501
|
Gabaldón AM, Nelson FE, Roberts TJ. Relative shortening velocity in locomotor muscles: turkey ankle extensors operate at low V/V(max). Am J Physiol Regul Integr Comp Physiol 2007; 294:R200-10. [PMID: 17977918 DOI: 10.1152/ajpregu.00473.2007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The force-velocity properties of skeletal muscle have an important influence on locomotor performance. All skeletal muscles produce less force the faster they shorten and typically develop maximal power at velocities of approximately 30% of maximum shortening velocity (V(max)). We used direct measurements of muscle mechanical function in two ankle extensor muscles of wild turkeys to test the hypothesis that during level running muscles operate at velocities that favor force rather than power. Sonomicrometer measurements of muscle length, tendon strain-gauge measurements of muscle force, and bipolar electromyographs were taken as animals ran over a range of speeds and inclines. These measurements were integrated with previously measured values of muscle V(max) for these muscles to calculate relative shortening velocity (V/V(max)). At all speeds for level running the V/V(max) values of the lateral gastrocnemius and the peroneus longus were low (<0.05), corresponding to the region of the force-velocity relationship where the muscles were capable of producing 90% of peak isometric force but only 35% of peak isotonic power. V/V(max) increased in response to the demand for mechanical power with increases in running incline and decreased to negative values to absorb energy during downhill running. Measurements of integrated electromyograph activity indicated that the volume of muscle required to produce a given force increased from level to uphill running. This observation is consistent with the idea that V/V(max) is an important determinant of locomotor cost because it affects the volume of muscle that must be recruited to support body weight.
Collapse
|
502
|
Bushnell T, Hunter I. Differences in technique between sprinters and distance runners at equal and maximal speeds. Sports Biomech 2007; 6:261-8. [DOI: 10.1080/14763140701489728] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
503
|
Moir G, Sanders R, Button C, Glaister M. The effect of periodized resistance training on accelerative sprint performance. Sports Biomech 2007; 6:285-300. [DOI: 10.1080/14763140701489793] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
504
|
Abstract
SUMMARY
Why is maximal running speed reduced on curved paths? The leading explanation proposes that an increase in lateral ground reaction force necessitates a decrease in peak vertical ground reaction force, assuming that maximum leg extension force is the limiting factor. Yet, no studies have directly measured these forces or tested this critical assumption. We measured maximum sprint velocities and ground reaction forces for five male humans sprinting along a straight track and compared them to sprints along circular tracks of 1, 2, 3, 4 and 6 m radii. Circular track sprint trials were performed either with or without a tether that applied centripetal force to the center of mass. Sprinters generated significantly smaller peak resultant ground reaction forces during normal curve sprinting compared to straight sprinting. This provides direct evidence against the idea that maximum leg extension force is always achieved and is the limiting factor. Use of the tether increased sprint speed, but not to expected values. During curve sprinting, the inside leg consistently generated smaller peak forces compared to the outside leg. Several competing biomechanical constraints placed on the stance leg during curve sprinting likely make the inside leg particularly ineffective at generating the ground reaction forces necessary to attain maximum velocities comparable to straight path sprinting. The ability of quadrupeds to redistribute function across multiple stance legs and decouple these multiple constraints may provide a distinct advantage for turning performance.
Collapse
Affiliation(s)
- Young-Hui Chang
- Comparative Neuromechanics Laboratory, School of Applied Physiology, Georgia Institute of Technology, Atlanta, GA 30332-0356, USA.
| | | |
Collapse
|
505
|
Witte TH, Hirst CV, Wilson AM. Effect of speed on stride parameters in racehorses at gallop in field conditions. ACTA ACUST UNITED AC 2007; 209:4389-97. [PMID: 17050854 DOI: 10.1242/jeb.02518] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Stride duration, stance duration and protraction duration are key variables when describing the gaits of terrestrial animals. Together, they determine the duty factor (the fraction of the stride for which the limb maintains contact with the ground surface), from which the peak vertical force can be estimated. When an animal changes speed, these variables change at different proportions. Limited measurements of these variables and predictions of peak limb force have been undertaken for large mammals performing high-speed over-ground exercise. This study set out to make such measurements, employing a previously validated system consisting of limb-mounted accelerometers and a Global Positioning System data logger. Measurements were made on nine elite Thoroughbred racehorses during gallop locomotion over a range of speeds from 9 to 17 m s(-1). No statistically significant differences were seen in any variables between the lead and non-lead limbs for either the fore or hind pairs of limbs. Mean stance durations of 131 and 77 ms in the forelimbs and 143 and 94 ms in the hindlimbs were recorded at speeds of 9 and 17 ms(-1), respectively. Equivalent values for protraction duration were 364 and 342 (fore) and 355 and 326 ms (hind). Peak limb forces (from duty factor) at 17 ms(-1) were 24.7 N kg(-1) body weight (range 22.6 to 26.0 N kg(-1) body weight) for the forelimbs and 15.3 N kg(-1) (range 13.7-16.2 N kg(-1) body weight) for the hindlimbs. The duration of the aerial phase of the stride (when no limbs are in contact with the ground) was independent of speed. Overlap time (when more than one leg is on the ground) dropped with speed and approached zero at maximum speed.
Collapse
Affiliation(s)
- T H Witte
- Structure and Motion Laboratory, The Royal Veterinary College, Hawkshead Lane, Hatfield AL9 7TA, Hertfordshire, UK
| | | | | |
Collapse
|
506
|
Jordan K, Challis JH, Newell KM. Speed influences on the scaling behavior of gait cycle fluctuations during treadmill running. Hum Mov Sci 2007; 26:87-102. [PMID: 17161484 DOI: 10.1016/j.humov.2006.10.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Revised: 10/23/2006] [Accepted: 10/24/2006] [Indexed: 10/23/2022]
Abstract
The current study examined the temporal structure of gait cycle fluctuations in running. Participants ran at 80%, 90%, 100%, 110% and 120% of preferred running speed for 8min trials. Kinematic and kinetic gait cycle variables were generated from ground reaction force data. Mean, SD and CV of the kinematic and kinetic variables changed linearly with speed, whereas U-shaped functions were found for the scaling exponent alpha in 5 of the 8 variables investigated. Our findings reveal that long range correlations are present in both kinetic and kinematic variables of the gait cycle. The dependent structure of the stride interval is reduced at preferred running speed and this is hypothesized to be related to the enhanced stability and flexibility of this gait speed.
Collapse
Affiliation(s)
- Kimberlee Jordan
- Department of Integrative Physiology, The University of Colorado, Carlson 202G, Boulder, CO 80309, United States.
| | | | | |
Collapse
|
507
|
Abstract
Times for indoor 200 m sprint races are notably worse than those for outdoor races. In addition, there is a considerable bias against competitors drawn in inside lanes (with smaller bend radii). Centripetal acceleration requirements increase average forces during sprinting around bends. These increased forces can be modulated by changes in duty factor (the proportion of stride the limb is in contact with the ground). If duty factor is increased to keep limb forces constant, and protraction time and distance travelled during stance are unchanging, bend-running speeds are reduced. Here, we use results from the 2004 Olympics and World Indoor Championships to show quantitatively that the decreased performances in indoor competition, and the bias by lane number, are consistent with this 'constant limb force' hypothesis. Even elite athletes appear constrained by limb forces.
Collapse
Affiliation(s)
- James R Usherwood
- Structure and Motion Laboratory, The Royal Veterinary College Hawkshead Lane, North Mymms AL9 7TA, UK.
| | | |
Collapse
|
508
|
Blanco RE, Gambini R. Maximum running speed limitations on terrestrial mammals: A theoretical approach. J Biomech 2007; 40:2517-22. [PMID: 17196212 DOI: 10.1016/j.jbiomech.2006.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Accepted: 11/06/2006] [Indexed: 11/25/2022]
Abstract
Here we study maximum running speed (MRS) limitations on a previously proposed model of energetic and muscle-tendon unit functions on running mammals. In the present work the MRS and some anatomical or physiological limitations are estimated for mammals with body mass between 1.5 and 300 kg. The MRS variations with body mass are discussed and compared with results of previous experimental and observational studies. The tendon strength seems to be the most relevant limitation, but leg extensor muscle mass and metabolic costs could be relevant also. The physiological maximum muscle speed seems to be less important in the body mass range studied here.
Collapse
Affiliation(s)
- R Ernesto Blanco
- Instituto de Física, Facultad de Ingeniería, Julio Herrera y Reissig 565, 11300 Montevideo, Uruguay.
| | | |
Collapse
|
509
|
Abstract
Although a large number of foot-fall sequences are possible in quadrupeds, few sequences are routinely used. The aim of this paper is to characterise, by foot-fall pattern, the gaits used by horses and develop a novel technique to classify symmetric and asymmetric gaits using one common criterion. To achieve this speed and relative foot-fall, timings of all four limbs of eight Icelandic horses were measured using accelerometers. Linear discriminant analysis (LDA) was performed to find criteria that are optimal for discriminating between the different gaits. This also allowed us to evaluate whether gaits should be considered a continuum or as discrete entities. Foot-fall timings (stance times, swing times, duty factors and stride frequencies) for walk, tolt, trot, pace, left canter, right canter, left gallop and right gallop during over-ground locomotion at a range of speeds are presented. In the gaits of walk, tolt, trot and pace, foot-fall timings were equal between left and right hindlimbs and forelimbs so these gaits can be considered as symmetrical. Differences in stance times and duty factors were observed between gaits but are unlikely to be of biological significance due to their similar magnitude and inconsistent relative trends. This implies that metabolics or peak limb forces derived from contact times are unlikely to be the principal driving factors in gait transition between walk, trot, pace, canters and gallops, although these factors may influence the use of tolt at the lower and higher speeds. Gaits did cluster in the LDA space and the running gaits (tolt, trot, pace, left and right canters and gallops) could be considered a kinematic continuum but the relative relationship with walk may be more complex. Thus, LDA analysis has enabled common criteria to be discovered to accurately classify equine gaits on the basis of foot-fall timings on a stride-by-stride basis.
Collapse
Affiliation(s)
- Justine J Robilliard
- Structure and Motion Laboratory, The Royal Veterinary College, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK
| | | | | |
Collapse
|
510
|
Stefani RT. The relative power output and relative lean body mass of World and Olympic male and female champions with implications for gender equity. J Sports Sci 2006; 24:1329-39. [PMID: 17101535 DOI: 10.1080/02640410500520559] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
A uniform measure of the gender-related differential performance of female and male Olympic and World champions is proposed: relative power output applied to the environment. Laws of physics are employed to derive equations for estimating relative power output. In previous controlled laboratory studies, equally trained male and female athletes were shown to have a relative power output not significantly different from relative lean body mass. As to the estimated power output for 32 Olympic and World championship events contested between 1976 and 2004, eight in running, four in speed skating, three in jumping, twelve in swimming and five in rowing: 100% of the 32 event mean percentage differences in power output and 96% of the 411 event percentage differences in power output are within one standard deviation of the appropriate lean body mass percentage difference, consistent with equality of training. For 1952-1972, significantly higher percentage differences in power output are estimated in running and swimming compared with 1976-2004, consistent with women being less well trained than men during that earlier period. It is noted that efforts in recent years to provide equality of opportunity for female athletes coincide with equalization of estimated relative power output in competition with the relative lean body mass.
Collapse
Affiliation(s)
- Raymond T Stefani
- Department of Electrical Engineering, California State University, Long Beach, CA 90840, USA.
| |
Collapse
|
511
|
Bundle MW, Ernst CL, Bellizzi MJ, Wright S, Weyand PG. A metabolic basis for impaired muscle force production and neuromuscular compensation during sprint cycling. Am J Physiol Regul Integr Comp Physiol 2006; 291:R1457-64. [PMID: 16840656 DOI: 10.1152/ajpregu.00108.2006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
For both different individuals and modes of locomotion, the external forces determining all-out sprinting performances fall predictably with effort duration from the burst maximums attained for 3 s to those that can be supported aerobically as trial durations extend to roughly 300 s. The common time course of this relationship suggests a metabolic basis for the decrements in the force applied to the environment. However, the mechanical and neuromuscular responses to impaired force production (i.e., muscle fatigue) are generally considered in relation to fractions of the maximum force available, or the maximum voluntary contraction (MVC). We hypothesized that these duration-dependent decrements in external force application result from a reliance on anaerobic metabolism for force production rather than the absolute force produced. We tested this idea by examining neuromuscular activity during two modes of sprint cycling with similar external force requirements but differing aerobic and anaerobic contributions to force production: one- and two-legged cycling. In agreement with previous studies, we found greater peak per leg aerobic metabolic rates [59% (+/-6 SD)] and pedal forces at VO2 peak [30% (+/-9)] during one- vs. two-legged cycling. We also determined downstroke pedal forces and neuromuscular activity by surface electromyography during 15 to 19 all-out constant load sprints lasting from 12 to 400 s for both modes of cycling. In support of our hypothesis, we found that the greater reliance on anaerobic metabolism for force production induced compensatory muscle recruitment at lower pedal forces during two- vs. one-legged sprint cycling. We conclude that impaired muscle force production and compensatory neuromuscular activity during sprinting are triggered by a reliance on anaerobic metabolism for force production.
Collapse
Affiliation(s)
- Matthew W Bundle
- Concord Field Station, Museum of Comparative Zoology, Harvard University, Bedford, MA, USA
| | | | | | | | | |
Collapse
|
512
|
Predicting ground reaction forces in running using micro-sensors and neural networks. SPORTS ENGINEERING 2006. [DOI: 10.1007/bf02844259] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
513
|
Raichlen DA. Effects of limb mass distribution on mechanical power outputs during quadrupedalism. J Exp Biol 2006; 209:633-44. [PMID: 16449558 DOI: 10.1242/jeb.02061] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYMany researchers have suggested that cursorial mammals concentrate limb muscle mass proximally to reduce energy costs during locomotion. Although supported by experiments where mass is added to an individual's limbs, mammals with naturally occurring distally heavy limbs such as primates have similar energy costs compared with other mammals. This study presents a new hypothesis to explain how animals with distally heavy limbs maintain low energy costs. Since distal mass should increase energy costs due to higher amounts of muscular power outputs, this hypothesis is based on the divergent effects of stride frequency on internal and external power outputs (the power output to move the limbs and the body center of mass, respectively). The use of low stride frequencies reduces limb velocities and therefore decreases internal power, while associated long strides increase the vertical displacement of the body center of mass and therefore increase external power. Total power (the sum of internal and external power) may therefore not differ among mammals with different limb mass distributions. To test this hypothesis, I examined a sample of infant baboons (Papio cynocephalus) during ontogeny and compared them with more cursorial mammals. Limb mass distribution changes with age (from distal to more proximally concentrated) in baboons, and the infants used shorter strides and higher stride frequencies when limb mass was most proximally concentrated. Compared with non-primates who have more proximally concentrated limb mass, the infants used longer strides and lower stride frequencies. Relatively low internal power was associated with low stride frequencies in both the intra- and inter-specific samples. However, only in the inter-specific comparison were relatively long strides associated with high external power outputs. In both the intra-specific and the inter-specific samples, total power did not differ between groups who differed in limb mass distribution. The results of this study suggest that a trade-off mechanism is available to quadrupeds with distally heavy limbs allowing them to maintain similar total power outputs (and likely similar energy costs) compared with mammals with more proximally concentrated limb mass.
Collapse
Affiliation(s)
- David A Raichlen
- Department of Anthropology, Harvard University, 11 Divinity Avenue, Cambridge, MA 02138, USA.
| |
Collapse
|
514
|
Blanco RE, Jones WW. Terror birds on the run: a mechanical model to estimate its maximum running speed. Proc Biol Sci 2006; 272:1769-73. [PMID: 16096087 PMCID: PMC1559870 DOI: 10.1098/rspb.2005.3133] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
'Terror bird' is a common name for the family Phorusrhacidae. These large terrestrial birds were probably the dominant carnivores on the South American continent from the Middle Palaeocene to the Pliocene-Pleistocene limit. Here we use a mechanical model based on tibiotarsal strength to estimate maximum running speeds of three species of terror birds: Mesembriornis milneedwardsi, Patagornis marshi and a specimen of Phorusrhacinae gen. The model is proved on three living large terrestrial bird species. On the basis of the tibiotarsal strength we propose that Mesembriornis could have used its legs to break long bones and access their marrow.
Collapse
Affiliation(s)
- R Ernesto Blanco
- Instituto de Física, Facultad de Ingeniería, Julio Herrera y Reissig 565, Montevideo 11300, Uruguay.
| | | |
Collapse
|
515
|
Abstract
Maximum running speed is constrained by the speed at which the limbs can be swung forwards and backwards, and by the force they can withstand while in contact with the ground. Humans sprinting around banked bends change the duration of foot contact to spread the time over which the load is applied, thereby keeping the force on their legs constant. We show here that, on entering a tight bend, greyhounds do not change their foot-contact timings, and so have to withstand a 65% increase in limb forces. This supports the idea that greyhounds power locomotion by torque about the hips, so--just as in cycling humans--the muscles that provide the power are mechanically divorced from the structures that support weight.
Collapse
Affiliation(s)
- James R Usherwood
- Structure and Motion Laboratory, The Royal Veterinary College, North Mymms, Hertfordshire AL9 7TA, UK.
| | | |
Collapse
|
516
|
Abstract
The body sizes of highly adapted human and other mammalian runners vary in accordance with specific performance needs. Sprint specialists are relatively massive and muscular while endurance specialists are conspicuously limited both in body and in muscle mass. We hypothesized that the greater body masses of faster specialists are directly related to the greater ground support forces required to attain faster running speeds. Using human runners as a test case, we obtained mean values for body mass, stature and racing speed for the world's fastest 45 male and female specialists, respectively, over the past 14 years (1990-2003) at each of eight standard track racing distances from 100 to 10,000 m. Mass-specific ground support force requirements were estimated from racing speeds using generalized support force-speed relationships derived from 18 athletic subjects. We find a single relationship between mass, stature and event-specific ground support force requirements that spans the entire continuum of specializations and applies both to male and to female runners [body mass (kg) = mass-specific support force x stature2 (m) x a constant; N = 16 group means, R2 = 0.97; where the ideal mass constant, D = 10 kg m(-2)]. We conclude that running performance has a common structural basis.
Collapse
Affiliation(s)
- Peter G Weyand
- Locomotion Laboratory, Kinesiology Department, MS-545, Rice University, 6100 Main Street, Houston, TX 77005, USA.
| | | |
Collapse
|
517
|
Weyand PG, Lin JE, Bundle MW. Sprint performance-duration relationships are set by the fractional duration of external force application. Am J Physiol Regul Integr Comp Physiol 2005; 290:R758-65. [PMID: 16254125 DOI: 10.1152/ajpregu.00562.2005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We hypothesized that the maximum mechanical power outputs that can be maintained during all-out sprint cycling efforts lasting from a few seconds to several minutes can be accurately estimated from a single exponential time constant (k(cycle)) and two measurements on individual cyclists: the peak 3-s power output (P(mech max)) and the maximum mechanical power output that can be supported aerobically (P(aer)). Tests were conducted on seven subjects, four males and three females, on a stationary cycle ergometer at a pedal frequency of 100 rpm. Peak mechanical power output (P(mech max)) was the highest mean power output attained during a 3-s burst; the maximum power output supported aerobically (P(aer)) was determined from rates of oxygen uptake measured during a progressive, discontinuous cycling test to failure. Individual power output-duration relationships were determined from 13 to 16 all-out constant load sprints lasting from 5 to 350 s. In accordance with the above hypothesis, the power outputs measured during all-out sprinting efforts were estimated to within an average of 34 W or 6.6% from P(mech max), P(aer), and a single exponential constant (k(cycle) = 0.026 s(-1)) across a sixfold range of power outputs and a 70-fold range of sprint trial durations (R2 = 0.96 vs. identity, n = 105; range: 180 to 1,136 W). Duration-dependent decrements in sprint cycling power outputs were two times greater than those previously identified for sprint running speed (k(run) = 0.013 s(-1)). When related to the respective times of pedal and ground force application rather than total sprint time, decrements in sprint cycling and running performance followed the same time course (k = 0.054 s(-1)). We conclude that the duration-dependent decrements in sprinting performance are set by the fractional duration of the relevant muscular contractions.
Collapse
Affiliation(s)
- Peter G Weyand
- Locomotion Laboratory, Kinesiology Department, Rice University, Houston, Texas 77005, USA
| | | | | |
Collapse
|
518
|
Hutchinson JR. Biomechanical modeling and sensitivity analysis of bipedal running ability. I. Extant taxa. J Morphol 2005; 262:421-40. [PMID: 15352201 DOI: 10.1002/jmor.10241] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
I used a simple mathematical model of the inverse dynamics of locomotion to estimate the minimum muscle masses required to maintain quasi-static equilibrium about the four main limb joints at mid-stance of fast running. Models of 10 extant taxa (a human, a kangaroo, two lizards, an alligator, and five birds) were analyzed in various bipedal poses to examine how anatomy, size, limb orientation, and other model parameters influence running ability. I examined how the muscle masses required for fast running compare to the muscle masses that are actually able to exert moments about the hip, knee, ankle, and toe joints, to see how support ability varies across the limb. I discuss the assumptions and limitations of the models, using sensitivity analysis to see how widely the results differed with feasible parameter input values. Even with a wide range of input values, the models validated the analysis procedure. Animals that are known to run bipedally were calculated as able to preserve quasi-static equilibrium about their hindlimb joints at mid-stance, whereas non-bipedal runners (iguanas and alligators) were recognized as having too little muscle mass to run quickly in bipedal poses. Thus, this modeling approach should be reliable for reconstructing running ability in extinct bipeds such as nonavian dinosaurs. The models also elucidated how key features are important for bipedal running capacity, such as limb orientation, muscle moment arms, muscle fascicle lengths, and body size. None of the animals modeled had extensor muscle masses acting about any one joint that were 7% or more of their body mass, which provides a reasonable limit for how much muscle mass is normally apportioned within a limb to act about a particular joint. The models consistently showed that a key biomechanical limit on running ability is the capacity of ankle extensors to generate sufficiently large joint moments. Additionally, the analysis reveals how large ratite birds remain excellent runners despite their larger size; they have apomorphically large extensor muscles with relatively high effective mechanical advantage. Finally, I reconstructed the evolution of running ability in the clade Reptilia, showing that the ancestors of extant birds likely were quite capable runners, even though they had already reduced key hip extensors such as M. caudofemoralis longus.
Collapse
Affiliation(s)
- John R Hutchinson
- Biomechanical Engineering Division, Stanford University, Stanford, California 94305-4038, USA.
| |
Collapse
|
519
|
Hunter JP, Marshall RN, McNair PJ. Relationships between Ground Reaction Force Impulse and Kinematics of Sprint-Running Acceleration. J Appl Biomech 2005; 21:31-43. [PMID: 16131703 DOI: 10.1123/jab.21.1.31] [Citation(s) in RCA: 241] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The literature contains some hypotheses regarding the most favorable ground reaction force (GRF) for sprint running and how it might be achieved. This study tested the relevance of these hypotheses to the acceleration phase of a sprint, using GRF impulse as the GRF variable of interest. Thirty-six athletes performed maximal-effort sprints from which video and GRF data were collected at the 16-m mark. Associations between GRF impulse (expressed relative to body mass) and various kinematic measures were explored with simple and multiple linear regressions and pairedt-tests. The regression results showed that relative propulsive impulse accounted for 57% of variance in sprint velocity. Relative braking impulse accounted for only 7% of variance in sprint velocity. In addition, the faster athletes tended to produce only moderate magnitudes of relative vertical impulse. Pairedt-tests revealed that lower magnitudes of relative braking impulse were associated with a smaller touchdown distance (p< 0.01) and a more active touchdown (p< 0.001). Also, greater magnitudes of relative propulsive impulse were associated with a high mean hip extension velocity of the stance limb (p< 0.05). In conclusion, it is likely that high magnitudes of propulsion are required to achieve high acceleration. Although there was a weak trend for faster athletes to produce lower magnitudes of braking, the possibility of braking having some advantages could not be ruled out. Further research is required to see if braking, propulsive, and vertical impulses can be modified with specific training. This will also provide insight into how a change in one GRF component might affect the others.
Collapse
Affiliation(s)
- Joseph P Hunter
- Dept. of Sport and Exercise Science, The University of Auckland, New Zealand
| | | | | |
Collapse
|
520
|
Leleu C, Cotrel C, Barrey E. Relationships between biomechanical variables and race performance in French Standardbred trotters. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/j.livprodsci.2004.07.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
521
|
Aziz AR, Teh KC. Physiological Responses to Single versus Double Stepping Pattern of Ascending the Stairs. ACTA ACUST UNITED AC 2005; 24:253-7. [PMID: 16079564 DOI: 10.2114/jpa.24.253] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The aim of this study was to compare the physiological responses and energy cost between two ascending patterns, the single-step (SS) and the double-step (DS), in climbing a public staircase. In the SS pattern, a person climbs one step at a time whilst in the double-step (DS) pattern, the individual traverses two steps in a single stride. Advocates of each stepping pattern claimed that their type of ascent is physically more taxing and expends more calories. Thirty subjects (10 males and 20 females) climbed a typical 11-storey flat (each step height of 0.15 m, a total of 180 steps and a vertical displacement of 27.0 m). The subjects climbed using either the SS pattern at a tempo of 100 steps x min(-1) or the DS pattern at 50 steps x min(-1). The prescribed stepping frequencies ensured that an equal amount of total work was performed between the SS and DS patterns. The climbing patterns were performed in random order. Physiological measures during the last 30 s of the climbs were used in the comparative analysis. The results showed that ventilation, oxygen uptake and heart rate values were significantly higher (all p < 0.01) in the SS as compared to the DS pattern. However, the caloric expenditure during the SS pattern was calculated to be only marginally higher than the DS pattern. In conclusion, ascending with the SS pattern led to significantly higher physiological responses compared to the DS pattern. The higher calorie expended with the SS compared to the DS pattern was deemed to be of little practical significance.
Collapse
Affiliation(s)
- Abdul Rashid Aziz
- Sports Medicine & Research Centre, Singapore Sports Council, Singapore.
| | | |
Collapse
|
522
|
Abstract
More than a decade ago it was reported in the journal Nature that the slope of improvement in the men's and women's running records, extrapolated from mean running velocity plotted against historical time, would eventually result in a performance intersection of the sexes across a variety of running distances. The first of these intersections was to occur for 42 000 m before the 21st century. Most of the error in this prediction is probably explained by the linear mathematical treatment and extrapolation of limited performance data, since including world record-setting running performances for women before and after 1985 results in a non-linear data fit. The reality of early, disproportionate improvements in women's running that gave the appearance of an impending convergence with men is best explained by an historical social sports bias. Women's times have now reached a plateau similar to that observed for men at comparative performance milestones in the marathon. Sex differences at distances from 100 to 10 000 m show similar trends. The remaining sex gaps in performance appear biological in origin. Success in distance running and sprinting is determined largely by aerobic capacity and muscular strength, respectively. Because men possess a larger aerobic capacity and greater muscular strength, the gap in running performances between men and women is unlikely to narrow naturally.
Collapse
Affiliation(s)
- Samuel N Cheuvront
- US Army Research Institute of Environmental Medicine, Natick, MA 01760-5007, USA.
| | | | | | | |
Collapse
|
523
|
Weyand PG, Bundle MW. Energetics of high-speed running: integrating classical theory and contemporary observations. Am J Physiol Regul Integr Comp Physiol 2004; 288:R956-65. [PMID: 15576662 DOI: 10.1152/ajpregu.00628.2004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We hypothesized that the anaerobic power and aerobic power outputs during all-out runs of any common duration between 10 and 150 s would be proportional to the maximum anaerobic (E(an-max)) and aerobic powers (E(aer-max)) available to the individual runner. Seventeen runners who differed in E(an-max) and E(aer-max) (5 sprinters, 5 middle-distance runners, and 7 long distance runners) were tested during treadmill running on a 4.6 degrees incline. E(an-max) was estimated from the fastest treadmill speed subjects could attain for eight steps. E(aer-max) was determined from a progressive, discontinuous, treadmill test to failure. Oxygen deficits and rates of uptake were measured to assess the respective anaerobic and aerobic power outputs during 11-16 all-out treadmill runs that elicited failure between 10 and 220 s. We found that, during all-out runs of any common duration, the relative anaerobic and aerobic powers utilized were largely the same for sprint, middle-distance, and long-distance subjects. The similar fractional utilization of the E(an-max) and E(aer-max) available during high-speed running 1) provides empirical values that modify and advance classic theory, 2) allows rates of anaerobic and aerobic energy release to be quantified from individual maxima and run durations, and 3) explains why the high-speed running performances of different event specialists can be accurately predicted (R(2) = 0.97; n = 254) from two direct measurements and the same exponential time constant.
Collapse
Affiliation(s)
- Peter G Weyand
- Locomotion Laboratory, Rice University, 6100 Main St., Houston, TX 77005, USA
| | | |
Collapse
|
524
|
Warabi T, Kato M, Kiriyama K, Yoshida T, Kobayashi N. Analysis of human locomotion by recording sole-floor reaction forces from anatomically discrete points. Neurosci Res 2004; 50:419-26. [PMID: 15567479 DOI: 10.1016/j.neures.2004.08.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2004] [Accepted: 08/10/2004] [Indexed: 11/19/2022]
Abstract
Sole-floor reaction forces were recorded from five anatomically discrete points to analyze characteristics of human locomotion. Strain gauge of 14 mm diameter were firmly attached to the sole of bare-foot for recording force changes from the following five points: (1) medial process of calcaneus, (2) head of 1st metatarsal, (3) head of 3rd metatarsal, (4) head of 5th metatarsal and (5) great toe. Fifteen healthy adults were asked to walk at 2, 4, 6 and 8 km/h and to run at 8 km/h on the treadmill. Sole-floor reaction forces from 1st to 5th metatarsals show reciprocal changes during stance phase, while force from 1st metatarsal is strong 5th metatarsal shows weak reaction and vice versa. This phenomenon may be an expression of locomotor program to maintain vertical stability of the body during stance phase. There was a linear relation between walking speeds and sum of force from the five points, although sum of forces from three metatarsals did not change significantly during the walking speeds, indicating mainly calcaneus and great toe contribute to increasing walking speed. During running the sum of force from the three metatarsals increased sharply, joining the other two points to increase thrust.
Collapse
Affiliation(s)
- Tateo Warabi
- Institute of Clinical Brain Research, Sapporo Yamanoue Hospital, Yamanote 6-9-1-1, Nishi-ku, Sapporo 063-0006, Japan.
| | | | | | | | | |
Collapse
|
525
|
Bundle MW, Hoyt RW, Weyand PG. High-speed running performance: a new approach to assessment and prediction. J Appl Physiol (1985) 2004; 95:1955-62. [PMID: 14555668 DOI: 10.1152/japplphysiol.00921.2002] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We hypothesized that all-out running speeds for efforts lasting from a few seconds to several minutes could be accurately predicted from two measurements: the maximum respective speeds supported by the anaerobic and aerobic powers of the runner. To evaluate our hypothesis, we recruited seven competitive runners of different event specialties and tested them during treadmill and overground running on level surfaces. The maximum speed supported by anaerobic power was determined from the fastest speed that subjects could attain for a burst of eight steps (approximately 3 s or less). The maximum speed supported by aerobic power, or the velocity at maximal oxygen uptake, was determined from a progressive, discontinuous treadmill test to failure. All-out running speeds for trials of 3-240 s were measured during 10-13 constant-speed treadmill runs to failure and 4 track runs at specified distances. Measured values of the maximum speeds supported by anaerobic and aerobic power, in conjunction with an exponential constant, allowed us to predict the speeds of all-out treadmill trials to within an average of 2.5% (R2 = 0.94; n = 84) and track trials to within 3.4% (R2 = 0.86; n = 28). An algorithm using this exponent and only two of the all-out treadmill runs to predict the remaining treadmill trials was nearly as accurate (average = 3.7%; R2 = 0.93; n = 77). We conclude that our technique 1) provides accurate predictions of high-speed running performance in trained runners and 2) offers a performance assessment alternative to existing tests of anaerobic power and capacity.
Collapse
Affiliation(s)
- Matthew W Bundle
- Flight Laboratory, Division of Biological Sciences, University of Montana, Missoula 59812, USA
| | | | | |
Collapse
|
526
|
Abstract
UNLABELLED A "negative interaction" between step length and step rate refers to an increase in one factor resulting in a decrease in the other. PURPOSES There were three main purposes: a) to investigate the relative influence of the determinants of step length and step rate, b) to determine the sources of negative interaction between step length and step rate, and c) to investigate the effects of manipulation of this interaction. METHODS Thirty-six athletes performed maximal-effort sprints. Video and ground reaction force data were collected at the 16-m mark. Sprint velocity, step length, step rate, and their underlying determinants were calculated. Analyses included correlations, multiple linear regressions, paired t-tests, and a simple simulation based on alterations in flight determining parameters. RESULTS A wide range of step length and step rate combinations was evident, even for subgroups of athletes with similar sprint velocities. This was partly due to a negative interaction that existed between step length and step rate; that is, those athletes who used a longer step length tended to have a lower step rate and vice versa. Vertical velocity of takeoff was the most prominent source of the negative interaction. CONCLUSIONS Leg length, height of takeoff, and vertical velocity of takeoff are all possible sources of a negative interaction between step length and step rate. The very high step lengths and step rates achieved by elite sprinters may be possible only by a technique that involves a high horizontal and low vertical velocity of takeoff. However, a greater vertical velocity of takeoff might be of advantage when an athlete is fatigued and struggling to maintain a high step rate.
Collapse
Affiliation(s)
- Joseph P Hunter
- Department of Sport and Exercise Science, The University of Auckland, Auckland, New Zealand.
| | | | | |
Collapse
|
527
|
Kiriyama K, Warabi T, Kato M, Yoshida T, Kobayashi N. Progression of human body sway during successive walking studied by recording sole–floor reaction forces. Neurosci Lett 2004; 359:130-2. [PMID: 15050728 DOI: 10.1016/j.neulet.2004.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2003] [Revised: 01/28/2004] [Accepted: 02/05/2004] [Indexed: 10/26/2022]
Abstract
Strain gauge transducers were firmly attached to five points of the human sole: calcaneus, 1st, 3rd, and 5th metatarsals and great toe. Forces from these five points were recorded during treadmill walking at different speeds. With this method it is possible to obtain data of several dozen steps successively. Lateral-medial force change (x-vector) during progression was obtained from the 5th and 1st metatarsals and posterior-anterior force change (y-vector) was obtained from the calcaneus and 3rd metatarsal. Lateral balance and medial balance were differentiated in x-vector and rearfoot phase and forefoot phase were distinguished in y-vector. The percentage of the forefoot phase among the stance period shows a linear increase with speed of progression. It was concluded that the phase of body sway forward is regulated by walking speeds.
Collapse
Affiliation(s)
- Kiichi Kiriyama
- Institute of Clinical Brain Research, Sapporo Yamanoue Hospital, Yamanote 6-9-1-1, Nishi-ku, Sapporo 063-0006, Japan.
| | | | | | | | | |
Collapse
|
528
|
Hutchinson JR. Biomechanical modeling and sensitivity analysis of bipedal running ability. II. Extinct taxa. J Morphol 2004; 262:441-61. [PMID: 15352202 DOI: 10.1002/jmor.10240] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Using an inverse dynamics biomechanical analysis that was previously validated for extant bipeds, I calculated the minimum amount of actively contracting hindlimb extensor muscle that would have been needed for rapid bipedal running in several extinct dinosaur taxa. I analyzed models of nine theropod dinosaurs (including birds) covering over five orders of magnitude in size. My results uphold previous findings that large theropods such as Tyrannosaurus could not run very quickly, whereas smaller theropods (including some extinct birds) were adept runners. Furthermore, my results strengthen the contention that many nonavian theropods, especially larger individuals, used fairly upright limb orientations, which would have reduced required muscular force, and hence muscle mass. Additional sensitivity analysis of muscle fascicle lengths, moment arms, and limb orientation supports these conclusions and points out directions for future research on the musculoskeletal limits on running ability. Although ankle extensor muscle support is shown to have been important for all taxa, the ability of hip extensor muscles to support the body appears to be a crucial limit for running capacity in larger taxa. I discuss what speeds were possible for different theropod dinosaurs, and how running ability evolved in an inverse relationship to body size in archosaurs.
Collapse
Affiliation(s)
- John R Hutchinson
- Biomechanical Engineering Division, Stanford University, Stanford, California 94305-4038, USA.
| |
Collapse
|
529
|
Rahmani A, Locatelli E, Lacour JR. Differences in morphology and force/velocity relationship between Senegalese and Italian sprinters. Eur J Appl Physiol 2003; 91:399-405. [PMID: 14618332 DOI: 10.1007/s00421-003-0989-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2003] [Indexed: 10/26/2022]
Abstract
In order to investigate whether the supremacy of African sprinters is related to the leg extensor force/velocity relationship or to leg morphology, two groups of elite sprinters originating respectively from Senegal (S) and Italy (I) were compared in this respect. The groups included 13 S and 15 I male sprinters. Their mean best performances over 100 m during the preceding track and field season were 10.66 (0.3) and 10.61 (0.3) s (NS), respectively. Age, height and mass were similar in the two groups. The force/velocity relationship of the leg extensors was assessed during maximal half-squats on a guided horizontal barbell with masses of 20-140 kg added on the shoulders. Leg morphology was assessed by relating the sub-ischial length to the standing height (L/H) and by measuring the inertia in the vertical (IZ in kg.cm2), antero-posterior (IY, kg.cm2) and medio-lateral (IX, kg.m2) planes. The two groups developed non-different force and power when lifting the heaviest loads. Inversely, the lighter the load, the lower the force and power developed by S, as compared to I (P<0.001). S demonstrated greater L/H (P<0.001), and 26% lower IZ (P<0.01), 15% lower IY (P=0.09), and 14% lower IX (P=0.10). These results suggest that S and I sprinters were similar as regards the muscle abilities involved in slow maximal contractions. However, S demonstrated lower values in muscle abilities related to high-speed contractions, suggesting that S sprinters had a lower percentage of fast twitch fibres. This is likely to be compensated for by the lower level of internal work due to longer and lighter legs.
Collapse
Affiliation(s)
- Abderrehmane Rahmani
- Groupe de Physiologie et Biomécanique de l'Appareil Locomoteur, Faculté des Sciences et Techniques, Département STAPS, Université du Maine, Avenue Olivier Messiaen, 72085 Le Mans 9, France.
| | | | | |
Collapse
|
530
|
Korhonen MT, Mero A, Suominen H. Age-related differences in 100-m sprint performance in male and female master runners. Med Sci Sports Exerc 2003; 35:1419-28. [PMID: 12900699 DOI: 10.1249/01.mss.0000079080.15333.ca] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE This study was undertaken to investigate age-related differences in the velocity and selected stride parameters in male and female master sprinters and to determine which stride characteristics were related to the overall decline in the performance of the 100 m with age. METHODS The performances of 70 finalists (males 40-88 yr, females 35-87 yr) at the European Veterans Athletics Championships were recorded using two high-speed cameras (200 Hz) with a panning video technique and distance markers at 10-m intervals. Velocity, stride length (SL), stride rate (SR), ground contact time (CT), and flight time (FT) during the acceleration, peak velocity, and deceleration phases of the 100-m race were determined from the video records with the aid of the Peak Performance analysis system. RESULTS There was a general decline in sprint performances with age, the decrease becoming more evident around 65-70 yr of age. The velocity during the different phases of the run declined on average from 5 to 6% per decade in males and from 5 to 7% per decade in females. Similarly, SL showed clear reductions with increasing age, whereas SR remained unchanged until the oldest age groups in both genders. Furthermore, the CT, which correlated with velocity, was significantly longer, and FT, which correlated with both velocity and SL, was shorter in older age groups. CONCLUSION Our findings indicated that age-associated differences in velocity in elite master sprinters were similar in each phase of the 100-m run. The deterioration of the overall performance with age was primarily related to reduction in SL and increase in CT.
Collapse
Affiliation(s)
- Marko T Korhonen
- Department of Health Sciences, University of Jyväskylä, Jyväskylä, Finland.
| | | | | |
Collapse
|
531
|
Blanco RE, Gambini R, Fariña RA. Mechanical model for theoretical determination of maximum running speed in mammals. J Theor Biol 2003; 222:117-25. [PMID: 12699738 DOI: 10.1016/s0022-5193(03)00019-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A mechanical model for the determination of maximum speed in terrestrial tetrapods, designed for application to extinct species, is proposed. Only external bone measures and average body mass estimations are used as input data, and the hypothesis is made that leg bones are strong enough to endure the stress of running at maximum speed at a certain universal safety factor. The model is applied to a broad sample of living mammalian species to test its predictive power, and it is found to provide very good estimates of maximum running speed.
Collapse
Affiliation(s)
- R Ernesto Blanco
- Facultad de Ingeniería, Instituto de Física, Julio Herrera y Reissig 565, Montevideo 11300, Uruguay.
| | | | | |
Collapse
|
532
|
Hedrick TL, Tobalske BW, Biewener AA. How cockatiels (Nymphicus hollandicus) modulate pectoralis power output across flight speeds. J Exp Biol 2003; 206:1363-78. [PMID: 12624171 DOI: 10.1242/jeb.00272] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The avian pectoralis muscle must produce a varying mechanical power output to achieve flight across a range of speeds (1-13 m s(-1)). We used the natural variation in the power requirements with flight speed to investigate the mechanisms employed by cockatiels (Nymphicus hollandicus) to modulate muscle power output. We found that pectoralis contractile function in cockatiels was generally conserved across speed and over a wide range of aerodynamic power requirements. Despite the 2-fold range of variation in muscle power output, many aspects of muscle performance varied little: duration of muscle shortening was invariant, and overall wingbeat frequency and muscle strain varied to a lesser degree (1.2-fold and 1.4-fold, respectively) than muscle power or work. Power output was primarily modulated by muscle force (accounting for 65% of the variation) rather than by muscle strain, cycle frequency or changes in the timing of force production relative to muscle strain. Strain rate and electromyogram (EMG) results suggest that the additional force was provided via increasing pectoralis recruitment. Due to their effect on the transformation of muscle work into useful aerodynamic work, changes in wing position and orientation during the downstroke probably also affect the magnitude of muscle force developed for a given level of motor recruitment. Analysis of the variation in muscle force and airflow over the wing suggests that the coefficients of lift and drag of the wing vary 4-fold over the speed range examined in this study.
Collapse
Affiliation(s)
- Tyson L Hedrick
- Concord Field Station, Museum of Comparative Zoology, Harvard University, Old Causeway Road, Bedford, MA 01730, USA.
| | | | | |
Collapse
|
533
|
Wilson AM, Watson JC, Lichtwark GA. Biomechanics: A catapult action for rapid limb protraction. Nature 2003; 421:35-6. [PMID: 12511944 DOI: 10.1038/421035a] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Alan M Wilson
- Structure and Motion Laboratory, Department of Veterinary Basic Sciences, The Royal Veterinary College, Hatfield, Herts AL9 7TA, UK.
| | | | | |
Collapse
|
534
|
CHRISTIANSEN PER. Locomotion in terrestrial mammals: the influence of body mass, limb length and bone proportions on speed. Zool J Linn Soc 2002. [DOI: 10.1046/j.1096-3642.2002.00041.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
535
|
Abstract
We hypothesised that trotters during an extended trot have lower energetic costs of locomotion (CT) than horses not bred for this behaviour. VO2 was measured as a function of speed in 7 Arabian horses (3 trained to extend their trotting speeds) and in 2 horses, of similar mass, bred to trot (Hackney). Both oxygen consumption and CT increased with speed and there was, contrary to our hypothesis, no difference between breeds. In Arabians at 6.5 m/s, CT had increased 25% above the CT at 5.0 m/s (normal transition speed). For Hackneys at 6.8 m/s, the CT was almost 35% higher. Stride frequencies increased linearly in all horses up to 5.0 m/s. At the canter at 5.0 m/s, the frequency increased 9% to 111 strides/min, but then increased minimally with speed. In the Hackneys and the Arabians that extended the trot, stride frequencies were approximately 102 and did not increase with speed. Stride length (SL) increased linearly with speed in both trotting and cantering horses, and cantering SL were lower than trotting (at 5.0 m/s, SL for trotting = 3.04 m and for cantering SL = 2.68 m). There were no differences between breeds in stride frequency or stride length. Extending the trot can have profound energetic requirements that could limit athletic performance and may lead to increased concussive impact on the limbs.
Collapse
Affiliation(s)
- S J Wickler
- Equine Research Center and Department of Animal and Veterinary Science, California State Polytechnic University, Pomona 91768, USA
| | | | | | | |
Collapse
|
536
|
Abstract
SUMMARYWe tested the hypothesis that the hindlimb muscles of wild turkeys(Meleagris gallopavo) can produce maximal power during running accelerations. The mechanical power developed during single running steps was calculated from force-plate and high-speed video measurements as turkeys accelerated over a trackway. Steady-speed running steps and accelerations were compared to determine how turkeys alter their running mechanics from a low-power to a high-power gait. During maximal accelerations, turkeys eliminated two features of running mechanics that are characteristic of steady-speed running: (i) they produced purely propulsive horizontal ground reaction forces, with no braking forces, and (ii) they produced purely positive work during stance, with no decrease in the mechanical energy of the body during the step. The braking and propulsive forces ordinarily developed during steady-speed running are important for balance because they align the ground reaction force vector with the center of mass. Increases in acceleration in turkeys correlated with decreases in the angle of limb protraction at toe-down and increases in the angle of limb retraction at toe-off. These kinematic changes allow turkeys to maintain the alignment of the center of mass and ground reaction force vector during accelerations when large propulsive forces result in a forward-directed ground reaction force. During the highest accelerations, turkeys produced exclusively positive mechanical power. The measured power output during acceleration divided by the total hindlimb muscle mass yielded estimates of peak instantaneous power output in excess of 400 W kg-1 hindlimb muscle mass. This value exceeds estimates of peak instantaneous power output of turkey muscle fibers. The mean power developed during the entire stance phase increased from approximately zero during steady-speed runs to more than 150 W kg-1muscle during the highest accelerations. The high power outputs observed during accelerations suggest that elastic energy storage and recovery may redistribute muscle power during acceleration. Elastic mechanisms may expand the functional range of muscle contractile elements in running animals by allowing muscles to vary their mechanical function from force-producing struts during steady-speed running to power-producing motors during acceleration.
Collapse
Affiliation(s)
- Thomas J Roberts
- Department of Zoology, Oregon State University, 3029 Cordley Hall, Corvallis, OR 97331-2914, USA.
| | | |
Collapse
|
537
|
|
538
|
Gillis GB, Biewener AA. Hindlimb muscle function in relation to speed and gait:in vivopatterns of strain and activation in a hip and knee extensor of the rat (Rattus norvegicus). J Exp Biol 2001; 204:2717-31. [PMID: 11533122 DOI: 10.1242/jeb.204.15.2717] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYUnderstanding how animals actually use their muscles during locomotion is an important goal in the fields of locomotor physiology and biomechanics. Active muscles in vivo can shorten, lengthen or remain isometric, and their mechanical performance depends on the relative magnitude and timing of these patterns of fascicle strain and activation. It has recently been suggested that terrestrial animals may conserve metabolic energy during locomotion by minimizing limb extensor muscle strain during stance, when the muscle is active, facilitating more economical force generation and elastic energy recovery from limb muscle–tendon units. However, whereas the ankle extensors of running turkeys and hopping wallabies have been shown to generate force with little length change (<6% strain), similar muscles in cats appear to change length more substantially while active. Because previous work has tended to focus on the mechanical behavior of ankle extensors during animal movements, the actions of more proximal limb muscles are less well understood. To explore further the hypothesis of force economy and isometric behavior of limb muscles during terrestrial locomotion, we measured patterns of electromyographic (EMG) activity and fascicle strain (using sonomicrometry) in two of the largest muscles of the rat hindlimb, the biceps femoris (a hip extensor) and vastus lateralis (a knee extensor) during walking, trotting and galloping. Our results show that the biceps and vastus exhibit largely overlapping bursts of electrical activity during the stance phase of each step cycle in all gaits. During walking and trotting, this activity typically commences shortly before the hindlimb touches the ground, but during galloping the onset of activity depends on whether the limb is trailing (first limb down) or leading (second limb down), particularly in the vastus. In the trailing limb, the timing of the onset of vastus activity is slightly earlier than that observed during walking and trotting, but in the leading limb, this activity begins much later, well after the foot makes ground contact (mean 7% of the step cycle). In both muscles, EMG activity typically ceases approximately two-thirds of the way through the stance phase. While electrically active during stance, biceps fascicles shorten, although the extent of shortening differs significantly among gaits (P<0.01). Total average fascicle shortening strain in the biceps is greater during walking (23±3%) and trotting (27±5%) than during galloping (12±5% and 19±6% in the trailing and leading limbs, respectively). In contrast, vastus fascicles typically lengthen (by 8–16%, depending on gait) over the first half of stance, when the muscle is electrically active, before shortening slightly or remaining nearly isometric over much of the second half of stance. Interestingly, in the leading limb during galloping, vastus fascicles lengthen prior to muscle activation and exhibit substantial shortening (10±2%) during the period when EMG activity is recorded. Thus, patterns of muscle activation and/or muscle strain differ among gaits, between muscles and even within the same muscle of contralateral hindlimbs (as during galloping). In contrast to the minimal strain predicted by the force economy hypothesis, our results suggest that proximal limb muscles in rats operate over substantial length ranges during stance over various speeds and gaits and exhibit complex and changing activation and strain regimes, exemplifying the variable mechanical roles that muscles can play, even during level, steady-speed locomotion.
Collapse
Affiliation(s)
- G B Gillis
- Department of Organismic and Evolutionary Biology, Harvard University, Concord Field Station, Old Causeway Road, Bedford, MA 01730, USA.
| | | |
Collapse
|
539
|
|