551
|
Liu Z, Singh SB, Zheng Y, Lindblom P, Tice C, Dong C, Zhuang L, Zhao Y, Kruk BA, Lala D, Claremon DA, McGeehan GM, Gregg RD, Cain R. Discovery of Potent Inhibitors of 11β-Hydroxysteroid Dehydrogenase Type 1 Using a Novel Growth-Based Protocol of in Silico Screening and Optimization in CONTOUR. J Chem Inf Model 2019; 59:3422-3436. [PMID: 31355641 DOI: 10.1021/acs.jcim.9b00198] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Zhijie Liu
- Allergan Plc, 2525 Dupont Drive, Irvine, California 92612, United States
- Vitae Pharmaceuticals, Inc., 502 West Office Center Drive, Fort Washington, Pennsylvania 19034, United States
| | - Suresh B. Singh
- Vitae Pharmaceuticals, Inc., 502 West Office Center Drive, Fort Washington, Pennsylvania 19034, United States
| | - Yajun Zheng
- Allergan Plc, 2525 Dupont Drive, Irvine, California 92612, United States
- Vitae Pharmaceuticals, Inc., 502 West Office Center Drive, Fort Washington, Pennsylvania 19034, United States
| | - Peter Lindblom
- Vitae Pharmaceuticals, Inc., 502 West Office Center Drive, Fort Washington, Pennsylvania 19034, United States
| | - Colin Tice
- Vitae Pharmaceuticals, Inc., 502 West Office Center Drive, Fort Washington, Pennsylvania 19034, United States
| | - Chengguo Dong
- Allergan Plc, 2525 Dupont Drive, Irvine, California 92612, United States
- Vitae Pharmaceuticals, Inc., 502 West Office Center Drive, Fort Washington, Pennsylvania 19034, United States
| | - Linghang Zhuang
- Vitae Pharmaceuticals, Inc., 502 West Office Center Drive, Fort Washington, Pennsylvania 19034, United States
| | - Yi Zhao
- Allergan Plc, 2525 Dupont Drive, Irvine, California 92612, United States
- Vitae Pharmaceuticals, Inc., 502 West Office Center Drive, Fort Washington, Pennsylvania 19034, United States
| | - Barbara A. Kruk
- Vitae Pharmaceuticals, Inc., 502 West Office Center Drive, Fort Washington, Pennsylvania 19034, United States
| | - Deepak Lala
- Vitae Pharmaceuticals, Inc., 502 West Office Center Drive, Fort Washington, Pennsylvania 19034, United States
| | - David A. Claremon
- Vitae Pharmaceuticals, Inc., 502 West Office Center Drive, Fort Washington, Pennsylvania 19034, United States
| | - Gerard M. McGeehan
- Vitae Pharmaceuticals, Inc., 502 West Office Center Drive, Fort Washington, Pennsylvania 19034, United States
| | - Richard D. Gregg
- Vitae Pharmaceuticals, Inc., 502 West Office Center Drive, Fort Washington, Pennsylvania 19034, United States
| | - Robert Cain
- Allergan Plc, 2525 Dupont Drive, Irvine, California 92612, United States
| |
Collapse
|
552
|
Naveja JJ, Medina-Franco JL. Finding Constellations in Chemical Space Through Core Analysis. Front Chem 2019; 7:510. [PMID: 31380353 PMCID: PMC6646408 DOI: 10.3389/fchem.2019.00510] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/03/2019] [Indexed: 12/15/2022] Open
Abstract
Herein we introduce the constellation plots as a general approach that merges different and complementary molecular representations to enhance the information contained in a visual representation and analysis of chemical space. The method is based on a combination of a sub-structure based representation and classification of compounds with a "classical" coordinate-based representation of chemical space. A distinctive outcome of the method is that organizing the compounds in analog series leads to the formation of groups of molecules, aka "constellations" in chemical space. The novel approach is general and can be used to rapidly identify, for instance, insightful and "bright" Structure-Activity Relationships (StARs) in chemical space that are easy to interpret. This kind of analysis is expected to be especially useful for lead identification in large datasets of unannotated molecules, such as those obtained through high-throughput screening. We demonstrate the application of the method using two datasets of focused inhibitors designed against DNMTs and AKT1.
Collapse
Affiliation(s)
- J. Jesús Naveja
- PECEM, School of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - José L. Medina-Franco
- Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
553
|
Mining large databases to find new leads with low similarity to known actives: application to find new DPP-IV inhibitors. Future Med Chem 2019; 11:1387-1401. [PMID: 31298576 DOI: 10.4155/fmc-2018-0597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aim: Fragment-based drug design or bioisosteric replacement is used to find new actives with low (or no) similarity to existing ones but requires the synthesis of nonexisting compounds to prove their predicted bioactivity. Protein-ligand docking or pharmacophore screening are alternatives but they can become computationally expensive when applied to very large databases such as ZINC. Therefore, fast strategies are necessary to find new leads in such databases. Materials & methods: We designed a computational strategy to find lead molecules with very low (or no) similarity to existing actives and applied it to DPP-IV. Results: The bioactivity assays confirm that this strategy finds new leads for DPP-IV inhibitors. Conclusion: This computational strategy reduces the time of finding new lead molecules.
Collapse
|
554
|
Baltzer S, Klussmann E. Small molecules for modulating the localisation of the water channel aquaporin-2-disease relevance and perspectives for targeting local cAMP signalling. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:1049-1064. [PMID: 31300862 DOI: 10.1007/s00210-019-01686-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/26/2019] [Indexed: 12/23/2022]
Abstract
The tight spatial and temporal organisation of cyclic adenosine monophosphate (cAMP) signalling plays a key role in arginine-vasopressin (AVP)-mediated water reabsorption in renal collecting duct principal cells and in a plethora of other processes such as in the control of cardiac myocyte contractility. This review critically discusses in vitro- and cell-based screening strategies for the identification of small molecules that interfere with AVP/cAMP signalling in renal principal cells; it features phenotypic screening and approaches for targeting protein-protein interactions of A-kinase anchoring proteins (AKAPs), which organise local cAMP signalling hubs. The discovery of novel chemical entities for the modulation of local cAMP will not only provide tools for elucidating molecular mechanisms underlying cAMP signalling. Novel chemical entities can also serve as starting points for the development of novel drugs for the treatment of human diseases. Examples illustrate how screening for small molecules can pave the way to novel approaches for the treatment of certain forms of diabetes insipidus, a disease caused by defects in AVP-mediated water reabsorption.
Collapse
Affiliation(s)
- Sandrine Baltzer
- Max Delbrück Center for Molecular Medicine Berlin (MDC), Helmholtz Association, Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Enno Klussmann
- Max Delbrück Center for Molecular Medicine Berlin (MDC), Helmholtz Association, Robert-Rössle-Strasse 10, 13125, Berlin, Germany. .,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany. .,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health and Vegetative Physiology, Berlin, Germany.
| |
Collapse
|
555
|
Yang X, Wang Y, Byrne R, Schneider G, Yang S. Concepts of Artificial Intelligence for Computer-Assisted Drug Discovery. Chem Rev 2019; 119:10520-10594. [PMID: 31294972 DOI: 10.1021/acs.chemrev.8b00728] [Citation(s) in RCA: 383] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Artificial intelligence (AI), and, in particular, deep learning as a subcategory of AI, provides opportunities for the discovery and development of innovative drugs. Various machine learning approaches have recently (re)emerged, some of which may be considered instances of domain-specific AI which have been successfully employed for drug discovery and design. This review provides a comprehensive portrayal of these machine learning techniques and of their applications in medicinal chemistry. After introducing the basic principles, alongside some application notes, of the various machine learning algorithms, the current state-of-the art of AI-assisted pharmaceutical discovery is discussed, including applications in structure- and ligand-based virtual screening, de novo drug design, physicochemical and pharmacokinetic property prediction, drug repurposing, and related aspects. Finally, several challenges and limitations of the current methods are summarized, with a view to potential future directions for AI-assisted drug discovery and design.
Collapse
Affiliation(s)
- Xin Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital , Sichuan University , Chengdu , Sichuan 610041 , China
| | - Yifei Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital , Sichuan University , Chengdu , Sichuan 610041 , China
| | - Ryan Byrne
- ETH Zurich , Department of Chemistry and Applied Biosciences , Vladimir-Prelog-Weg 4 , CH-8093 Zurich , Switzerland
| | - Gisbert Schneider
- ETH Zurich , Department of Chemistry and Applied Biosciences , Vladimir-Prelog-Weg 4 , CH-8093 Zurich , Switzerland
| | - Shengyong Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital , Sichuan University , Chengdu , Sichuan 610041 , China
| |
Collapse
|
556
|
Ståhl N, Falkman G, Karlsson A, Mathiason G, Boström J. Deep Reinforcement Learning for Multiparameter Optimization in de novo Drug Design. J Chem Inf Model 2019; 59:3166-3176. [PMID: 31273995 DOI: 10.1021/acs.jcim.9b00325] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In medicinal chemistry programs it is key to design and make compounds that are efficacious and safe. This is a long, complex, and difficult multiparameter optimization process, often including several properties with orthogonal trends. New methods for the automated design of compounds against profiles of multiple properties are thus of great value. Here we present a fragment-based reinforcement learning approach based on an actor-critic model, for the generation of novel molecules with optimal properties. The actor and the critic are both modeled with bidirectional long short-term memory (LSTM) networks. The AI method learns how to generate new compounds with desired properties by starting from an initial set of lead molecules and then improving these by replacing some of their fragments. A balanced binary tree based on the similarity of fragments is used in the generative process to bias the output toward structurally similar molecules. The method is demonstrated by a case study showing that 93% of the generated molecules are chemically valid and more than a third satisfy the targeted objectives, while there were none in the initial set.
Collapse
Affiliation(s)
- Niclas Ståhl
- School of Informatics , University of Skövde , 541 28 Skövde , Sweden
| | - Göran Falkman
- School of Informatics , University of Skövde , 541 28 Skövde , Sweden
| | | | - Gunnar Mathiason
- School of Informatics , University of Skövde , 541 28 Skövde , Sweden
| | - Jonas Boström
- Medicinal Chemistry, Early Cardiovascular, Renal and Metabolism, R&D BioPharmaceuticals , AstraZeneca , 431 83 Mölndal , Sweden
| |
Collapse
|
557
|
Dou X, Huang H, Li Y, Jiang L, Wang Y, Jin H, Jiao N, Zhang L, Zhang L, Liu Z. Multistage Screening Reveals 3-Substituted Indolin-2-one Derivatives as Novel and Isoform-Selective c-Jun N-terminal Kinase 3 (JNK3) Inhibitors: Implications to Drug Discovery for Potential Treatment of Neurodegenerative Diseases. J Med Chem 2019; 62:6645-6664. [DOI: 10.1021/acs.jmedchem.9b00537] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Xiaodong Dou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Huixia Huang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yibo Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Lan Jiang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yanxing Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hongwei Jin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Lihe Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
558
|
Molecular pharmacology of metabotropic receptors targeted by neuropsychiatric drugs. Nat Struct Mol Biol 2019; 26:535-544. [PMID: 31270468 DOI: 10.1038/s41594-019-0252-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/15/2019] [Indexed: 12/30/2022]
Abstract
Metabotropic receptors are responsible for so-called 'slow synaptic transmission' and mediate the effects of hundreds of peptide and non-peptide neurotransmitters and neuromodulators. Over the past decade or so, a revolution in membrane-protein structural determination has clarified the molecular determinants responsible for the actions of these receptors. This Review focuses on the G protein-coupled receptors (GPCRs) that are targets of neuropsychiatric drugs and shows how insights into the structure and function of these important synaptic proteins are accelerating understanding of their actions. Notably, elucidating the structure and function of GPCRs should enhance the structure-guided discovery of novel chemical tools with which to manipulate and understand these synaptic proteins.
Collapse
|
559
|
Carter AJ, Kraemer O, Zwick M, Mueller-Fahrnow A, Arrowsmith CH, Edwards AM. Target 2035: probing the human proteome. Drug Discov Today 2019; 24:2111-2115. [PMID: 31278990 DOI: 10.1016/j.drudis.2019.06.020] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/11/2019] [Accepted: 06/27/2019] [Indexed: 11/29/2022]
Abstract
Biomedical scientists tend to focus on only a small fraction of the proteins encoded by the human genome despite overwhelming genetic evidence that many understudied proteins are important for human disease. One of the best ways to interrogate the function of a protein and to determine its relevance as a drug target is by using a pharmacological modulator, such as a chemical probe or an antibody. If these tools were available for most human proteins, it should be possible to translate the tremendous advances in genomics into a greater understanding of human health and disease, and catalyze the creation of innovative new medicines. Target 2035 is a global federation for developing and applying new technologies with the goal of creating chemogenomic libraries, chemical probes, and/or functional antibodies for the entire proteome.
Collapse
Affiliation(s)
- Adrian J Carter
- Discovery Research Coordination, Boehringer Ingelheim, 55216 Ingelheim am Rhein, Germany.
| | - Oliver Kraemer
- Discovery Research Coordination, Boehringer Ingelheim, 55216 Ingelheim am Rhein, Germany
| | - Matthias Zwick
- Computational Biology, Boehringer Ingelheim, 88400 Biberach an der Riß, Germany
| | | | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Canada; Princess Margaret Cancer Centre, Toronto, Ontario, M5G 1L7, Canada
| | - Aled M Edwards
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| |
Collapse
|
560
|
Mangoni AA, Eynde JJV, Jampilek J, Hadjipavlou-Litina D, Liu H, Reynisson J, Sousa ME, Gomes PAC, Prokai-Tatrai K, Tuccinardi T, Sabatier JM, Luque FJ, Rautio J, Karaman R, Vasconcelos MH, Gemma S, Galdiero S, Hulme C, Collina S, Gütschow M, Kokotos G, Siciliano C, Capasso R, Agrofoglio LA, Ragno R, Muñoz-Torrero D. Breakthroughs in Medicinal Chemistry: New Targets and Mechanisms, New Drugs, New Hopes-5. Molecules 2019; 24:molecules24132415. [PMID: 31262039 PMCID: PMC6650823 DOI: 10.3390/molecules24132415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 02/04/2023] Open
Affiliation(s)
- Arduino A Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University and Flinders Medical Centre, Bedford Park, SA 5042, Australia
| | - Jean Jacques Vanden Eynde
- Formerly head of the Department of Organic Chemistry (FS), University of Mons-UMONS, 7000 Mons, Belgium
| | - Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 84215 Bratislava, Slovakia
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Slechtitelu 27, 78371 Olomouc, Czech Republic
| | - Dimitra Hadjipavlou-Litina
- Department of Pharmaceutical Chemistry, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Hong Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Jóhannes Reynisson
- School of Pharmacy, Keele University, Hornbeam building, Staffordshire ST5 5BG, UK
| | - Maria Emília Sousa
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências, Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N 4450-208 Matosinhos, Portugal
| | - Paula A C Gomes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| | - Katalin Prokai-Tatrai
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107, USA
| | - Tiziano Tuccinardi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Jean-Marc Sabatier
- Institute of NeuroPhysiopathology, UMR 7051, Faculté de Médecine Secteur Nord, 51, Boulevard Pierre Dramard - CS80011, 13344 Marseille CEDEX 15, France
| | - F Javier Luque
- Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, Institute of Biomedicine (IBUB) and Institute of Theoretical and Computational Chemistry (IQTC), University of Barcelona, Av. Prat de la Riba 171, E-08921 Santa Coloma de Gramenet, Spain
| | - Jarkko Rautio
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Rafik Karaman
- Pharmaceutical & Medicinal Chemistry Department, Faculty of Pharmacy, Al-Quds University, POB 20002 Jerusalem, Palestine
- Department of Sciences, University of Basilicata, Viadell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - M Helena Vasconcelos
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Cancer Drug Resistance Group-IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal
- Department of Biological Sciences, FFUP-Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Sandra Gemma
- Department of Biotechnology, chemistry and pharmacy, University of Siena via Aldo Moro 2, 53100 Siena, Italy
| | - Stefania Galdiero
- Department of Pharmacy, University of Naples Federico II, Via Mezzocannone 16, 80134 Napoli, Italy
| | - Christopher Hulme
- Department of Pharmacology and Toxicology, and Department of Chemistry and Biochemistry, College of Pharmacy, The University of Arizona, Biological Sciences West Room 351, 1041 East Lowell Street, Tucson, AZ 85721, USA
| | - Simona Collina
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Michael Gütschow
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53115 Bonn, Germany
| | - George Kokotos
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Athens, Greece
| | - Carlo Siciliano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, I-87036 Arcavacata di Rende, Italy
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Luigi A Agrofoglio
- ICOA, CNRS UMR 7311, Universite d'Orleans, Rue de Chartres, 45067 Orleans CEDEX 2, France
| | - Rino Ragno
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Diego Muñoz-Torrero
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII, 27-31, E-08028 Barcelona, Spain.
| |
Collapse
|
561
|
Wang H, Jayaraman A, Menon R, Gejji V, Karthikeyan R, Fernando S. A non-beta-lactam antibiotic inhibitor for enterohemorrhagic Escherichia coli O104:H4. J Mol Med (Berl) 2019; 97:1285-1297. [PMID: 31254005 DOI: 10.1007/s00109-019-01803-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/25/2019] [Accepted: 05/21/2019] [Indexed: 01/29/2023]
Abstract
The overuse of antibiotics has caused an increased prevalence of drug-resistant bacteria. Bacterial resistance in E. coli is regulated via production of β-lactam-hydrolyzing β-lactamases enzymes. Escherichia coli O104: H4 is a multi-drug resistant strain known to resist β-lactam as well as several other antibiotics. Here, we report a molecular dynamic simulation-combined docking approach to identify, screen, and verify active pharmacophores against enterohemorrhagic Escherichia coli (EHEC). Experimental studies revealed a boronic acid cyclic monomer (BACM), a non-β-lactam compound, to inhibit the growth of E. coli O104: H4. In vitro Kirby Bauer disk diffusion susceptibility testing coupled interaction analysis suggests BACM inhibits E. coli O104:H4 growth by not only inhibiting the β-lactamase pathway but also via direct inhibition of the penicillin-binding protein. These results suggest that BACM could be used as a lead compound to develop potent drugs targeting beta-lactam resistant Gram-negative bacterial strains. KEY MESSAGES: • An in silico approach was reported to identify pharmacophores against E. coli O104: H4. • In vitro studies revealed a non-β-lactam compound to inhibit the growth of E. coli O104: H4. • This non-β-lactam compound could be used as a lead compound for targeting beta-lactam strains.
Collapse
Affiliation(s)
- Haoqi Wang
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX, USA
| | - Arul Jayaraman
- Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | - Rani Menon
- Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | - Varun Gejji
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX, USA
| | | | - Sandun Fernando
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
562
|
Mishin A, Gusach A, Luginina A, Marin E, Borshchevskiy V, Cherezov V. An outlook on using serial femtosecond crystallography in drug discovery. Expert Opin Drug Discov 2019; 14:933-945. [PMID: 31184514 DOI: 10.1080/17460441.2019.1626822] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction: X-ray crystallography has made important contributions to modern drug development but its application to many important drug targets has been extremely challenging. The recent emergence of X-ray free electron lasers (XFELs) and advancements in serial femtosecond crystallography (SFX) have offered new opportunities to overcome limitations of traditional crystallography to accelerate the structure-based drug discovery (SBDD) process. Areas covered: In this review, the authors describe the general principles of X-ray generation and the main properties of XFEL beams, outline details of SFX data collection and processing, and summarize the progress in the development of associated instrumentation for sample delivery and X-ray detection. An overview of the SFX applications to various important drug targets such as membrane proteins is also provided. Expert opinion: While SFX has already made clear advancements toward the understanding of the structure and dynamics of several major drug targets, its robust application in SBDD still needs further developments of new high-throughput techniques for sample production, automation of crystal delivery and data collection, as well as for processing and storage of large amounts of data. The expansion of the available XFEL beamtime is a key to the success of SFX in SBDD.
Collapse
Affiliation(s)
- Alexey Mishin
- a Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology , Dolgoprudny , Russia
| | - Anastasiia Gusach
- a Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology , Dolgoprudny , Russia
| | - Aleksandra Luginina
- a Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology , Dolgoprudny , Russia
| | - Egor Marin
- a Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology , Dolgoprudny , Russia
| | - Valentin Borshchevskiy
- a Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology , Dolgoprudny , Russia
| | - Vadim Cherezov
- a Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology , Dolgoprudny , Russia.,b Bridge Institute, Departments of Chemistry and Biological Sciences, University of Southern California , Los Angeles , CA , USA
| |
Collapse
|
563
|
Hampel H, Lista S, Mango D, Nisticò R, Perry G, Avila J, Hernandez F, Geerts H, Vergallo A. Lithium as a Treatment for Alzheimer’s Disease: The Systems Pharmacology Perspective. J Alzheimers Dis 2019; 69:615-629. [DOI: 10.3233/jad-190197] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Harald Hampel
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l’hôpital, F-75013, Paris, France
| | - Simone Lista
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l’hôpital, F-75013, Paris, France
- Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l’hôpital, F-75013, Paris, France
- Institute of Memory and Alzheimer’s Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l’hôpital, F-75013, Paris, France
| | - Dalila Mango
- Laboratory of Neuropharmacology, European Brain Research Institute, Rita Levi-Montalcini Foundation, Rome, Italy
| | - Robert Nisticò
- Laboratory of Neuropharmacology, European Brain Research Institute, Rita Levi-Montalcini Foundation, Rome, Italy
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - George Perry
- College of Sciences, One UTSA Circle, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Jesus Avila
- Centro de Biologia Molecular “Severo Ochoa”, Consejo Superior de Investigaciones, Cientificas, Universidad Autonoma de Madrid, C/ Nicolas Cabrera, 1. Campus de Cantoblanco, 28049, Madrid, Spain
- Networking Research Center on Neurodegenerative, Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Felix Hernandez
- Centro de Biologia Molecular “Severo Ochoa”, Consejo Superior de Investigaciones, Cientificas, Universidad Autonoma de Madrid, C/ Nicolas Cabrera, 1. Campus de Cantoblanco, 28049, Madrid, Spain
- Networking Research Center on Neurodegenerative, Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Hugo Geerts
- In silico Biosciences, Computational Neuropharmacology, Berwyn, PA, USA
| | - Andrea Vergallo
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l’hôpital, F-75013, Paris, France
- Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l’hôpital, F-75013, Paris, France
- Institute of Memory and Alzheimer’s Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l’hôpital, F-75013, Paris, France
| | | |
Collapse
|
564
|
Interrogating dense ligand chemical space with a forward-synthetic library. Proc Natl Acad Sci U S A 2019; 116:11496-11501. [PMID: 31113876 DOI: 10.1073/pnas.1818718116] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Forward-synthetic databases are an efficient way to enumerate chemical space. We explored here whether these databases are good sources of novel protein ligands and how many molecules are obtainable and in which time frame. Based on docking calculations, series of molecules were selected to gain insights into the ligand structure-activity relationship. To evaluate the novelty of compounds in a challenging way, we chose the β2-adrenergic receptor, for which a large number of ligands is already known. Finding dissimilar ligands is thus the exception rather than the rule. Here we report on the results, the successful synthesis of 127/240 molecules in just 2 weeks, the discovery of previously unreported dissimilar ligands of the β2-adrenergic receptor, and the optimization of one series to a K D of 519 nM in only one round. Moreover, the finding that only 3 of 240 molecules had ever been synthesized before indicates that large parts of chemical space are unexplored.
Collapse
|
565
|
Greenidge PA, Blommers MJJ, Priestle JP, Hunziker J. How to Computationally Stack the Deck for Hit-to-Lead Generation: In Silico Molecular Interaction Energy Profiling for de Novo siRNA Guide Strand Surrogate Selection. J Chem Inf Model 2019; 59:1897-1908. [PMID: 31021613 DOI: 10.1021/acs.jcim.8b00892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The Argonaute-2 protein is part of the RNA-induced silencing complex (RISC) and anchors the guide strand of the small interfering RNA (siRNA). The 3'-end of the RNA contains two unpaired nucleotides (3'-overhang) that interact with the PAZ (PIWI/Argonaute/Zwille) domain of the protein. Theoretical and experimental evidence points toward a direct connection between the PAZ/3'-overhang binding affinity and siRNA's potency and specificity. Among the challenges to overcome when deploying siRNA molecules as therapeutics are their ready degradation under physiological conditions and off-target effects. It has been demonstrated that nuclease resistance can be improved via replacement of the dinucleotide overhang by small molecules which retain the interactions of the RNA guide strand with the PAZ domain. Most commonly, nucleotide analogues are used to substitute the siRNA overhang. However, in this study we adopt a de novo approach to its modification. The X-ray structure of human Argonaute-2 PAZ domain served to perform virtual screening and molecular interaction energy profiling (i.e., decomposition of the force field calculated protein-ligand interaction energies) of tailored-to-purpose fragment libraries. The binding of fragments to the PAZ domain was validated experimentally by NMR spectroscopy. The in silico guided protocol led to the efficient discovery of a number of PAZ domain ligands with affinities comparable to that of a reference dinucleotide (UpU, Kd = 33 μM). Originally starting from a generic fragment library, hits progress from 930 μM down to 14 μM within three iterations for the fragments selected via in silico molecular interaction energy profiling from a bespoke library. These dinucleotide siRNA guide strand surrogates represent potential new siRNA-based therapeutics (when attached to siRNA to form bioconjugates) featuring improved efficacy, specificity, stability, and cellular uptake. This project yielded a portfolio of seven patent applications, four of which have been granted to date.
Collapse
Affiliation(s)
- Paulette A Greenidge
- Novartis Institutes for BioMedical Research (NIBR), Novartis Pharma AG , Forum 1, Novartis Campus, Fabrikstrasse 2 , CH-4056 Basel , Switzerland.,Sprint Bioscience AB , Hälsovägen 7 , SE-141 57 Huddinge , Sweden
| | - Marcel J J Blommers
- Novartis Institutes for BioMedical Research (NIBR), Novartis Pharma AG , Forum 1, Novartis Campus, Fabrikstrasse 2 , CH-4056 Basel , Switzerland.,Saverna Therapeutics AG , Pumpmattenweg 3 , CH-4105 Biel-Benken , Switzerland
| | - John P Priestle
- Novartis Institutes for BioMedical Research (NIBR), Novartis Pharma AG , Forum 1, Novartis Campus, Fabrikstrasse 2 , CH-4056 Basel , Switzerland
| | - Jürg Hunziker
- Novartis Institutes for BioMedical Research (NIBR), Novartis Pharma AG , Forum 1, Novartis Campus, Fabrikstrasse 2 , CH-4056 Basel , Switzerland
| |
Collapse
|
566
|
Damm-Ganamet KL, Arora N, Becart S, Edwards JP, Lebsack AD, McAllister HM, Nelen MI, Rao NL, Westover L, Wiener JJM, Mirzadegan T. Accelerating Lead Identification by High Throughput Virtual Screening: Prospective Case Studies from the Pharmaceutical Industry. J Chem Inf Model 2019; 59:2046-2062. [DOI: 10.1021/acs.jcim.8b00941] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
| | | | | | | | | | | | - Marina I. Nelen
- Discovery Sciences, Janssen Research and Development, Welsh and McKean Roads, Spring House, Pennsylvania 19477, United States
| | | | - Lori Westover
- Discovery Sciences, Janssen Research and Development, Welsh and McKean Roads, Spring House, Pennsylvania 19477, United States
| | | | | |
Collapse
|
567
|
|
568
|
Schmitt-Kopplin P, Hemmler D, Moritz F, Gougeon RD, Lucio M, Meringer M, Müller C, Harir M, Hertkorn N. Systems chemical analytics: introduction to the challenges of chemical complexity analysis. Faraday Discuss 2019; 218:9-28. [DOI: 10.1039/c9fd00078j] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We present concepts of complexity, and complex chemistry in systems subjected to biotic and abiotic transformations, and introduce analytical possibilities to disentangle chemical complexity into its elementary parts as a global integrated approach termed systems chemical analytics.
Collapse
Affiliation(s)
- Philippe Schmitt-Kopplin
- HelmholtzZentrum Muenchen
- German Research Center for Environmental Health
- Department of Environmental Sciences
- D-85764 Neuherberg
- Germany
| | - Daniel Hemmler
- HelmholtzZentrum Muenchen
- German Research Center for Environmental Health
- Department of Environmental Sciences
- D-85764 Neuherberg
- Germany
| | - Franco Moritz
- HelmholtzZentrum Muenchen
- German Research Center for Environmental Health
- Department of Environmental Sciences
- D-85764 Neuherberg
- Germany
| | - Régis D. Gougeon
- UMR PAM Université de Bourgogne/AgroSup Dijon
- Institut Universitaire de la Vigne et du Vin
- Dijon
- France
| | - Marianna Lucio
- HelmholtzZentrum Muenchen
- German Research Center for Environmental Health
- Department of Environmental Sciences
- D-85764 Neuherberg
- Germany
| | - Markus Meringer
- German Aerospace Center (DLR)
- Earth Observation Center (EOC)
- 82234 Oberpfaffenhofen-Wessling
- Germany
| | - Constanze Müller
- HelmholtzZentrum Muenchen
- German Research Center for Environmental Health
- Department of Environmental Sciences
- D-85764 Neuherberg
- Germany
| | - Mourad Harir
- HelmholtzZentrum Muenchen
- German Research Center for Environmental Health
- Department of Environmental Sciences
- D-85764 Neuherberg
- Germany
| | - Norbert Hertkorn
- HelmholtzZentrum Muenchen
- German Research Center for Environmental Health
- Department of Environmental Sciences
- D-85764 Neuherberg
- Germany
| |
Collapse
|
569
|
A Strength-Weaknesses-Opportunities-Threats (SWOT) Analysis of Cheminformatics in Natural Product Research. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2019; 110:239-271. [PMID: 31621015 DOI: 10.1007/978-3-030-14632-0_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cheminformatics-based techniques, such as molecular modeling, docking, virtual screening, and machine learning, are well accepted for their usefulness in drug discovery and development of therapeutically relevant small molecules. Although delayed by several decades, their application in natural product research has led to outstanding findings. Combining information obtained from different sources, i.e., virtual predictions, traditional medicine, structural, biochemical, and biological data, and handling big data effectively will open up new possibilities, but also challenges in the future. Strategies and examples will be presented on how to integrate cheminformatics in pharmacognostic workflows to benefit from these two highly complementary disciplines toward streamlining experimental efforts. While considering their limits and pitfalls and by exploiting their potential, computer-aided strategies should successfully guide future studies and thereby augment our knowledge of bioactive natural lead structures.
Collapse
|