551
|
Antonini A. Movement disorders: towards new therapies in Parkinson's disease. Lancet Neurol 2012; 11:7-8. [DOI: 10.1016/s1474-4422(11)70284-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
552
|
Pawitan JA. Prospect of cell therapy for Parkinson's disease. Anat Cell Biol 2011; 44:256-64. [PMID: 22254154 PMCID: PMC3254879 DOI: 10.5115/acb.2011.44.4.256] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 09/05/2011] [Accepted: 09/27/2011] [Indexed: 01/01/2023] Open
Abstract
The hallmark of Parkinson's disease is on-going degeneration of dopaminergic neurons in the substantia nigra, which may be due to various etiologies. Various approaches to alleviate symptoms are available, such as life-long pharmacological intervention, deep brain stimulation, and transplantation of dopaminergic neuron-containing fetal tissue. However, each of these approaches has a disadvantage. Several studies have shown that various kinds of stem cells, induced pluripotent stem cells, and other cells can differentiate into dopaminergic neurons and may be promising for treating Parkinson's disease in the future. Therefore, this review addresses those cells in terms of their prospects in cell therapy for Parkinson's disease. In addition, the need for safety and efficacy studies, various cell delivery modes and sites, and possible side effects will be discussed.
Collapse
|
553
|
Chun YS, Byun K, Lee B. Induced pluripotent stem cells and personalized medicine: current progress and future perspectives. Anat Cell Biol 2011; 44:245-55. [PMID: 22254153 PMCID: PMC3254878 DOI: 10.5115/acb.2011.44.4.245] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 12/16/2011] [Accepted: 12/21/2011] [Indexed: 01/26/2023] Open
Abstract
Generation of induced pluripotent stem cells (iPSCs) has revolutionized the field of regenerative medicine by providing researchers with a unique tool to derive disease-specific stem cells for study. iPSCs can self-renew and can differentiate into many cell types, offering a potentially unlimited source of cells for targeted differentiation into somatic effector cells. Hence, iPSCs are likely to be invaluable for therapeutic applications and disease-related research. In this review, we summarize the recent progress of iPSC generation that has been made with an emphasis on both basic and clinical applications including disease modeling, drug toxicity screening/drug discovery and cell replacement therapy.
Collapse
Affiliation(s)
- Yong Soon Chun
- Department of Surgery, Gachon University Gil Hospital, Incheon, Korea
| | | | | |
Collapse
|
554
|
McMahon MA, Rahdar M, Porteus M. Gene editing: not just for translation anymore. Nat Methods 2011; 9:28-31. [PMID: 22205513 DOI: 10.1038/nmeth.1811] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
555
|
Pan H, Zhang W, Zhang W, Liu GH. Find and replace: editing human genome in pluripotent stem cells. Protein Cell 2011; 2:950-6. [PMID: 22173708 DOI: 10.1007/s13238-011-1132-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Accepted: 12/04/2011] [Indexed: 12/14/2022] Open
Abstract
Genetic manipulation of human pluripotent stem cells (hPSCs) provides a powerful tool for modeling diseases and developing future medicine. Recently a number of independent genome-editing techniques were developed, including plasmid, bacterial artificial chromosome, adeno-associated virus vector, zinc finger nuclease, transcription activator-like effecter nuclease, and helper-dependent adenoviral vector. Gene editing has been successfully employed in different aspects of stem cell research such as gene correction, mutation knock-in, and establishment of reporter cell lines (Raya et al., 2009; Howden et al., 2011; Li et al., 2011; Liu et al., 2011b; Papapetrou et al., 2011; Sebastiano et al., 2011; Soldner et al., 2011; Zou et al., 2011a). These techniques combined with the utility of hPSCs will significantly influence the area of regenerative medicine.
Collapse
Affiliation(s)
- Huize Pan
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | | | | | | |
Collapse
|
556
|
Osiak A, Radecke F, Guhl E, Radecke S, Dannemann N, Lütge F, Glage S, Rudolph C, Cantz T, Schwarz K, Heilbronn R, Cathomen T. Selection-independent generation of gene knockout mouse embryonic stem cells using zinc-finger nucleases. PLoS One 2011; 6:e28911. [PMID: 22194948 PMCID: PMC3237556 DOI: 10.1371/journal.pone.0028911] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 11/17/2011] [Indexed: 12/18/2022] Open
Abstract
Gene knockout in murine embryonic stem cells (ESCs) has been an invaluable tool to study gene function in vitro or to generate animal models with altered phenotypes. Gene targeting using standard techniques, however, is rather inefficient and typically does not exceed frequencies of 10(-6). In consequence, the usage of complex positive/negative selection strategies to isolate targeted clones has been necessary. Here, we present a rapid single-step approach to generate a gene knockout in mouse ESCs using engineered zinc-finger nucleases (ZFNs). Upon transient expression of ZFNs, the target gene is cleaved by the designer nucleases and then repaired by non-homologous end-joining, an error-prone DNA repair process that introduces insertions/deletions at the break site and therefore leads to functional null mutations. To explore and quantify the potential of ZFNs to generate a gene knockout in pluripotent stem cells, we generated a mouse ESC line containing an X-chromosomally integrated EGFP marker gene. Applying optimized conditions, the EGFP locus was disrupted in up to 8% of ESCs after transfection of the ZFN expression vectors, thus obviating the need of selection markers to identify targeted cells, which may impede or complicate downstream applications. Both activity and ZFN-associated cytotoxicity was dependent on vector dose and the architecture of the nuclease domain. Importantly, teratoma formation assays of selected ESC clones confirmed that ZFN-treated ESCs maintained pluripotency. In conclusion, the described ZFN-based approach represents a fast strategy for generating gene knockouts in ESCs in a selection-independent fashion that should be easily transferrable to other pluripotent stem cells.
Collapse
Affiliation(s)
- Anna Osiak
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- Institute of Virology (CBF), Charité Medical School, Berlin, Germany
| | - Frank Radecke
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Eva Guhl
- Institute of Virology (CBF), Charité Medical School, Berlin, Germany
| | - Sarah Radecke
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Service Baden-Württemberg – Hessen, Ulm, Germany
| | - Nadine Dannemann
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Fabienne Lütge
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Silke Glage
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Cornelia Rudolph
- JRG Genetic and Epigenetic Integrity, REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Tobias Cantz
- JRG Stem Cell Biology, REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Klaus Schwarz
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Service Baden-Württemberg – Hessen, Ulm, Germany
| | - Regine Heilbronn
- Institute of Virology (CBF), Charité Medical School, Berlin, Germany
| | - Toni Cathomen
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- Institute of Virology (CBF), Charité Medical School, Berlin, Germany
| |
Collapse
|
557
|
|
558
|
Pluripotent Stem Cells and Human Diseases*. PROG BIOCHEM BIOPHYS 2011. [DOI: 10.3724/sp.j.1206.2011.00466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
559
|
Efficient correction of hemoglobinopathy-causing mutations by homologous recombination in integration-free patient iPSCs. Cell Res 2011; 21:1740-4. [PMID: 22105484 DOI: 10.1038/cr.2011.186] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
560
|
Abstract
The potential impact of stem cell technology on medical and dental practice is vast. Stem cell research will not only provide the foundation for future therapies, but also reveal unique insights into basic disease mechanisms. Therefore, an understanding of stem cell technology will be necessary for clinicians in the future. Herein, we give a basic overview of stem cell biology and therapeutics for the practicing clinician.
Collapse
Affiliation(s)
- A Leventhal
- Center for Molecular Medicine,National Heart, Lung, and Blood Institute, National Institutes of Health, Building 10-CRC, Room 5-3132, Bethesda, MD 20817, USA
| | | | | | | |
Collapse
|
561
|
Cellular reprogramming: a new technology frontier in pharmaceutical research. Pharm Res 2011; 29:35-52. [PMID: 22068279 DOI: 10.1007/s11095-011-0618-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 10/25/2011] [Indexed: 01/14/2023]
Abstract
Induced pluripotent stem cells via cellular reprogramming are now finding multiple applications in the pharmaceutical research and drug development pipeline. In the pre-clinical stages, they serve as model systems for basic research on specific diseases and then as key experimental tools for testing and developing therapeutics. Here we examine the current state of cellular reprogramming technology, with a special emphasis on approaches that recapitulate previously intractable human diseases in vitro. We discuss the technical and operational challenges that must be tackled as reprogrammed cells become incorporated into routine pharmaceutical research and drug discovery.
Collapse
|
562
|
Surface-engineered substrates for improved human pluripotent stem cell culture under fully defined conditions. Proc Natl Acad Sci U S A 2011; 108:18714-9. [PMID: 22065768 DOI: 10.1073/pnas.1114854108] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The current gold standard for the culture of human pluripotent stem cells requires the use of a feeder layer of cells. Here, we develop a spatially defined culture system based on UV/ozone radiation modification of typical cell culture plastics to define a favorable surface environment for human pluripotent stem cell culture. Chemical and geometrical optimization of the surfaces enables control of early cell aggregation from fully dissociated cells, as predicted from a numerical model of cell migration, and results in significant increases in cell growth of undifferentiated cells. These chemically defined xeno-free substrates generate more than three times the number of cells than feeder-containing substrates per surface area. Further, reprogramming and typical gene-targeting protocols can be readily performed on these engineered surfaces. These substrates provide an attractive cell culture platform for the production of clinically relevant factor-free reprogrammed cells from patient tissue samples and facilitate the definition of standardized scale-up friendly methods for disease modeling and cell therapeutic applications.
Collapse
|
563
|
|
564
|
Yeo JC, Ng HH. Transcriptomic analysis of pluripotent stem cells: insights into health and disease. Genome Med 2011; 3:68. [PMID: 22035782 PMCID: PMC3239230 DOI: 10.1186/gm284] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) hold tremendous clinical potential because of their ability to self-renew, and to differentiate into all cell types of the body. This unique capacity of ESCs and iPSCs to form all cell lineages is termed pluripotency. While ESCs and iPSCs are pluripotent and remarkably similar in appearance, whether iPSCs truly resemble ESCs at the molecular level is still being debated. Further research is therefore needed to resolve this issue before iPSCs may be safely applied in humans for cell therapy or regenerative medicine. Nevertheless, the use of iPSCs as an in vitro human genetic disease model has been useful in studying the molecular pathology of complex genetic diseases, as well as facilitating genetic or drug screens. Here, we review recent progress in transcriptomic approaches in the study of ESCs and iPSCs, and discuss how deregulation of these pathways may be involved in the development of disease. Finally, we address the importance of these advances for developing new therapeutics, and the future challenges facing the clinical application of ESCs and iPSCs.
Collapse
Affiliation(s)
- Jia-Chi Yeo
- Gene Regulation Laboratory, Genome Institute of Singapore, 60 Biopolis Street, Genome, Singapore 138672.
| | | |
Collapse
|
565
|
Normal collagen and bone production by gene-targeted human osteogenesis imperfecta iPSCs. Mol Ther 2011; 20:204-13. [PMID: 22031238 DOI: 10.1038/mt.2011.209] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Osteogenesis imperfecta (OI) is caused by dominant mutations in the type I collagen genes. In principle, the skeletal abnormalities of OI could be treated by transplantation of patient-specific, bone-forming cells that no longer express the mutant gene. Here, we develop this approach by isolating mesenchymal cells from OI patients, inactivating their mutant collagen genes by adeno-associated virus (AAV)-mediated gene targeting, and deriving induced pluripotent stem cells (iPSCs) that were expanded and differentiated into mesenchymal stem cells (iMSCs). Gene-targeted iMSCs produced normal collagen and formed bone in vivo, but were less senescent and proliferated more than bone-derived MSCs. To generate iPSCs that would be more appropriate for clinical use, the reprogramming and selectable marker transgenes were removed by Cre recombinase. These results demonstrate that the combination of gene targeting and iPSC derivation can be used to produce potentially therapeutic cells from patients with genetic disease.
Collapse
|
566
|
Abstract
Microglia - resident myeloid-lineage cells in the brain and the spinal cord parenchyma - function in the maintenance of normal tissue homeostasis. Microglia also act as sentinels of infection and injury, and participate in both innate and adaptive immune responses in the central nervous system. Microglia can become activated and/or dysregulated in the context of neurodegenerative disease and cancer, and thereby contribute to disease severity. Here, we discuss recent studies that provide new insights into the origin and phenotypes of microglia in health and disease.
Collapse
|
567
|
Le Bot N. TALEs from the genetic engineering of stem cells. Nat Cell Biol 2011. [DOI: 10.1038/ncb2335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
568
|
Elsner M. Isogenic stem cell backgrounds. Nat Biotechnol 2011. [DOI: 10.1038/nbt.1984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
569
|
In brief. Nat Rev Neurosci 2011. [DOI: 10.1038/nrn3093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
570
|
Niemitz E. Patient-derived isogenic iPSCs. Nat Genet 2011. [DOI: 10.1038/ng.931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
571
|
More options for gene editing. Nat Methods 2011; 8:707. [DOI: 10.1038/nmeth.1683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
572
|
Marchetto MC, Brennand KJ, Boyer LF, Gage FH. Induced pluripotent stem cells (iPSCs) and neurological disease modeling: progress and promises. Hum Mol Genet 2011; 20:R109-15. [PMID: 21828073 DOI: 10.1093/hmg/ddr336] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The systematic generation of neurons from patients with neurological disorders can provide important insights into disease pathology, progression and mechanism. This review will discuss recent progress in modeling neurodegenerative and neurodevelopmental diseases using induced pluripotent stem cells (iPSCs) and highlight some of the current challenges in the field. Combined with other technologies previously used to study brain disease, iPSC modeling has the promise to influence modern medicine on several fronts: early diagnosis, drug development and effective treatment.
Collapse
Affiliation(s)
- Maria C Marchetto
- Laboratory of Genetics (LOG-G), The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
573
|
Pattanayak V, Ramirez CL, Joung JK, Liu DR. Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection. Nat Methods 2011; 8:765-70. [PMID: 21822273 PMCID: PMC3164905 DOI: 10.1038/nmeth.1670] [Citation(s) in RCA: 374] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 07/20/2011] [Indexed: 12/21/2022]
Abstract
Engineered zinc-finger nucleases (ZFNs) are promising tools for genome manipulation, and determining off-target cleavage sites of these enzymes is of great interest. We developed an in vitro selection method that interrogates 10(11) DNA sequences for cleavage by active, dimeric ZFNs. The method revealed hundreds of thousands of DNA sequences, some present in the human genome, that can be cleaved in vitro by two ZFNs: CCR5-224 and VF2468, which target the endogenous human CCR5 and VEGFA genes, respectively. Analysis of identified sites in one cultured human cell line revealed CCR5-224-induced changes at nine off-target loci, though this remains to be tested in other relevant cell types. Similarly, we observed 31 off-target sites cleaved by VF2468 in cultured human cells. Our findings establish an energy compensation model of ZFN specificity in which excess binding energy contributes to off-target ZFN cleavage and suggest strategies for the improvement of future ZFN design.
Collapse
Affiliation(s)
- Vikram Pattanayak
- Department of Chemistry & Chemical Biology and Howard Hughes Medical Institute Harvard University, 12 Oxford St, Cambridge, MA 02138 USA
| | - Cherie L. Ramirez
- Molecular Pathology Unit, Center for Cancer Research, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, MA 02129 USA
- Department of Pathology & Biological and Biomedical Sciences Program, Harvard Medical School, Boston, MA 02115 USA
| | - J. Keith Joung
- Molecular Pathology Unit, Center for Cancer Research, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, MA 02129 USA
- Department of Pathology & Biological and Biomedical Sciences Program, Harvard Medical School, Boston, MA 02115 USA
| | - David R. Liu
- Department of Chemistry & Chemical Biology and Howard Hughes Medical Institute Harvard University, 12 Oxford St, Cambridge, MA 02138 USA
| |
Collapse
|
574
|
|
575
|
High-frequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases. Nat Methods 2011; 8:753-5. [PMID: 21765410 DOI: 10.1038/nmeth.1653] [Citation(s) in RCA: 357] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 06/27/2011] [Indexed: 11/09/2022]
Abstract
Zinc-finger nucleases (ZFNs) have enabled highly efficient gene targeting in multiple cell types and organisms. Here we describe methods for using simple ssDNA oligonucleotides in tandem with ZFNs to efficiently produce human cell lines with three distinct genetic outcomes: (i) targeted point mutation, (ii) targeted genomic deletion of up to 100 kb and (iii) targeted insertion of small genetic elements concomitant with large genomic deletions.
Collapse
|
576
|
Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol 2011; 29:731-4. [PMID: 21738127 PMCID: PMC3152587 DOI: 10.1038/nbt.1927] [Citation(s) in RCA: 945] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 06/28/2011] [Indexed: 11/22/2022]
Abstract
Targeted genetic engineering of human pluripotent cells is a prerequisite for exploiting their full potential. Such genetic manipulations can be achieved using site-specific nucleases. Here, we engineered Transcription Activation-Like Effector Nucleases (TALENs) for five distinct genomic loci. At all loci tested we obtained hESC and iPSC single-cell-derived clones carrying transgenic cassettes solely at the TALEN-specified location. Thus, TALENs mediate site-specific genome modifications in human pluripotent cells with comparable efficiency and precision as zinc finger nucleases (ZFNs).
Collapse
|