization). Varieties that have a requirement for vernalization also tend to be winter hardy and are able to withstand quite extreme subzero temperatures. This capacity, however, is not constitutive and plants require a period of exposure to low, non-freezing temperatures to acquire freezing tolerance: this process is referred to as cold acclimation. Cold acclimation and the acquisition of freezing tolerance require the orchestration of many different, seemingly disparate physiological and biochemical changes. These changes are, at least in part, mediated through the differential expression of many genes. Some of these genes code for effector molecules that participate directly to alleviate stress. Others code for proteins involved in signal transduction or transcription factors that control the expression of further banks of genes. In this review, we provide an overview of some of the main features of cold acclimation with particular focus on transcriptome reprogramming. In doing so, we highlight some of the important differences between cold-hardy and cold-sensitive varieties. An understanding of these processes is of great potential importance because cold and freezing stress are major limiting factors for growing crop plants and periodically account for significant losses in plant productivity.
Collapse
Affiliation(s)
- Mark O Winfield
- School of Biological Sciences, University of Bristol, Bristol, UK.
| | | | | | | | | |
Collapse
|
525
|
van den Broeck H, Hongbing C, Lacaze X, Dusautoir JC, Gilissen L, Smulders M, van der Meer I. In search of tetraploid wheat accessions reduced in celiac disease-related gluten epitopes. MOLECULAR BIOSYSTEMS 2010; 6:2206-13. [PMID: 20714643 DOI: 10.1039/c0mb00046a] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Tetraploid wheat (durum wheat) is mainly used for the preparation of pasta. As a result of breeding, thousands of tetraploid wheat varieties exist, but also tetraploid landraces are still maintained and used for local food preparations. Gluten proteins present in wheat can induce celiac disease, a T-cell mediated auto-immune disorder, in genetically predisposed individuals after ingestion. Compared to hexaploid wheat, tetraploid wheat might be reduced in T-cell stimulatory epitopes that cause celiac disease because of the absence of the D-genome. We tested gluten protein extracts from 103 tetraploid wheat accessions (obtained from the Dutch CGN genebank and from the French INRA collection) including landraces, old, modern, and domesticated accessions of various tetraploid species and subspecies from many geographic origins. Those accessions were typed for their level of T-cell stimulatory epitopes by immunoblotting with monoclonal antibodies against the α-gliadin epitopes Glia-α9 and Glia-α20. In the first selection, we found 8 CGN and 6 INRA accessions with reduced epitope staining. Fourteen of the 57 CGN accessions turned out to be mixed with hexaploid wheat, and 5 out of the 8 selected CGN accessions were mixtures of two or more different gluten protein chemotypes. Based on single seed analysis, lines from two CGN accessions and one INRA accession were obtained with significantly reduced levels of Glia-α9 and Glia-α20 epitopes. These lines will be further tested for industrial quality and may contribute to the development of safer foods for celiac patients.
Collapse
Affiliation(s)
- Hetty van den Broeck
- Wageningen UR, Plant Research International, P.O. Box 16, 6700 AA Wageningen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
526
|
Ammiraju JSS, Fan C, Yu Y, Song X, Cranston KA, Pontaroli AC, Lu F, Sanyal A, Jiang N, Rambo T, Currie J, Collura K, Talag J, Bennetzen JL, Chen M, Jackson S, Wing RA. Spatio-temporal patterns of genome evolution in allotetraploid species of the genus Oryza. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 63:430-42. [PMID: 20487382 DOI: 10.1111/j.1365-313x.2010.04251.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Despite knowledge that polyploidy is widespread and a major evolutionary force in flowering plant diversification, detailed comparative molecular studies on polyploidy have been confined to only a few species and families. The genus Oryza is composed of 23 species that are classified into ten distinct 'genome types' (six diploid and four polyploid), and is emerging as a powerful new model system to study polyploidy. Here we report the identification, sequence and comprehensive comparative annotation of eight homoeologous genomes from a single orthologous region (Adh1-Adh2) from four allopolyploid species representing each of the known Oryza genome types (BC, CD, HJ and KL). Detailed comparative phylogenomic analyses of these regions within and across species and ploidy levels provided several insights into the spatio-temporal dynamics of genome organization and evolution of this region in 'natural' polyploids of Oryza. The major findings of this study are that: (i) homoeologous genomic regions within the same nucleus experience both independent and parallel evolution, (ii) differential lineage-specific selection pressures do not occur between polyploids and their diploid progenitors, (iii) there have been no dramatic structural changes relative to the diploid ancestors, (iv) a variation in the molecular evolutionary rate exists between the two genomes in the BC complex species even though the BC and CD polyploid species appear to have arisen <2 million years ago, and (v) there are no clear distinctions in the patterns of genome evolution in the diploid versus polyploid species.
Collapse
Affiliation(s)
- Jetty S S Ammiraju
- Arizona Genomics Institute, School of Plant Sciences, BIO5 Institute, University of Arizona, Tucson, AZ 85721, USABiodiversity Synthesis Center, Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, IL 60605, USADepartment of Genetics, University of Georgia, Athens, GA 30602-7223, USAState Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, ChinaDepartment of Agronomy, Purdue University, West Lafayette, IN 47907-2054, USADepartment of Horticulture, Michigan State University, East Lansing, MI 48823, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
527
|
Qi Z, Du P, Qian B, Zhuang L, Chen H, Chen T, Shen J, Guo J, Feng Y, Pei Z. Characterization of a wheat-Thinopyrum bessarabicum (T2JS-2BS.2BL) translocation line. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 121:589-97. [PMID: 20407740 DOI: 10.1007/s00122-010-1332-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Accepted: 04/01/2010] [Indexed: 05/07/2023]
Abstract
Thinopyrum bessarabicum (2n = 2x = 14, JJ or E(b)E(b)) is an important genetic resource for wheat improvement due to its salinity tolerance and disease resistance. Development of wheat-Th. bessarabicum translocation lines will facilitate its practical utilization in wheat improvement. In this study, a novel wheat-Th. bessarabicum translocation line T2JS-2BS.2BL, which carries a segment of Th. bessarabicum chromosome arm 2JS was identified and further characterized using sequential chromosome C-banding, genomic in situ hybridization (GISH), dual-color fluorescent in situ hybridization (FISH) and DNA markers. The translocation breakpoint was mapped within bin C-2BS1-0.53 of chromosome 2B through marker analysis. Compared to the Chinese Spring (CS) parent and to CS-type lines, the translocation line has more fertile spikes per plant, longer spikes, more grains per spike and higher yield per plant, which suggests that the alien segment carries yield-related genes. However, plants with the translocation are also taller, head later and have lower 1,000-kernel weight than CS or CS-type lines. By using markers specific to the barley photoperiod response gene Ppd-H1, it was determined that the late heading date was conferred by a recessive allele located on the 2JS segment. In addition, four markers specific for the translocated segment were identified, which can be used for marker-aided screening.
Collapse
Affiliation(s)
- Zengjun Qi
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
528
|
Zeller SL, Kalinina O, Brunner S, Keller B, Schmid B. Transgene x environment interactions in genetically modified wheat. PLoS One 2010; 5:e11405. [PMID: 20635001 PMCID: PMC2902502 DOI: 10.1371/journal.pone.0011405] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 06/03/2010] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The introduction of transgenes into plants may cause unintended phenotypic effects which could have an impact on the plant itself and the environment. Little is published in the scientific literature about the interrelation of environmental factors and possible unintended effects in genetically modified (GM) plants. METHODS AND FINDINGS We studied transgenic bread wheat Triticum aestivum lines expressing the wheat Pm3b gene against the fungus powdery mildew Blumeria graminis f.sp. tritici. Four independent offspring pairs, each consisting of a GM line and its corresponding non-GM control line, were grown under different soil nutrient conditions and with and without fungicide treatment in the glasshouse. Furthermore, we performed a field experiment with a similar design to validate our glasshouse results. The transgene increased the resistance to powdery mildew in all environments. However, GM plants reacted sensitive to fungicide spraying in the glasshouse. Without fungicide treatment, in the glasshouse GM lines had increased vegetative biomass and seed number and a twofold yield compared with control lines. In the field these results were reversed. Fertilization generally increased GM/control differences in the glasshouse but not in the field. Two of four GM lines showed up to 56% yield reduction and a 40-fold increase of infection with ergot disease Claviceps purpurea compared with their control lines in the field experiment; one GM line was very similar to its control. CONCLUSIONS Our results demonstrate that, depending on the insertion event, a particular transgene can have large effects on the entire phenotype of a plant and that these effects can sometimes be reversed when plants are moved from the glasshouse to the field. However, it remains unclear which mechanisms underlie these effects and how they may affect concepts in molecular plant breeding and plant evolutionary ecology.
Collapse
Affiliation(s)
- Simon L. Zeller
- Institute of Evolutionary Ecology and Environmental Studies, University of Zurich, Zurich, Switzerland
- * E-mail: (SLZ); (BK)
| | - Olena Kalinina
- Institute of Evolutionary Ecology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Susanne Brunner
- Institute of Plant Biology, University of Zurich, Zurich, Switzerland
| | - Beat Keller
- Institute of Plant Biology, University of Zurich, Zurich, Switzerland
- * E-mail: (SLZ); (BK)
| | - Bernhard Schmid
- Institute of Evolutionary Ecology and Environmental Studies, University of Zurich, Zurich, Switzerland
| |
Collapse
|
529
|
Cifuentes M, Eber F, Lucas MO, Lode M, Chèvre AM, Jenczewski E. Repeated polyploidy drove different levels of crossover suppression between homoeologous chromosomes in Brassica napus allohaploids. THE PLANT CELL 2010; 22:2265-76. [PMID: 20639447 PMCID: PMC2929116 DOI: 10.1105/tpc.109.072991] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Allopolyploid species contain more than two sets of related chromosomes (homoeologs) that must be sorted during meiosis to ensure fertility. As polyploid species usually have multiple origins, one intriguing, yet largely underexplored, question is whether different mechanisms suppressing crossovers between homoeologs may coexist within the same polyphyletic species. We addressed this question using Brassica napus, a young polyphyletic allopolyploid species. We first analyzed the meiotic behavior of 363 allohaploids produced from 29 accessions, which represent a large part of B. napus genetic diversity. Two main clear-cut meiotic phenotypes were observed, encompassing a twofold difference in the number of univalents at metaphase I. We then sequenced two chloroplast intergenic regions to gain insight into the maternal origins of the same 29 accessions; only two plastid haplotypes were found, and these correlated with the dichotomy of meiotic phenotypes. Finally, we analyzed genetic diversity at the PrBn locus, which was shown to determine meiotic behavior in a segregating population of B. napus allohaploids. We observed that segregation of two alleles at PrBn could adequately explain a large part of the variation in meiotic behavior found among B. napus allohaploids. Overall, our results suggest that repeated polyploidy resulted in different levels of crossover suppression between homoeologs in B. napus allohaploids.
Collapse
Affiliation(s)
- Marta Cifuentes
- Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, INRA-AgroParisTech. Bâtiment 7, Institut National de la Recherche Agronomique Centre de Versailles-Grignon, 78026 Versailles Cedex, France
| | - Frédérique Eber
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 118, Amélioration des Plantes et Biotechnologies Végétales, F-35653 Le Rheu, France
| | - Marie-Odile Lucas
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 118, Amélioration des Plantes et Biotechnologies Végétales, F-35653 Le Rheu, France
| | - Maryse Lode
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 118, Amélioration des Plantes et Biotechnologies Végétales, F-35653 Le Rheu, France
| | - Anne-Marie Chèvre
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 118, Amélioration des Plantes et Biotechnologies Végétales, F-35653 Le Rheu, France
| | - Eric Jenczewski
- Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, INRA-AgroParisTech. Bâtiment 7, Institut National de la Recherche Agronomique Centre de Versailles-Grignon, 78026 Versailles Cedex, France
- Address correspondence to
| |
Collapse
|
530
|
Cantu D, Vanzetti LS, Sumner A, Dubcovsky M, Matvienko M, Distelfeld A, Michelmore RW, Dubcovsky J. Small RNAs, DNA methylation and transposable elements in wheat. BMC Genomics 2010; 11:408. [PMID: 20584339 PMCID: PMC2996936 DOI: 10.1186/1471-2164-11-408] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 06/29/2010] [Indexed: 12/15/2022] Open
Abstract
Background More than 80% of the wheat genome is composed of transposable elements (TEs). Since active TEs can move to different locations and potentially impose a significant mutational load, their expression is suppressed in the genome via small non-coding RNAs (sRNAs). sRNAs guide silencing of TEs at the transcriptional (mainly 24-nt sRNAs) and post-transcriptional (mainly 21-nt sRNAs) levels. In this study, we report the distribution of these two types of sRNAs among the different classes of wheat TEs, the regions targeted within the TEs, and their impact on the methylation patterns of the targeted regions. Results We constructed an sRNA library from hexaploid wheat and developed a database that included our library and three other publicly available sRNA libraries from wheat. For five completely-sequenced wheat BAC contigs, most perfectly matching sRNAs represented TE sequences, suggesting that a large fraction of the wheat sRNAs originated from TEs. An analysis of all wheat TEs present in the Triticeae Repeat Sequence database showed that sRNA abundance was correlated with the estimated number of TEs within each class. Most of the sRNAs perfectly matching miniature inverted repeat transposable elements (MITEs) belonged to the 21-nt class and were mainly targeted to the terminal inverted repeats (TIRs). In contrast, most of the sRNAs matching class I and class II TEs belonged to the 24-nt class and were mainly targeted to the long terminal repeats (LTRs) in the class I TEs and to the terminal repeats in CACTA transposons. An analysis of the mutation frequency in potentially methylated sites revealed a three-fold increase in TE mutation frequency relative to intron and untranslated genic regions. This increase is consistent with wheat TEs being preferentially methylated, likely by sRNA targeting. Conclusions Our study examines the wheat epigenome in relation to known TEs. sRNA-directed transcriptional and post-transcriptional silencing plays important roles in the short-term suppression of TEs in the wheat genome, whereas DNA methylation and increased mutation rates may provide a long-term mechanism to inactivate TEs.
Collapse
Affiliation(s)
- Dario Cantu
- Department of Plant Sciences, University of California Davis, One Shields Ave, Davis, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
531
|
Breen J, Wicker T, Kong X, Zhang J, Ma W, Paux E, Feuillet C, Appels R, Bellgard M. A highly conserved gene island of three genes on chromosome 3B of hexaploid wheat: diverse gene function and genomic structure maintained in a tightly linked block. BMC PLANT BIOLOGY 2010; 10:98. [PMID: 20507561 PMCID: PMC3017796 DOI: 10.1186/1471-2229-10-98] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Accepted: 05/27/2010] [Indexed: 05/29/2023]
Abstract
BACKGROUND The complexity of the wheat genome has resulted from waves of retrotransposable element insertions. Gene deletions and disruptions generated by the fast replacement of repetitive elements in wheat have resulted in disruption of colinearity at a micro (sub-megabase) level among the cereals. In view of genomic changes that are possible within a given time span, conservation of genes between species tends to imply an important functional or regional constraint that does not permit a change in genomic structure. The ctg1034 contig completed in this paper was initially studied because it was assigned to the Sr2 resistance locus region, but detailed mapping studies subsequently assigned it to the long arm of 3B and revealed its unusual features. RESULTS BAC shotgun sequencing of the hexaploid wheat (Triticum aestivum cv. Chinese Spring) genome has been used to assemble a group of 15 wheat BACs from the chromosome 3B physical map FPC contig ctg1034 into a 783,553 bp genomic sequence. This ctg1034 sequence was annotated for biological features such as genes and transposable elements. A three-gene island was identified among >80% repetitive DNA sequence. Using bioinformatics analysis there were no observable similarity in their gene functions. The ctg1034 gene island also displayed complete conservation of gene order and orientation with syntenic gene islands found in publicly available genome sequences of Brachypodium distachyon, Oryza sativa, Sorghum bicolor and Zea mays, even though the intergenic space and introns were divergent. CONCLUSION We propose that ctg1034 is located within the heterochromatic C-band region of deletion bin 3BL7 based on the identification of heterochromatic tandem repeats and presence of significant matches to chromodomain-containing gypsy LTR retrotransposable elements. We also speculate that this location, among other highly repetitive sequences, may account for the relative stability in gene order and orientation within the gene island.Sequence data from this article have been deposited with the GenBank Data Libraries under accession no. GQ422824.
Collapse
Affiliation(s)
- James Breen
- Centre for Comparative Genomics (CCG), Murdoch University, South Street, Perth 6150, Australia
- Molecular Plant Breeding Co-operative Research Centre (MPBCRC) Murdoch University, South Street, Perth 6150, Australia
| | - Thomas Wicker
- Institute of Plant Biology, University Zurich, Zollikerstrasse 107, Zurich, CH-8008 Switzerland
| | - Xiuying Kong
- Key Laboratory of Crop Germplasm Resources and Utilization, MOA/Institute of Crop Sciences, CAAS/The Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Juncheng Zhang
- Key Laboratory of Crop Germplasm Resources and Utilization, MOA/Institute of Crop Sciences, CAAS/The Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Wujun Ma
- Centre for Comparative Genomics (CCG), Murdoch University, South Street, Perth 6150, Australia
- State Agricultural Biotechnology Centre (SABC), Murdoch University, South Street, Perth 6150, Australia
- Department of Agriculture and Food, Western Australia (DAFWA), 3 Baron Hay Court, Perth, 6151 Australia
| | - Etienne Paux
- UMR 1095 Génétique, Diversité et Ecophysiologie des Céréales, INRA Site de Crouël, 63100 Clermont-ferrand, France
| | - Catherine Feuillet
- UMR 1095 Génétique, Diversité et Ecophysiologie des Céréales, INRA Site de Crouël, 63100 Clermont-ferrand, France
| | - Rudi Appels
- Centre for Comparative Genomics (CCG), Murdoch University, South Street, Perth 6150, Australia
| | - Matthew Bellgard
- Centre for Comparative Genomics (CCG), Murdoch University, South Street, Perth 6150, Australia
| |
Collapse
|
532
|
Brevis JC, Morris CF, Manthey F, Dubcovsky J. Effect of the grain protein content locus Gpc-B1 on bread and pasta quality. J Cereal Sci 2010. [DOI: 10.1016/j.jcs.2010.02.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
533
|
Wang E, Xu X, Zhang L, Zhang H, Lin L, Wang Q, Li Q, Ge S, Lu BR, Wang W, He Z. Duplication and independent selection of cell-wall invertase genes GIF1 and OsCIN1 during rice evolution and domestication. BMC Evol Biol 2010; 10:108. [PMID: 20416079 PMCID: PMC2873416 DOI: 10.1186/1471-2148-10-108] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 04/23/2010] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Various evolutionary models have been proposed to interpret the fate of paralogous duplicates, which provides substrates on which evolution selection could act. In particular, domestication, as a special selection, has played important role in crop cultivation with divergence of many genes controlling important agronomic traits. Recent studies have indicated that a pair of duplicate genes was often sub-functionalized from their ancestral functions held by the parental genes. We previously demonstrated that the rice cell-wall invertase (CWI) gene GIF1 that plays an important role in the grain-filling process was most likely subjected to domestication selection in the promoter region. Here, we report that GIF1 and another CWI gene OsCIN1 constitute a pair of duplicate genes with differentiated expression and function through independent selection. RESULTS Through synteny analysis, we show that GIF1 and another cell-wall invertase gene OsCIN1 were paralogues derived from a segmental duplication originated during genome duplication of grasses. Results based on analyses of population genetics and gene phylogenetic tree of 25 cultivars and 25 wild rice sequences demonstrated that OsCIN1 was also artificially selected during rice domestication with a fixed mutation in the coding region, in contrast to GIF1 that was selected in the promoter region. GIF1 and OsCIN1 have evolved into different expression patterns and probable different kinetics parameters of enzymatic activity with the latter displaying less enzymatic activity. Overexpression of GIF1 and OsCIN1 also resulted in different phenotypes, suggesting that OsCIN1 might regulate other unrecognized biological process. CONCLUSION How gene duplication and divergence contribute to genetic novelty and morphological adaptation has been an interesting issue to geneticists and biologists. Our discovery that the duplicated pair of GIF1 and OsCIN1 has experienced sub-functionalization implies that selection could act independently on each duplicate towards different functional specificity, which provides a vivid example for evolution of genetic novelties in a model crop. Our results also further support the established hypothesis that gene duplication with sub-functionalization could be one solution for genetic adaptive conflict.
Collapse
Affiliation(s)
- Ertao Wang
- National Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xun Xu
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Lin Zhang
- National Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hong Zhang
- National Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Lin Lin
- National Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qin Wang
- National Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qun Li
- National Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Song Ge
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Bao-Rong Lu
- School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Wen Wang
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Zuhua He
- National Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
534
|
Complete switchgrass genetic maps reveal subgenome collinearity, preferential pairing and multilocus interactions. Genetics 2010; 185:745-60. [PMID: 20407132 DOI: 10.1534/genetics.110.113910] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Polyploidy is an important aspect of the evolution of flowering plants. The potential of gene copies to diverge and evolve new functions is influenced by meiotic behavior of chromosomes leading to segregation as a single locus or duplicated loci. Switchgrass (Panicum virgatum) linkage maps were constructed using a full-sib population of 238 plants and SSR and STS markers to access the degree of preferential pairing and the structure of the tetraploid genome and as a step toward identification of loci underlying biomass feedstock quality and yield. The male and female framework map lengths were 1645 and 1376 cM with 97% of the genome estimated to be within 10 cM of a mapped marker in both maps. Each map coalesced into 18 linkage groups arranged into nine homeologous pairs. Comparative analysis of each homology group to the diploid sorghum genome identified clear syntenic relationships and collinear tracts. The number of markers with PCR amplicons that mapped across subgenomes was significantly fewer than expected, suggesting substantial subgenome divergence, while both the ratio of coupling to repulsion phase linkages and pattern of marker segregation indicated complete or near complete disomic inheritance. The proportion of transmission ratio distorted markers was relatively low, but the male map was more extensively affected by distorted transmission ratios and multilocus interactions, associated with spurious linkages.
Collapse
|
535
|
|
536
|
Gegas VC, Nazari A, Griffiths S, Simmonds J, Fish L, Orford S, Sayers L, Doonan JH, Snape JW. A genetic framework for grain size and shape variation in wheat. THE PLANT CELL 2010; 22:1046-56. [PMID: 20363770 PMCID: PMC2879751 DOI: 10.1105/tpc.110.074153] [Citation(s) in RCA: 220] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 02/24/2010] [Accepted: 03/18/2010] [Indexed: 05/18/2023]
Abstract
Grain morphology in wheat (Triticum aestivum) has been selected and manipulated even in very early agrarian societies and remains a major breeding target. We undertook a large-scale quantitative analysis to determine the genetic basis of the phenotypic diversity in wheat grain morphology. A high-throughput method was used to capture grain size and shape variation in multiple mapping populations, elite varieties, and a broad collection of ancestral wheat species. This analysis reveals that grain size and shape are largely independent traits in both primitive wheat and in modern varieties. This phenotypic structure was retained across the mapping populations studied, suggesting that these traits are under the control of a limited number of discrete genetic components. We identified the underlying genes as quantitative trait loci that are distinct for grain size and shape and are largely shared between the different mapping populations. Moreover, our results show a significant reduction of phenotypic variation in grain shape in the modern germplasm pool compared with the ancestral wheat species, probably as a result of a relatively recent bottleneck. Therefore, this study provides the genetic underpinnings of an emerging phenotypic model where wheat domestication has transformed a long thin primitive grain to a wider and shorter modern grain.
Collapse
Affiliation(s)
- Vasilis C. Gegas
- Department of Crop Genetics, John Innes Centre, Norwich NR4 7UH, United Kingdom
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Aida Nazari
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Simon Griffiths
- Department of Crop Genetics, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - James Simmonds
- Department of Crop Genetics, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Lesley Fish
- Department of Crop Genetics, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Simon Orford
- Department of Crop Genetics, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Liz Sayers
- Department of Crop Genetics, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - John H. Doonan
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - John W. Snape
- Department of Crop Genetics, John Innes Centre, Norwich NR4 7UH, United Kingdom
- Address correspondence to
| |
Collapse
|
537
|
Abstract
The elimination of DNA sequences following allopolyploidization is a well-known phenomenon. Yet, nothing is known about the biological significance, the mechanism, or the precise developmental timing of this event. In this study, we have observed reproducible elimination of an Aegilops tauschii allele in the genome of the second generation (S2) of a newly synthesized allohexaploid derived from a cross between Triticum turgidum and Ae. tauschii. We show that elimination of the Ae. tauschii allele did not occur in germ cells but instead occurred during S2 embryo development. This work shows that deletion of DNA sequences following allopolyploidization might occur also in a tissue-specific manner.
Collapse
|
538
|
Luo MC, Ma Y, You FM, Anderson OD, Kopecký D, Simková H, Safár J, Dolezel J, Gill B, McGuire PE, Dvorak J. Feasibility of physical map construction from fingerprinted bacterial artificial chromosome libraries of polyploid plant species. BMC Genomics 2010; 11:122. [PMID: 20170511 PMCID: PMC2836288 DOI: 10.1186/1471-2164-11-122] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 02/19/2010] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND The presence of closely related genomes in polyploid species makes the assembly of total genomic sequence from shotgun sequence reads produced by the current sequencing platforms exceedingly difficult, if not impossible. Genomes of polyploid species could be sequenced following the ordered-clone sequencing approach employing contigs of bacterial artificial chromosome (BAC) clones and BAC-based physical maps. Although BAC contigs can currently be constructed for virtually any diploid organism with the SNaPshot high-information-content-fingerprinting (HICF) technology, it is currently unknown if this is also true for polyploid species. It is possible that BAC clones from orthologous regions of homoeologous chromosomes would share numerous restriction fragments and be therefore included into common contigs. Because of this and other concerns, physical mapping utilizing the SNaPshot HICF of BAC libraries of polyploid species has not been pursued and the possibility of doing so has not been assessed. The sole exception has been in common wheat, an allohexaploid in which it is possible to construct single-chromosome or single-chromosome-arm BAC libraries from DNA of flow-sorted chromosomes and bypass the obstacles created by polyploidy. RESULTS The potential of the SNaPshot HICF technology for physical mapping of polyploid plants utilizing global BAC libraries was evaluated by assembling contigs of fingerprinted clones in an in silico merged BAC library composed of single-chromosome libraries of two wheat homoeologous chromosome arms, 3AS and 3DS, and complete chromosome 3B. Because the chromosome arm origin of each clone was known, it was possible to estimate the fidelity of contig assembly. On average 97.78% or more clones, depending on the library, were from a single chromosome arm. A large portion of the remaining clones was shown to be library contamination from other chromosomes, a feature that is unavoidable during the construction of single-chromosome BAC libraries. CONCLUSIONS The negligibly low level of incorporation of clones from homoeologous chromosome arms into a contig during contig assembly suggested that it is feasible to construct contigs and physical maps using global BAC libraries of wheat and almost certainly also of other plant polyploid species with genome sizes comparable to that of wheat. Because of the high purity of the resulting assembled contigs, they can be directly used for genome sequencing. It is currently unknown but possible that equally good BAC contigs can be also constructed for polyploid species containing smaller, more gene-rich genomes.
Collapse
Affiliation(s)
- Ming-Cheng Luo
- Department of Plant Sciences, University of California, Davis, CA 95616, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
539
|
Mizuno N, Yamasaki M, Matsuoka Y, Kawahara T, Takumi S. Population structure of wild wheat D-genome progenitor Aegilops tauschii Coss.: implications for intraspecific lineage diversification and evolution of common wheat. Mol Ecol 2010; 19:999-1013. [PMID: 20149088 DOI: 10.1111/j.1365-294x.2010.04537.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Aegilops tauschii Coss. is the D-genome progenitor of hexaploid wheat. Aegilops tauschii, a wild diploid species, has a wide natural species range in central Eurasia, spreading from Turkey to western China. Amplified fragment length polymorphism (AFLP) analysis using a total of 122 accessions of Ae. tauschii was conducted to clarify the population structure of this widespread wild wheat species. Phylogenetic and principal component analyses revealed two major lineages in Ae. tauschii. Bayesian population structure analyses based on the AFLP data showed that lineages one (L1) and two (L2) were respectively significantly divided into six and three sublineages. Only four out of the six L1 sublineages were diverged from those of western habitats in the Transcaucasia and northern Iran region to eastern habitats such as Pakistan and Afghanistan. Other sublineages including L2 were distributed to a limited extent in the western region. Subspecies strangulata seemed to be differentiated in one sublineage of L2. Among three major haplogroups (HG7, HG9 and HG16) previously identified in the Ae. tauschii population based on chloroplast variation, HG7 accessions were widely distributed to both L1 and L2, HG9 accessions were restricted to L2, and HG16 accessions belonged to L1, suggesting that HG9 and HG16 were formed from HG7 after divergence of the first two lineages of the nuclear genome. These results on the population structure of Ae. tauschii and the genealogical relationship among Ae. tauschii accessions should provide important agricultural and evolutionary knowledge on genetic resources and conservation of natural genetic diversity.
Collapse
Affiliation(s)
- Nobuyuki Mizuno
- Laboratory of Plant Genetics, Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe 657-8501, Japan
| | | | | | | | | |
Collapse
|
540
|
Chen ZJ. Molecular mechanisms of polyploidy and hybrid vigor. TRENDS IN PLANT SCIENCE 2010; 15:57-71. [PMID: 20080432 PMCID: PMC2821985 DOI: 10.1016/j.tplants.2009.12.003] [Citation(s) in RCA: 324] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 12/09/2009] [Accepted: 12/14/2009] [Indexed: 05/18/2023]
Abstract
Hybrids such as maize (Zea mays) or domestic dog (Canis lupus familiaris) grow bigger and stronger than their parents. This is also true for allopolyploids such as wheat (Triticum spp.) or frog (i.e. Xenopus and Silurana) that contain two or more sets of chromosomes from different species. The phenomenon, known as hybrid vigor or heterosis, was systematically characterized by Charles Darwin (1876). The rediscovery of heterosis in maize a century ago has revolutionized plant and animal breeding and production. Although genetic models for heterosis have been rigorously tested, the molecular bases remain elusive. Recent studies have determined the roles of nonadditive gene expression, small RNAs, and epigenetic regulation, including circadian-mediated metabolic pathways, in hybrid vigor, which could lead to better use and exploitation of the increased biomass and yield in hybrids and allopolyploids for food, feed, and biofuels.
Collapse
Affiliation(s)
- Z Jeffrey Chen
- Section of Molecular Cell and Developmental Biology, Center for Computational Biology and Bioinformatics, and Institute for Cellular and Molecular Biology, The University of Texas at Austin, One University Station A4800, Austin, TX 78712, USA.
| |
Collapse
|
541
|
Faricelli ME, Valárik M, Dubcovsky J. Control of flowering time and spike development in cereals: the earliness per se Eps-1 region in wheat, rice, and Brachypodium. Funct Integr Genomics 2009; 10:293-306. [PMID: 19851796 PMCID: PMC2862174 DOI: 10.1007/s10142-009-0146-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 09/22/2009] [Accepted: 09/26/2009] [Indexed: 05/25/2023]
Abstract
The earliness per se gene Eps-Am1 from diploid wheat Triticum monococcum affects heading time, spike development, and spikelet number. In this study, the Eps1 orthologous regions from rice, Aegilops tauschii, and Brachypodium distachyon were compared as part of current efforts to clone this gene. A single Brachypodium BAC clone spanned the Eps-Am1 region, but a gap was detected in the A. tauschii physical map. Sequencing of the Brachypodium and A. tauschii BAC clones revealed three genes shared by the three species, which showed higher identity between wheat and Brachypodium than between them and rice. However, most of the structural changes were detected in the wheat lineage. These included an inversion encompassing the wg241-VatpC region and the presence of six unique genes. In contrast, only one unique gene (and one pseudogene) was found in Brachypodium and none in rice. Three genes were present in both Brachypodium and wheat but were absent in rice. Two of these genes, Mot1 and FtsH4, were completely linked to the earliness per se phenotype in the T. monococcum high-density genetic map and are candidates for Eps-Am1. Both genes were expressed in apices and developing spikes, as expected for Eps-Am1 candidates. The predicted MOT1 protein showed amino acid differences between the parental T. monococcum lines, but its effect is difficult to predict. Future steps to clone the Eps-Am1 gene include the generation of mot1 and ftsh4 mutants and the completion of the T. monococcum physical map to test for the presence of additional candidate genes.
Collapse
Affiliation(s)
- Maria E Faricelli
- Department of Plant Sciences, University of California, Mail Stop 1, One Shields Avenue, Davis, CA 95616-8780, USA
| | | | | |
Collapse
|
542
|
Liu B, Xu C, Zhao N, Qi B, Kimatu JN, Pang J, Han F. Rapid genomic changes in polyploid wheat and related species: implications for genome evolution and genetic improvement. J Genet Genomics 2009; 36:519-28. [PMID: 19782953 DOI: 10.1016/s1673-8527(08)60143-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 07/15/2009] [Accepted: 07/20/2009] [Indexed: 01/06/2023]
Affiliation(s)
- Bao Liu
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China.
| | | | | | | | | | | | | |
Collapse
|
543
|
Uauy C, Paraiso F, Colasuonno P, Tran RK, Tsai H, Berardi S, Comai L, Dubcovsky J. A modified TILLING approach to detect induced mutations in tetraploid and hexaploid wheat. BMC PLANT BIOLOGY 2009; 9:115. [PMID: 19712486 PMCID: PMC2748083 DOI: 10.1186/1471-2229-9-115] [Citation(s) in RCA: 191] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2009] [Accepted: 08/28/2009] [Indexed: 05/18/2023]
Abstract
BACKGROUND Wheat (Triticum ssp.) is an important food source for humans in many regions around the world. However, the ability to understand and modify gene function for crop improvement is hindered by the lack of available genomic resources. TILLING is a powerful reverse genetics approach that combines chemical mutagenesis with a high-throughput screen for mutations. Wheat is specially well-suited for TILLING due to the high mutation densities tolerated by polyploids, which allow for very efficient screens. Despite this, few TILLING populations are currently available. In addition, current TILLING screening protocols require high-throughput genotyping platforms, limiting their use. RESULTS We developed mutant populations of pasta and common wheat and organized them for TILLING. To simplify and decrease costs, we developed a non-denaturing polyacrylamide gel set-up that uses ethidium bromide to detect fragments generated by crude celery juice extract digestion of heteroduplexes. This detection method had similar sensitivity as traditional LI-COR screens, suggesting that it represents a valid alternative. We developed genome-specific primers to circumvent the presence of multiple homoeologous copies of our target genes. Each mutant library was characterized by TILLING multiple genes, revealing high mutation densities in both the hexaploid (~1/38 kb) and tetraploid (~1/51 kb) populations for 50% GC targets. These mutation frequencies predict that screening 1,536 lines for an effective target region of 1.3 kb with 50% GC content will result in ~52 hexaploid and ~39 tetraploid mutant alleles. This implies a high probability of obtaining knock-out alleles (P = 0.91 for hexaploid, P = 0.84 for tetraploid), in addition to multiple missense mutations. In total, we identified over 275 novel alleles in eleven targeted gene/genome combinations in hexaploid and tetraploid wheat and have validated the presence of a subset of them in our seed stock. CONCLUSION We have generated reverse genetics TILLING resources for pasta and bread wheat and achieved a high mutation density in both populations. We also developed a modified screening method that will lower barriers to adopt this promising technology. We hope that the use of this reverse genetics resource will enable more researchers to pursue wheat functional genomics and provide novel allelic diversity for wheat improvement.
Collapse
Affiliation(s)
- Cristobal Uauy
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
- John Innes Centre, Colney, Norwich NR4 7UH, UK
| | - Francine Paraiso
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Pasqualina Colasuonno
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
- Department of Genetics and Plant Breeding, University of Bari, Italy
| | - Robert K Tran
- UC Davis Genome Center, University of California, Davis, CA, 95616, USA
| | - Helen Tsai
- UC Davis Genome Center, University of California, Davis, CA, 95616, USA
| | - Steve Berardi
- UC Davis Genome Center, University of California, Davis, CA, 95616, USA
| | - Luca Comai
- UC Davis Genome Center, University of California, Davis, CA, 95616, USA
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
- John Innes Centre, Colney, Norwich NR4 7UH, UK
| |
Collapse
|
544
|
Genome comparisons reveal a dominant mechanism of chromosome number reduction in grasses and accelerated genome evolution in Triticeae. Proc Natl Acad Sci U S A 2009; 106:15780-5. [PMID: 19717446 DOI: 10.1073/pnas.0908195106] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Single-nucleotide polymorphism was used in the construction of an expressed sequence tag map of Aegilops tauschii, the diploid source of the wheat D genome. Comparisons of the map with the rice and sorghum genome sequences revealed 50 inversions and translocations; 2, 8, and 40 were assigned respectively to the rice, sorghum, and Ae. tauschii lineages, showing greatly accelerated genome evolution in the large Triticeae genomes. The reduction of the basic chromosome number from 12 to 7 in the Triticeae has taken place by a process during which an entire chromosome is inserted by its telomeres into a break in the centromeric region of another chromosome. The original centromere-telomere polarity of the chromosome arms is maintained in the new chromosome. An intrachromosomal telomere-telomere fusion resulting in a pericentric translocation of a chromosome segment or an entire arm accompanied or preceded the chromosome insertion in some instances. Insertional dysploidy has been recorded in three grass subfamilies and appears to be the dominant mechanism of basic chromosome number reduction in grasses. A total of 64% and 66% of Ae. tauschii genes were syntenic with sorghum and rice genes, respectively. Synteny was reduced in the vicinity of the termini of modern Ae. tauschii chromosomes but not in the vicinity of the ancient termini embedded in the Ae. tauschii chromosomes, suggesting that the dependence of synteny erosion on gene location along the centromere-telomere axis either evolved recently in the Triticeae phylogenetic lineage or its evolution was recently accelerated.
Collapse
|
545
|
Takano-Kai N, Jiang H, Kubo T, Sweeney M, Matsumoto T, Kanamori H, Padhukasahasram B, Bustamante C, Yoshimura A, Doi K, McCouch S. Evolutionary history of GS3, a gene conferring grain length in rice. Genetics 2009. [PMID: 19506305 DOI: 10.1534/genetics.108.103002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
Unlike maize and wheat, where artificial selection is associated with an almost uniform increase in seed or grain size, domesticated rice exhibits dramatic phenotypic diversity for grain size and shape. Here we clone and characterize GS3, an evolutionarily important gene controlling grain size in rice. We show that GS3 is highly expressed in young panicles in both short- and long-grained varieties but is not expressed in leaves or panicles after flowering, and we use genetic transformation to demonstrate that the dominant allele for short grain complements the long-grain phenotype. An association study revealed that a C to A mutation in the second exon of GS3 (A allele) was associated with enhanced grain length in Oryza sativa but was absent from other Oryza species. Linkage disequilibrium (LD) was elevated and there was a 95.7% reduction in nucleotide diversity (theta(pi)) across the gene in accessions carrying the A allele, suggesting positive selection for long grain. Haplotype analysis traced the origin of the long-grain allele to a Japonica-like ancestor and demonstrated introgression into the Indica gene pool. This study indicates a critical role for GS3 in defining the seed morphologies of modern subpopulations of O. sativa and enhances the potential for genetic manipulation of grain size in rice.
Collapse
|
546
|
Kanazawa A, Liu B, Kong F, Arase S, Abe J. Adaptive evolution involving gene duplication and insertion of a novel Ty1/copia-like retrotransposon in soybean. J Mol Evol 2009; 69:164-75. [PMID: 19629571 DOI: 10.1007/s00239-009-9262-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 06/05/2009] [Accepted: 06/29/2009] [Indexed: 11/28/2022]
Abstract
Gene duplication is a major force for generating evolutionary novelties that lead to adaptations to environments. We previously identified two paralogs encoding phytochrome A (phyA), GmphyA1 and GmphyA2, in soybean, a paleopolyploid species. GmphyA2 is encoded by the E4 locus responsible for photoperiod sensitivity. In photoperiod insensitive lines, GmphyA2 is inactivated by the insertion of a retrotransposon in exon 1. Here, we describe the detailed characterization of the element and its evolutionary significance inferred from the distribution of the allele that harbors the element. Structural characteristics indicated that the element, designated SORE-1, is a novel Ty1/copia-like retrotransposon in soybean, which was phylogenetically related to the Sto-4, BARE-1, and RIRE1 elements. The element was transcriptionally active, and the transcription was partially repressed by an epigenetic mechanism. Sequences homologous with SORE-1 were detected in a genome sequence database of soybean, most of which appeared silent. GmphyA2 that harbors the SORE-1 insertion was detected only in cultivated soybean lines grown in northern regions of Japan, consistent with the notion that photoperiod insensitivity caused by the dysfunction of GmphyA2 is one of genetic changes that allowed soybean cultivation at high latitudes. Taking into account that genetic redundancy is conferred by the two phyA genes, we propose a novel model for the consequences of gene duplication and transposition of retrotransposons: when the gene is duplicated, retrotransposon insertion that causes the loss of a gene function can lead to adaptive evolution while the organism is sustained by the buffering effect brought about by gene duplication.
Collapse
Affiliation(s)
- Akira Kanazawa
- Hokkaido University, Kita, Nishi, Kita-ku, Sapporo, Japan.
| | | | | | | | | |
Collapse
|
547
|
Splicing variation at a FLOWERING LOCUS C homeolog is associated with flowering time variation in the tetraploid Capsella bursa-pastoris. Genetics 2009; 183:337-45. [PMID: 19581451 DOI: 10.1534/genetics.109.103705] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The long-term fates of duplicate genes are well studied both empirically and theoretically, but how the short-term evolution of duplicate genes contributes to phenotypic variation is less well known. Here, we have studied the genetic basis of flowering time variation in the disomic tetraploid Capsella bursa-pastoris. We sequenced four duplicate candidate genes for flowering time and 10 background loci in samples from western Eurasia and China. Using a mixed-model approach that accounts for population structure, we found that polymorphisms at one homeolog of two candidate genes, FLOWERING LOCUS C (FLC) and CRYPTOCHROME1 (CRY1), were associated with natural flowering time variation. No potentially causative polymorphisms were found in the coding region of CRY1; however, at FLC two splice site polymorphisms were associated with early flowering. Accessions harboring nonconsensus splice sites expressed an alternatively spliced transcript or did not express this FLC homeolog. Our results are consistent with the function of FLC as a major repressor of flowering in Arabidopsis thaliana and imply that nonfunctionalization of duplicate genes could provide an important source of phenotypic variation.
Collapse
|
548
|
Garbus I, Carrera AD, Dubcovsky J, Echenique V. Physical mapping of durum wheat lipoxygenase genes. J Cereal Sci 2009. [DOI: 10.1016/j.jcs.2009.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
549
|
Alonso-Blanco C, Aarts MGM, Bentsink L, Keurentjes JJB, Reymond M, Vreugdenhil D, Koornneef M. What has natural variation taught us about plant development, physiology, and adaptation? THE PLANT CELL 2009; 21:1877-96. [PMID: 19574434 PMCID: PMC2729614 DOI: 10.1105/tpc.109.068114] [Citation(s) in RCA: 288] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 06/10/2009] [Accepted: 06/11/2009] [Indexed: 05/17/2023]
Abstract
Nearly 100 genes and functional polymorphisms underlying natural variation in plant development and physiology have been identified. In crop plants, these include genes involved in domestication traits, such as those related to plant architecture, fruit and seed structure and morphology, as well as yield and quality traits improved by subsequent crop breeding. In wild plants, comparable traits have been dissected mainly in Arabidopsis thaliana. In this review, we discuss the major contributions of the analysis of natural variation to our understanding of plant development and physiology, focusing in particular on the timing of germination and flowering, plant growth and morphology, primary metabolism, and mineral accumulation. Overall, functional polymorphisms appear in all types of genes and gene regions, and they may have multiple mutational causes. However, understanding this diversity in relation to adaptation and environmental variation is a challenge for which tools are now available.
Collapse
Affiliation(s)
- Carlos Alonso-Blanco
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Departamento de Genética Molecular de Plantas, Cantoblanco 28049 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
550
|
Abstract
Unlike maize and wheat, where artificial selection is associated with an almost uniform increase in seed or grain size, domesticated rice exhibits dramatic phenotypic diversity for grain size and shape. Here we clone and characterize GS3, an evolutionarily important gene controlling grain size in rice. We show that GS3 is highly expressed in young panicles in both short- and long-grained varieties but is not expressed in leaves or panicles after flowering, and we use genetic transformation to demonstrate that the dominant allele for short grain complements the long-grain phenotype. An association study revealed that a C to A mutation in the second exon of GS3 (A allele) was associated with enhanced grain length in Oryza sativa but was absent from other Oryza species. Linkage disequilibrium (LD) was elevated and there was a 95.7% reduction in nucleotide diversity (theta(pi)) across the gene in accessions carrying the A allele, suggesting positive selection for long grain. Haplotype analysis traced the origin of the long-grain allele to a Japonica-like ancestor and demonstrated introgression into the Indica gene pool. This study indicates a critical role for GS3 in defining the seed morphologies of modern subpopulations of O. sativa and enhances the potential for genetic manipulation of grain size in rice.
Collapse
|