501
|
Orset SC, Young AJ. Exposure to low irradiances favors the synthesis of 9-cis beta, beta-carotene in Dunaliella salina (Teod.). PLANT PHYSIOLOGY 2000; 122:609-18. [PMID: 10677453 PMCID: PMC58897 DOI: 10.1104/pp.122.2.609] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/1999] [Accepted: 11/01/1999] [Indexed: 05/18/2023]
Abstract
We examined the effect of irradiance on the synthesis of beta-carotene and its isomers by Dunaliella salina. Growth irradiance had a marked effect both on growth of the alga (which was suppressed at both low and high irradiances) and on the accumulation of beta-carotene. The accumulation of beta-carotene but not alpha-carotene was closely linked to an increase in irradiance. Growth at low irradiances (20-50 micromol m(-2) s(-1)) promoted a high ratio of 9-cis to all-trans beta-carotene (>2:1), while exposure to high irradiances (200-1,250 micromol m(-2) s(-1)) resulted in a large reduction in this ratio (to <0.45:1). A similar pattern was seen for the geometric isomers of alpha-carotene, with exposure to low irradiance favoring the accumulation of the 9-cis form. The carotenoid biosynthesis inhibitors 4-chloro-5(methylamino)-2-(alpha-alpha-alpha-trifluoro-m-tolyl)-3-(sH )-pyridazinone and 2-(4-chlorophenylthio)triethylamine caused the accumulation of the precursors phytoene and lycopene, respectively, in D. salina. High-performance liquid chromatography and infrared analysis showed that phytoene adopted the 15-cis and all-trans forms (as in higher plants), and that lycopene primarily adopted the all-trans form. This indicates that isomerization of beta-carotene takes place during or after cyclization.
Collapse
Affiliation(s)
- S C Orset
- Carotenoid Research Group, School of Biological and Earth Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, United Kingdom
| | | |
Collapse
|
502
|
Affiliation(s)
- M L Guerinot
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA.
| |
Collapse
|
503
|
Shewmaker CK, Sheehy JA, Daley M, Colburn S, Ke DY. Seed-specific overexpression of phytoene synthase: increase in carotenoids and other metabolic effects. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1999; 20:401-412X. [PMID: 10607293 DOI: 10.1046/j.1365-313x.1999.00611.x] [Citation(s) in RCA: 254] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
A bacterial phytoene synthase (crtB) gene was overexpressed in a seed-specific manner and the protein product targeted to the plastid in Brassica napus (canola). The resultant embryos from these transgenic plants were visibly orange and the mature seed contained up to a 50-fold increase in carotenoids. The predominant carotenoids accumulating in the seeds of the transgenic plants were alpha and beta-carotene. Other precursors such as phytoene were also detected. Lutein, the predominant carotenoid in control seeds, was not substantially increased in the transgenics. The total amount of carotenoids in these seeds is now equivalent to or greater than those seen in the mesocarp of oil palm. Other metabolites in the isoprenoid pathway were examined in these seeds. Sterol levels remained essentially the same, while tocopherol levels decreased significantly as compared to non-transgenic controls. Chlorophyll levels were also reduced in developing transgenic seed. Additionally, the fatty acyl composition was altered with the transgenic seeds having a relatively higher percentage of the 18 : 1 (oleic acid) component and a decreased percentage of the 18 : 2 (linoleic acid) and 18 : 3 (linolenic acid) components. This dramatic increase in flux through the carotenoid pathway and the other metabolic effects are discussed.
Collapse
|
504
|
Vishnevetsky M, Ovadis M, Zuker A, Vainstein A. Molecular mechanisms underlying carotenogenesis in the chromoplast: multilevel regulation of carotenoid-associated genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1999; 20:423-431. [PMID: 10607295 DOI: 10.1046/j.1365-313x.1999.00615.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In nature, carotenoid function and mode of action are highly determined by the neighboring protein and lipid molecules. Therefore an understanding of the proteins' involvement in carotenoid sequestration would be of great help in elucidating carotenoid function in vivo. Based on a study of the expression of chromoplast-specific carotenoid-associated genes from cucumber corolla (CHRC and CHRD), a working model is presented wherein two major regulatory factors control carotenoid sequestration within the chromoplasts: (i) floral tissue-specific transcriptional regulators of chromoplasto- genesis; and (ii) post-transcriptional regulators related to the amount/type of sequestered carotenoids. This model is supported by the major role transcriptional regulation was found to play in the temporal and spatial expression of the CHRC gene, and by the fact that phytohormones such as gibberellic acid (GA3), abscisic acid and ethylene also acted as transcriptional regulators of CHRC expression. The primary response to GA3 was localized within the CHRC promoter to a 290 bp fragment. Furthermore, we demonstrated strong down-regulation of CHRC expression at post-transcriptional and translational/post-translational levels resulting from inhibition of carotenoid biosynthesis, thus revealing a close link between carotenoid biosynthetic and sequestration machineries.
Collapse
|
505
|
Grusak MA, DellaPenna D, Welch RM. Physiologic processes affecting the content and distribution of phytonutrients in plants. Nutr Rev 1999; 57:S27-33. [PMID: 10568348 DOI: 10.1111/j.1753-4887.1999.tb01804.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Plant physiologists and biochemists are unraveling the transport mechanisms and biosynthetic pathways that determine each plant's unique phytonutrient composition so that crop plants can be modified to improve their nutrition quality. However, before this goal can be achieved, more information is needed on various plant and human phytonutrient-related processes, and some new technical capabilities are required. The current status of our knowledge base and recommendations for technical improvements and research priorities will be discussed.
Collapse
Affiliation(s)
- M A Grusak
- USDA-ARS, Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
506
|
Lohr M, Wilhelm C. Algae displaying the diadinoxanthin cycle also possess the violaxanthin cycle. Proc Natl Acad Sci U S A 1999; 96:8784-9. [PMID: 10411953 PMCID: PMC17594 DOI: 10.1073/pnas.96.15.8784] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
According to general agreement, all photosynthetic organisms using xanthophyll cycling for photoprotection contain either the violaxanthin (Vx) cycle or the diadinoxanthin (Ddx) cycle instead. Here, we report the temporal accumulation of substantial amounts of pigments of the Vx cycle under prolonged high-light stress in several microalgae thought to possess only the Ddx cycle. In the diatom Phaeodactylum tricornutum, used as a model organism, these pigments also participate in xanthophyll cycling, and their accumulation depends on de novo synthesis of carotenoids and on deepoxidase activity. Furthermore, our data strongly suggest a biosynthetic sequence from Vx via Ddx to fucoxanthin in P. tricornutum. This gives experimental support to the long-stated hypothesis that Vx is a common precursor of all carotenoids with an allenic or acetylenic group, including the main light-harvesting carotenoids in most chlorophyll a/c-containing algae. Thus, another important function for xanthophyll cycling may be to optimize the biosynthesis of light-harvesting xanthophylls under fluctuating light conditions.
Collapse
Affiliation(s)
- M Lohr
- Institut für Botanik, Universität Leipzig, Johannisallee 21-23, D-04103 Leipzig, Germany.
| | | |
Collapse
|
507
|
Abstract
The nutritional health and well-being of humans are entirely dependent on plant foods either directly or indirectly when plants are consumed by animals. Plant foods provide almost all essential vitamins and minerals and a number of other health-promoting phytochemicals. Because micronutrient concentrations are often low in staple crops, research is under way to understand and manipulate synthesis of micronutrients in order to improve crop nutritional quality. Genome sequencing projects are providing novel approaches for identifying plant biosynthetic genes of nutritional importance. The term "nutritional genomics" is used to describe work at the interface of plant biochemistry, genomics, and human nutrition.
Collapse
Affiliation(s)
- D DellaPenna
- Department of Biochemistry/MS200, University of Nevada, Reno, NV 89557, USA.
| |
Collapse
|
508
|
Grusak MA, DellaPenna D. IMPROVING THE NUTRIENT COMPOSITION OF PLANTS TO ENHANCE HUMAN NUTRITION AND HEALTH. ACTA ACUST UNITED AC 1999; 50:133-161. [PMID: 15012206 DOI: 10.1146/annurev.arplant.50.1.133] [Citation(s) in RCA: 223] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Plant foods contain almost all of the mineral and organic nutrients established as essential for human nutrition, as well as a number of unique organic phytochemicals that have been linked to the promotion of good health. Because the concentrations of many of these dietary constituents are often low in edible plant sources, research is under way to understand the physiological, biochemical, and molecular mechanisms that contribute to their transport, synthesis and accumulation in plants. This knowledge can be used to develop strategies with which to manipulate crop plants, and thereby improve their nutritional quality. Improvement strategies will differ between various nutrients, but generalizations can be made for mineral or organic nutrients. This review focuses on the plant nutritional physiology and biochemistry of two essential human nutrients, iron and vitamin E, to provide examples of the type of information that is needed, and the strategies that can be used, to improve the mineral or organic nutrient composition of plants.
Collapse
Affiliation(s)
- Michael A. Grusak
- Department of Pediatrics, Baylor College of Medicine, USDA/ARS Children's Nutrition Research Center, Houston, Texas 77030; e-mail: , Department of Biochemistry, University of Nevada, Reno, Nevada 89557; e-mail:
| | | |
Collapse
|
509
|
Abstract
The involvement of excited and highly reactive intermediates in oxygenic photosynthesis poses unique problems for algae and plants in terms of potential oxidative damage to the photosynthetic apparatus. Photoprotective processes prevent or minimize generation of oxidizing molecules, scavenge reactive oxygen species efficiently, and repair damage that inevitably occurs. This review summarizes several photoprotective mechanisms operating within chloroplasts of plants and green algae. The recent use of genetic and molecular biological approaches is providing new insights into photoprotection, especially with respect to thermal dissipation of excess absorbed light energy, alternative electron transport pathways, chloroplast antioxidant systems, and repair of photosystem II.
Collapse
Affiliation(s)
- Krishna K. Niyogi
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102; e-mail:
| |
Collapse
|
510
|
Ronen G, Cohen M, Zamir D, Hirschberg J. Regulation of carotenoid biosynthesis during tomato fruit development: expression of the gene for lycopene epsilon-cyclase is down-regulated during ripening and is elevated in the mutant Delta. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1999; 17:341-51. [PMID: 10205893 DOI: 10.1046/j.1365-313x.1999.00381.x] [Citation(s) in RCA: 293] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The red colour of tomato (Lycopersicon esculentum) fruits is provided by the carotenoid pigment lycopene whose concentration increases dramatically during the ripening process. A single dominant gene, Del, in the tomato mutant Delta changes the fruit colour to orange as a result of accumulation of delta-carotene at the expense of lycopene. The cDNA for lycopene epsilon-cyclase (CrtL-e), which converts lycopene to delta-carotene, was cloned from tomato. The primary structure of CRTL-E is 71% identical to the homologous polypeptide from Arabidopsis and 36% identical to the tomato lycopene beta-cyclase, CRTL-B. The CrtL-e gene was mapped to a single locus on chromosome 12 of the tomato linkage map. This locus co-segregated with the Del gene. In the wild-type tomato, the transcript level of CrtL-e decreases at the 'breaker' stage of ripening to a non-detectable level in the ripe fruit. In contrast, it increases approximately 30-fold during fruit ripening in the Delta plants. The Delta mutation does not affect carotenoid composition nor the mRNA level of CrtL-e in leaves and flowers. These results strongly suggest that the mutation Del is an allele of the gene for epsilon-cyclase. Together with previous data, our results indicate that the primary mechanism that controls lycopene accumulation in tomato fruits is based on the differential regulation of expression of carotenoid biosynthesis genes. During fruit development, the mRNA levels for the lycopene-producing enzymes phytoene synthase (PSY) and phytoene desaturase (PDS) increase, while the mRNA levels of the genes for the lycopene beta- and epsilon-cyclases, which convert lycopene to either beta- or delta-carotene, respectively, decline and completely disappear.
Collapse
Affiliation(s)
- G Ronen
- Department of Genetics, Life Sciences Institute, Jerusalem, Israel
| | | | | | | |
Collapse
|
511
|
Sun Z, Cunningham FX, Gantt E. Differential expression of two isopentenyl pyrophosphate isomerases and enhanced carotenoid accumulation in a unicellular chlorophyte. Proc Natl Acad Sci U S A 1998; 95:11482-8. [PMID: 9736763 PMCID: PMC21669 DOI: 10.1073/pnas.95.19.11482] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The enzyme isopentenyl pyrophosphate (IPP) isomerase catalyzes the reversible isomerization of IPP to produce dimethylallyl pyrophosphate, the initial substrate leading to the biosynthesis of carotenoids and many other long-chain isoprenoids. Expression of IPP isomerase, and of two enzymes specific to the carotenoid pathway (lycopene beta-cyclase and beta-carotene-C-4-oxygenase), was followed in the green unicellular alga Haematococcus pluvialis after exposure to high illumination. This alga uniquely accumulates carotenoids in the cytoplasm and in late developmental stages turns deep-red in color because of accumulation of ketocarotenoids in the cytosol. The carotenoid/chlorophyll ratio increased 3-fold in wild type and 6-fold in a precocious carotenoid-accumulating mutant (Car-3) within 24 h after increasing the illumination from 20 to 150 micromol photon m-2.s-1. Two cDNAs encoding IPP isomerase in Haematococcus, ipiHp1 and ipiHp2, were identified. Although otherwise highly similar (95% identity overall), the predicted sequence of ipiHp1 contained a 12-aa region not found in that of ipiHp2. This was reflected by a size difference between two polypeptides of 34 and 32.5 kDa, both of which reacted with an antibody to the product of ipiHp1. We suggest that the 32.5-kDa form is involved with the carotenoid accumulation in the cytoplasm, since the 32.5-kDa polypeptide was preferentially up-regulated by high light preceding the carotenoid increase and only this form was detected in red cysts.
Collapse
Affiliation(s)
- Z Sun
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | | | | |
Collapse
|