551
|
Bronkhorst AJ, Ungerer V, Holdenrieder S. Early detection of cancer using circulating tumor DNA: biological, physiological and analytical considerations. Crit Rev Clin Lab Sci 2019:1-17. [PMID: 31865831 DOI: 10.1080/10408363.2019.1700902] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Early diagnosis of cancer improves the efficacy of curative therapies. However, due to the difficulties involved in distinguishing between small early-stage tumors and normal biological variation, early detection of cancer is an extremely challenging task and there are currently no clinically validated biomarkers for a pan-cancer screening test. It is thus of particular significance that increasing evidence indicates the potential of circulating tumor DNA (ctDNA) molecules, which are fragmented segments of DNA shed from tumor cells into adjacent body fluids and the circulatory system, to serve as molecular markers for early cancer detection and thereby allow early intervention and improvement of therapeutic and survival outcomes. This is possible because ctDNA molecules bear cancer-specific fragmentation patterns, nucleosome depletion motifs, and genetic and epigenetic alterations, as distinct from plasma DNA originating from non-cancerous tissues/cells. Compared to traditional biomarkers, ctDNA analysis therefore presents the distinctive advantage of detecting tumor-specific alterations. However, based on a thorough survey of the literature, theoretical and empirical evidence suggests that current ctDNA analysis strategies, which are mainly based on DNA mutation detection, do not demonstrate the necessary diagnostic sensitivity and specificity that is required for broad clinical implementation in a screening context. Therefore, in this review we explain the biological, physiological, and analytical challenges toward the development of clinically meaningful ctDNA tests. In addition, we explore some approaches that can be implemented in order to increase the sensitivity and specificity of ctDNA assays.
Collapse
Affiliation(s)
- Abel Jacobus Bronkhorst
- Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Munich, Germany
| | - Vida Ungerer
- Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Munich, Germany
| | - Stefan Holdenrieder
- Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Munich, Germany
| |
Collapse
|
552
|
He K, Zhang S, Shao LL, Yin JC, Wu X, Shao YW, Yuan S, Yu J. Developing more sensitive genomic approaches to detect radioresponse in precision radiation oncology: From tissue DNA analysis to circulating tumor DNA. Cancer Lett 2019; 472:108-118. [PMID: 31837443 DOI: 10.1016/j.canlet.2019.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 02/07/2023]
Abstract
Despite the common application and considerable efforts to achieve precision radiotherapy (RT) in several types of cancer, RT has not yet entered the era of precision medicine; the ability to predict radiosensitivity and treatment responses in tumors and normal tissues is lacking. Therefore, development of genome-based methods for individual prognosis in radiation oncology is urgently required. Traditional DNA sequencing requires tissue samples collected during invasive operations; therefore, repeated tests are nearly impossible. Intra- and inter-tumoral heterogeneity may undermine the predictive power of a single assay from tumor samples. In contrast, analysis of circulating tumor DNA (ctDNA) allows for non-invasive and near real-time sampling of tumors. By investigating the genetic composition of tumors and monitoring dynamic changes during treatment, ctDNA analysis may potentially be clinically valuable in prediction of treatment responses prior to RT, surveillance of responses during RT, and evaluation of residual disease following RT. As a biomarker for RT response, ctDNA profiling may guide personalized treatments. In this review, we will discuss approaches of tissue DNA sequencing and ctDNA detection and summarize their clinical applications in both traditional RT and in combination with immunotherapy.
Collapse
Affiliation(s)
- Kewen He
- Department of Radiology, Shandong Cancer Hospital affiliated to Shandong University, Jinan, Shandong, 250117, People's Republic of China; Department of Radiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People's Republic of China
| | - Shaotong Zhang
- Department of Cardiology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, 250013, People's Republic of China
| | - Liang L Shao
- Geneseeq Technology Inc., Toronto, Ontario, M5G 1L7, Canada
| | - Jiani C Yin
- Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, 210032, People's Republic of China
| | - Xue Wu
- Geneseeq Technology Inc., Toronto, Ontario, M5G 1L7, Canada
| | - Yang W Shao
- Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, 210032, People's Republic of China; School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Shuanghu Yuan
- Department of Radiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People's Republic of China.
| | - Jinming Yu
- Department of Radiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People's Republic of China.
| |
Collapse
|
553
|
Arechederra M. New warning signs on the road: 5-hydroxymethylcytosine-based liquid biopsy for the early detection of hepatocellular carcinoma. Gut 2019; 68:2103-2104. [PMID: 31391197 DOI: 10.1136/gutjnl-2019-319339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Maria Arechederra
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain .,Instituto de Investigaciones Sanitarias de Navarra-IdiSNA, Pamplona, Spain
| |
Collapse
|
554
|
Jiang F, Yang X, He X, Yang M. Circulating DNA, a Potentially Sensitive and Specific Diagnostic Tool for Future Medicine. Dose Response 2019; 17:1559325819891010. [PMID: 31827416 PMCID: PMC6886285 DOI: 10.1177/1559325819891010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/21/2019] [Accepted: 10/24/2019] [Indexed: 11/28/2022] Open
Abstract
Liquid biopsy has the great potential of detecting early diseases before deterioration and is valued for screening abnormalities at early stage. In oncology, circulating DNA derived from shed cancer cells reflects the tissue of origin, so it could be used to locate tissue sites during early screening. However, the heterogenous parameters of different types limit the clinical application, making it inaccessible to encompass all the cancer types. Instead, for reproducible scenario as pregnancy, fetal cell-free DNA has been well utilized for screening aneuploidies. Noninvasive and convenient as is, it would be of great value in the next decades far more than early diagnosis. This review recapitulates the discovery and development of tumor and fetal cell-free DNA. The common factors are also present that could be taken into consideration when collecting, transporting, and preserving samples. Meanwhile, several protocols used for purifying cell-free DNA, either classic ones or through commercial kits, are compared carefully. In addition, the development of technologies for analyzing cell-free DNA have been summarized and discussed in detail, especially some up-to-date approaches. At the end, the potential prospect of circulating DNA is bravely depicted. In summary, although there would be a lot of efforts before it’s prevalent, cell-free DNA remains a promising tool in point-of-care diagnostic medicine.
Collapse
Affiliation(s)
- Fan Jiang
- Department of Rehabilitation Medicine, The First People's Hospital of Wenling, Wenzhou Medical University, Wenling, Zhejiang, China
| | - Xiaoxiao Yang
- Department of Rehabilitation Medicine, The First People's Hospital of Wenling, Wenzhou Medical University, Wenling, Zhejiang, China
| | - Xiping He
- Department of Rehabilitation Medicine, The First People's Hospital of Wenling, Wenzhou Medical University, Wenling, Zhejiang, China
| | - Mingming Yang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
555
|
Vrba L, Oshiro MM, Kim SS, Garland LL, Placencia C, Mahadevan D, Nelson MA, Futscher BW. DNA methylation biomarkers discovered in silico detect cancer in liquid biopsies from non-small cell lung cancer patients. Epigenetics 2019; 15:419-430. [PMID: 31775567 PMCID: PMC7153541 DOI: 10.1080/15592294.2019.1695333] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Identification of cancer-specific methylation of DNA released by tumours can be used for non-invasive diagnostics and monitoring. We previously reported in silico identification of DNA methylation loci specifically hypermethylated in common human cancers that could be used as epigenetic biomarkers. Using DNA methylation specific qPCR we now clinically tested a group of these cancer-specific loci on cell-free DNA (cfDNA) extracted from the plasma fraction of blood samples from healthy controls and non-small cell lung cancer (NSCLC) patients. These DNA methylation biomarkers distinguish lung cancer cases from controls with high sensitivity and specificity (AUC = 0.956), and furthermore, the signal from the markers correlates with tumour size and decreases after surgical resection of lung tumours. Presented observations suggest the clinical value of these DNA methylation biomarkers for NSCLC diagnostics and monitoring. Since we successfully validated the biomarkers using independent DNA methylation data from multiple additional common carcinoma cohorts (bladder, breast, colorectal, oesophageal, head and neck, pancreatic or prostate cancer) we predict that these DNA methylation biomarkers will detect additional carcinoma types from plasma samples as well.
Collapse
Affiliation(s)
- Lukas Vrba
- The University of Arizona Cancer Center, Tucson, AZ, USA
| | - Marc M Oshiro
- The University of Arizona Cancer Center, Tucson, AZ, USA
| | - Samuel S Kim
- Department of Surgery, University of Arizona, Tucson, AZ, USA
| | - Linda L Garland
- The University of Arizona Cancer Center, Tucson, AZ, USA.,Department of Medicine, Division of Hematology/Oncology, University of Arizona, Tucson, AZ, USA
| | - Crystal Placencia
- The University of Arizona Cancer Center, Tucson, AZ, USA.,Department of Medicine, Division of Hematology/Oncology, University of Arizona, Tucson, AZ, USA
| | - Daruka Mahadevan
- The University of Arizona Cancer Center, Tucson, AZ, USA.,Department of Medicine, Division of Hematology/Oncology, University of Arizona, Tucson, AZ, USA
| | - Mark A Nelson
- The University of Arizona Cancer Center, Tucson, AZ, USA.,Department of Pathology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Bernard W Futscher
- The University of Arizona Cancer Center, Tucson, AZ, USA.,Department of Pharmacology & Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
556
|
Abstract
Abstract
Precision oncology aims to tailor clinical decisions specifically to patients with the objective of improving treatment outcomes. This can be achieved by leveraging omics information for accurate molecular characterization of tumors. Tumor tissue biopsies are currently the main source of information for molecular profiling. However, biopsies are invasive and limited in resolving spatiotemporal heterogeneity in tumor tissues. Alternative non-invasive liquid biopsies can exploit patient’s body fluids to access multiple layers of tumor-specific biological information (genomes, epigenomes, transcriptomes, proteomes, metabolomes, circulating tumor cells, and exosomes). Analysis and integration of these large and diverse datasets using statistical and machine learning approaches can yield important insights into tumor biology and lead to discovery of new diagnostic, predictive, and prognostic biomarkers. Translation of these new diagnostic tools into standard clinical practice could transform oncology, as demonstrated by a number of liquid biopsy assays already entering clinical use. In this review, we highlight successes and challenges facing the rapidly evolving field of cancer biomarker research.
Lay Summary
Precision oncology aims to tailor clinical decisions specifically to patients with the objective of improving treatment outcomes. The discovery of biomarkers for precision oncology has been accelerated by high-throughput experimental and computational methods, which can inform fine-grained characterization of tumors for clinical decision-making. Moreover, advances in the liquid biopsy field allow non-invasive sampling of patient’s body fluids with the aim of analyzing circulating biomarkers, obviating the need for invasive tumor tissue biopsies. In this review, we highlight successes and challenges facing the rapidly evolving field of liquid biopsy cancer biomarker research.
Collapse
|
557
|
SERS assessment of the cancer-specific methylation pattern of genomic DNA: towards the detection of acute myeloid leukemia in patients undergoing hematopoietic stem cell transplantation. Anal Bioanal Chem 2019; 411:7907-7913. [PMID: 31745615 DOI: 10.1007/s00216-019-02213-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 09/04/2019] [Accepted: 10/14/2019] [Indexed: 10/25/2022]
Abstract
In this label-free surface-enhanced Raman scattering (SERS) study of genomic DNA, we demonstrate that the cancer-specific DNA methylation pattern translates into specific spectral differences. Thus, DNA extracted from an acute myeloid leukemia (AML) cell line presented a decreased intensity of the 1005 cm-1 band of 5-methylcytosine compared to normal DNA, in line with the well-described hypomethylation of cancer DNA. The unique methylation pattern of cancer DNA also influences the DNA adsorption geometry, resulting in higher adenine SERS intensities for cancer DNA. The possibility of detecting cancer DNA based on its SERS spectrum was validated on peripheral blood genomic DNA samples from n = 17 AML patients and n = 17 control samples, yielding an overall classification of 82% based on the 1005 cm-1 band of 5-methylcytosine. By demonstrating the potential of SERS in assessing the methylation status in the case of real-life DNA samples, the study paves the way for novel methods of diagnosing cancer. Graphical abstract.
Collapse
|
558
|
Novel Epigenetic Biomarkers in Pregnancy-Related Disorders and Cancers. Cells 2019; 8:cells8111459. [PMID: 31752198 PMCID: PMC6912400 DOI: 10.3390/cells8111459] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/08/2019] [Accepted: 11/14/2019] [Indexed: 12/11/2022] Open
Abstract
As the majority of cancers and gestational diseases are prognostically stage- and grade-dependent, the ultimate goal of ongoing studies in precision medicine is to provide early and timely diagnosis of such disorders. These studies have enabled the development of various new diagnostic biomarkers, such as free circulating nucleic acids, and detection of their epigenetic changes. Recently, extracellular vesicles including exosomes, microvesicles, oncosomes, and apoptotic bodies have been recognized as powerful diagnostic tools. Extracellular vesicles carry specific proteins, lipids, DNAs, mRNAs, and miRNAs of the cells that produced them, thus reflecting the function of these cells. It is believed that exosomes, in particular, may be the optimal biomarkers of pathological pregnancies and cancers, especially those that are frequently diagnosed at an advanced stage, such as ovarian cancer. In the present review, we survey and critically appraise novel epigenetic biomarkers related to free circulating nucleic acids and extracellular vesicles, focusing especially on their status in trophoblasts (pregnancy) and neoplastic cells (cancers).
Collapse
|
559
|
Jensen SØ, Øgaard N, Ørntoft MBW, Rasmussen MH, Bramsen JB, Kristensen H, Mouritzen P, Madsen MR, Madsen AH, Sunesen KG, Iversen LH, Laurberg S, Christensen IJ, Nielsen HJ, Andersen CL. Novel DNA methylation biomarkers show high sensitivity and specificity for blood-based detection of colorectal cancer-a clinical biomarker discovery and validation study. Clin Epigenetics 2019; 11:158. [PMID: 31727158 PMCID: PMC6854894 DOI: 10.1186/s13148-019-0757-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/02/2019] [Indexed: 02/06/2023] Open
Abstract
Background Early detection plays an essential role to reduce colorectal cancer (CRC) mortality. While current screening methods suffer from poor compliance, liquid biopsy-based strategies for cancer detection is rapidly gaining promise. Here, we describe the development of TriMeth, a minimal-invasive blood-based test for detection of early-stage colorectal cancer. The test is based on assessment of three tumour-specific DNA methylation markers in circulating cell-free DNA. Results A thorough multi-step biomarker discovery study based on DNA methylation profiles of more than 5000 tumours and blood cell populations identified CRC-specific DNA methylation markers. The DNA methylation patterns of biomarker candidates were validated by bisulfite sequencing and methylation-specific droplet digital PCR in CRC tumour tissue and peripheral blood leucocytes. The three best performing markers were first applied to plasma from 113 primarily early-stage CRC patients and 87 age- and gender-matched colonoscopy-verified controls. Based on this, the test scoring algorithm was locked, and then TriMeth was validated in an independent cohort comprising 143 CRC patients and 91 controls. Three DNA methylation markers, C9orf50, KCNQ5, and CLIP4, were identified, each capable of discriminating plasma from colorectal cancer patients and healthy individuals (areas under the curve 0.86, 0.91, and 0.88). When combined in the TriMeth test, an average sensitivity of 85% (218/256) was observed (stage I: 80% (33/41), stage II: 85% (121/143), stage III: 89% (49/55), and stage IV: 88% (15/17)) at 99% (176/178) specificity in two independent plasma cohorts. Conclusion TriMeth enables detection of early-stage colorectal cancer with high sensitivity and specificity. The reported results underline the potential utility of DNA methylation-based detection of circulating tumour DNA in the clinical management of colorectal cancer.
Collapse
Affiliation(s)
- Sarah Østrup Jensen
- Department of Molecular Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Nadia Øgaard
- Department of Molecular Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Mai-Britt Worm Ørntoft
- Department of Molecular Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Mads Heilskov Rasmussen
- Department of Molecular Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Jesper Bertram Bramsen
- Department of Molecular Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | | | | | | | | | | | | | - Søren Laurberg
- Department of Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Ib Jarle Christensen
- Center for Surgical Research, Department of Surgical Gastroenterology, Hvidovre Hospital, Hvidovre, Denmark
| | - Hans Jørgen Nielsen
- Center for Surgical Research, Department of Surgical Gastroenterology, Hvidovre Hospital, Hvidovre, Denmark.,Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Claus Lindbjerg Andersen
- Department of Molecular Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark.
| |
Collapse
|
560
|
Huang J, Wang L. Cell-Free DNA Methylation Profiling Analysis-Technologies and Bioinformatics. Cancers (Basel) 2019; 11:cancers11111741. [PMID: 31698791 PMCID: PMC6896050 DOI: 10.3390/cancers11111741] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/01/2019] [Accepted: 11/04/2019] [Indexed: 12/24/2022] Open
Abstract
Analysis of circulating nucleic acids in bodily fluids, referred to as “liquid biopsies”, is rapidly gaining prominence. Studies have shown that cell-free DNA (cfDNA) has great potential in characterizing tumor status and heterogeneity, as well as the response to therapy and tumor recurrence. DNA methylation is an epigenetic modification that plays an important role in a broad range of biological processes and diseases. It is well known that aberrant DNA methylation is generalizable across various samples and occurs early during the pathogenesis of cancer. Methylation patterns of cfDNA are also consistent with their originated cells or tissues. Systemic analysis of cfDNA methylation profiles has emerged as a promising approach for cancer detection and origin determination. In this review, we will summarize the technologies for DNA methylation analysis and discuss their feasibility for liquid biopsy applications. We will also provide a brief overview of the bioinformatic approaches for analysis of DNA methylation sequencing data. Overall, this review provides informative guidance for the selection of experimental and computational methods in cfDNA methylation-based studies.
Collapse
|
561
|
Pandya D, Camacho SC, Padron MM, Camacho-Vanegas O, Billaud JN, Beddoe AM, Irish J, Yoxtheimer L, Kalir T, RoseFigura J, Dottino P, Martignetti JA. Rapid development and use of patient-specific ctDNA biomarkers to avoid a "rash decision" in an ovarian cancer patient. Cold Spring Harb Mol Case Stud 2019; 5:mcs.a004648. [PMID: 31628202 PMCID: PMC6913138 DOI: 10.1101/mcs.a004648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/07/2019] [Indexed: 11/24/2022] Open
Abstract
Epithelial ovarian cancer (OvCa) is the most lethal female reproductive tract malignancy. A major clinical hurdle in patient management and treatment is that when using current surveillance technologies 80% of patients will be clinically diagnosed as having had a complete clinical response to primary therapy. In fact, the majority of women nonetheless develop disease recurrence within 18 mo. Thus, without more accurate surveillance protocols, the diagnostic question regarding OvCa recurrence remains framed as "when" rather than "if." With this background, we describe the case of a 61-yr-old female who presented with a 3-mo history of unexplained whole-body rash, which unexpectedly led to a diagnosis of and her treatment for OvCa. The rash resolved immediately following debulking surgery. Nearly 1 yr later, however, the rash reappeared, prompting the prospect of tumor recurrence and requirement for additional chemotherapy. To investigate this possibility, we undertook a genomics-based tumor surveillance approach using a targeted 56-gene NGS panel and biobanked tumor samples to develop personalized ctDNA biomarkers. Although tumor-specific TP53 and PTEN mutations were detectable in all originally collected tumor samples, pelvic washes, and blood samples, they were not detectable in any biosample collected beyond the first month of treatment. No additional chemotherapy was given. The rash spontaneously resolved. Now, 2 yr beyond the patient's original surgery, and in the face of continued negative ctDNA findings, the patient remains with no evidence of disease. As this single case report suggests, we believe for the first time that ctDNA can provide an additional layer of information to avoid overtreatment.
Collapse
Affiliation(s)
- Deep Pandya
- Rudy L. Ruggles Biomedical Research Institute, Nuvance Health, Danbury, Connecticut 06810, USA
| | - Sandra Catalina Camacho
- Departments of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Maria M Padron
- Departments of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Olga Camacho-Vanegas
- Departments of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | | | - Ann-Marie Beddoe
- Department of Obstetrics/Gynecology and Reproductive Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Jon Irish
- Swift Biosciences, Ann Arbor, Michigan 48103, USA
| | - Lorene Yoxtheimer
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Tamara Kalir
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | | | - Peter Dottino
- Department of Obstetrics/Gynecology and Reproductive Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - John A Martignetti
- Rudy L. Ruggles Biomedical Research Institute, Nuvance Health, Danbury, Connecticut 06810, USA.,Departments of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA.,Department of Obstetrics/Gynecology and Reproductive Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
562
|
van der Pol Y, Mouliere F. Toward the Early Detection of Cancer by Decoding the Epigenetic and Environmental Fingerprints of Cell-Free DNA. Cancer Cell 2019; 36:350-368. [PMID: 31614115 DOI: 10.1016/j.ccell.2019.09.003] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/18/2019] [Accepted: 09/06/2019] [Indexed: 12/15/2022]
Abstract
Widespread adaptation of liquid biopsy for the early detection of cancer has yet to reach clinical utility. Circulating tumor DNA is commonly detected though the presence of genetic alterations, but only a minor fraction of tumor-derived cell-free DNA (cfDNA) fragments exhibit mutations. The cellular processes occurring in cancer development mark the chromatin. These epigenetic marks are reflected by modifications in the cfDNA methylation, fragment size, and structure. In this review, we describe how going beyond DNA sequence information alone, by analyzing cfDNA epigenetic and immune signatures, boosts the potential of liquid biopsy for the early detection of cancer.
Collapse
Affiliation(s)
- Ymke van der Pol
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Florent Mouliere
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
| |
Collapse
|
563
|
Zhang W. Towards clinical implementation of circulating cell-free DNA in precision medicine. JOURNAL OF TRANSLATIONAL GENETICS AND GENOMICS 2019; 3. [PMID: 31579300 DOI: 10.20517/jtgg.2019.07] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Wei Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA.,The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| |
Collapse
|
564
|
Keller L, Pantel K. Unravelling tumour heterogeneity by single-cell profiling of circulating tumour cells. Nat Rev Cancer 2019; 19:553-567. [PMID: 31455893 DOI: 10.1038/s41568-019-0180-2] [Citation(s) in RCA: 393] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/09/2019] [Indexed: 12/17/2022]
Abstract
Single-cell technologies have contributed to unravelling tumour heterogeneity, now considered a hallmark of cancer and one of the main causes of tumour resistance to cancer therapies. Liquid biopsy (LB), defined as the detection and analysis of cells or cell products released by tumours into the blood, offers an appealing minimally invasive approach that allows the characterization and monitoring of tumour heterogeneity in individual patients. Here, we will review and discuss how circulating tumour cell (CTC) analysis at single-cell resolution provides unique insights into tumour heterogeneity that are not revealed by analysis of circulating tumour DNA (ctDNA) derived from LBs. The molecular analysis of CTCs provides complementary information to that of genomic aberrations determined using ctDNA to fully describe many different cellular components (for example, DNA, RNA, proteins and metabolites) that can influence tumour heterogeneity.
Collapse
Affiliation(s)
- Laura Keller
- Department of Tumour Biology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Pantel
- Department of Tumour Biology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
565
|
Michalak EM, Burr ML, Bannister AJ, Dawson MA. The roles of DNA, RNA and histone methylation in ageing and cancer. Nat Rev Mol Cell Biol 2019; 20:573-589. [PMID: 31270442 DOI: 10.1038/s41580-019-0143-1] [Citation(s) in RCA: 360] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2019] [Indexed: 12/17/2022]
Abstract
Chromatin is a macromolecular complex predominantly comprising DNA, histone proteins and RNA. The methylation of chromatin components is highly conserved as it helps coordinate the regulation of gene expression, DNA repair and DNA replication. Dynamic changes in chromatin methylation are essential for cell-fate determination and development. Consequently, inherited or acquired mutations in the major factors that regulate the methylation of DNA, RNA and/or histones are commonly observed in developmental disorders, ageing and cancer. This has provided the impetus for the clinical development of epigenetic therapies aimed at resetting the methylation imbalance observed in these disorders. In this Review, we discuss the cellular functions of chromatin methylation and focus on how this fundamental biological process is corrupted in cancer. We discuss methylation-based cancer therapies and provide a perspective on the emerging data from early-phase clinical trial therapies that target regulators of DNA and histone methylation. We also highlight promising therapeutic strategies, including monitoring chromatin methylation for diagnostic purposes and combination epigenetic therapy strategies that may improve immune surveillance in cancer and increase the efficacy of conventional and targeted anticancer drugs.
Collapse
Affiliation(s)
- Ewa M Michalak
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Marian L Burr
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Andrew J Bannister
- Gurdon Institute and Department of Pathology, University of Cambridge, Cambridge, UK.
| | - Mark A Dawson
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia.
- Centre for Cancer Research, The University of Melbourne, Melbourne, Australia.
| |
Collapse
|
566
|
An Q, Hu Y, Li Q, Chen X, Huang J, Pellegrini M, Zhou XJ, Rettig M, Fan G. The size of cell-free mitochondrial DNA in blood is inversely correlated with tumor burden in cancer patients. PRECISION CLINICAL MEDICINE 2019; 2:131-139. [PMID: 31598384 PMCID: PMC6770274 DOI: 10.1093/pcmedi/pbz014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/25/2019] [Accepted: 07/21/2019] [Indexed: 02/07/2023] Open
Abstract
Circulating cell-free DNAs (cfDNAs) are fragmented DNA molecules released into the blood by cells. Previous studies have suggested that mitochondria-originated cfDNA fragments (mt-cfDNAs) in cancer patients are more fragmented than those from healthy controls. However, it is still unknown where these short mt-cfDNAs originate, and whether the length of mt-cfDNAs can be correlated with tumor burden and cancer progression. In this study, we first performed whole-genome sequencing analysis (WGS) of cfDNAs from a human tumor cell line-xenotransplantation mouse model and found that mt-cfDNAs released from transplanted tumor cells were shorter than the mouse counterpart. We next analyzed blood cfDNA samples from hepatocellular carcinoma and prostate cancer patients and found that mt-cfDNA lengths were inversely related to tumor size as well as the concentration of circulating tumor DNA. Our study suggested that monitoring the size of mt-cfDNAs in cancer patients would be a useful way to estimate tumor burden and cancer progression.
Collapse
Affiliation(s)
- Qin An
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Youjin Hu
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Qingjiao Li
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Xufeng Chen
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA.,Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jiaoti Huang
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA.,Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095-7239, USA
| | - Xianghong Jasmine Zhou
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Matthew Rettig
- Department of Urology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Guoping Fan
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
567
|
Morel D, Jeffery D, Aspeslagh S, Almouzni G, Postel-Vinay S. Combining epigenetic drugs with other therapies for solid tumours - past lessons and future promise. Nat Rev Clin Oncol 2019; 17:91-107. [PMID: 31570827 DOI: 10.1038/s41571-019-0267-4] [Citation(s) in RCA: 297] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2019] [Indexed: 12/16/2022]
Abstract
Epigenetic dysregulation has long been recognized as a key factor contributing to tumorigenesis and tumour maintenance that can influence all of the recognized hallmarks of cancer. Despite regulatory approvals for the treatment of certain haematological malignancies, the efficacy of the first generation of epigenetic drugs (epi-drugs) in patients with solid tumours has been disappointing; however, successes have now been achieved in selected solid tumour subtypes, thanks to the development of novel compounds and a better understanding of cancer biology that have enabled precision medicine approaches. Several lines of evidence support that, beyond their potential as monotherapies, epigenetic drugs could have important roles in synergy with other anticancer therapies or in reversing acquired therapy resistance. Herein, we review the mechanisms by which epi-drugs can modulate the sensitivity of cancer cells to other forms of anticancer therapy, including chemotherapy, radiation therapy, hormone therapy, molecularly targeted therapy and immunotherapy. We provide a critical appraisal of the preclinical rationale, completed clinical studies and ongoing clinical trials relating to combination therapies incorporating epi-drugs. Finally, we propose and discuss rational clinical trial designs and drug development strategies, considering key factors including patient selection, tumour biomarker evaluation, drug scheduling and response assessment and study end points, with the aim of optimizing the development of such combinations.
Collapse
Affiliation(s)
- Daphné Morel
- ATIP-Avenir Group, UMR981, INSERM (French National Institute of Health and Medical Research), Gustave Roussy Cancer Campus, Villejuif, France
| | - Daniel Jeffery
- Nuclear Dynamics Unit - UMR3664, National Centre for Scientific Research, Institut Curie, Paris, France
| | | | - Geneviève Almouzni
- Nuclear Dynamics Unit - UMR3664, National Centre for Scientific Research, Institut Curie, Paris, France.
| | - Sophie Postel-Vinay
- ATIP-Avenir Group, UMR981, INSERM (French National Institute of Health and Medical Research), Gustave Roussy Cancer Campus, Villejuif, France. .,Drug Development Department (DITEP), Gustave Roussy Cancer Campus, Paris-Saclay University, Villejuif, France.
| |
Collapse
|
568
|
Lippman SM, Abate-Shen C, Colbert Maresso KL, Colditz GA, Dannenberg AJ, Davidson NE, Disis ML, DuBois RN, Szabo E, Giuliano AR, Hait WN, Lee JJ, Kensler TW, Kramer BS, Limburg P, Maitra A, Martinez ME, Rebbeck TR, Schmitz KH, Vilar E, Hawk ET. AACR White Paper: Shaping the Future of Cancer Prevention - A Roadmap for Advancing Science and Public Health. Cancer Prev Res (Phila) 2019; 11:735-778. [PMID: 30530635 DOI: 10.1158/1940-6207.capr-18-0421] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 11/02/2018] [Indexed: 12/09/2022]
Abstract
The recent pace, extent, and impact of paradigm-changing cancer prevention science has been remarkable. The American Association for Cancer Research (AACR) convened a 3-day summit, aligned with five research priorities: (i) Precancer Atlas (PCA). (ii) Cancer interception. (iii) Obesity-cancer linkage, a global epidemic of chronic low-grade inflammation. (iv) Implementation science. (v) Cancer disparities. Aligned with these priorities, AACR co-led the Lancet Commission to formally endorse and accelerate the NCI Cancer Moonshot program, facilitating new global collaborative efforts in cancer control. The expanding scope of creative impact is perhaps most startling-from NCI-funded built environments to AACR Team Science Awarded studies of Asian cancer genomes informing global primary prevention policies; cell-free epigenetic marks identifying incipient neoplastic site; practice-changing genomic subclasses in myeloproliferative neoplasia (including germline variant tightly linked to JAK2 V617F haplotype); universal germline genetic testing for pancreatic cancer; and repurposing drugs targeting immune- and stem-cell signals (e.g., IL-1β, PD-1, RANK-L) to cancer interception. Microbiota-driven IL-17 can induce stemness and transformation in pancreatic precursors (identifying another repurposing opportunity). Notable progress also includes hosting an obesity special conference (connecting epidemiologic and molecular perspectives to inform cancer research and prevention strategies), co-leading concerted national implementation efforts in HPV vaccination, and charting the future elimination of cancer disparities by integrating new science tools, discoveries and perspectives into community-engaged research, including targeted counter attacks on e-cigarette ad exploitation of children, Hispanics and Blacks. Following this summit, two unprecedented funding initiatives were catalyzed to drive cancer prevention research: the NCI Cancer Moonshot (e.g., PCA and disparities); and the AACR-Stand Up To Cancer bold "Cancer Interception" initiative.
Collapse
Affiliation(s)
| | - Cory Abate-Shen
- Departments of Urology, Medicine, Systems Biology, and Pathology & Cell Biology, Institute of Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY
| | - Karen L Colbert Maresso
- Division of Cancer Prevention & Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Graham A Colditz
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | | | - Nancy E Davidson
- Fred Hutchinson Cancer Center and University of Washington, Seattle, Washington
| | - Mary L Disis
- UW Medicine Cancer Vaccine Institute, University of Washington, Seattle, Washington
| | - Raymond N DuBois
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Eva Szabo
- Division of Cancer Prevention, National Cancer Institute, NIH, Bethesda, Maryland
| | - Anna R Giuliano
- Center for Infection Research in Cancer, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - William N Hait
- Janssen Research and Development LLC., Raritan, New Jersey
| | - J Jack Lee
- Department of Biostatistics, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Thomas W Kensler
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | | | - Paul Limburg
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Anirban Maitra
- Sheikh Ahmed Pancreatic Cancer Research Center, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Maria Elena Martinez
- Department of Family Medicine and Public Health, UC San Diego, LaJolla, California
| | - Timothy R Rebbeck
- Cancer Epidemiology & Cancer Risk and Disparity, Dana-Farber Cancer Institute, Boston, MA
| | | | - Eduardo Vilar
- Departments of Clinical Cancer Prevention and GI Medical Oncology, UT MD Anderson Cancer Center, Houston, TX
| | - Ernest T Hawk
- Division of Cancer Prevention & Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX.
| |
Collapse
|
569
|
Hlady RA, Zhao X, Pan X, Yang JD, Ahmed F, Antwi SO, Giama NH, Patel T, Roberts LR, Liu C, Robertson KD. Genome-wide discovery and validation of diagnostic DNA methylation-based biomarkers for hepatocellular cancer detection in circulating cell free DNA. Theranostics 2019; 9:7239-7250. [PMID: 31695765 PMCID: PMC6831291 DOI: 10.7150/thno.35573] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 03/09/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC), the most prevalent form of liver cancer, is growing in incidence but treatment options remain limited, particularly for late stage disease. As liver cirrhosis is the principal risk state for HCC development, markers to detect early HCC within this patient population are urgently needed. Perturbation of epigenetic marks, such as DNA methylation (5mC), is a hallmark of human cancers, including HCC. Identification of regions with consistently altered 5mC levels in circulating cell free DNA (cfDNA) during progression from cirrhosis to HCC could therefore serve as markers for development of minimally-invasive screens of early HCC diagnosis and surveillance. Methods: To discover DNA methylation derived biomarkers of HCC in the background of liver cirrhosis, we profiled genome-wide 5mC landscapes in patient cfDNA using the Infinium HumanMethylation450k BeadChip Array. We further linked these findings to primary tissue data available from TCGA and other public sources. Using biological and statistical frameworks, we selected CpGs that robustly differentiated cirrhosis from HCC in primary tissue and cfDNA followed by validation in an additional independent cohort. Results: We identified CpGs that segregate patients with cirrhosis, from patients with HCC within a cirrhotic liver background, through genome-wide analysis of cfDNA 5mC landscapes. Lasso regression analysis pinpointed a panel of probes in our discovery cohort that were validated in two independent datasets. A panel of five CpGs (cg04645914, cg06215569, cg23663760, cg13781744, and cg07610777) yielded area under the receiver operating characteristic (AUROC) curves of 0.9525, 0.9714, and 0.9528 in cfDNA discovery and tissue validation cohorts 1 and 2, respectively. Validation of a 5-marker panel created from combining hypermethylated and hypomethylated CpGs in an independent cfDNA set by bisulfite pyrosequencing yielded an AUROC of 0.956, compared to the discovery AUROC of 0.996. Conclusion: Our finding that 5mC markers derived from primary tissue did not perform well in cfDNA, compared to those identified directly from cfDNA, reveals potential advantages of starting with cfDNA to discover high performing markers for liquid biopsy development.
Collapse
Affiliation(s)
- Ryan A. Hlady
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Xia Zhao
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Xiaoyu Pan
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Ju Dong Yang
- Division of Gastroenterology and Hepatology, Department of Medicine, College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Fowsiyo Ahmed
- Division of Gastroenterology and Hepatology, Department of Medicine, College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Samuel O. Antwi
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, USA
| | - Nasra H. Giama
- Division of Gastroenterology and Hepatology, Department of Medicine, College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Tushar Patel
- Department of Transplantation, Mayo Clinic, Jacksonville, FL, USA
| | - Lewis R. Roberts
- Division of Gastroenterology and Hepatology, Department of Medicine, College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Chen Liu
- Department of Pathology and Laboratory Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Keith D. Robertson
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
570
|
Ettrich TJ, Schwerdel D, Dolnik A, Beuter F, Blätte TJ, Schmidt SA, Stanescu-Siegmund N, Steinacker J, Marienfeld R, Kleger A, Bullinger L, Seufferlein T, Berger AW. Genotyping of circulating tumor DNA in cholangiocarcinoma reveals diagnostic and prognostic information. Sci Rep 2019; 9:13261. [PMID: 31519967 PMCID: PMC6744511 DOI: 10.1038/s41598-019-49860-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 08/29/2019] [Indexed: 12/13/2022] Open
Abstract
Diagnosis of Cholangiocarcinoma (CCA) is difficult, thus a noninvasive approach towards (i) assessing and (ii) monitoring the tumor-specific mutational profile is desirable to improve diagnosis and tailor treatment. Tumor tissue and corresponding ctDNA samples were collected from patients with CCA prior to and during chemotherapy and were subjected to deep sequencing of 15 genes frequently mutated in CCA. A set of ctDNA samples was also submitted for 710 gene oncopanel sequencing to identify progression signatures. The blood/tissue concordance was 74% overall and 92% for intrahepatic tumors only. Variant allele frequency (VAF) in ctDNA correlated with tumor load and in the group of intrahepatic CCA with PFS. 63% of therapy naive patients had their mutational profile changed during chemotherapy. A set of 76 potential progression driver genes was identified among 710 candidates. The molecular landscape of CCA is accessible via ctDNA. This could be helpful to facilitate diagnosis and personalize and adapt therapeutic strategies.
Collapse
Affiliation(s)
- T J Ettrich
- University Medical Center Ulm, Center for Internal Medicine, Department of Internal Medicine I, University of Ulm, Ulm, Germany
| | - D Schwerdel
- University Medical Center Ulm, Center for Internal Medicine, Department of Internal Medicine I, University of Ulm, Ulm, Germany
| | - A Dolnik
- Charité University Medical Center Berlin, Department of Hematology, Oncology and Tumorimmunology, Berlin, Germany
| | - F Beuter
- University Medical Center Ulm, Center for Internal Medicine, Department of Internal Medicine I, University of Ulm, Ulm, Germany
| | - T J Blätte
- University Medical Center Ulm, Center for Internal Medicine, Department of Internal Medicine III, University of Ulm, Ulm, Germany
| | - S A Schmidt
- University Medical Center Ulm, Department of Diagnostic and Interventional Radiology, University of Ulm, Ulm, Germany
| | - N Stanescu-Siegmund
- University Medical Center Ulm, Department of Diagnostic and Interventional Radiology, University of Ulm, Ulm, Germany
| | - J Steinacker
- University Medical Center Ulm, Department of Diagnostic and Interventional Radiology, University of Ulm, Ulm, Germany
| | - R Marienfeld
- University Medical Center Ulm, Institute of Pathology, University of Ulm, Ulm, Germany
| | - A Kleger
- University Medical Center Ulm, Center for Internal Medicine, Department of Internal Medicine I, University of Ulm, Ulm, Germany
| | - L Bullinger
- Charité University Medical Center Berlin, Department of Hematology, Oncology and Tumorimmunology, Berlin, Germany
| | - T Seufferlein
- University Medical Center Ulm, Center for Internal Medicine, Department of Internal Medicine I, University of Ulm, Ulm, Germany.
| | - A W Berger
- University Medical Center Ulm, Center for Internal Medicine, Department of Internal Medicine I, University of Ulm, Ulm, Germany.,Department of Gastroenterology, Gastrointestinal Oncology and Interventional Endoscopy, Vivantes Klinikum im Friedrichshain, Teaching Hospital of Charité - University Medical Center Berlin, Berlin, Germany
| |
Collapse
|
571
|
Preparation of cfMeDIP-seq libraries for methylome profiling of plasma cell-free DNA. Nat Protoc 2019; 14:2749-2780. [DOI: 10.1038/s41596-019-0202-2] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 05/23/2019] [Indexed: 12/18/2022]
|
572
|
Wu J, Zan X, Gao L, Zhao J, Fan J, Shi H, Wan Y, Yu E, Li S, Xie X. A Machine Learning Method for Identifying Lung Cancer Based on Routine Blood Indices: Qualitative Feasibility Study. JMIR Med Inform 2019; 7:e13476. [PMID: 31418423 PMCID: PMC6714502 DOI: 10.2196/13476] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/12/2019] [Accepted: 07/19/2019] [Indexed: 12/14/2022] Open
Abstract
Background Liquid biopsies based on blood samples have been widely accepted as a diagnostic and monitoring tool for cancers, but extremely high sensitivity is frequently needed due to the very low levels of the specially selected DNA, RNA, or protein biomarkers that are released into blood. However, routine blood indices tests are frequently ordered by physicians, as they are easy to perform and are cost effective. In addition, machine learning is broadly accepted for its ability to decipher complicated connections between multiple sets of test data and diseases. Objective The aim of this study is to discover the potential association between lung cancer and routine blood indices and thereby help clinicians and patients to identify lung cancer based on these routine tests. Methods The machine learning method known as Random Forest was adopted to build an identification model between routine blood indices and lung cancer that would determine if they were potentially linked. Ten-fold cross-validation and further tests were utilized to evaluate the reliability of the identification model. Results In total, 277 patients with 49 types of routine blood indices were included in this study, including 183 patients with lung cancer and 94 patients without lung cancer. Throughout the course of the study, there was correlation found between the combination of 19 types of routine blood indices and lung cancer. Lung cancer patients could be identified from other patients, especially those with tuberculosis (which usually has similar clinical symptoms to lung cancer), with a sensitivity, specificity and total accuracy of 96.3%, 94.97% and 95.7% for the cross-validation results, respectively. This identification method is called the routine blood indices model for lung cancer, and it promises to be of help as a tool for both clinicians and patients for the identification of lung cancer based on routine blood indices. Conclusions Lung cancer can be identified based on the combination of 19 types of routine blood indices, which implies that artificial intelligence can find the connections between a disease and the fundamental indices of blood, which could reduce the necessity of costly, elaborate blood test techniques for this purpose. It may also be possible that the combination of multiple indices obtained from routine blood tests may be connected to other diseases as well.
Collapse
Affiliation(s)
- Jiangpeng Wu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, China.,College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Xiangyi Zan
- Department of Pneumology, Lanzhou University Second Hospital, Lanzhou, China
| | - Liping Gao
- Department of Pneumology, Lanzhou University Second Hospital, Lanzhou, China
| | - Jianhong Zhao
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China
| | - Jing Fan
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Hengxue Shi
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Yixin Wan
- Department of Pneumology, Lanzhou University Second Hospital, Lanzhou, China
| | - E Yu
- National Demonstration Centre for Experimental Chemistry Education, Lanzhou University, Lanzhou, China
| | - Shuyan Li
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, China.,College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Xiaodong Xie
- School of Basic Medical Science, Lanzhou University, Lanzhou, China
| |
Collapse
|
573
|
Luchini C, Veronese N, Nottegar A, Cappelletti V, Daidone MG, Smith L, Parris C, Brosens LAA, Caruso MG, Cheng L, Wolfgang CL, Wood LD, Milella M, Salvia R, Scarpa A. Liquid Biopsy as Surrogate for Tissue for Molecular Profiling in Pancreatic Cancer: A Meta-Analysis Towards Precision Medicine. Cancers (Basel) 2019; 11:1152. [PMID: 31405192 PMCID: PMC6721631 DOI: 10.3390/cancers11081152] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/05/2019] [Accepted: 08/07/2019] [Indexed: 12/24/2022] Open
Abstract
Liquid biopsy (LB) is a non-invasive approach representing a promising tool for new precision medicine strategies for cancer treatment. However, a comprehensive analysis of its reliability for pancreatic cancer (PC) is lacking. To this aim, we performed the first meta-analysis on this topic. We calculated the pooled sensitivity, specificity, positive (LR+) and negative (LR-) likelihood ratio, and diagnostic odds ratio (DOR). A summary receiver operating characteristic curve (SROC) and area under curve (AUC) were used to evaluate the overall accuracy. We finally assessed the concordance rate of all mutations detected by multi-genes panels. Fourteen eligible studies involving 369 patients were included. The overall pooled sensitivity and specificity were 0.70 and 0.86, respectively. The LR+ was 3.85, the LR- was 0.34 and DOR was 15.84. The SROC curve with an AUC of 0.88 indicated a relatively high accuracy of LB for molecular characterization of PC. The concordance rate of all mutations detected by multi-genes panels was 31.9%. LB can serve as surrogate for tissue in the molecular profiling of PC, because of its relatively high sensitivity, specificity and accuracy. It represents a unique opportunity to be further explored towards its introduction in clinical practice and for developing new precision medicine approaches against PC.
Collapse
Affiliation(s)
- Claudio Luchini
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, 37134 Verona, Italy
| | - Nicola Veronese
- National Institute of Gastroenterology-Research Hospital, IRCCS "S. de Bellis", Castellana Grotte, 70013 Bari, Italy
| | - Alessia Nottegar
- Department of Surgery, Section of Pathology, San Bortolo Hospital, 36100 Vicenza, Italy
| | - Vera Cappelletti
- Applied Research and Technological Development Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, 20133 Milano, Italy
| | - Maria G Daidone
- Applied Research and Technological Development Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, 20133 Milano, Italy
| | - Lee Smith
- Faculty of Science and Engineering, Anglia Ruskin University, Cambridge CB1 1PT, UK
| | - Christopher Parris
- Faculty of Science and Engineering, Anglia Ruskin University, Cambridge CB1 1PT, UK
| | - Lodewijk A A Brosens
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, 37134 Verona, Italy
- Department of Pathology, University Medical Center Utrecht, Utrecht University, 3584CX Utrecht, The Netherlands
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6526GA Nijmegen, The Netherlands
| | - Maria G Caruso
- National Institute of Gastroenterology-Research Hospital, IRCCS "S. de Bellis", Castellana Grotte, 70013 Bari, Italy
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Christopher L Wolfgang
- Department of Surgery, Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21211, USA
| | - Laura D Wood
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21211, USA
- Department of Oncology, Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21211, USA
| | - Michele Milella
- Department of Medicine, Section of Medical Oncology, University and Hospital Trust of Verona, 37134 Verona, Italy
| | - Roberto Salvia
- Department of General and Visceral Surgery, The Pancreas Institute, University and Hospital Trust of Verona, 37134 Verona, Italy
| | - Aldo Scarpa
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, 37134 Verona, Italy.
- ARC-Net Research Center, University of Verona, 37134 Verona, Italy.
| |
Collapse
|
574
|
Quintanal-Villalonga Á, Molina-Pinelo S. Epigenetics of lung cancer: a translational perspective. Cell Oncol (Dordr) 2019; 42:739-756. [PMID: 31396859 DOI: 10.1007/s13402-019-00465-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Lung cancer remains the most common cause of cancer-related death, with a 5-year survival rate of only 18%. In recent years, the development of targeted pharmacological agents and immunotherapies has substantially increased the survival of a subset of patients. However, most patients lack such efficacious therapy and are, thus, treated with classical chemotherapy with poor clinical outcomes. Therefore, novel therapeutic strategies are urgently needed. In recent years, the development of epigenetic assays and their application to cancer research have highlighted the relevance of epigenetic regulation in the initiation, development, progression and treatment of lung cancer. CONCLUSIONS A variety of epigenetic modifications do occur at different steps of lung cancer development, some of which are key to tumor progression. The rise of cutting-edge technologies such as single cell epigenomics is, and will continue to be, crucial for uncovering epigenetic events at a single cell resolution, leading to a better understanding of the biology underlying lung cancer development and to the design of novel therapeutic options. This approach has already led to the development of strategies involving single agents or combined agents targeting epigenetic modifiers, currently in clinical trials. Here, we will discuss the epigenetics of every step of lung cancer development, as well as the translation of these findings into clinical applications.
Collapse
Affiliation(s)
| | - Sonia Molina-Pinelo
- Unidad Clínica de Oncología Médica, Radioterapia y Radiofísica, Instituto de Biomedicina de Sevilla (IBIS) (HUVR, CSIC, Universidad de Sevilla), Avda. Manuel Siurot s/n, 41013, Seville, Spain. .,CIBERONC, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
575
|
Morris V, Dasari A, Kopetz S. Can Circulating Tumor DNA in Early-Stage Colorectal Cancer Be More Than a Prognostic Biomarker? JAMA Oncol 2019; 5:1101-1103. [DOI: 10.1001/jamaoncol.2019.0503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Van Morris
- The University of Texas MD Anderson Cancer Center, Houston
| | - Arvind Dasari
- The University of Texas MD Anderson Cancer Center, Houston
| | - Scott Kopetz
- The University of Texas MD Anderson Cancer Center, Houston
| |
Collapse
|
576
|
Zhang Z, Zhang W. Fragmentation patterns of circulating cell-free DNA demonstrate biomarker potential for human cancers. BIOTARGET 2019; 3:16. [PMID: 31468030 PMCID: PMC6714582 DOI: 10.21037/biotarget.2019.08.02] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Zhou Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Wei Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
- The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| |
Collapse
|
577
|
Next-generation sequencing in liquid biopsy: cancer screening and early detection. Hum Genomics 2019; 13:34. [PMID: 31370908 PMCID: PMC6669976 DOI: 10.1186/s40246-019-0220-8] [Citation(s) in RCA: 317] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/19/2019] [Indexed: 12/19/2022] Open
Abstract
In recent years, the rapid development of next-generation sequencing (NGS) technologies has led to a significant reduction in sequencing cost with improved accuracy. In the area of liquid biopsy, NGS has been applied to sequence circulating tumor DNA (ctDNA). Since ctDNA is the DNA fragments released by tumor cells, it can provide a molecular profile of cancer. Liquid biopsy can be applied to all stages of cancer diagnosis and treatment, allowing non-invasive and real-time monitoring of disease development. The most promising aspects of liquid biopsy in cancer applications are cancer screening and early diagnosis because they can lead to better survival results and less disease burden. Although many ctDNA sequencing methods have enough sensitivity to detect extremely low levels of mutation frequency at the early stage of cancer, how to effectively implement them in population screening settings remains challenging. This paper focuses on the application of liquid biopsy in the early screening and diagnosis of cancer, introduces NGS-related methods, reviews recent progress, summarizes challenges, and discusses future research directions.
Collapse
|
578
|
Barbany G, Arthur C, Liedén A, Nordenskjöld M, Rosenquist R, Tesi B, Wallander K, Tham E. Cell-free tumour DNA testing for early detection of cancer - a potential future tool. J Intern Med 2019; 286:118-136. [PMID: 30861222 DOI: 10.1111/joim.12897] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In recent years, detection of cell-free tumour DNA (ctDNA) or liquid biopsy has emerged as an attractive noninvasive methodology to detect cancer-specific genetic aberrations in plasma, and numerous studies have reported on the feasibility of ctDNA in advanced cancer. In particular, ctDNA assays can capture a more 'global' portrait of tumour heterogeneity, monitor therapy response, and lead to early detection of resistance mutations. More recently, ctDNA analysis has also been proposed as a promising future tool for detection of early cancer and/or cancer screening. As the average proportion of mutated DNA in plasma is very low (0.4% even in advanced cancer), exceedingly sensitive techniques need to be developed. In addition, as tumours are genetically heterogeneous, any screening test needs to assay multiple genetic targets in order to increase the chances of detection. Further research on the genetic progression from normal to cancer cells and their release of ctDNA is imperative in order to avoid overtreating benign/indolent lesions, causing more harm than good by early diagnosis. More knowledge on the sources and elimination of cell-free DNA will enable better interpretation in older individuals and those with comorbidities. In addition, as white blood cells are the major source of cell-free DNA in plasma, it is important to distinguish acquired mutations in leukocytes (benign clonal haematopoiesis) from an upcoming haematological malignancy or other cancer. In conclusion, although many studies report encouraging results, further technical development and larger studies are warranted before applying ctDNA analysis for early cancer detection in the clinic.
Collapse
Affiliation(s)
- G Barbany
- Clinical Genetics, Karolinska University Hospital Solna, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - C Arthur
- Clinical Genetics, Karolinska University Hospital Solna, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - A Liedén
- Clinical Genetics, Karolinska University Hospital Solna, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - M Nordenskjöld
- Clinical Genetics, Karolinska University Hospital Solna, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - R Rosenquist
- Clinical Genetics, Karolinska University Hospital Solna, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - B Tesi
- Clinical Genetics, Karolinska University Hospital Solna, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - K Wallander
- Clinical Genetics, Karolinska University Hospital Solna, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - E Tham
- Clinical Genetics, Karolinska University Hospital Solna, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
579
|
Zhang X, Zhao W, Wei W, You Z, Ou X, Sun M, Yin Y, Tang X, Zhao Z, Hu C, Liu F, Deng J, Mao L, Zhou D, Ren Y, Li X, Zhang S, Liu C, Geng J, Yao G, Song B, Liu Y, Li D, Jiang Y, Chen Y, Zhao Y, Yu S, Pang D. Parallel Analyses of Somatic Mutations in Plasma Circulating Tumor DNA (ctDNA) and Matched Tumor Tissues in Early-Stage Breast Cancer. Clin Cancer Res 2019; 25:6546-6553. [PMID: 31350313 DOI: 10.1158/1078-0432.ccr-18-4055] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/08/2019] [Accepted: 07/24/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Early detection and intervention can decrease the mortality of breast cancer significantly. Assessments of genetic/genomic variants in circulating tumor DNA (ctDNA) have generated great enthusiasm for their potential application as clinically actionable biomarkers in the management of early-stage breast cancer.Experimental Design: In this study, 861 serial plasma and matched tissue specimens from 102 patients with early-stage breast cancer who need chemotherapy and 50 individuals with benign breast tumors were deeply sequenced via next-generation sequencing (NGS) techniques using large gene panels. RESULTS Cancer tissues in this cohort of patients showed profound intratumor heterogeneities (ITHGs) that were properly reflected by ctDNA testing. Integrating the ctDNA detection rate of 74.2% in this cohort with the corresponding predictive results based on Breast Imaging Reporting and Data System classification (BI-RADS) could increase the positive predictive value up to 92% and potentially dramatically reduce surgical overtreatment. Patients with positive ctDNA after surgery showed a higher percentage of lymph node metastasis, indicating potential recurrence and remote metastasis. The ctDNA-positive rates were significantly decreased after chemotherapy in basal-like and Her2+ tumor subtypes, but were persistent despite chemotherapy in luminal type. The tumor mutation burden in blood (bTMB) assessed on the basis of ctDNA testing was positively correlated with the TMB in tumor tissues (tTMB), providing a candidate biomarker warranting further study of its potentials used for precise immunotherapy in cancer. CONCLUSIONS These data showed that ctDNA evaluation is a feasible, sensitive, and specific biomarker for diagnosis and differential diagnosis of patients with early-stage breast cancer who need chemotherapy.
Collapse
Affiliation(s)
- Xianyu Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Weiwei Zhao
- Clinical Genome Center, KingMed Center for Clinical Laboratory Co., Ltd; KingMed College of Laboratory Medicine, Guangzhou Medical University; Guangzhou KingMed Translational Medicine Institute Co., Ltd; KingMed JianShi Innovation Institute (Guangzhou) Co., Ltd, Guangzhou, China
| | - Wei Wei
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Zilong You
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xiaohua Ou
- Clinical Genome Center, KingMed Center for Clinical Laboratory Co., Ltd; KingMed College of Laboratory Medicine, Guangzhou Medical University; Guangzhou KingMed Translational Medicine Institute Co., Ltd; KingMed JianShi Innovation Institute (Guangzhou) Co., Ltd, Guangzhou, China
| | - Mingming Sun
- Clinical Genome Center, KingMed Center for Clinical Laboratory Co., Ltd; KingMed College of Laboratory Medicine, Guangzhou Medical University; Guangzhou KingMed Translational Medicine Institute Co., Ltd; KingMed JianShi Innovation Institute (Guangzhou) Co., Ltd, Guangzhou, China
| | - Yanling Yin
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xiaoyan Tang
- Clinical Genome Center, KingMed Center for Clinical Laboratory Co., Ltd; KingMed College of Laboratory Medicine, Guangzhou Medical University; Guangzhou KingMed Translational Medicine Institute Co., Ltd; KingMed JianShi Innovation Institute (Guangzhou) Co., Ltd, Guangzhou, China
| | - Zhen Zhao
- Clinical Genome Center, KingMed Center for Clinical Laboratory Co., Ltd; KingMed College of Laboratory Medicine, Guangzhou Medical University; Guangzhou KingMed Translational Medicine Institute Co., Ltd; KingMed JianShi Innovation Institute (Guangzhou) Co., Ltd, Guangzhou, China
| | - Changming Hu
- Clinical Genome Center, KingMed Center for Clinical Laboratory Co., Ltd; KingMed College of Laboratory Medicine, Guangzhou Medical University; Guangzhou KingMed Translational Medicine Institute Co., Ltd; KingMed JianShi Innovation Institute (Guangzhou) Co., Ltd, Guangzhou, China
| | - Feifei Liu
- Clinical Genome Center, KingMed Center for Clinical Laboratory Co., Ltd; KingMed College of Laboratory Medicine, Guangzhou Medical University; Guangzhou KingMed Translational Medicine Institute Co., Ltd; KingMed JianShi Innovation Institute (Guangzhou) Co., Ltd, Guangzhou, China
| | - Junhao Deng
- Clinical Genome Center, KingMed Center for Clinical Laboratory Co., Ltd; KingMed College of Laboratory Medicine, Guangzhou Medical University; Guangzhou KingMed Translational Medicine Institute Co., Ltd; KingMed JianShi Innovation Institute (Guangzhou) Co., Ltd, Guangzhou, China
| | - Linlin Mao
- Clinical Genome Center, KingMed Center for Clinical Laboratory Co., Ltd; KingMed College of Laboratory Medicine, Guangzhou Medical University; Guangzhou KingMed Translational Medicine Institute Co., Ltd; KingMed JianShi Innovation Institute (Guangzhou) Co., Ltd, Guangzhou, China
| | - Danyan Zhou
- Clinical Genome Center, KingMed Center for Clinical Laboratory Co., Ltd; KingMed College of Laboratory Medicine, Guangzhou Medical University; Guangzhou KingMed Translational Medicine Institute Co., Ltd; KingMed JianShi Innovation Institute (Guangzhou) Co., Ltd, Guangzhou, China
| | - Yuxia Ren
- Clinical Genome Center, KingMed Center for Clinical Laboratory Co., Ltd; KingMed College of Laboratory Medicine, Guangzhou Medical University; Guangzhou KingMed Translational Medicine Institute Co., Ltd; KingMed JianShi Innovation Institute (Guangzhou) Co., Ltd, Guangzhou, China
| | - Xiaoxia Li
- Clinical Genome Center, KingMed Center for Clinical Laboratory Co., Ltd; KingMed College of Laboratory Medicine, Guangzhou Medical University; Guangzhou KingMed Translational Medicine Institute Co., Ltd; KingMed JianShi Innovation Institute (Guangzhou) Co., Ltd, Guangzhou, China
| | - Shangfei Zhang
- Clinical Genome Center, KingMed Center for Clinical Laboratory Co., Ltd; KingMed College of Laboratory Medicine, Guangzhou Medical University; Guangzhou KingMed Translational Medicine Institute Co., Ltd; KingMed JianShi Innovation Institute (Guangzhou) Co., Ltd, Guangzhou, China
| | - Chang Liu
- Clinical Genome Center, KingMed Center for Clinical Laboratory Co., Ltd; KingMed College of Laboratory Medicine, Guangzhou Medical University; Guangzhou KingMed Translational Medicine Institute Co., Ltd; KingMed JianShi Innovation Institute (Guangzhou) Co., Ltd, Guangzhou, China
| | - Jingshu Geng
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Guodong Yao
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Bingbing Song
- Cancer Center of Heilongjiang Province, Harbin, China
| | - Yupeng Liu
- Department of Epidemiology, Harbin Medical University, Harbin, China
| | - Dalin Li
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yongdong Jiang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yanbo Chen
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yashuang Zhao
- Department of Epidemiology, Harbin Medical University, Harbin, China
| | - Shihui Yu
- Clinical Genome Center, KingMed Center for Clinical Laboratory Co., Ltd; KingMed College of Laboratory Medicine, Guangzhou Medical University; Guangzhou KingMed Translational Medicine Institute Co., Ltd; KingMed JianShi Innovation Institute (Guangzhou) Co., Ltd, Guangzhou, China.
| | - Da Pang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
580
|
Ishak CA, Lheureux S, De Carvalho DD. DNA Methylation as a Robust Classifier of Epithelial Ovarian Cancer. Clin Cancer Res 2019; 25:5729-5731. [DOI: 10.1158/1078-0432.ccr-19-1797] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/03/2019] [Accepted: 07/19/2019] [Indexed: 11/16/2022]
|
581
|
Amatu A, Schirripa M, Tosi F, Lonardi S, Bencardino K, Bonazzina E, Palmeri L, Patanè DA, Pizzutilo EG, Mussolin B, Bergamo F, Alberti G, Intini R, Procaccio L, Arese M, Marsoni S, Nichelatti M, Zagonel V, Siena S, Bardelli A, Loupakis F, Di Nicolantonio F, Sartore-Bianchi A, Barault L. High Circulating Methylated DNA Is a Negative Predictive and Prognostic Marker in Metastatic Colorectal Cancer Patients Treated With Regorafenib. Front Oncol 2019; 9:622. [PMID: 31355139 PMCID: PMC6640154 DOI: 10.3389/fonc.2019.00622] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 06/24/2019] [Indexed: 12/12/2022] Open
Abstract
Background: Regorafenib improves progression free survival (PFS) in a subset of metastatic colorectal cancer (mCRC) patients, although no biomarkers of efficacy are available. Circulating methylated DNA (cmDNA) assessed by a five-gene panel was previously associated with outcome in chemotherapy treated mCRC patients. We hypothesized that cmDNA could be used to identify cases most likely to benefit from regorafenib (i.e., patients with PFS longer than 4 months). Methods: Plasma samples from mCRC patients were collected prior to (baseline samples N = 60) and/or during regorafenib treatment (N = 62) for the assessment of cmDNA and total amount of cell free DNA (cfDNA). Results: In almost all patients, treatment with regorafenib increased the total cfDNA, but decreased cmDNA warranting the normalization of cmDNA to the total amount of circulating DNA (i.e., cmDNA/ml). We report that cmDNA/ml dynamics reflects clinical response with an increase in cmDNA/ml associated with higher risk of progression (HR for progression = 1.78 [95%CI: 1.01-3.13], p = 0.028). Taken individually, high baseline cmDNA/ml (above median) was associated with worst prognosis (HR for death = 3.471 [95%CI: 1.83-6.57], p < 0.0001) and also predicted shorter PFS (<16 weeks with PPV 86%). In addition, high cmDNA/ml values during regorafenib treatment predicted with higher accuracy shorter PFS (<16 weeks with a PPV of 96%), therefore associated with increased risk of progression (HR for progression = 2.985; [95%CI: 1.63-5.46; p < 0.0001). Conclusions: Our data highlight the predictive and prognostic value of cmDNA/ml in mCRC patients treated with regorafenib.
Collapse
Affiliation(s)
- Alessio Amatu
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Marta Schirripa
- Medical Oncology 1, Veneto Institute of Oncology, IRCCS, Padua, Italy
| | - Federica Tosi
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Sara Lonardi
- Medical Oncology 1, Veneto Institute of Oncology, IRCCS, Padua, Italy
| | - Katia Bencardino
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Erica Bonazzina
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Laura Palmeri
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | | | | | | | - Francesca Bergamo
- Medical Oncology 1, Veneto Institute of Oncology, IRCCS, Padua, Italy
| | - Giulia Alberti
- Medical Oncology 1, Veneto Institute of Oncology, IRCCS, Padua, Italy.,Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Rossana Intini
- Medical Oncology 1, Veneto Institute of Oncology, IRCCS, Padua, Italy
| | - Letizia Procaccio
- Medical Oncology 1, Veneto Institute of Oncology, IRCCS, Padua, Italy.,Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Marco Arese
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy.,Department of Oncology, University of Turin, Candiolo, Italy
| | - Silvia Marsoni
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy.,Department of Precision Oncology, FIRC Institute of Molecular Oncology (IFOM), Milan, Italy
| | - Michele Nichelatti
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Vittorina Zagonel
- Medical Oncology 1, Veneto Institute of Oncology, IRCCS, Padua, Italy
| | - Salvatore Siena
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy.,Dipartimento di Oncologia ed Emato-Oncologia, Università degli Studi di Milano, Milan, Italy
| | - Alberto Bardelli
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy.,Department of Oncology, University of Turin, Candiolo, Italy
| | - Fotios Loupakis
- Medical Oncology 1, Veneto Institute of Oncology, IRCCS, Padua, Italy
| | - Federica Di Nicolantonio
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy.,Department of Oncology, University of Turin, Candiolo, Italy
| | - Andrea Sartore-Bianchi
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy.,Dipartimento di Oncologia ed Emato-Oncologia, Università degli Studi di Milano, Milan, Italy
| | - Ludovic Barault
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy.,Department of Oncology, University of Turin, Candiolo, Italy
| |
Collapse
|
582
|
Liquid Biopsy in Glioblastoma: Opportunities, Applications and Challenges. Cancers (Basel) 2019; 11:cancers11070950. [PMID: 31284524 PMCID: PMC6679205 DOI: 10.3390/cancers11070950] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/02/2019] [Accepted: 07/04/2019] [Indexed: 12/11/2022] Open
Abstract
Liquid biopsy represents a minimally invasive procedure that can provide similar information from body fluids to what is usually obtained from a tissue biopsy sample. Its implementation in the clinical setting might significantly renew the field of medical oncology, facilitating the introduction of the concepts of precision medicine and patient-tailored therapies. These advances may be useful in the diagnosis of brain tumors that currently require surgery for tissue collection, or to perform genetic tumor profiling for disease classification and guidance of therapy. In this review, we will summarize the most recent advances and putative applications of liquid biopsy in glioblastoma, the most common and malignant adult brain tumor. Moreover, we will discuss the remaining challenges and hurdles in terms of technology and biology for its clinical application.
Collapse
|
583
|
Li J, Zhou X, Liu X, Ren J, Wang J, Wang W, Zheng Y, Shi X, Sun T, Li Z, Kang A, Tang F, Wen L, Fu W. Detection of Colorectal Cancer in Circulating Cell-Free DNA by Methylated CpG Tandem Amplification and Sequencing. Clin Chem 2019; 65:916-926. [PMID: 31010820 DOI: 10.1373/clinchem.2019.301804] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/18/2019] [Indexed: 02/06/2023]
Abstract
Abstract
BACKGROUND
Aberrant DNA hypermethylation of CpG islands occurs frequently throughout the genome in human colorectal cancer (CRC). A genome-wide DNA hypermethylation analysis technique using circulating cell-free DNA (cfDNA) is attractive for the noninvasive early detection of CRC and discrimination between CRC and other cancer types.
METHODS
We applied the methylated CpG tandem amplification and sequencing (MCTA-Seq) method, with a fully methylated molecules algorithm, to plasma samples from patients with CRC (n = 147) and controls (n = 136), as well as cancer and adjacent noncancerous tissue samples (n = 66). We also comparatively analyzed plasma samples from patients with hepatocellular carcinoma (HCC; n = 36).
RESULTS
Dozens of DNA hypermethylation markers including known (e.g., SEPT9 and IKZF1) and novel (e.g., EMBP1, KCNQ5, CHST11, APBB1IP, and TJP2) genes were identified for effectively detecting CRC in cfDNA. A panel of 80 markers discriminated early-stage CRC patients and controls with a clinical sensitivity of 74% and clinical specificity of 90%. Patients with early-stage CRC and HCC could be discriminated at clinical sensitivities of approximately 70% by another panel of 128 markers.
CONCLUSIONS
MCTA-Seq is a promising method for the noninvasive detection of CRC.
Collapse
Affiliation(s)
- Jingyi Li
- Beijing Advanced Innovation Center for Genomics, College of Life Sciences, Department of General Surgery, Third Hospital, Peking University, Beijing, China
- Biomedical Pioneering Innovation Center, Peking University, Beijing, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xin Zhou
- Beijing Advanced Innovation Center for Genomics, College of Life Sciences, Department of General Surgery, Third Hospital, Peking University, Beijing, China
| | - Xiaomeng Liu
- Beijing Advanced Innovation Center for Genomics, College of Life Sciences, Department of General Surgery, Third Hospital, Peking University, Beijing, China
- Biomedical Pioneering Innovation Center, Peking University, Beijing, China
| | - Jie Ren
- Beijing Advanced Innovation Center for Genomics, College of Life Sciences, Department of General Surgery, Third Hospital, Peking University, Beijing, China
- Biomedical Pioneering Innovation Center, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Jilian Wang
- Beijing Advanced Innovation Center for Genomics, College of Life Sciences, Department of General Surgery, Third Hospital, Peking University, Beijing, China
| | - Wendong Wang
- Beijing Advanced Innovation Center for Genomics, College of Life Sciences, Department of General Surgery, Third Hospital, Peking University, Beijing, China
| | - Yuxuan Zheng
- Beijing Advanced Innovation Center for Genomics, College of Life Sciences, Department of General Surgery, Third Hospital, Peking University, Beijing, China
- Biomedical Pioneering Innovation Center, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Xinyun Shi
- Department of General Surgery, Hunan Cancer Hospital, Changsha, China
| | - Tao Sun
- Beijing Advanced Innovation Center for Genomics, College of Life Sciences, Department of General Surgery, Third Hospital, Peking University, Beijing, China
| | - Zhifei Li
- Beijing Advanced Innovation Center for Genomics, College of Life Sciences, Department of General Surgery, Third Hospital, Peking University, Beijing, China
| | - Anding Kang
- Department of General Surgery, Hunan Cancer Hospital, Changsha, China
| | - Fuchou Tang
- Beijing Advanced Innovation Center for Genomics, College of Life Sciences, Department of General Surgery, Third Hospital, Peking University, Beijing, China
- Biomedical Pioneering Innovation Center, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Lu Wen
- Beijing Advanced Innovation Center for Genomics, College of Life Sciences, Department of General Surgery, Third Hospital, Peking University, Beijing, China
- Biomedical Pioneering Innovation Center, Peking University, Beijing, China
| | - Wei Fu
- Beijing Advanced Innovation Center for Genomics, College of Life Sciences, Department of General Surgery, Third Hospital, Peking University, Beijing, China
| |
Collapse
|
584
|
Wu Z, Yang Z, Dai Y, Zhu Q, Chen LA. Update on liquid biopsy in clinical management of non-small cell lung cancer. Onco Targets Ther 2019; 12:5097-5109. [PMID: 31303765 PMCID: PMC6611714 DOI: 10.2147/ott.s203070] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 05/14/2019] [Indexed: 12/18/2022] Open
Abstract
Lung cancer, a leading cause of cancer-related mortality, has a low rate of early diagnosis and a poor prognosis for advanced stages. Recent advances in further mastery of the biology of tumors promote the diagnosis and therapy, especially for non-small cell lung cancer (NSCLC). However, tumor tissue-based information is often not available in most cases due to the invasive and high risk nature of the tumor biopsy procedures. Liquid biopsy, based on the multiple liquid samples including circulating tumor cells (CTC), circulating tumor DNA (ctDNA), and tumor-derived exosome obtained from blood or urine as well as other body fluids, can also provide valuable tumor-related information, playing an important role in management of NSCLC in clinical practice. It is widely believed that concordance of detection for tumor by liquid samples in comparison with tissue biopsy for both early and advanced stage NSCLC patients is optimistic. We herein review the current and future clinical application of liquid biopsy, including early diagnosis and management of precise personalized treatment in lung cancer. The future directions of development for liquid biopsy are also discussed in this review.
Collapse
Affiliation(s)
- Zhen Wu
- Respiratory Department, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Zhen Yang
- Respiratory Department, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Yu Dai
- Respiratory Department, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Qiang Zhu
- Respiratory Department, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Liang-An Chen
- Respiratory Department, Chinese PLA General Hospital, Beijing, People’s Republic of China
| |
Collapse
|
585
|
Docking TR, Karsan A. Genomic testing in myeloid malignancy. Int J Lab Hematol 2019; 41 Suppl 1:117-125. [PMID: 31069982 DOI: 10.1111/ijlh.13022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/01/2019] [Accepted: 03/05/2019] [Indexed: 12/14/2022]
Abstract
Clinical genetic testing in the myeloid malignancies is undergoing a rapid transition from the era of cytogenetics and single-gene testing to an era dominated by next-generation sequencing (NGS). This transition promises to better reveal the genetic alterations underlying disease, but there are distinct risks and benefits associated with different NGS testing platforms. NGS offers the potential benefit of being able to survey alterations across a wider set of genes, but analytic and clinical challenges associated with incidental findings, germ line variation, turnaround time, and limits of detection must be addressed. Additionally, transcriptome-based testing may offer several distinct benefits beyond traditional DNA-based methods. In addition to testing at disease diagnosis, research indicates potential benefits of genetic testing both prior to disease onset and at remission. In this review, we discuss the transition from the era of cytogenetics and single-gene tests to the era of NGS panels and genome-wide sequencing-highlighting both the potential and drawbacks of these novel technologies.
Collapse
Affiliation(s)
- T Roderick Docking
- Experimental Medicine Program, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Aly Karsan
- Experimental Medicine Program, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
586
|
Buscail E, Maulat C, Muscari F, Chiche L, Cordelier P, Dabernat S, Alix-Panabières C, Buscail L. Liquid Biopsy Approach for Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2019; 11:cancers11060852. [PMID: 31248203 PMCID: PMC6627808 DOI: 10.3390/cancers11060852] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/01/2019] [Accepted: 06/14/2019] [Indexed: 01/10/2023] Open
Abstract
Pancreatic cancer is a public health problem because of its increasing incidence, the absence of early diagnostic tools, and its aggressiveness. Despite recent progress in chemotherapy, the 5-year survival rate remains below 5%. Liquid biopsies are of particular interest from a clinical point of view because they are non-invasive biomarkers released by primary tumours and metastases, remotely reflecting disease burden. Pilot studies have been conducted in pancreatic cancer patients evaluating the detection of circulating tumour cells, cell-free circulating tumour DNA, exosomes, and tumour-educated platelets. There is heterogeneity between the methods used to isolate circulating tumour elements as well as the targets used for their identification. Performances for the diagnosis of pancreatic cancer vary depending of the technique but also the stage of the disease: 30–50% of resectable tumours are positive and 50–100% are positive in locally advanced and/or metastatic cases. A significant prognostic value is demonstrated in 50–70% of clinical studies, irrespective of the type of liquid biopsy. Large prospective studies of homogeneous cohorts of patients are lacking. One way to improve diagnostic and prognostic performances would be to use a combined technological approach for the detection of circulating tumour cells, exosomes, and DNA.
Collapse
Affiliation(s)
- Etienne Buscail
- INSERM U1035, Bordeaux University, 33000 Bordeaux, France.
- Department of Digestive Surgery, Bordeaux University Hospital, 33600 Pessac, France.
| | - Charlotte Maulat
- Université Fédérale Toulouse Midi-Pyrénées, Université Toulouse III Paul Sabatier, INSERM, CRCT, 31330 Toulouse, France.
- Department of Digestive Surgery, Toulouse University Hospital, 31059 Toulouse, France.
| | - Fabrice Muscari
- Université Fédérale Toulouse Midi-Pyrénées, Université Toulouse III Paul Sabatier, INSERM, CRCT, 31330 Toulouse, France.
- Department of Digestive Surgery, Toulouse University Hospital, 31059 Toulouse, France.
| | - Laurence Chiche
- INSERM U1035, Bordeaux University, 33000 Bordeaux, France.
- Department of Digestive Surgery, Bordeaux University Hospital, 33600 Pessac, France.
| | - Pierre Cordelier
- Université Fédérale Toulouse Midi-Pyrénées, Université Toulouse III Paul Sabatier, INSERM, CRCT, 31330 Toulouse, France.
| | | | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH), Montpellier Hospital and University of Montpellier, 34295 Montpellier, France.
| | - Louis Buscail
- Université Fédérale Toulouse Midi-Pyrénées, Université Toulouse III Paul Sabatier, INSERM, CRCT, 31330 Toulouse, France.
- Department of Gastroenterology and Pancreatology, Toulouse University Hospital, 31059 Toulouse, France.
| |
Collapse
|
587
|
Xu Y, Liu J, Nipper M, Wang P. Ductal vs. acinar? Recent insights into identifying cell lineage of pancreatic ductal adenocarcinoma. ACTA ACUST UNITED AC 2019; 2. [PMID: 31528855 DOI: 10.21037/apc.2019.06.03] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a deadly disease with a 5-year survival rate of less than 8%. To date, there are no early detection methods or effective treatments available. Many questions remain to be answered in regards to the pathogenesis of PDAC, among which, the controversy over the cell lineage of PDAC demands more attention. Ductal cells were originally thought to be the cell of origin for PDAC due to the ductal morphology of most cases of PDAC. However, recent studies have demonstrated that acinar cells are more sensitive to KRAS mutation and tend to develop to PanIN and PDAC effectively, very likely by undergoing acinar to ductal metaplasia into a transient state that contributes to PDAC initiation. There is also evidence that both ductal and acinar cells can potentially develop to PDAC when exposed to certain genetic settings and stimuli, suggesting that more scrutiny is required for the identification of the true cell lineage of individual cases of PDAC. In this work, we summarize recent findings in the identification of the cellular origin of PDAC, with the goal of advancing our knowledge on the initiation and progression of the disease. We also discuss various models and techniques for investigating early events of PDAC. Better understanding of these cellular events is crucial to identify new methods for the early diagnosis and treatment of PDAC.
Collapse
Affiliation(s)
- Yi Xu
- Department of Cell Systems and Anatomy, UT Health San Antonio, TX 78229, USA
| | - Jun Liu
- Department of Cell Systems and Anatomy, UT Health San Antonio, TX 78229, USA
| | - Michael Nipper
- Department of Cell Systems and Anatomy, UT Health San Antonio, TX 78229, USA
| | - Pei Wang
- Department of Cell Systems and Anatomy, UT Health San Antonio, TX 78229, USA
| |
Collapse
|
588
|
Circulating biomarkers for early detection and clinical management of colorectal cancer. Mol Aspects Med 2019; 69:107-122. [PMID: 31189073 DOI: 10.1016/j.mam.2019.06.002] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 06/07/2019] [Accepted: 06/08/2019] [Indexed: 02/06/2023]
Abstract
New non-invasive approaches that can complement and improve on current strategies for colorectal cancer (CRC) screening and management are urgently needed. A growing number of publications have documented that components of tumors, which are shed into the circulation, can be detected in the form of liquid biopsies and can be used to detect CRC at early stages, to predict response to certain therapies and to detect CRC recurrence in a minimally invasive way. The analysis of circulating tumor DNA (ctDNA), tumor-derived cells (CTC, circulating tumor cells) or circulating microRNA (miRNA) in blood and other body fluids, have a great potential to improve different aspects of CRC management. The challenge now is to find which types of components, biofluids and detection methods would be the most suitable to be applied in the different steps of CRC detection and treatment. This chapter will provide an up to date review on ctDNA, CTCs and circulating miRNAs as new biomarkers for CRC, either for clinical management or early detection, highlighting their advantages and limitations.
Collapse
|
589
|
O'Rourke CJ, Lafuente-Barquero J, Andersen JB. Epigenome Remodeling in Cholangiocarcinoma. Trends Cancer 2019; 5:335-350. [PMID: 31208696 DOI: 10.1016/j.trecan.2019.05.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 05/03/2019] [Accepted: 05/07/2019] [Indexed: 12/22/2022]
Abstract
Cholangiocarcinoma (CCA) comprises a heterogeneous collection of malignancies arising within the biliary tract, characterized by late diagnosis, innate chemoresistance, and abysmal prognosis. Sequencing data have uncovered recurrent mutations in diverse epigenetic regulators, implicating epigenetic destabilization at the root of these tumors. However, few studies have characterized biliary tumor epigenomes. In this Opinion article, we argue that an epigenome-oriented approach to CCA could establish diverse interconnections between many key aspects of research on this disease, including molecular heterogeneity, diverse cells of origin, and prominent tumor microenvironments. Moreover, we discuss plausible causes of epigenome dysregulation in biliary tumors, including genetic, epigenetic, metabolic, microenvironmental, and physiological factors. Lastly, we assess the translational potential of epigenomics in CCA to uncover robust biomarkers and therapeutic opportunities for this growing group of patients with limited treatment options.
Collapse
Affiliation(s)
- Colm J O'Rourke
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Juan Lafuente-Barquero
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Jesper B Andersen
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark.
| |
Collapse
|
590
|
Kyrochristos ID, Ziogas DE, Roukos DH. Drug resistance: origins, evolution and characterization of genomic clones and the tumor ecosystem to optimize precise individualized therapy. Drug Discov Today 2019; 24:1281-1294. [PMID: 31009757 DOI: 10.1016/j.drudis.2019.04.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/04/2019] [Accepted: 04/16/2019] [Indexed: 12/26/2022]
Abstract
Progress in understanding and overcoming fatal intrinsic and acquired resistance is slow, with only a few exceptions. Despite advances in modern genome and transcriptome analysis, the controversy of the three different theories on drug resistance and tumor progression, namely dynamic intratumor heterogeneity, pre-existing minor genomic clones and tumor ecosystem, is unresolved. Moreover, evidence on transcriptional heterogeneity suggests the necessity of a drug bank for individualized, precise drug-sensitivity prediction. We propose a cancer type- and stage-specific clinicogenomic and tumor ecosystemic concept toward cancer precision medicine, focusing on early therapeutic resistance and relapse.
Collapse
Affiliation(s)
- Ioannis D Kyrochristos
- Centre for Biosystems and Genome Network Medicine, Ioannina University, Ioannina, Greece; Department of Surgery, Ioannina University Hospital, Ioannina, Greece
| | - Demosthenes E Ziogas
- Centre for Biosystems and Genome Network Medicine, Ioannina University, Ioannina, Greece; Department of Surgery, 'G. Hatzikosta' General Hospital, Ioannina, Greece
| | - Dimitrios H Roukos
- Centre for Biosystems and Genome Network Medicine, Ioannina University, Ioannina, Greece; Department of Surgery, Ioannina University Hospital, Ioannina, Greece; Department of Systems Biology, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece.
| |
Collapse
|
591
|
Cristiano S, Leal A, Phallen J, Fiksel J, Adleff V, Bruhm DC, Jensen SØ, Medina JE, Hruban C, White JR, Palsgrove DN, Niknafs N, Anagnostou V, Forde P, Naidoo J, Marrone K, Brahmer J, Woodward BD, Husain H, van Rooijen KL, Ørntoft MBW, Madsen AH, van de Velde CJH, Verheij M, Cats A, Punt CJA, Vink GR, van Grieken NCT, Koopman M, Fijneman RJA, Johansen JS, Nielsen HJ, Meijer GA, Andersen CL, Scharpf RB, Velculescu VE. Genome-wide cell-free DNA fragmentation in patients with cancer. Nature 2019; 570:385-389. [PMID: 31142840 PMCID: PMC6774252 DOI: 10.1038/s41586-019-1272-6] [Citation(s) in RCA: 834] [Impact Index Per Article: 139.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 05/10/2019] [Indexed: 02/06/2023]
Abstract
Cell-free DNA in the blood provides a non-invasive diagnostic avenue for patients with cancer1. However, characteristics of the origins and molecular features of cell-free DNA are poorly understood. Here we developed an approach to evaluate fragmentation patterns of cell-free DNA across the genome, and found that profiles of healthy individuals reflected nucleosomal patterns of white blood cells, whereas patients with cancer had altered fragmentation profiles. We used this method to analyse the fragmentation profiles of 236 patients with breast, colorectal, lung, ovarian, pancreatic, gastric or bile duct cancer and 245 healthy individuals. A machine learning model that incorporated genome-wide fragmentation features had sensitivities of detection ranging from 57% to more than 99% among the seven cancer types at 98% specificity, with an overall area under the curve value of 0.94. Fragmentation profiles could be used to identify the tissue of origin of the cancers to a limited number of sites in 75% of cases. Combining our approach with mutation-based cell-free DNA analyses detected 91% of patients with cancer. The results of these analyses highlight important properties of cell-free DNA and provide a proof-of-principle approach for the screening, early detection and monitoring of human cancer.
Collapse
Affiliation(s)
- Stephen Cristiano
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Alessandro Leal
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jillian Phallen
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jacob Fiksel
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Vilmos Adleff
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel C Bruhm
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sarah Østrup Jensen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Jamie E Medina
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Carolyn Hruban
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James R White
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Doreen N Palsgrove
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Noushin Niknafs
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Valsamo Anagnostou
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Patrick Forde
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jarushka Naidoo
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kristen Marrone
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Julie Brahmer
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Brian D Woodward
- Division of Hematology and Oncology, Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Hatim Husain
- Division of Hematology and Oncology, Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Karlijn L van Rooijen
- Department of Medical Oncology, University Medical Center, Utrecht University, Utrecht, The Netherlands
| | | | | | | | - Marcel Verheij
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Annemieke Cats
- Department of Gastrointestinal Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Cornelis J A Punt
- Department of Medical Oncology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Geraldine R Vink
- Department of Medical Oncology, University Medical Center, Utrecht University, Utrecht, The Netherlands
| | | | - Miriam Koopman
- Department of Medical Oncology, University Medical Center, Utrecht University, Utrecht, The Netherlands
| | - Remond J A Fijneman
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Julia S Johansen
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Hans Jørgen Nielsen
- Department of Surgical Gastroenterology 360, Hvidovre Hospital, Hvidovre, Denmark
| | - Gerrit A Meijer
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Robert B Scharpf
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Victor E Velculescu
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
592
|
Khatami F, Larijani B, Nasiri S, Tavangar SM. Liquid Biopsy as a Minimally Invasive Source of Thyroid Cancer Genetic and Epigenetic Alterations. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2019; 8:19-29. [PMID: 32351906 PMCID: PMC7175608 DOI: 10.22088/ijmcm.bums.8.2.19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 05/22/2019] [Indexed: 12/12/2022]
Abstract
In the blood of cancer patients, some nucleic acid fragments and tumor cells can be found that make it possible to trace tumor changes through a simple blood test called “liquid biopsy”. The main components of liquid biopsy are fragments of DNA and RNA shed by tumors into the bloodstream and circulate freely (ctDNAs and ctRNAs). Tumor cells which are shed into the blood (circulating tumor cells or CTCs), and exosomes that have been investigated for non-invasive detection and monitoring several tumors including thyroid cancer. Genetic and epigenetic alterations of a thyroid tumor can be a driver for tumor genesis or essential for tumor progression and invasion. Liquid biopsy can be real-time representative of such genetic and epigenetic alterations to trace tumors. In thyroid tumors, the circulating BRAF mutation is now taken into account for both thyroid cancer diagnosis and determination of the most effective treatment strategy. Several recent studies have indicated the ctDNA methylation pattern of some iodine transporters and DNA methyltransferase as a diagnostic and prognostic biomarker in thyroid cancer as well. There has been a big hope that the recent advances of genome sequencing together with liquid biopsy can be a game changer in oncology.
Collapse
Affiliation(s)
- Fatemeh Khatami
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shirzad Nasiri
- Departments of Surgery, Tehran University of Medical Sciences, Shariati Hospital, Tehran, Iran
| | - Seyed Mohammad Tavangar
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Departments of Pathology, Dr. Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
593
|
Abbou SD, Shulman DS, DuBois SG, Crompton BD. Assessment of circulating tumor DNA in pediatric solid tumors: The promise of liquid biopsies. Pediatr Blood Cancer 2019; 66:e27595. [PMID: 30614191 PMCID: PMC6550461 DOI: 10.1002/pbc.27595] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/04/2018] [Accepted: 12/07/2018] [Indexed: 12/29/2022]
Abstract
Circulating tumor DNA can be detected in the blood and body fluids of patients using ultrasensitive technologies, which have the potential to improve cancer diagnosis, risk stratification, noninvasive tumor profiling, and tracking of treatment response and disease recurrence. As we begin to apply "liquid biopsy" strategies in children with cancer, it is important to tailor our efforts to the unique genomic features of these tumors and address the technical and logistical challenges of integrating biomarker testing. This article reviews the literature demonstrating the feasibility of applying liquid biopsy to pediatric solid malignancies and suggests new directions for future studies.
Collapse
Affiliation(s)
- Samuel D. Abbou
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, MA, USA,Department of Oncology for Children and Adolescents, Gustave Roussy, Villejuif, France
| | - David S. Shulman
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, MA, USA
| | - Steven G. DuBois
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, MA, USA
| | - Brian D. Crompton
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, MA, USA,Broad Institute, Cambridge, MA, USA
| |
Collapse
|
594
|
Ivancic MM, Anson LW, Pickhardt PJ, Megna B, Pooler BD, Clipson L, Reichelderfer M, Sussman MR, Dove WF. Conserved serum protein biomarkers associated with growing early colorectal adenomas. Proc Natl Acad Sci U S A 2019; 116:8471-8480. [PMID: 30971492 PMCID: PMC6486772 DOI: 10.1073/pnas.1813212116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A major challenge for the reduction of colon cancer is to detect patients carrying high-risk premalignant adenomas with minimally invasive testing. As one step, we have addressed the feasibility of detecting protein signals in the serum of patients carrying an adenoma as small as 6-9 mm in maximum linear dimension. Serum protein biomarkers, discovered in two animal models of early colonic adenomagenesis, were studied in patients using quantitative mass-spectrometric assays. One cohort included patients bearing adenomas known to be growing on the basis of longitudinal computed tomographic colonography. The other cohort, screened by optical colonoscopy, included both patients free of adenomas and patients bearing adenomas whose risk status was judged by histopathology. The markers F5, ITIH4, LRG1, and VTN were each elevated both in this patient study and in the studies of the Pirc rat model. The quantitative study in the Pirc rat model had demonstrated that the elevated level of each of these markers is correlated with the number of colonic adenomas. However, the levels of these markers in patients were not significantly correlated with the total adenoma volume. Postpolypectomy blood samples demonstrated that the elevated levels of these four conserved markers persisted after polypectomy. Two additional serum markers rapidly renormalized after polypectomy: growth-associated CRP levels were enhanced only with high-risk adenomas, while PI16 levels, not associated with growth, were reduced regardless of risk status. We discuss biological hypotheses to account for these observations, and ways for these signals to contribute to the prevention of colon cancer.
Collapse
Affiliation(s)
- Melanie M Ivancic
- Biotechnology Center, University of Wisconsin-Madison, Madison, WI 53706;
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Leigh W Anson
- Biotechnology Center, University of Wisconsin-Madison, Madison, WI 53706
| | - Perry J Pickhardt
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792;
| | - Bryant Megna
- Department of Gastroenterology and Hepatology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Bryan D Pooler
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
| | - Linda Clipson
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Mark Reichelderfer
- Department of Gastroenterology and Hepatology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705;
| | - Michael R Sussman
- Biotechnology Center, University of Wisconsin-Madison, Madison, WI 53706;
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - William F Dove
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705;
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
595
|
Araujo DV, Bratman SV, Siu LL. Designing circulating tumor DNA-based interventional clinical trials in oncology. Genome Med 2019; 11:22. [PMID: 31003596 PMCID: PMC6474042 DOI: 10.1186/s13073-019-0634-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Circulating tumor (ct) DNA is a powerful tool that can be used to track cancer beyond a single snapshot in space and time. It has potential applications in detecting minimal residual disease and predicting relapse, in selecting patients for tailored treatments, and in revealing mechanisms of response or resistance. Here, we discuss the incorporation of ctDNA into clinical trials.
Collapse
Affiliation(s)
- Daniel V Araujo
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | - Scott V Bratman
- Department of Radiation Oncology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | - Lillian L Siu
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
596
|
Chen K, Kang G, Zhao H, Zhang K, Zhang J, Yang F, Wang J. Liquid biopsy in newly diagnosed patients with locoregional (I-IIIA) non-small cell lung cancer. Expert Rev Mol Diagn 2019; 19:419-427. [PMID: 30905203 DOI: 10.1080/14737159.2019.1599717] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Liquid biopsy is a promising method for the management of lung cancer, but previous studies focused mainly on patients with advanced-stage disease. As the methodology has progressed for the detection of circulating tumor DNA (ctDNA) and its aberrant methylation, researchers are gradually investigating the utility of liquid biopsy in early-stage patients. As a result, liquid biopsy has shown its potential for the application in patients with early- and locally advanced-stage non-small cell lung cancer (NSCLC). Areas covered: This review summarizes the utility of liquid biopsy in NSCLC and provide an outlook for future development. We focus on the role of ctDNA and its aberrant methylation in patients with stage IA to stageⅢA NSCLC, in the field of early detection and screening, perioperative management, and postoperative surveillance. Expert opinion: Liquid biopsy has shown the potential for clinical application of early-stage patients but has not been routinely applied yet. The utilization of liquid biopsy will be promoted by improved detection methods and data from well-designed clinical trials. With the development of precision medicine, liquid biopsy will likely play an increasingly important clinical role.
Collapse
Affiliation(s)
- Kezhong Chen
- a Department of Thoracic Surgery , Peking University People's Hospital , Beijing , P.R. China
| | - Guannan Kang
- a Department of Thoracic Surgery , Peking University People's Hospital , Beijing , P.R. China
| | - Heng Zhao
- a Department of Thoracic Surgery , Peking University People's Hospital , Beijing , P.R. China
| | - Kai Zhang
- a Department of Thoracic Surgery , Peking University People's Hospital , Beijing , P.R. China
| | - Jian Zhang
- a Department of Thoracic Surgery , Peking University People's Hospital , Beijing , P.R. China
| | - Fan Yang
- a Department of Thoracic Surgery , Peking University People's Hospital , Beijing , P.R. China
| | - Jun Wang
- a Department of Thoracic Surgery , Peking University People's Hospital , Beijing , P.R. China
| |
Collapse
|
597
|
Muluhngwi P, Valdes Jr R, Fernandez-Botran R, Burton E, Williams B, Linder MW. Cell-free DNA diagnostics: current and emerging applications in oncology. Pharmacogenomics 2019; 20:357-380. [DOI: 10.2217/pgs-2018-0174] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Liquid biopsy is a noninvasive dynamic approach for monitoring disease over time. It offers advantages including limited risks of blood sampling, opportunity for more frequent sampling, lower costs and theoretically non-biased sampling compared with tissue biopsy. There is a high degree of concordance between circulating tumor DNA mutations versus primary tumor mutations. Remote sampling of circulating tumor DNA can serve as viable option in clinical diagnostics. Here, we discuss the progress toward broad adoption of liquid biopsy as a diagnostic tool and discuss knowledge gaps that remain to be addressed.
Collapse
Affiliation(s)
- Penn Muluhngwi
- Department of Pathology & Laboratory Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Roland Valdes Jr
- Department of Pathology & Laboratory Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Rafael Fernandez-Botran
- Department of Pathology & Laboratory Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Eric Burton
- Department of Neurology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Brian Williams
- Department of Neurosurgery, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Mark W Linder
- Department of Pathology & Laboratory Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
598
|
Zeng C, Stroup EK, Zhang Z, Chiu BCH, Zhang W. Towards precision medicine: advances in 5-hydroxymethylcytosine cancer biomarker discovery in liquid biopsy. Cancer Commun (Lond) 2019; 39:12. [PMID: 30922396 PMCID: PMC6440138 DOI: 10.1186/s40880-019-0356-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 03/19/2019] [Indexed: 12/13/2022] Open
Abstract
Robust and clinically convenient biomarkers for cancer diagnosis, early detection, and prognosis have great potential to improve patient survival and are the key to precision medicine. The advent of next-generation sequencing technologies enables a more sensitive and comprehensive profiling of genetic and epigenetic information in tumor-derived materials. Researchers are now able to monitor the dynamics of tumorigenesis in new dimensions, such as using circulating cell-free DNA (cfDNA) and tumor DNA (ctDNA). Mutation-based assays in liquid biopsy cannot always provide consistent results across studies due partly to intra- and inter-tumoral heterogeneity as well as technical limitations. In contrast, epigenetic analysis of patient-derived cfDNA is a promising alternative, especially for early detection and disease surveillance, because epigenetic modifications are tissue-specific and reflect the dynamic process of cancer progression. Therefore, cfDNA-based epigenetic assays are emerging to be a highly sensitive, minimally invasive tool for cancer diagnosis and prognosis with great potential in future precise care of cancer patients. The major obstacle for applying epigenetic analysis of cfDNA, however, has been the lack of enabling techniques with high sensitivity and technical robustness. In this review, we summarized the advances in epigenome-wide profiling of 5-hydroxymethylcytosine (5hmC) in cfDNA, focusing on the detection approaches and potential role as biomarkers in different cancer types.
Collapse
Affiliation(s)
- Chang Zeng
- Driskill Graduate Program in Life Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Emily Kunce Stroup
- Driskill Graduate Program in Life Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Zhou Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, 680 N. Lake Shore Dr., Suite 1400, Chicago, IL, 60611, USA
| | - Brian C-H Chiu
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60637, USA
| | - Wei Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, 680 N. Lake Shore Dr., Suite 1400, Chicago, IL, 60611, USA. .,The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA. .,Institute of Precision Medicine, Jining Medical University, Jining, 272067, Shandong, P. R. China.
| |
Collapse
|
599
|
Monette A, Morou A, Al-Banna NA, Rousseau L, Lattouf JB, Rahmati S, Tokar T, Routy JP, Cailhier JF, Kaufmann DE, Jurisica I, Lapointe R. Failed immune responses across multiple pathologies share pan-tumor and circulating lymphocytic targets. J Clin Invest 2019; 129:2463-2479. [PMID: 30912767 DOI: 10.1172/jci125301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Rationale Tumor infiltrating lymphocytes are widely associated with positive outcomes, yet carry key indicators of a systemic failed immune response against unresolved cancer. Cancer immunotherapies can reverse their tolerance phenotypes, while preserving tumor-reactivity and neoantigen-specificity shared with circulating immune cells. Objectives We performed comprehensive transcriptomic analyses to identify gene signatures common to circulating and tumor infiltrating lymphocytes in the context of clear cell renal cell carcinoma. Modulated genes also associated with disease outcome were validated in other cancer types. Findings Using bioinformatics, we identified practical diagnostic markers and actionable targets of the failed immune response. On circulating lymphocytes, three genes, LEF1, FASLG, and MMP9, could efficiently stratify patients from healthy control donors. From their associations with resistance to cancer immunotherapies and microbial infections, we uncovered not only pan-cancer, but pan-pathology failed immune response profiles. A prominent lymphocytic matrix metallopeptidase cell migration pathway, is central to a panoply of diseases and tumor immunogenicity, correlates with multi-cancer recurrence, and identifies a feasible, non-invasive approach to pan-pathology diagnoses. Conclusions The non-invasive differently expressed genes we have identified warrant future investigation towards the development of their potential in precision diagnostics and precision pan-disease immunotherapeutics.
Collapse
Affiliation(s)
- Anne Monette
- University of Montreal Hospital Research Centre, Montreal, Quebec, Canada.,Montreal Cancer Institute, Montreal, Quebec, Canada.,Department of Medicine, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Antigoni Morou
- University of Montreal Hospital Research Centre, Montreal, Quebec, Canada.,Department of Medicine, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Nadia A Al-Banna
- University of Montreal Hospital Research Centre, Montreal, Quebec, Canada.,Montreal Cancer Institute, Montreal, Quebec, Canada.,Faculty of Medicine, McGill University, Montreal, Quebec, Canada.,Department of Basic Medical Sciences, College of Medicine, QU Health Cluster, Qatar University, Doha, Qatar
| | - Louise Rousseau
- University of Montreal Hospital Research Centre, Montreal, Quebec, Canada
| | - Jean-Baptiste Lattouf
- University of Montreal Hospital Research Centre, Montreal, Quebec, Canada.,Montreal Cancer Institute, Montreal, Quebec, Canada.,Department of Surgery, University of Montreal, Montreal, Quebec, Canada
| | - Sara Rahmati
- Krembil Research Institute, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Tomas Tokar
- Krembil Research Institute, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Jean-Pierre Routy
- Chronic Viral Illnesses Service and Division of Hematology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Jean-François Cailhier
- University of Montreal Hospital Research Centre, Montreal, Quebec, Canada.,Montreal Cancer Institute, Montreal, Quebec, Canada.,Department of Medicine, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada.,Nephrology Division, Department of Medicine, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Daniel E Kaufmann
- University of Montreal Hospital Research Centre, Montreal, Quebec, Canada.,Department of Medicine, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Igor Jurisica
- Krembil Research Institute, Toronto Western Hospital, Toronto, Ontario, Canada.,Department of Medical Biophysics and.,Department of Computer Science, University of Toronto, Toronto, Ontario, Canada.,Institute of Neuroimmunology, Slovak Academy of Sciences, Slovak Republic
| | - Réjean Lapointe
- University of Montreal Hospital Research Centre, Montreal, Quebec, Canada.,Montreal Cancer Institute, Montreal, Quebec, Canada.,Department of Medicine, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
600
|
Søreide K, Primavesi F, Labori KJ, Watson MM, Stättner S. Molecular biology in pancreatic ductal adenocarcinoma: implications for future diagnostics and therapy. Eur Surg 2019. [DOI: 10.1007/s10353-019-0575-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|