501
|
Matrix metalloproteinase 9 contributes to gut microbe homeostasis in a model of infectious colitis. BMC Microbiol 2012; 12:105. [PMID: 22694805 PMCID: PMC3676156 DOI: 10.1186/1471-2180-12-105] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 05/31/2012] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Inflammatory bowel diseases are associated with increased expression of zinc-dependent Matrix Metalloproteinase 9 (MMP-9). A stark dysregulation of intestinal mucosal homeostasis has been observed in patients with chronic inflammatory bowel diseases. We therefore sought to determine the contribution of MMP-9 to the pathogenesis of Citrobacter rodentium-induced colitis and its effects on gut microbiome homeostasis. RESULTS Wild-type and MMP-9-/- mice aged 5-6 weeks were challenged with C. rodentium by orogastric gavage and sacrificed either 10 or 30 days post-infection. Disease severity was assessed by histological analysis of colonic epithelial hyperplasia and by using an in vivo intestinal permeability assay. Changes in the inflammatory responses were measured by using qPCR, and the composition of the fecal microbiome evaluated with both qPCR and terminal restriction fragment length polymorphism. Activation and localization of MMP-9 to the apical surface of the colonic epithelium in response to C. rodentium infection was demonstrated by both zymography and immunocytochemistry. The pro-inflammatory response to infection, including colonic epithelial cell hyperplasia and barrier dysfunction, was similar, irrespective of genotype. Nonmetric multidimensional scaling of terminal restriction fragments revealed a different fecal microbiome composition and C. rodentium colonization pattern between genotypes, with MMP-9-/- having elevated levels of protective segmented filamentous bacteria and interleukin-17, and lower levels of C. rodentium. MMP-9-/- but not wild-type mice were also protected from reductions in fecal microbial diversity in response to the bacterial enteric infection. CONCLUSIONS These results demonstrate that MMP-9 expression in the colon causes alterations in the fecal microbiome and has an impact on the pathogenesis of bacterial-induced colitis in mice.
Collapse
|
502
|
Dysbiosis in the pathogenesis of pediatric inflammatory bowel diseases. Int J Inflam 2012; 2012:687143. [PMID: 22685684 PMCID: PMC3363416 DOI: 10.1155/2012/687143] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 01/18/2012] [Accepted: 02/01/2012] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel diseases (IBDs) are chronic inflammatory conditions of the gastrointestinal tract that occur in genetically susceptible individuals. Crohn's disease (CD) and ulcerative colitis (UC) are two major types of IBD. In about 20-25% of patients, disease onset is during childhood and pediatric IBD can be considered the best model for studying immunopathogentic mechanisms. The fundamentals of IBD pathogenesis are considered a defective innate immunity and bacterial killing with overaggressive adaptive immune response. A condition of "dysbiosis", with alterations of the gut microbial composition, is regarded as the basis of IBD pathogenesis. The human gastrointestinal (GI) microbial population is a complex, dynamic ecosystem and consists of up to one thousand different bacterial species. In healthy individuals, intestinal microbiota have a symbiotic relationship with the host organism and carry out important metabolic, "barrier," and immune functions. Microbial dysbiosis in IBD with lack of beneficial bacteria, together with genetic predisposition, is the most relevant conditions in the pathogenesis of the pediatric IBD.
Collapse
|
503
|
Berry D, Schwab C, Milinovich G, Reichert J, Ben Mahfoudh K, Decker T, Engel M, Hai B, Hainzl E, Heider S, Kenner L, Müller M, Rauch I, Strobl B, Wagner M, Schleper C, Urich T, Loy A. Phylotype-level 16S rRNA analysis reveals new bacterial indicators of health state in acute murine colitis. ISME JOURNAL 2012; 6:2091-106. [PMID: 22572638 DOI: 10.1038/ismej.2012.39] [Citation(s) in RCA: 251] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Human inflammatory bowel disease and experimental colitis models in mice are associated with shifts in intestinal microbiota composition, but it is unclear at what taxonomic/phylogenetic level such microbiota dynamics can be indicative for health or disease. Here, we report that dextran sodium sulfate (DSS)-induced colitis is accompanied by major shifts in the composition and function of the intestinal microbiota of STAT1(-/-) and wild-type mice, as determined by 454 pyrosequencing of bacterial 16S rRNA (gene) amplicons, metatranscriptomics and quantitative fluorescence in situ hybridization of selected phylotypes. The bacterial families Ruminococcaceae, Bacteroidaceae, Enterobacteriaceae, Deferribacteraceae and Verrucomicrobiaceae increased in relative abundance in DSS-treated mice. Comparative 16S rRNA sequence analysis at maximum possible phylogenetic resolution identified several indicator phylotypes for DSS treatment, including the putative mucin degraders Akkermansia and Mucispirillum. The analysis additionally revealed strongly contrasting abundance changes among phylotypes of the same family, particularly within the Lachnospiraceae. These extensive phylotype-level dynamics were hidden when reads were grouped at higher taxonomic levels. Metatranscriptomic analysis provided insights into functional shifts in the murine intestinal microbiota, with increased transcription of genes associated with regulation and cell signaling, carbohydrate metabolism and respiration and decreased transcription of flagellin genes during inflammation. These findings (i) establish the first in-depth inventory of the mouse gut microbiota and its metatranscriptome in the DSS colitis model, (ii) reveal that family-level microbial community analyses are insufficient to reveal important colitis-associated microbiota shifts and (iii) support a scenario of shifting intra-family structure and function in the phylotype-rich and phylogenetically diverse Lachnospiraceae in DSS-treated mice.
Collapse
Affiliation(s)
- David Berry
- Department of Microbial Ecology, Vienna Ecology Center, Faculty of Life Sciences, University of Vienna, Wien, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
504
|
Docktor MJ, Paster BJ, Abramowicz S, Ingram J, Wang YE, Correll M, Jiang H, Cotton SL, Kokaras AS, Bousvaros A. Alterations in diversity of the oral microbiome in pediatric inflammatory bowel disease. Inflamm Bowel Dis 2012; 18:935-42. [PMID: 21987382 PMCID: PMC4208308 DOI: 10.1002/ibd.21874] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 08/04/2011] [Indexed: 12/12/2022]
Abstract
BACKGROUND Oral pathology is a commonly reported extraintestinal manifestation of Crohn's disease (CD). The host-microbe interaction has been implicated in the pathogenesis of inflammatory bowel disease (IBD) in genetically susceptible hosts, yet limited information exists about oral microbes in IBD. We hypothesize that the microbiology of the oral cavity may differ in patients with IBD. Our laboratory has developed a 16S rRNA-based technique known as the Human Oral Microbe Identification Microarray (HOMIM) to study the oral microbiome of children and young adults with IBD. METHODS Tongue and buccal mucosal brushings from healthy controls, CD, and ulcerative colitis (UC) patients were analyzed using HOMIM. Shannon Diversity Index (SDI) and Principal Component Analysis (PCA) were employed to compare population and phylum-level changes among our study groups. RESULTS In all, 114 unique subjects from the Children's Hospital Boston were enrolled. Tongue samples from patients with CD showed a significant decrease in overall microbial diversity as compared with the same location in healthy controls (P = 0.015) with significant changes seen in Fusobacteria (P < 0.0002) and Firmicutes (P = 0.022). Tongue samples from patients with UC did not show a significant change in overall microbial diversity as compared with healthy controls (P = 0.418). CONCLUSIONS As detected by HOMIM, we found a significant decrease in overall diversity in the oral microbiome of pediatric CD. Considering the proposed microbe-host interaction in IBD, the ease of visualization and direct oral mucosal sampling of the oral cavity, further study of the oral microbiome in IBD is of potential diagnostic and prognostic value.
Collapse
Affiliation(s)
- Michael J. Docktor
- Center for Inflammatory Bowel Disease – Children’s Hospital Boston, Harvard Medical School, Boston, Massachusetts
| | - Bruce J. Paster
- Department of Molecular Genetics – The Forsyth Institute, Cambridge, Massachusetts,Department of Oral Medicine, Infection & Immunity, Harvard School of Dental Medicine, Boston, Massachusetts
| | - Shelly Abramowicz
- Department of Oral and Maxillofacial Surgery, Harvard School of Dental Medicine, Department of Plastic and Oral Surgery, Children’s Hospital Boston, Boston, Massachusetts,Department of Oral and Maxillofacial Surgery – Children’s Hospital Boston, Boston, Massachusetts
| | - Jay Ingram
- Center for Inflammatory Bowel Disease – Children’s Hospital Boston, Harvard Medical School, Boston, Massachusetts
| | - Yaoyu E. Wang
- Center for Cancer Computational Biology – Dana Farber Cancer Institute, Boston, MA
| | - Mick Correll
- Center for Cancer Computational Biology – Dana Farber Cancer Institute, Boston, MA
| | - Hongyu Jiang
- Clinical Research Program – Children’s Hospital Boston, Harvard Medical School, Boston, Massachusetts
| | - Sean L. Cotton
- Department of Molecular Genetics – The Forsyth Institute, Cambridge, Massachusetts
| | - Alexis S. Kokaras
- Department of Molecular Genetics – The Forsyth Institute, Cambridge, Massachusetts
| | - Athos Bousvaros
- Center for Inflammatory Bowel Disease – Children’s Hospital Boston, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
505
|
Pimentel GD, Micheletti TO, Pace F, Rosa JC, Santos RVT, Lira FS. Gut-central nervous system axis is a target for nutritional therapies. Nutr J 2012; 11:22. [PMID: 22490672 PMCID: PMC3342925 DOI: 10.1186/1475-2891-11-22] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 04/10/2012] [Indexed: 02/08/2023] Open
Abstract
Historically, in the 1950s, the chemist Linus Pauling established a relationship between decreased longevity and obesity. At this time, with the advent of studies involving the mechanisms that modulate appetite control, some researchers observed that the hypothalamus is the "appetite centre" and that peripheral tissues have important roles in the modulation of gut inflammatory processes and levels of hormones that control food intake. Likewise, the advances of physiological and molecular mechanisms for patients with obesity, type 2 diabetes mellitus, inflammatory bowel diseases, bariatric surgery and anorexia-associated diseases has been greatly appreciated by nutritionists. Therefore, this review highlights the relationship between the gut-central nervous system axis and targets for nutritional therapies.
Collapse
Affiliation(s)
- Gustavo D Pimentel
- Department of Internal Medicine, State University of Campinas, Campinas, Brazil.
| | | | | | | | | | | |
Collapse
|
506
|
Mukhopadhya I, Hansen R, El-Omar EM, Hold GL. IBD-what role do Proteobacteria play? Nat Rev Gastroenterol Hepatol 2012. [PMID: 22349170 DOI: 10.1038/nrgastro] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The gastrointestinal microbiota has come to the fore in the search for the causes of IBD. This shift has largely been driven by the finding of genetic polymorphisms involved in gastrointestinal innate immunity (particularly polymorphisms in NOD2 and genes involved in autophagy) and alterations in the composition of the microbiota that might result in inflammation (so-called dysbiosis). Microbial diversity studies have continually demonstrated an expansion of the Proteobacteria phylum in patients with IBD. Individual Proteobacteria, in particular (adherent-invasive) Escherichia coli, Campylobacter concisus and enterohepatic Helicobacter, have all been associated with the pathogenesis of IBD. In this Review, we comprehensively describe the various associations of Proteobacteria and IBD. We also examine the importance of pattern recognition in the extracellular innate immune response of the host with particular reference to Proteobacteria, and postulate that Proteobacteria with adherent and invasive properties might exploit host defenses, drive proinflammatory change, alter the intestinal microbiota in favor of dysbiosis and ultimately lead to the development of IBD.
Collapse
Affiliation(s)
- Indrani Mukhopadhya
- Gastrointestinal Research Group, Division of Applied Medicine, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | | | | | | |
Collapse
|
507
|
Abstract
The gastrointestinal microbiota has come to the fore in the search for the causes of IBD. This shift has largely been driven by the finding of genetic polymorphisms involved in gastrointestinal innate immunity (particularly polymorphisms in NOD2 and genes involved in autophagy) and alterations in the composition of the microbiota that might result in inflammation (so-called dysbiosis). Microbial diversity studies have continually demonstrated an expansion of the Proteobacteria phylum in patients with IBD. Individual Proteobacteria, in particular (adherent-invasive) Escherichia coli, Campylobacter concisus and enterohepatic Helicobacter, have all been associated with the pathogenesis of IBD. In this Review, we comprehensively describe the various associations of Proteobacteria and IBD. We also examine the importance of pattern recognition in the extracellular innate immune response of the host with particular reference to Proteobacteria, and postulate that Proteobacteria with adherent and invasive properties might exploit host defenses, drive proinflammatory change, alter the intestinal microbiota in favor of dysbiosis and ultimately lead to the development of IBD.
Collapse
Affiliation(s)
- Indrani Mukhopadhya
- Gastrointestinal Research Group, Division of Applied Medicine, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | | | | | | |
Collapse
|
508
|
Crohn's disease patients have more IgG-binding fecal bacteria than controls. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:515-21. [PMID: 22336288 DOI: 10.1128/cvi.05517-11] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In Crohn's disease (CD), chronic gut inflammation leads to loss of mucosal barrier integrity. Subsequent leakage of IgG to the gut could produce an increase of IgG coating of intestinal bacteria. We investigated if there is more IgG coating in patients than in volunteers and whether this is dependent on the host IgG response or on the gut bacteria. Fecal and serum samples were obtained from 23 CD patients and 11 healthy volunteers. Both the in vivo IgG-coated fecal bacteria and in vitro IgG coating after serum addition were measured by flow cytometry and related to disease activity. The bacterial composition in feces was determined using fluorescence in situ hybridization. The IgG-binding capacities of Escherichia coli strains isolated from feces of patients and volunteers were assessed. The results showed that the in vivo IgG-coated fraction of fecal bacteria of patients was slightly larger than that of volunteers but significantly larger after incubation with either autologous or heterologous serum. This was dependent on the bacteria and independent of disease activity or the serum used. The presence of more Enterobacteriaceae and fewer faecalibacteria in patient feces was confirmed. E. coli isolates from patients bound more IgG than isolates from volunteers (P < 0.05) after the addition of autologous serum. Together, these results indicate that CD patients have more IgG-binding gut bacteria than healthy volunteers. We showed that the level of IgG coating depends on the bacteria and not on the serum used. Furthermore, CD patients have a strong specific immune response to their own E. coli bacteria.
Collapse
|
509
|
Oliva S, Di Nardo G, Ferrari F, Mallardo S, Rossi P, Patrizi G, Cucchiara S, Stronati L. Randomised clinical trial: the effectiveness of Lactobacillus reuteri ATCC 55730 rectal enema in children with active distal ulcerative colitis. Aliment Pharmacol Ther 2012; 35:327-34. [PMID: 22150569 DOI: 10.1111/j.1365-2036.2011.04939.x] [Citation(s) in RCA: 187] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Intestinal microbiota manipulation, one of the pathogenetic components of inflammatory bowel disease (IBD), has become an attractive therapy for ulcerative colitis (UC). AIM To assess in children with active distal UC the effectiveness of Lactobacillus (L) reuteri ATCC 55730 enema on inflammation and cytokine expression of rectal mucosa. METHODS A total of 40 patients (median age: 7.2 years range 6-18) with mild to moderate UC were enrolled in a prospective, randomised, placebo-controlled study. They received an enema solution containing 10(10) CFU of L. reuteri ATCC 55730 or placebo for 8 weeks, in addition to oral mesalazine. Clinical endoscopic and histological scores as well as rectal mucosal expression levels of IL-10, IL-1β, TNFα and IL-8 were evaluated at the beginning and at the end of the trial. RESULTS Thirty-one patients accomplished the trial (17 males, median age 13 year, range 7-18). Mayo score (including clinical and endoscopic features) decreased significantly in the L. reuteri group (3.2 ± 1.3 vs. 8.6 ± 0.8, P < 0.01) compared with placebo (7.1 ± 1.1 vs. 8.7 ± 0.7, NS); furthermore, histological score significantly decrease only in the L. reuteri group (0.6 ± 0.5 vs. 4.5 ± 0.6, P < 0.01) (placebo: 2.9 ± 0.8 vs. 4.6 ± 0.6, NS). At the post-trial evaluation of cytokine mucosal expression levels, IL-10 significantly increased (P < 0.01) whereas IL-1β, TNFα and IL-8 significantly decreased (P < 0.01) only in the L. reuteri group. CONCLUSIONS In children with active distal ulcerative colitis, rectal infusion of L. reuteri is effective in improving mucosal inflammation and changing mucosal expression levels of some cytokines involved in the mechanisms of inflammatory bowel disease.
Collapse
Affiliation(s)
- S Oliva
- Pediatric Gastroenterology and Liver Unit, Sapienza University of Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
510
|
De Cruz P, Prideaux L, Wagner J, Ng SC, McSweeney C, Kirkwood C, Morrison M, Kamm MA. Characterization of the gastrointestinal microbiota in health and inflammatory bowel disease. Inflamm Bowel Dis 2012; 18:372-90. [PMID: 21604329 DOI: 10.1002/ibd.21751] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 03/31/2011] [Indexed: 02/06/2023]
Abstract
The enteric bacterial flora play a key role in maintaining health. Inflammatory bowel disease is associated with quantitative and qualitative alterations in the microbiota. Early characterization of the microbiota involved culture-dependent techniques. The advent of metagenomic techniques, however, allows for structural and functional characterization using culture-independent methods. Changes in diversity, together with quantitative alterations in specific bacterial species, have been identified. The functional significance of these changes, and their pathogenic role, remain to be elucidated.
Collapse
|
511
|
Application of novel PCR-based methods for detection, quantitation, and phylogenetic characterization of Sutterella species in intestinal biopsy samples from children with autism and gastrointestinal disturbances. mBio 2012; 3:mBio.00261-11. [PMID: 22233678 PMCID: PMC3252763 DOI: 10.1128/mbio.00261-11] [Citation(s) in RCA: 278] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED Gastrointestinal disturbances are commonly reported in children with autism and may be associated with compositional changes in intestinal bacteria. In a previous report, we surveyed intestinal microbiota in ileal and cecal biopsy samples from children with autism and gastrointestinal dysfunction (AUT-GI) and children with only gastrointestinal dysfunction (Control-GI). Our results demonstrated the presence of members of the family Alcaligenaceae in some AUT-GI children, while no Control-GI children had Alcaligenaceae sequences. Here we demonstrate that increased levels of Alcaligenaceae in intestinal biopsy samples from AUT-GI children result from the presence of high levels of members of the genus Sutterella. We also report the first Sutterella-specific PCR assays for detecting, quantitating, and genotyping Sutterella species in biological and environmental samples. Sutterella 16S rRNA gene sequences were found in 12 of 23 AUT-GI children but in none of 9 Control-GI children. Phylogenetic analysis revealed a predominance of either Sutterella wadsworthensis or Sutterella stercoricanis in 11 of the individual Sutterella-positive AUT-GI patients; in one AUT-GI patient, Sutterella sequences were obtained that could not be given a species-level classification based on the 16S rRNA gene sequences of known Sutterella isolates. Western immunoblots revealed plasma IgG or IgM antibody reactivity to Sutterella wadsworthensis antigens in 11 AUT-GI patients, 8 of whom were also PCR positive, indicating the presence of an immune response to Sutterella in some children. IMPORTANCE Autism spectrum disorders affect ~1% of the population. Many children with autism have gastrointestinal (GI) disturbances that can complicate clinical management and contribute to behavioral problems. Understanding the molecular and microbial underpinnings of these GI issues is of paramount importance for elucidating pathogenesis, rendering diagnosis, and administering informed treatment. Here we describe an association between high levels of intestinal, mucoepithelial-associated Sutterella species and GI disturbances in children with autism. These findings elevate this little-recognized bacterium to the forefront by demonstrating that Sutterella is a major component of the microbiota in over half of children with autism and gastrointestinal dysfunction (AUT-GI) and is absent in children with only gastrointestinal dysfunction (Control-GI) evaluated in this study. Furthermore, these findings bring into question the role Sutterella plays in the human microbiota in health and disease. With the Sutterella-specific molecular assays described here, some of these questions can begin to be addressed.
Collapse
|
512
|
Abstract
The lumen of the gastrointestinal (GI) tract is home to an enormous quantity of different bacterial species, our microbiota, that thrive in an often symbiotic relationship with the host. Given that the healthy host must regulate contact between the microbiota and its immune system to avoid overwhelming systemic immune activation, humans have evolved several mechanisms to attenuate systemic microbial translocation (MT) and its consequences. However, several diseases are associated with the failure of one or more of these mechanisms, with consequent immune activation and deleterious effects on health. Here, we discuss the mechanisms underlying MT, diseases associated with MT, and therapeutic interventions that aim to decrease it.
Collapse
Affiliation(s)
- Jason M Brenchley
- Program in Barrier Immunity and Repair and Immunopathogenesis Unit, Lab of Molecular Microbiology, NIAID, NIH, Bethesda, Maryland, USA.
| | | |
Collapse
|
513
|
Hamer HM, De Preter V, Windey K, Verbeke K. Functional analysis of colonic bacterial metabolism: relevant to health? Am J Physiol Gastrointest Liver Physiol 2012; 302:G1-9. [PMID: 22016433 PMCID: PMC3345969 DOI: 10.1152/ajpgi.00048.2011] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
With the use of molecular techniques, numerous studies have evaluated the composition of the intestinal microbiota in health and disease. However, it is of major interest to supplement this with a functional analysis of the microbiota. In this review, the different approaches that have been used to characterize microbial metabolites, yielding information on the functional end products of microbial metabolism, have been summarized. To analyze colonic microbial metabolites, the most conventional way is by application of a hypothesis-driven targeted approach, through quantification of selected metabolites from carbohydrate (e.g., short-chain fatty acids) and protein fermentation (e.g., p-cresol, phenol, ammonia, or H(2)S), secondary bile acids, or colonic enzymes. The application of stable isotope-labeled substrates can provide an elegant solution to study these metabolic pathways in vivo. On the other hand, a top-down approach can be followed by applying metabolite fingerprinting techniques based on (1)H-NMR or mass spectrometric analysis. Quantification of known metabolites and characterization of metabolite patterns in urine, breath, plasma, and fecal samples can reveal new pathways and give insight into physiological regulatory processes of the colonic microbiota. In addition, specific metabolic profiles can function as a diagnostic tool for the identification of several gastrointestinal diseases, such as ulcerative colitis and Crohn's disease. Nevertheless, future research will have to evaluate the relevance of associations between metabolites and different disease states.
Collapse
Affiliation(s)
- Henrike M. Hamer
- Translational Research Center for Gastrointestinal Disorders and Leuven Food Science and Nutrition Research Center, University Hospital Gasthuisberg, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Vicky De Preter
- Translational Research Center for Gastrointestinal Disorders and Leuven Food Science and Nutrition Research Center, University Hospital Gasthuisberg, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Karen Windey
- Translational Research Center for Gastrointestinal Disorders and Leuven Food Science and Nutrition Research Center, University Hospital Gasthuisberg, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Kristin Verbeke
- Translational Research Center for Gastrointestinal Disorders and Leuven Food Science and Nutrition Research Center, University Hospital Gasthuisberg, Katholieke Universiteit Leuven, Leuven, Belgium
| |
Collapse
|
514
|
Abstract
PURPOSE OF REVIEW The indigenous gut microbiota has been shown to be a key player in maintaining gastrointestinal homeostasis. This review discusses some of the recent work that reveals how the gut microbiome helps establish and protect intestinal health and how disturbances in this microbial community can lead to disease states. RECENT FINDINGS The use of culture-independent methods has greatly improved our ability to determine the structure and function of the gut microbiome. The gut microbiota has critical interactions with the host immune system and metabolism with bilateral influences shaping both the host and the microbiome. Alterations in the gut microbiome are associated with a variety of disease states but we are only now beginning to understand the mechanisms by which this occurs. SUMMARY Understanding how the gut microbiome contributes to intestinal health should lead to novel preventive strategies and therapies for a variety of gastrointestinal conditions.
Collapse
|
515
|
Abstract
PURPOSE OF REVIEW There is accumulating evidence on the importance of microbes in the development and maintenance of both the intestinal and immune systems. This review focuses on the current findings on the role of gastrointestinal pathogens in the cause of chronic inflammatory bowel disease. RECENT FINDINGS A number of intestinal pathogens including Mycobacterium avium subspecies paratuberculosis, adherent-invasive Escherichia coli, and Campylobacter species are associated at fairly high prevalence with Crohn's disease, while two recent studies found a low prevalence for cytomegalovirus. In a prospective study, M. avium subspecies paratuberculosis detection in early Crohn's disease was low and comparable to controls, while much higher in an established inflammatory bowel disease cohort. In the pediatric setting, a high prevalence of Clostridium difficile was seen in both active and inactive Crohn's disease and ulcerative colitis patients. Some studies have speculated that Salmonella or Campylobacter infection may increase the risk of inflammatory bowel disease on long-term follow-up, but detection bias was found to obscure the risk. Recent studies in mouse models have demonstrated that a combination of factors, including viral pathogens, genetic susceptibility, and commensal microflora, can lead to intestinal pathology. SUMMARY No evidence for causation of inflammatory bowel disease by a single agent has been found, whereas a number of microbes have been strongly associated with the presence of disease. The majority of recent studies support a role for the ability of intestinal pathogens to promote chronic inflammation in individuals with genetic susceptibility and/or other environmental factors which remain to be identified. These factors may include subsets of commensal microflora.
Collapse
|
516
|
Grenham S, Clarke G, Cryan JF, Dinan TG. Brain-gut-microbe communication in health and disease. Front Physiol 2011; 2:94. [PMID: 22162969 PMCID: PMC3232439 DOI: 10.3389/fphys.2011.00094] [Citation(s) in RCA: 600] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 11/18/2011] [Indexed: 12/14/2022] Open
Abstract
Bidirectional signalling between the gastrointestinal tract and the brain is regulated at neural, hormonal, and immunological levels. This construct is known as the brain–gut axis and is vital for maintaining homeostasis. Bacterial colonization of the intestine plays a major role in the post-natal development and maturation of the immune and endocrine systems. These processes are key factors underpinning central nervous system (CNS) signaling. Recent research advances have seen a tremendous improvement in our understanding of the scale, diversity, and importance of the gut microbiome. This has been reflected in the form of a revised nomenclature to the more inclusive brain–gut–enteric microbiota axis and a sustained research effort to establish how communication along this axis contributes to both normal and pathological conditions. In this review, we will briefly discuss the critical components of this axis and the methodological challenges that have been presented in attempts to define what constitutes a normal microbiota and chart its temporal development. Emphasis is placed on the new research narrative that confirms the critical influence of the microbiota on mood and behavior. Mechanistic insights are provided with examples of both neural and humoral routes through which these effects can be mediated. The evidence supporting a role for the enteric flora in brain–gut axis disorders is explored with the spotlight on the clinical relevance for irritable bowel syndrome, a stress-related functional gastrointestinal disorder. We also critically evaluate the therapeutic opportunities arising from this research and consider in particular whether targeting the microbiome might represent a valid strategy for the management of CNS disorders and ponder the pitfalls inherent in such an approach. Despite the considerable challenges that lie ahead, this is an exciting area of research and one that is destined to remain the center of focus for some time to come.
Collapse
Affiliation(s)
- Sue Grenham
- Laboratory of NeuroGastroenterology, Alimentary Pharmabiotic Centre, University College Cork Cork, Ireland
| | | | | | | |
Collapse
|
517
|
Abstract
Twin studies have demonstrated the importance of environmental factors in the pathogenesis of inflammatory bowel disease, but progress has been relatively slow in identifying these, with the exception of smoking, which is positively associated with Crohn's disease and negatively associated with ulcerative colitis. Genetic studies have identified risk alleles which are involved in host-bacterial interactions and the mucosal barrier, and evidence is building for a likely pathogenic role for changes in the gut microbiome, with respect to both faecal and mucosa-associated microbiota. Some of these changes may be secondary to inflammation, nevertheless promising new therapeutic targets are beginning to emerge.
Collapse
|
518
|
Davis LMG, Martínez I, Walter J, Goin C, Hutkins RW. Barcoded pyrosequencing reveals that consumption of galactooligosaccharides results in a highly specific bifidogenic response in humans. PLoS One 2011; 6:e25200. [PMID: 21966454 PMCID: PMC3180383 DOI: 10.1371/journal.pone.0025200] [Citation(s) in RCA: 225] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Accepted: 08/29/2011] [Indexed: 02/06/2023] Open
Abstract
Prebiotics are selectively fermented ingredients that allow specific changes in the gastrointestinal microbiota that confer health benefits to the host. However, the effects of prebiotics on the human gut microbiota are incomplete as most studies have relied on methods that fail to cover the breadth of the bacterial community. The goal of this research was to use high throughput multiplex community sequencing of 16S rDNA tags to gain a community wide perspective of the impact of prebiotic galactooligosaccharide (GOS) on the fecal microbiota of healthy human subjects. Fecal samples from eighteen healthy adults were previously obtained during a feeding trial in which each subject consumed a GOS-containing product for twelve weeks, with four increasing dosages (0, 2.5, 5, and 10 gram) of GOS. Multiplex sequencing of the 16S rDNA tags revealed that GOS induced significant compositional alterations in the fecal microbiota, principally by increasing the abundance of organisms within the Actinobacteria. Specifically, several distinct lineages of Bifidobacterium were enriched. Consumption of GOS led to five- to ten-fold increases in bifidobacteria in half of the subjects. Increases in Firmicutes were also observed, however, these changes were detectable in only a few individuals. The enrichment of bifidobacteria was generally at the expense of one group of bacteria, the Bacteroides. The responses to GOS and the magnitude of the response varied between individuals, were reversible, and were in accordance with dosage. The bifidobacteria were the only bacteria that were consistently and significantly enriched by GOS, although this substrate supported the growth of diverse colonic bacteria in mono-culture experiments. These results suggest that GOS can be used to enrich bifidobacteria in the human gastrointestinal tract with remarkable specificity, and that the bifidogenic properties of GOS that occur in vivo are caused by selective fermentation as well as by competitive interactions within the intestinal environment.
Collapse
Affiliation(s)
- Lauren M. G. Davis
- Department of Food Science and Technology, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Inés Martínez
- Department of Food Science and Technology, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Jens Walter
- Department of Food Science and Technology, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Caitlin Goin
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Robert W. Hutkins
- Department of Food Science and Technology, University of Nebraska, Lincoln, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
519
|
Pyrosequencing-based analysis of the mucosal microbiota in healthy individuals reveals ubiquitous bacterial groups and micro-heterogeneity. PLoS One 2011; 6:e25042. [PMID: 21966408 PMCID: PMC3178588 DOI: 10.1371/journal.pone.0025042] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Accepted: 08/23/2011] [Indexed: 12/14/2022] Open
Abstract
This study used 16S rRNA-based pyrosequencing to examine the microbial community that is closely associated with the colonic mucosa of five healthy individuals. Spatial heterogeneity in microbiota was measured at right colon, left colon and rectum, and between biopsy duplicates spaced 1 cm apart. The data demonstrate that mucosal-associated microbiota is comprised of Firmicutes (50.9%±21.3%), Bacteroidetes (40.2%±23.8%) and Proteobacteria (8.6%±4.7%), and that interindividual differences were apparent. Among the genera, Bacteroides, Leuconostoc and Weissella were present at high abundance (4.6% to 41.2%) in more than 90% of the studied biopsy samples. Lactococcus, Streptococcus, Acidovorax, Acinetobacter, Blautia, Faecalibacterium, Veillonella, and several unclassified bacterial groups were also ubiquitously present at an abundance <7.0% of total microbial community. With the exception of one individual, the mucosal-associated microbiota was relatively homogeneous along the colon (average 61% Bray-Curtis similarity). However, micro-heterogeneity was observed in biopsy duplicates within defined colonic sites for three of the individuals. A weak but significant Mantel correlation of 0.13 was observed between the abundance of acidomucins and mucosal-associated microbiota (P-value = 0.04), indicating that the localized biochemical differences may contribute in part to the micro-heterogeneity. This study provided a detailed insight to the baseline mucosal microbiota along the colon, and revealed the existence of micro-heterogeneity within defined colonic sites for certain individuals.
Collapse
|
520
|
Abstract
The distal gut and its associated microbiota is a new frontier in the quest to understand human biology and evolution. The renaissance in this field has been partly driven by advances in sequencing technology and also by the application of a variety of 'omic' technologies in a systems biology framework. In the initial stages of understanding what constitutes the gut, culture-independent methods, primarily inventories of 16S rRNA genes, have provided a clear view of the main taxonomic groups of Bacteria in the distal gut and we are now moving towards defining the functions that reside in the distal gut microbiome. This review will explore recent advances in the area of the distal gut and the use of a variety of omic approaches to determine what constitutes this fascinating collection of microbes.
Collapse
Affiliation(s)
- Julian R Marchesi
- School of Biosciences, Museum Avenue, Cardiff University, Cardiff CF10 3AX, UK.
| |
Collapse
|
521
|
Abstract
PURPOSE OF REVIEW To review interactions between the microbiota and the host in irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD), emphasizing areas of commonality and divergence. RECENT FINDINGS Several lines of evidence support a role for the microbiota in the pathogenesis of IBS and IBD. Some implicate the microbiota in a general sense and relate to variations in the composition of the microbiota between IBS, IBD and controls; others relate to the ability of events and interventions that disrupt/modify the microbiota to predispose to the development of IBS and IBD and, others still refer to reports of the ability of antibiotics, prebiotics or probiotics, in selected circumstances, to beneficially alter their clinical course. Enthusiasm for a role for a specific organism in precipitating disease has been largely (and contentiously) linked to IBD. Many issues remain unresolved and must wait for the application of modern microbiological techniques to well characterized populations and well matched controls. SUMMARY It makes sense, given the size and complexity of the microbiota and its role in homeostasis, that the microbiota and its interactions with the host would play a role in the pathogenesis of IBS and IBD; sorting out the details has proven challenging but does offer new therapeutic avenues for both disorders.
Collapse
|
522
|
Gerritsen J, Smidt H, Rijkers GT, de Vos WM. Intestinal microbiota in human health and disease: the impact of probiotics. GENES & NUTRITION 2011; 6:209-40. [PMID: 21617937 PMCID: PMC3145058 DOI: 10.1007/s12263-011-0229-7] [Citation(s) in RCA: 451] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 04/20/2011] [Indexed: 02/07/2023]
Abstract
The complex communities of microorganisms that colonise the human gastrointestinal tract play an important role in human health. The development of culture-independent molecular techniques has provided new insights in the composition and diversity of the intestinal microbiota. Here, we summarise the present state of the art on the intestinal microbiota with specific attention for the application of high-throughput functional microbiomic approaches to determine the contribution of the intestinal microbiota to human health. Moreover, we review the association between dysbiosis of the microbiota and both intestinal and extra-intestinal diseases. Finally, we discuss the potential of probiotic microorganism to modulate the intestinal microbiota and thereby contribute to health and well-being. The effects of probiotic consumption on the intestinal microbiota are addressed, as well as the development of tailor-made probiotics designed for specific aberrations that are associated with microbial dysbiosis.
Collapse
Affiliation(s)
- Jacoline Gerritsen
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB, Wageningen, The Netherlands,
| | | | | | | |
Collapse
|
523
|
Prakash S, Rodes L, Coussa-Charley M, Tomaro-Duchesneau C. Gut microbiota: next frontier in understanding human health and development of biotherapeutics. Biologics 2011; 5:71-86. [PMID: 21847343 PMCID: PMC3156250 DOI: 10.2147/btt.s19099] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Indexed: 12/29/2022]
Abstract
The gut microbiota is a remarkable asset for human health. As a key element in the development and prevention of specific diseases, its study has yielded a new field of promising biotherapeutics. This review provides comprehensive and updated knowledge of the human gut microbiota, its implications in health and disease, and the potentials and limitations of its modification by currently available biotherapeutics to treat, prevent and/or restore human health, and future directions. Homeostasis of the gut microbiota maintains various functions which are vital to the maintenance of human health. Disruption of the intestinal ecosystem equilibrium (gut dysbiosis) is associated with a plethora of human diseases, including autoimmune and allergic diseases, colorectal cancer, metabolic diseases, and bacterial infections. Relevant underlying mechanisms by which specific intestinal bacteria populations might trigger the development of disease in susceptible hosts are being explored across the globe. Beneficial modulation of the gut microbiota using biotherapeutics, such as prebiotics, probiotics, and antibiotics, may favor health-promoting populations of bacteria and can be exploited in development of biotherapeutics. Other technologies, such as development of human gut models, bacterial screening, and delivery formulations eg, microencapsulated probiotics, may contribute significantly in the near future. Therefore, the human gut microbiota is a legitimate therapeutic target to treat and/or prevent various diseases. Development of a clear understanding of the technologies needed to exploit the gut microbiota is urgently required.
Collapse
Affiliation(s)
- Satya Prakash
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering and Artificial Cells and Organs Research Centre, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
524
|
Abstract
PURPOSE OF REVIEW Inflammatory bowel disease (IBD) is thought to occur in genetically susceptible individuals. However, environmental factors, potentially including shifts in commensal microbiota, are also required to trigger disease. This review discusses some of the recent discoveries in host susceptibility and interaction with the microbial environment, and pinpoints key areas for advancement in our understanding of IBD pathogenesis. RECENT FINDINGS Meta-analyses of genome-wide association studies have uncovered many new exciting genes associated with susceptibility loci for IBD. In addition, improved methods to analyze the commensal microbiota pave the way to better define dysbiosis and its potential role in disease. Lastly, identification of viral triggers in experimental systems suggests a potential role for viral infection in IBD. SUMMARY Understanding the precise microbial and immune triggers of IBD in a genetic context will hopefully lead to a better understanding of the pathogenesis of this disease and the discovery of novel therapeutic approaches, including vaccination against specific viruses.
Collapse
|