551
|
Abstract
DNA repair mechanisms are fairly well characterized for nuclear DNA while knowledge regarding the repair mechanisms operable in mitochondria is limited. Several lines of evidence suggest that mitochondria contain DNA repair mechanisms. DNA lesions are removed from mtDNA in cells exposed to various chemicals. Protein activities that process damaged DNA have been detected in mitochondria. As will be discussed, there is evidence for base excision repair (BER), direct damage reversal, mismatch repair, and recombinational repair mechanisms in mitochondria, while nucleotide excision repair (NER), as we know it from nuclear repair, is not present.
Collapse
Affiliation(s)
- D L Croteau
- Laboratory of Molecular Genetics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | | | | |
Collapse
|
552
|
Fuxreiter M, Warshel A, Osman R. Role of active site residues in the glycosylase step of T4 endonuclease V. Computer simulation studies on ionization states. Biochemistry 1999; 38:9577-89. [PMID: 10423235 DOI: 10.1021/bi9901937] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
T4 Endonuclease V (EndoV) is a base excision repair enzyme that removes thymine dimers (TD) from damaged DNA. To elucidate the role of the active site residues in catalysis, their pK(a)'s were evaluated using the semimicroscopic version of the protein dipoles-Langevin dipoles method (PDLD/S). Contributions of different effects to the pK(a) such as charge-charge interactions, conformational rearrangement, protein relaxation, and DNA binding were analyzed in detail. Charging of the active site residues was found to be less favorable in the complex than in the free enzyme. The pK(a) of the N-terminus decreased from 8.01 in the free enzyme to 6.52 in the complex, while the pK(a) of Glu-23 increased from 1. 52 to 7.82, which indicates that the key residues are neutral in the reactant state of the glycosylase step. These pK(a)'s are in agreement with the optimal pH range of the reaction and support the N-terminus acting as a nucleophile. The Glu-23 in its protonated form is hydrogen bonded to O4' of the sugar of 5' TD and can play a role in increasing the positive charge of C1' and, hence, accelerating the nucleophilic substitution. Furthermore, the neutral Glu-23 is a likely candidate to protonate O4' to induce ring opening required to complete the glycosylase step of EndoV. The positively charged Arg-22 and Arg-26 provide an electrostatically favorable environment for the leaving base. To distinguish between S(N)1 and S(N)2 mechanisms of the glycosylase step the energetics of protonating O2 of 5' TD was calculated. The enzyme was found to stabilize the neutral thymine by approximately 3.6 kcal/mol, whereas it destabilizes the protonated thymine by approximately 6.6 kcal/mol with respect to an aqueous environment. Consequently, the formation of a protonated thymine intermediate is unlikely, indicating an S(N)2 reaction mechanism for the glycosylase step.
Collapse
Affiliation(s)
- M Fuxreiter
- Department of Physiology and Biophysics, Mount Sinai School of Medicine, New York 10029, USA
| | | | | |
Collapse
|
553
|
Abstract
Recent improvements in the ability to detect chemically modified bases in DNA have revealed that not only does the genetic material incur damage by foreign chemicals, but that it also sustains injury by reactive products of normal physiological processes. This review summarises current understanding of the DNA-damaging potential of various substances of endogenous origin, including oxidants, lipid peroxidation products, alkylating agents, estrogens, chlorinating agents, reactive nitrogen species, and certain intermediates of various metabolic pathways. The strengths and weaknesses of the existing database for DNA damage by each class of substance are discussed, as are future strategies for resolving the difficult question of whether endogenous chemicals are significant contributors to spontaneous mutagenesis and cancer development in vivo.
Collapse
Affiliation(s)
- P C Burcham
- Department of Clinical and Experimental Pharmacology, The University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
554
|
Erzberger JP, Wilson DM. The role of Mg2+ and specific amino acid residues in the catalytic reaction of the major human abasic endonuclease: new insights from EDTA-resistant incision of acyclic abasic site analogs and site-directed mutagenesis. J Mol Biol 1999; 290:447-57. [PMID: 10390343 DOI: 10.1006/jmbi.1999.2888] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ape1, the major protein responsible for excising apurinic/apyrimidinic (AP) sites from DNA, cleaves 5' to natural AP sites via a hydrolytic reaction involving Mg2+. We report here that while Ape1 incision of the AP site analog tetrahydrofuran (F-DNA) was approximately 7300-fold reduced in 4 mM EDTA relative to Mg2+, cleavage of ethane (E-DNA) and propane (P-DNA) acyclic abasic site analogs was only 20 and 30-fold lower, respectively, in EDTA compared to Mg2+. This finding suggests that the primary role of the metal ion is to promote a conformational change in the ring-containing abasic DNA, priming it for enzyme-mediated hydrolysis. Mutating the proposed metal-coordinating residue E96 to A or Q resulted in a approximately 600-fold reduced incision activity for both P and F-DNA in Mg2+compared to wild-type. These mutants, while retaining full binding activity for acyclic P-DNA, were unable to incise this substrate in EDTA, pointing to an alternative or an additional function for E96 besides Mg2+-coordination. Other residues proposed to be involved in metal coordination were mutated (D70A, D70R, D308A and D308S), but displayed a relatively minor loss of incision activity for F and P-DNA in Mg2+, indicating a non-essential function for these amino acid residues. Mutations at Y171 resulted in a 5000-fold reduced incision activity. A Y171H mutant was fourfold less active than a Y171F mutant, providing evidence that Y171 does not operate as the proton donor in catalysis and that the additional role of E96 may be in establishing the appropriate active site environment via a hydrogen-bonding network involving Y171. D210A and D210N mutant proteins exhibited a approximately 25,000-fold reduced incision activity, indicating a critical role for this residue in the catalytic reaction. A D210H mutant was 15 to 20-fold more active than the mutants D210A or D210N, establishing that D210 likely operates as the leaving group proton donor.
Collapse
Affiliation(s)
- J P Erzberger
- Molecular and Structural Biology Division, Lawrence Livermore National Laboratory, Livermore, CA, 94551, USA
| | | |
Collapse
|
555
|
Begley TJ, Haas BJ, Noel J, Shekhtman A, Williams WA, Cunningham RP. A new member of the endonuclease III family of DNA repair enzymes that removes methylated purines from DNA. Curr Biol 1999; 9:653-6. [PMID: 10375529 DOI: 10.1016/s0960-9822(99)80288-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
DNA is constantly exposed to endogenous andexogenous alkylating agents that can modify its bases,resulting in mutagenesis in the absence of DNA repair [1,2]. Alkylation damage is removed by the action of DNA glycosylases, which initiate the base excision repair pathway and protect the sequence information of the genome [3-5]. We have identified a new class of methylpurine DNA glycosylase, designated MpgII, that is a member of the endonuclease III family of DNA repair enzymes. We expressed and purified MpgII from Thermotoga maritima and found that the enzyme releases both 7-methylguanine and 3-methyladenine from DNA. We cloned the MpgII genes from T. maritima and from Aquifex aeolicus and found that both genes could restore methylmethanesulfonate (MMS) resistance to Escherichia coli alkA tagA double mutants, which are deficient in the repair of alkylated bases. Analogous genes are found in other Bacteria and Archaea and appear to be the only genes coding for methylpurine DNA glycosylase activity in these organisms. MpgII is the fifth member of the endonuclease III family of DNA repair enzymes, suggesting that the endonuclease III protein scaffold has been modified during evolution to recognize and repair a variety of DNA damage.
Collapse
Affiliation(s)
- T J Begley
- Department of Biological Sciences, SUNY at Albany, 1400 Washington Avenue, Albany, New York, 12222, USA
| | | | | | | | | | | |
Collapse
|
556
|
Burney S, Niles JC, Dedon PC, Tannenbaum SR. DNA damage in deoxynucleosides and oligonucleotides treated with peroxynitrite. Chem Res Toxicol 1999; 12:513-20. [PMID: 10368314 DOI: 10.1021/tx980254m] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Peroxynitrite (ONOO-) is a powerful oxidizing agent that forms in a reaction of nitric oxide (NO*) and superoxide (O2-*). We have investigated ONOO--induced DNA damage using deoxynucleosides and oligonucleotides as model substrates, with particular attention paid to the oxidation of 8-oxodG by ONOO-. With regard to deoxynucleosides, ONOO- was found to have significant reactivity only with dG; dA, dC, and dT showed minimal reactivity. However, two of the major products of ONOO--induced oxidation of dG (8-oxodG and 8-nitroG) were both found to be significantly more reactive with ONOO- than with dG. In the context of an oligonucleotide, we observed a concentration-dependent oxidation of 8-oxodG to at least two types of products, one appearing at ONOO- concentrations of </=100 microM and the other at concentrations of >/=500 microM. We also examined the susceptibility of these oxidation products to repair by FaPy glycosylase, endonuclease III, uracil glycosylase, and MutY. FaPy glycosylase, which recognizes 8-oxoG as its primary substrate, was the only enzyme that exhibited an efficient reaction with 8-oxodG oxidation products at low ONOO- concentrations (</=100 microM); the product(s) formed at ONOO- concentrations of >/=500 microM either was not recognized or was poorly repaired by the enzymes. While processing of the lesions was inefficient with endonuclease III and not apparent with uracil glycosylase, the excision of A opposite an 8-oxoG lesion by the enzyme MutY was not affected by the reaction of 8-oxoG with ONOO-. In addition to demonstrating the complexity of ONOO- DNA damage chemistry, these results suggest that 8-oxodG may be a primary target of ONOO- in DNA.
Collapse
Affiliation(s)
- S Burney
- Department of Chemistry and Division of Bioengineering and Environmental Health, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|
557
|
Suzuki T, Nakamura T, Yamada M, Ide H, Kanaori K, Tajima K, Morii T, Makino K. Isolation and characterization of diazoate intermediate upon nitrous acid and nitric oxide treatment of 2'-deoxycytidine. Biochemistry 1999; 38:7151-8. [PMID: 10353825 DOI: 10.1021/bi982803t] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The intermediate produced from dCyd by HNO2 and NO treatments was isolated and characterized. When 10 mM dCyd was treated with 100 mM NaNO2 in 1.0 M acetate buffer (pH 3.7) at 37 degrees C, a previously unidentified product was formed. By spectrometric measurements, the product was identified as a diazoate derivative of dCyd, 1-(beta-D-2'-deoxyribofuranosyl)-2-oxopyrimidine-4-diazoate. The time course of the concentration change of the diazoate showed a profile characteristic of a reaction intermediate, and the maximum yield was 37 microM at the reaction time of 25 min. Up to the reaction time of 10 min, the diazoate concentration was greater than that of dUrd, a deamination product of dCyd. Addition of thiocyanate increased the yield of the diazoate in HNO2 treatment, whereas addition of ascorbate decreased the yield. When 10 mM dCyd in 100 mM phosphate buffer was treated with NO at 37 degrees C under aerobic conditions holding the pH (7.2-7.6), the diazoate was also generated. The yield of the diazoate was higher than that of dUrd up to 15 mmol of NO absorption. At pH 3.7 and 37 degrees C, the diazoate was converted to dUrd with the first-order rate constant k = 4.8 x 10(-)4 s-1 (t1/2 = 24 min). Under physiological conditions (pH 7.4, 37 degrees C), however, it was fairly stable (k = 5.8 x 10(-)7 s-1, t1/2 = 330 h). In both cases, the diazoate was converted to dUrd exclusively and no other intermediates were detected by HPLC analysis. Uracil-DNA glycosylase did not remove the diazoate residue from an oligodeoxynucleotide containing this damage, [d(T6DT5), D = the diazoate]. The Tm value of a duplex containing the diazoate, d(T6DT5).d(A5GA6), was much lower than that of a duplex containing a correct C:G base pair, d(T6CT5).d(A5GA6). These results show that the diazoate is generated as a stable intermediate in the reactions of dCyd with HNO2 and NO and that the major product is the diazoate but not dUrd in the initial stage of the reactions. Thus, once formed in vivo, the diazoate persists for long time in DNA and may act as a major cytotoxic and/or genotoxic lesion with biologically relevant doses of HNO2 and NO.
Collapse
Affiliation(s)
- T Suzuki
- Institute of Advanced Energy, Kyoto University, Uji, Japan
| | | | | | | | | | | | | | | |
Collapse
|
558
|
Golinelli MP, Chmiel NH, David SS. Site-directed mutagenesis of the cysteine ligands to the [4Fe-4S] cluster of Escherichia coli MutY. Biochemistry 1999; 38:6997-7007. [PMID: 10353811 DOI: 10.1021/bi982300n] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Escherichia coli DNA repair enzyme MutY plays an important role in the recognition and repair of 7, 8-dihydro-8-oxo-2'-deoxyguanosine:2'-deoxyadenosine (OG:A) mismatches in DNA [Michaels et al. (1992) Proc. Natl. Acad. Sci. U.S. A. 89, 7022-7025]. MutY prevents DNA mutations resulting from the misincorporation of A opposite OG by using N-glycosylase activity to remove the adenine base. An interesting feature of MutY is that it contains a [4Fe-4S]2+ cluster that has been shown to play an important role in substrate recognition [Porello, S. L., Cannon, M. J., David, S. S. (1998) Biochemistry 37, 6465-6475]. Herein, we have used site-directed mutagenesis to individually replace the cysteine ligands to the [4Fe-4S]2+ cluster of E. coli MutY with serine, histidine, and alanine. The extent to which the various mutations reduce the levels of protein overexpression suggests that coordination of the [4Fe-4S]2+ cluster provides stability to MutY in vivo. The ability of the mutated enzymes to bind to a substrate analogue DNA duplex and their in vivo activity were evaluated. Remarkably, the effects are both substitution and position dependent. For example, replacement of cysteine 199 with histidine provides a mutated enzyme that is expressed at high levels and exhibits DNA binding and in vivo activity similar to the WT enzyme. These results suggest that histidine coordination to the iron-sulfur cluster may be accommodated at this position in MutY. In contrast, replacement of cysteine 192 with histidine results in less efficient DNA binding and in vivo activity compared to the WT enzyme without affecting levels of overexpression. The results from the site-directed mutagenesis suggest that the structural properties of the iron-sulfur cluster coordination domain are important for both substrate DNA recognition and the in vivo activity of MutY.
Collapse
Affiliation(s)
- M P Golinelli
- Department of Chemistry, University of Utah, Salt Lake City 84112-0850, USA
| | | | | |
Collapse
|
559
|
Abalea V, Cillard J, Dubos MP, Sergent O, Cillard P, Morel I. Repair of iron-induced DNA oxidation by the flavonoid myricetin in primary rat hepatocyte cultures. Free Radic Biol Med 1999; 26:1457-66. [PMID: 10401609 DOI: 10.1016/s0891-5849(99)00010-6] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Oxidative DNA damage and its repair in primary rat hepatocyte cultures was investigated following 4 h of incubation with the toxic iron chelate, ferric nitrilotriacetate (Fe-NTA), in the presence or absence of the potent protective flavonoid myricetin (25-50-100 microM). Seven DNA base oxidation products were quantified in DNA extracts by gas chromatography-mass spectrometry (GC-MS) in selected ion monitoring mode. Concomitantly, DNA repair capacity of hepatocytes was estimated by the release of oxidized-base products into culture media, using the same GC-MS method. A genotoxic effect of Fe-NTA (100 microM) in hepatocytes was evidenced by a severe increase in DNA oxidation over basal levels, with accumulation in cellular DNA of five oxidation products derived from both purines and pyrimidines. This prooxidant effect of iron was also noted by an induction of lipid peroxidation, estimated by free malondialdehyde production. Addition of increasing concentrations of myricetin (25-50-100 microM) simultaneously with iron prevented both lipid peroxidation and accumulation of oxidation products in DNA. Moreover, as an activation of DNA repair pathways, myricetin stimulated the release of DNA oxidation bases into culture media, especially of purine-derived oxidation products. This removal of highly mutagenic oxidation products from DNA of hepatocytes might correspond to an activation of DNA excision-repair enzymes by myricetin. This was verified by RNA blot analysis of DNA polymerase beta gene expression which was induced by myricetin in a dose-dependent manner. This represented a novel and original mechanism of cytoprotection by myricetin against iron-induced genotoxicity via stimulation of DNA repair processes. Since iron-induced DNA damage and inefficient repair in hepatocytes could be related to genotoxicity and most probably to hepatocarcinogenesis, modulation of these processes in vitro by myricetin might be relevant in further prevention of liver cancer derived from iron overload pathologies.
Collapse
Affiliation(s)
- V Abalea
- Laboratoire de Biologie Cellulaire et Végétale, UFR des Sciences Pharmaceutiques et Biologiques, Rennes, France
| | | | | | | | | | | |
Collapse
|
560
|
Sandigursky M, Franklin WA. Thermostable uracil-DNA glycosylase from Thermotoga maritima a member of a novel class of DNA repair enzymes. Curr Biol 1999; 9:531-4. [PMID: 10339434 DOI: 10.1016/s0960-9822(99)80237-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Uracil-DNA glycosylase (UDG) is a ubiquitous enzyme found in eukaryotes and prokaryotes [1][2][3]. This enzyme removes uracil bases that are present in DNA as a result of either deamination of cytosine or misincorporation of dUMP instead of dTMP [4] [5], and it is the primary activity in the DNA base excision repair pathway. Although UDG activities have been shown to be present in several thermophiles [6][7][8], no sequences have been found that are complementary to the Escherichia coli ung gene, which encodes UDG [9]. Here, we describe a UDG from the thermophile Thermotoga maritima. The T. maritima UDG gene has a low level of homology to the E. coli G-T/U mismatch-specific DNA glycosylase gene (mug). The expressed protein is capable of removing uracil from DNA containing either a U-A or a U-G base pair and is heat-stable up to 75 degrees C. The enzyme is also active on single-stranded DNA containing uracil. Analogous genes appear to be present in several prokaryotic organisms, including thermophilic and mesophilic eubacteria as well as archaebacteria, the human-disease pathogens Treponema palladium and Rickettsia prowazekii, and the extremely radioresistant organism Deinococcus radiodurans. These findings suggest that the T. maritima UDG is a member of a new class of DNA repair enzymes.
Collapse
Affiliation(s)
- M Sandigursky
- Departments of Radiology and Radiation Oncology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | | |
Collapse
|
561
|
Slamenová D, Horváthová E, Kosíková B, Ruzeková L, Lábaj J. Detection of lignin biopolymer- and vitamin E-stimulated reduction of DNA strand breaks in H2O2- and MNNG-treated mammalian cells by the comet assay. Nutr Cancer 1999; 33:88-94. [PMID: 10227049 DOI: 10.1080/01635589909514753] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In this study the possible protective effects of water-soluble sulfur-free lignin biopolymer and vitamin E (alpha-tocopherol) on DNA in human VH10 cells and hamster V79 cells exposed to H2O2 and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) were investigated. The level of DNA damage (DNA strand breaks) was measured using single-cell gel electrophoresis, i.e., comet assay. Lignin biopolymer and vitamin E exhibited a protective effect against the overall DNA damage induced after H2O2 treatment. If H2O2-treated human cells were incubated for 90 minutes to ligate frank breaks of DNA, two lesion-specific enzymes, endonuclease III and formamidopyrimidine DNA glycosylase (FPG), significantly increased the level of DNA strand breaks originating from oxidized pyrimidines and purines. Preincubation of cells with lignin or vitamin E reduced mainly the level of oxidized pyrimidines. Reduction of oxidized purines was less evident. In addition, lignin biopolymer exhibited a protective effect against MNNG-induced DNA damage, whereas vitamin E exhibited a protective effect only against H2O2-induced DNA damage. These findings suggest that the antioxidant nature of lignin biopolymer enables a reduction of the level of frank breaks and of oxidized DNA bases in H2O2-treated cells, and its adsorptive capacity enables binding of nitroso compounds and reduction of alkylation in MNNG-treated cells.
Collapse
Affiliation(s)
- D Slamenová
- Department of Mutagenesis and Carcinogenesis, Cancer Research Institute of the Slovak Academy of Sciences, Bratislava, Slovak Republic
| | | | | | | | | |
Collapse
|
562
|
Kohen R. Skin antioxidants: their role in aging and in oxidative stress--new approaches for their evaluation. Biomed Pharmacother 1999; 53:181-92. [PMID: 10392290 DOI: 10.1016/s0753-3322(99)80087-0] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Skin is a highly metabolic tissue which possesses the largest surface area in the body and serves as the protective layer for internal organs [1]. Skin is also a major candidate and target of oxidative stress. It is designed to give both physical and biochemical protection, and is equipped with a large number of defense mechanisms. The skin tissue is exposed to a variety of damaging species which originate in the outer environment, in the skin itself, and in various endogenous sources [2, 3]. The structure of skin is quite complex being composed of several layers, each of which plays a specific role and carries out different functions [4]. Each layer is equipped with its own arsenal of defense molecules, and the various systems differ from each other based on the layer's susceptibility to oxidative stress and its function. It is generally agreed that one of the major and important contributions to skin aging, skin disorders and skin diseases results from reactive oxygen species (ROS) [1, 5]. Due to the high occurrence of potential biological targets for oxidative damage, skin is very susceptible to such reactions. For example, skin is rich in lipids, proteins, and DNA, all of which are extremely sensitive to the oxidation process [6-8]. Elucidation of the mechanisms involved in skin oxidation and the examination of the defense systems may contribute to the understanding of skin aging and of the mechanisms involved in the various pathological processes of skin. This review addresses the antioxidant defense mechanism of the skin, the role it plays during the aging process, and the role skin has following exposure to oxidative stresses.
Collapse
Affiliation(s)
- R Kohen
- Department of Pharmaceutics, School of Pharmacy, Hebrew University of Jerusalem, Israel
| |
Collapse
|
563
|
Haas BJ, Sandigursky M, Tainer JA, Franklin WA, Cunningham RP. Purification and characterization of Thermotoga maritima endonuclease IV, a thermostable apurinic/apyrimidinic endonuclease and 3'-repair diesterase. J Bacteriol 1999; 181:2834-9. [PMID: 10217775 PMCID: PMC93726 DOI: 10.1128/jb.181.9.2834-2839.1999] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An endonuclease IV homolog was identified as the product of a conceptual open reading frame in the genome of the hyperthermophilic bacterium Thermotoga maritima. The T. maritima endonuclease IV gene encodes a 287-amino-acid protein with 32% sequence identity to Escherichia coli endonuclease IV. The gene was cloned, and the expressed protein was purified and shown to have enzymatic activities that are characteristic of the endonuclease IV family of DNA repair enzymes, including apurinic/apyrimidinic endonuclease activity and repair activities on 3'-phosphates, 3'-phosphoglycolates, and 3'-trans-4-hydroxy-2-pentenal-5-phosphates. The T. maritima enzyme exhibits enzyme activity at both low and high temperatures. Circular dichroism spectroscopy indicates that T. maritima endonuclease IV has secondary structure similar to that of E. coli endonuclease IV and that the T. maritima endonuclease IV structure is more stable than E. coli endonuclease IV by almost 20 degrees C, beginning to rapidly denature only at temperatures approaching 90 degrees C. The presence of this enzyme, which is part of the DNA base excision repair pathway, suggests that thermophiles use a mechanism similar to that used by mesophiles to deal with the large number of abasic sites that arise in their chromosomes due to the increased rates of DNA damage at elevated temperatures.
Collapse
Affiliation(s)
- B J Haas
- Department of Biological Sciences, State University of New York at Albany, Albany, New York 12222, USA
| | | | | | | | | |
Collapse
|
564
|
Alseth I, Eide L, Pirovano M, Rognes T, Seeberg E, Bjørås M. The Saccharomyces cerevisiae homologues of endonuclease III from Escherichia coli, Ntg1 and Ntg2, are both required for efficient repair of spontaneous and induced oxidative DNA damage in yeast. Mol Cell Biol 1999; 19:3779-87. [PMID: 10207101 PMCID: PMC84209 DOI: 10.1128/mcb.19.5.3779] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Endonuclease III from Escherichia coli is the prototype of a ubiquitous DNA repair enzyme essential for the removal of oxidized pyrimidine base damage. The yeast genome project has revealed the presence of two genes in Saccharomyces cerevisiae, NTG1 and NTG2, encoding proteins with similarity to endonuclease III. Both contain the highly conserved helix-hairpin-helix motif, whereas only one (Ntg2) harbors the characteristic iron-sulfur cluster of the endonuclease III family. We have characterized these gene functions by mutant and enzyme analysis as well as by gene expression and intracellular localization studies. Targeted gene disruption of NTG1 and NTG2 produced mutants with greatly increased spontaneous and hydrogen peroxide-induced mutation frequency relative to the wild type, and the mutation response was further increased in the double mutant. Both enzymes were found to remove thymine glycol and 2, 6-diamino-4-hydroxy-5-N-methylformamidopyrimidine (faPy) residues from DNA with high efficiency. However, on UV-irradiated DNA, saturating concentrations of Ntg2 removed only half of the cytosine photoproducts released by Ntg1. Conversely, 5-hydroxycytosine was removed efficiently only by Ntg2. The enzymes appear to have different reaction modes, as judged from much higher affinity of Ntg2 for damaged DNA and more efficient borhydride trapping of Ntg1 to abasic sites in DNA despite limited DNA binding. Northern blot and promoter fusion analysis showed that NTG1 is inducible by cell exposure to DNA-damaging agents, whereas NTG2 is constitutively expressed. Ntg2 appears to be a nuclear enzyme, whereas Ntg1 was sorted both to the nucleus and to the mitochondria. We conclude that functions of both NTG1 and NTG2 are important for removal of oxidative DNA damage in yeast.
Collapse
Affiliation(s)
- I Alseth
- Department of Molecular Biology, Institute of Medical Microbiology, University of Oslo, The National Hospital, N-0027 Oslo, Norway
| | | | | | | | | | | |
Collapse
|
565
|
Li S, Smerdon MJ. Base excision repair of N-methylpurines in a yeast minichromosome. Effects of transcription, dna sequence, and nucleosome positioning. J Biol Chem 1999; 274:12201-4. [PMID: 10212183 DOI: 10.1074/jbc.274.18.12201] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Base excision repair of dimethyl sulfate induced N-methylpurines (NMPs) was measured in a yeast minichromosome that has a galactose-inducible GAL1:URA3 fusion gene, a constitutively expressed HIS3 gene, and varied regions of chromatin structure. Removal rates of NMPs varied dramatically (>20-fold) at different sites along three selected fragments encompassing a total length of 1775 base pairs. Repair of NMPs was not coupled to transcription, because the transcribed strands of HIS3 and induced GAL1:URA3 were not repaired faster than the nontranscribed strands. However, the repair rate of NMPs was significantly affected by the nearest neighbor nucleotides. Slow repair occurred at NMPs between purines, especially guanines, whereas fast repair occurred at NMPs between pyrimidines. NMPs between a purine and pyrimidine were repaired at moderate rates. Moreover, a rough correlation between nucleosome positions and repair rates exists in some but not all regions that were analyzed.
Collapse
Affiliation(s)
- S Li
- Department of Biochemistry and Biophysics, Washington State University, Pullman, Washington 99164-4660, USA
| | | |
Collapse
|
566
|
Wang P, Tumer NE. Pokeweed antiviral protein cleaves double-stranded supercoiled DNA using the same active site required to depurinate rRNA. Nucleic Acids Res 1999; 27:1900-5. [PMID: 10101199 PMCID: PMC148399 DOI: 10.1093/nar/27.8.1900] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ribosome-inactivating proteins (RIPs) are N-glycosylases that remove a specific adenine from the sarcin/ricin loop of the large rRNA in a manner analogous to N-glycosylases that are involved in DNA repair. Some RIPs have been reported to remove adenines from single-stranded DNA and cleave double-stranded supercoiled DNA. The molecular basis for the activity of RIPs on double-stranded DNA is not known. Pokeweed antiviral protein (PAP), a single-chain RIP from Phytolacca americana, cleaves supercoiled DNA into relaxed and linear forms. Double-stranded DNA treated with PAP contains apurinic/apyrimidinic (AP) sites due to the removal of adenine. Using an active-site mutant of PAP (PAPx) which does not depurinate rRNA, we present evidence that double-stranded DNA treated with PAPx does not contain AP sites and is not cleaved. These results demonstrate for the first time that PAP cleaves supercoiled double-stranded DNA using the same active site that is required for depurination of rRNA.
Collapse
Affiliation(s)
- P Wang
- Biotechnology Center and the Department of Plant Pathology, Foran Hall, Room 208, Cook College,Rutgers University, Dudley Road, New Brunswick, NJ 08903, USA
| | | |
Collapse
|
567
|
Souza-Pinto NC, Croteau DL, Hudson EK, Hansford RG, Bohr VA. Age-associated increase in 8-oxo-deoxyguanosine glycosylase/AP lyase activity in rat mitochondria. Nucleic Acids Res 1999; 27:1935-42. [PMID: 10101204 PMCID: PMC148404 DOI: 10.1093/nar/27.8.1935] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The mitochondrial theory of aging postulates that organisms age due to the accumulation of DNA damage and mutations in the multiple mitochondrial genomes, leading to mitochondrial dysfunction. Among the wide variety of DNA damage, 8-oxo-deoxyguanosine (8-oxo-dG) has received the most attention due to its mutagenicity and because of the possible correlation between its accumulation and pathological processes like cancer, degenerative diseases and aging. Although still controversial, many studies show that 8-oxo-dG accumulates with age in the mitochondrial (mt) DNA. However, little is known about the processing of this lesion and no study has yet examined whether mtDNA repair changes with age. Here, we report the first study on age-related changes in mtDNA repair, accomplished by assessing the cleavage activity of mitochondrial extracts towards an 8-oxo-dG-containing substrate. In this study, mitochondria obtained from rat heart and liver were used. We find that this enzymatic activity is higher in 12 and 23 month-old rats than in 6 month-old rats, in both liver and heart extracts. These mitochondrial extracts also cleave oligonucleotides containing a U:A mismatch, at the uracil position, reflecting the combined action of mitochondrial uracil DNA glycosylase (mtUDG) and mitochondrial apurinic/apyrimidinic (AP) endonucleases. The mtUDG activity did not change with age in liver mitochondria, but there was a small increase in activity from 6 to 23 months in rat heart extracts, after normalization to citrate synthase activity. Endonuclease G activity, measured by a plasmid relaxation assay, did not show any age-associated change in liver, but there was a significant decrease from 6 to 23 months in heart mitochondria. Our results suggest that the mitochondrial capacity to repair 8-oxo-dG, the main oxidative base damage suggested to accumulate with age in mtDNA, does not decrease, but rather increases with age. The specific increase in 8-oxo-dG endonuclease activity, rather than a general up-regulation of DNA repair in mitochondria, suggests an induction of the 8-oxo-dG-specific repair pathway with age.
Collapse
Affiliation(s)
- N C Souza-Pinto
- Laboratory of Molecular Genetics, Box 1, National Institute on Aging, National Institutes of Health,5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | | | | | | | | |
Collapse
|
568
|
Shroyer MJ, Bennett SE, Putnam CD, Tainer JA, Mosbaugh DW. Mutation of an active site residue in Escherichia coli uracil-DNA glycosylase: effect on DNA binding, uracil inhibition and catalysis. Biochemistry 1999; 38:4834-45. [PMID: 10200172 DOI: 10.1021/bi982986j] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The role of the conserved histidine-187 located in the leucine intercalation loop of Escherichia coli uracil-DNA glycosylase (Ung) was investigated. Using site-directed mutagenesis, an Ung H187D mutant protein was created, overproduced, purified to apparent homogeneity, and characterized in comparison to wild-type Ung. The properties of Ung H187D differed from Ung with respect to specific activity, substrate specificity, DNA binding, pH optimum, and inhibition by uracil analogues. Ung H187D exhibited a 55000-fold lower specific activity and a shift in pH optimum from pH 8.0 to 7.0. Under reaction conditions optimal for wild-type Ung (pH 8.0), the substrate preference of Ung H187D on defined single- and double-stranded oligonucleotides (25-mers) containing a site-specific uracil target was U/G-25-mer > U-25-mer > U/A-25-mer. However, Ung H187D processed these same DNA substrates at comparable rates at pH 7.0 and the activity was stimulated approximately 3-fold relative to the U-25-mer substrate. Ung H187D was less susceptible than Ung to inhibition by uracil, 6-amino uracil, and 5-fluorouracil. Using UV-catalyzed protein/DNA cross-linking to measure DNA binding affinity, the efficiency of Ung H187D binding to thymine-, uracil-, and apyrimidinic-site-containing DNA was (dT20) = (dT19-U) >/= (dT19-AP). Comparative analysis of the biochemical properties and the X-ray crystallographic structures of Ung and Ung H187D [Putnam, C. D., Shroyer, M. J. N., Lundquist, A. J., Mol, C. D., Arvai, A. S., Mosbaugh, D. W., and Tainer, J. A. (1999) J. Mol. Biol. 287, 331-346] provided insight regarding the role of His-187 in the catalytic mechanism of glycosylic bond cleavage. A novel mechanism is proposed wherein the developing negative charge on the uracil ring and concomitant polarization of the N1-C1' bond is sustained by resonance effects and hydrogen bonding involving the imidazole side chain of His-187.
Collapse
Affiliation(s)
- M J Shroyer
- Departments of Microbiology, Environmental and Molecular Toxicology, Biochemistry and Biophysics, and the Environmental Health Science Center, Oregon State University, Corvallis, Oregon 97331, USA
| | | | | | | | | |
Collapse
|
569
|
Izumi T, Malecki J, Chaudhry MA, Weinfeld M, Hill JH, Lee JC, Mitra S. Intragenic suppression of an active site mutation in the human apurinic/apyrimidinic endonuclease. J Mol Biol 1999; 287:47-57. [PMID: 10074406 DOI: 10.1006/jmbi.1999.2573] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The apurinic/apyrimidinic endonucleases (APE) contain several highly conserved sequence motifs. The glutamic acid residue in a consensus motif, LQE96TK98 in human APE (hAPE-1), is crucial because of its role in coordinating Mg2+, an essential cofactor. Random mutagenesis of the inactive E96A mutant cDNA, followed by phenotypic screening in Escherichia coli, led to isolation of an intragenic suppressor with a second site mutation, K98R. Although the Km of the suppressor mutant was about sixfold higher than that of the wild-type enzyme, their kcat values were similar for AP endonuclease activity. These results suggest that the E96A mutation affects only the DNA-binding step, but not the catalytic step of the enzyme. The 3' DNA phosphoesterase activities of the wild-type and the suppressor mutant were also comparable. No global change of the protein conformation is induced by the single or double mutations, but a local perturbation in the structural environment of tryptophan residues may be induced by the K98R mutation. The wild-type and suppressor mutant proteins have similar Mg2+ requirement for activity. These results suggest a minor perturbation in conformation of the suppressor mutant enabling an unidentified Asp or Glu residue to substitute for Glu96 in positioning Mg2+ during catalysis. The possibility that Asp70 is such a residue, based on its observed proximity to the metal-binding site in the wild-type protein, was excluded by site-specific mutation studies. It thus appears that another acidic residue coordinates with Mg2+ in the mutant protein. These results suggest a rather flexible conformation of the region surrounding the metal binding site in hAPE-1 which is not obvious from the X-ray crystallographic structure.
Collapse
Affiliation(s)
- T Izumi
- Sealy Center for Molecular Science, Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston, TX 77555-1079, USA
| | | | | | | | | | | | | |
Collapse
|
570
|
Harris RS, Kong Q, Maizels N. Somatic hypermutation and the three R's: repair, replication and recombination. Mutat Res 1999; 436:157-78. [PMID: 10095138 DOI: 10.1016/s1383-5742(99)00003-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Somatic hypermutation introduces single base changes into the rearranged variable (V) regions of antigen activated B cells at a rate of approximately 1 mutation per kilobase per generation. This is nearly a million-fold higher than the typical mutation rate in a mammalian somatic cell. Rampant mutation at this level could have a devastating effect, but somatic hypermutation is accurately targeted and tightly regulated. Here, we provide an overview of immunoglobulin gene somatic hypermutation; discuss mechanisms of mutation in model organisms that may be relevant to the hypermutation mechanism; and review recent advances toward understanding the possible role(s) of DNA repair, replication, and recombination in this fascinating process.
Collapse
Affiliation(s)
- R S Harris
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, 333 Cedar Street, New Haven, New Haven, CT 06520-8114, USA
| | | | | |
Collapse
|
571
|
Haushalter KA, Todd Stukenberg MW, Kirschner MW, Verdine GL. Identification of a new uracil-DNA glycosylase family by expression cloning using synthetic inhibitors. Curr Biol 1999; 9:174-85. [PMID: 10074426 DOI: 10.1016/s0960-9822(99)80087-6] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The cellular environment exposes DNA to a wide variety of endogenous and exogenous reactive species that can damage DNA, thereby leading to genetic mutations. DNA glycosylases protect the integrity of the genome by catalyzing the first step in the base excision-repair of lesions in DNA. RESULTS Here, we report a strategy to conduct genome-wide screening for expressed DNA glycosylases, based on their ability to bind to a library of four synthetic inhibitors that target the enzyme's active site. These inhibitors, used in conjunction with the in vitro expression cloning procedure, led to the identification of novel Xenopus and human proteins, xSMUG1 and hSMUG1, respectively, that efficiently excise uracil residues from DNA. Despite a lack of statistically significant overall sequence similarity to the two established classes of uracil-DNA glycosylases, the SMUG1 enzymes contain motifs that are hallmarks of a shared active-site structure and overall protein architecture. The unusual preference of SMUG1 for single-stranded rather than double-stranded DNA suggests a unique biological function in ridding the genome of uracil residues, which are potent endogenous mutagens. CONCLUSIONS The 'proteomics' approach described here has led to the isolation of a new family of uracil-DNA glycosylases. The three classes of uracil-excising enzymes (SMUG1 being the most recently discovered) represent a striking example of structural and functional conservation in the almost complete absence of sequence conservation.
Collapse
Affiliation(s)
- K A Haushalter
- Department of Chemistry and Chemical Biology Harvard University Cambridge Massachusetts 02138 USA
| | | | | | | |
Collapse
|
572
|
Rajewsky MF, Engelbergs J, Thomale J, Schweer T. Relevance of DNA repair to carcinogenesis and cancer therapy. Recent Results Cancer Res 1999; 154:127-46. [PMID: 10026996 DOI: 10.1007/978-3-642-46870-4_7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
DNA-reactive carcinogens and anticancer drugs induce many structurally distinct cytotoxic and potentially mutagenic DNA lesions. The capability of normal and malignant cells to recognize and repair different DNA lesions is an important variable influencing the risk of mutation and cancer as well as therapy resistance. Using monoclonal antibody-based immunoanalytical assays, very low amounts of defined carcinogen-DNA adducts can be quantified in bulk genomic DNA, individual genes, and in the nuclear DNA of single cells. The kinetics of DNA repair can thus be measured in a lesion-, gene-, and cell type-specific manner, and the DNA repair profiles of malignant cells can be monitored in individual patients. Even structurally very similar DNa lesions may be repaired with extremely different efficiency. The miscoding DNA alkylation products O6-methylguanine (O6-MeGua) and O6-ethylguanine (O6-EtGua), for example, differ only by one CH2 group. These lesions are formed in DNA upon exposure to N-methyl-N-nitrosourea (MeNU) or N-ethyl-N-nitrosourea (EtNU), both of which induce mammary adenocarcinomas in female rats at high yield. Unrepaired O6-alkylguanines cause transition mutations via mispairing during DNA replication. O6-MeGua is repaired at a similar slow rate in transcribed (H-ras, beta-actin) and inactive genes (IgE heavy chain; bulk DNA) of the target mammary epithelia (which express the repair protein O6-alkylguanine-DNA alkyltransferase at a very low level). O6-EtGua, however, via an alkyltransferase-independent mechanism, is excised approximately 20 times faster than O6-MeGua from the transcribed genes selectively. Correspondingly, G:C-->A:T transitions arising from unrepaired O6-MeGua at the second nucleotide of codon 12 (GGA) of the H-ras gene are frequently found in MeNU-induced mammary tumors, but are absent in their EtNU-induced counterparts.
Collapse
Affiliation(s)
- M F Rajewsky
- Institute of Cell Biology (Cancer Research) [IFZ], University of Essen Medical School, Germany
| | | | | | | |
Collapse
|
573
|
Parikh SS, Mol CD, Hosfield DJ, Tainer JA. Envisioning the molecular choreography of DNA base excision repair. Curr Opin Struct Biol 1999; 9:37-47. [PMID: 10047578 DOI: 10.1016/s0959-440x(99)80006-2] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Recent breakthroughs integrate individual DNA repair enzyme structures, biochemistry and biology to outline the structural cell biology of the DNA base excision repair pathways that are essential to genome integrity. Thus, we are starting to envision how the actions, movements, steps, partners and timing of DNA repair enzymes, which together define their molecular choreography, are elegantly controlled by both the nature of the DNA damage and the structural chemistry of the participating enzymes and the DNA double helix.
Collapse
Affiliation(s)
- S S Parikh
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, Molecular Biology MB4, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
574
|
Vaughan P, McCarthy TV. Glycosylase mediated polymorphism detection (GMPD)--a novel process for genetic analysis. GENETIC ANALYSIS : BIOMOLECULAR ENGINEERING 1999; 14:169-75. [PMID: 10084110 DOI: 10.1016/s1050-3862(98)00025-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A process for mutation and polymorphism detection is described here that offers significant advances over current mutation detection systems and that has the potential to significantly enhance molecular genetic analysis of human disease. This novel process is referred to as glycosylase mediated polymorphism detection (GMPD) and exploits the use of highly specific DNA glycosylase enzymes to excise substrate bases incorporated into amplified DNA. Action of the glycosylase leaves the DNA with one or more specific abasic sites which can be cleaved by enzymatic or chemical means. The GMPD process permits detection of polymorphisms and mutations using fragment size analysis or solid phase formats. GMPD is particularly suitable for genotyping of single nucleotide polymorphism (SNP) based markers and also permits efficient scanning of genes for unknown polymorphisms and mutations.
Collapse
Affiliation(s)
- P Vaughan
- National Food Biotechnology Centre, University College, Cork, Ireland.
| | | |
Collapse
|
575
|
Abstract
Living organisms are constantly exposed to oxidative stress from environmental agents and from endogenous metabolic processes. The resulting oxidative modifications occur in proteins, lipids and DNA. Since proteins and lipids are readily degraded and resynthesized, the most significant consequence of the oxidative stress is thought to be the DNA modifications, which can become permanent via the formation of mutations and other types of genomic instability. Many different DNA base changes have been seen following some form of oxidative stress, and these lesions are widely considered as instigators for the development of cancer and are also implicated in the process of aging. Several studies have documented that oxidative DNA lesions accumulate with aging, and it appears that the major site of this accumulation is mitochondrial DNA rather than nuclear DNA. The DNA repair mechanisms involved in the removal of oxidative DNA lesions are much more complex than previously considered. They involve base excision repair (BER) pathways and nucleotide excision repair (NER) pathways, and there is currently a great deal of interest in clarification of the pathways and their interactions. We have used a number of different approaches to explore the mechanism of the repair processes, to examine the repair of different types of oxidative lesions and to measure different steps of the repair processes. Furthermore, we can measure the DNA damage processing in the nuclear DNA and separately, in the mitochondrial DNA. Contrary to widely held notions, mitochondria have efficient DNA repair of oxidative DNA damage.
Collapse
Affiliation(s)
- V A Bohr
- Laboratory of Molecular Genetics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | | |
Collapse
|
576
|
Boiteux S, Radicella JP. Base excision repair of 8-hydroxyguanine protects DNA from endogenous oxidative stress. Biochimie 1999; 81:59-67. [PMID: 10214911 DOI: 10.1016/s0300-9084(99)80039-x] [Citation(s) in RCA: 181] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A particularly important stress for all cells is the one produced by reactive oxygen species (ROS) that are formed as a byproduct of endogenous metabolism or the exposure to environmental oxidizing agents. An oxidatively damaged guanine, 8-hydroxyguanine (8-OH-G), is abundantly produced in DNA exposed to ROS. The biological relevance of this kind of DNA damage has been unveiled by the study of two mutator genes in E. coli, fpg and mutY. Both genes code for DNA glycosylases that cooperate to prevent the mutagenic effects of 8-OH-G. Inactivation of any of those two genes leads to a spontaneous mutator phenotype characterized by the exclusive increase in G:C to T:A transversions. In the simple eukaryote Saccharomyces cerevisiae, the OGG1 gene encodes an 8-OH-G DNA glycosylase which is the functional homolog of the bacterial fpg gene product. Moreover, the inactivation of OGG1 in yeast creates a mutator phenotype that is also specific for the generation of G:C to T:A transversions. The presence of such system in mammals has been confirmed by the cloning of the OGG1 gene coding for a human homolog of the yeast enzyme. Human cells also possess a MutY homolog encoded by the MYH gene. Analysis of the human OGG1 gene and its transcripts in normal and tumoral tissues reveals alternative splicing, polymorphisms and somatic mutations. The aim of this review is to summarize recent findings dealing with the biochemical properties and the biological functions of 8-OH-G DNA glycosylases in bacterial, yeast, insect and mammalian cells. These results point to 8-OH-G as an endogenous source of mutations and to its likely involvement in the process of carcinogenesis.
Collapse
Affiliation(s)
- S Boiteux
- CEA, DSV, Département de Radiobiologie et Radiopathologie, UMR217 CNRS-CEA Radiobiologie Moléculaire et Cellulaire, Fontenay-aux-Roses, France
| | | |
Collapse
|
577
|
Waters TR, Gallinari P, Jiricny J, Swann PF. Human thymine DNA glycosylase binds to apurinic sites in DNA but is displaced by human apurinic endonuclease 1. J Biol Chem 1999; 274:67-74. [PMID: 9867812 DOI: 10.1074/jbc.274.1.67] [Citation(s) in RCA: 211] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In vitro, following the removal of thymine from a G.T mismatch, thymine DNA glycosylase binds tightly to the apurinic site it has formed. It can also bind to an apurinic site opposite S6-methylthioguanine (SMeG) or opposite any of the remaining natural DNA bases. It will therefore bind to apurinic sites formed by spontaneous depurination, chemical attack, or other glycosylases. In the absence of magnesium, the rate of dissociation of the glycosylase from such complexes is so slow (koff 1.8 - 3.6 x 10(-5) s-1; i.e. half-life between 5 and 10 h) that each molecule of glycosylase removes essentially only one molecule of thymine. In the presence of magnesium, the dissociation rates of the complexes with C.AP and SMeG.AP are increased more than 20-fold, allowing each thymine DNA glycosylase to remove more than one uracil or thymine from C.U and SMeG.T mismatches in DNA. In contrast, magnesium does not increase the dissociation of thymine DNA glycosylase from G.AP sites sufficiently to allow it to remove more than one thymine from G.T mismatches. The bound thymine DNA glycosylase prevents human apurinic endonuclease 1 (HAP1) cutting the apurinic site, so unless the glycosylase was displaced, the repair of apurinic sites would be very slow. However, HAP1 significantly increases the rate of dissociation of thymine DNA glycosylase from apurinic sites, presumably through direct interaction with the bound glycosylase. This effect is concentration-dependent and at the probable normal concentration of HAP1 in cells the dissociation would be fast. This interaction couples the first step in base excision repair, the glycosylase, to the second step, the apurinic endonuclease. The other proteins involved in base excision repair, polymerase beta, XRCC1, and DNA ligase III, do not affect the dissociation of thymine DNA glycosylase from the apurinic site.
Collapse
Affiliation(s)
- T R Waters
- Department of Biochemistry and Molecular Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom.
| | | | | | | |
Collapse
|
578
|
Abstract
Living organisms are constantly exposed to oxidative stress from environmental agents and from endogenous metabolic processes. The resulting oxidative modifications occur in proteins, lipids and DNA. Since proteins and lipids are readily degraded and resynthesized, the most significant consequence of the oxidative stress is thought to be the DNA modifications, which can become permanent via the formation of mutations and other types of genomic instability. Many different DNA base changes have been seen following some form of oxidative stress, and these lesions are widely considered as instigators for the development of cancer and are also implicated in the process of aging. Several studies have documented that oxidative DNA lesions accumulate with aging, and it appears that the major site of this accumulation is mitochondrial DNA rather than nuclear DNA. The DNA repair mechanisms involved in the removal of oxidative DNA lesions are much more complex than previously considered. They involve base excision repair (BER) pathways and nucleotide excision repair (NER) pathways, and there is currently a great deal of interest in clarification of the pathways and their interactions. We have used a number of different approaches to explore the mechanism of the repair processes, and we are able to examine the repair of different types of lesions and to measure different steps of the repair processes. Furthermore, we can measure the DNA damage processing in the nuclear DNA and separately, in the mitochondrial DNA. Contrary to widely held notions, mitochondria have efficient DNA repair of oxidative DNA damage and we are exploring the mechanisms. In a human disorder, Cockayne syndrome (CS), characterized by premature aging, there appear to be deficiencies in the repair of oxidative DNA damage in the nuclear DNA, and this may be the major underlying cause of the disease.
Collapse
Affiliation(s)
- V Bohr
- Laboratory of Molecular Genetics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | | | | | | |
Collapse
|
579
|
Sentürker S, Auffret van der Kemp P, You HJ, Doetsch PW, Dizdaroglu M, Boiteux S. Substrate specificities of the ntg1 and ntg2 proteins of Saccharomyces cerevisiae for oxidized DNA bases are not identical. Nucleic Acids Res 1998; 26:5270-6. [PMID: 9826748 PMCID: PMC148016 DOI: 10.1093/nar/26.23.5270] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Two genes of Saccharomyces cerevisiae, NTG1 and NTG2, encode proteins with a significant sequence homology to the endonuclease III of Escherichia coli. The Ntg1 and Ntg2 proteins were overexpressed in E.coli and purified to apparent homogeneity. The substrate specificity of Ntg1 and Ntg2 proteins for modified bases in oxidatively damaged DNA was investigated using gas chromatography/isotope-dilution mass spectrometry. The substrate used was calf-thymus DNA exposed to gamma-radiation in N2O-saturated aqueous solution. The results reveal excision by Ntg1 and Ntg2 proteins of six pyrimidine-derived lesions, 5-hydroxy-6-hydrothymine, 5-hydroxy-6-hydrouracil, 5-hydroxy-5-methylhydantoin, 5-hydroxyuracil, 5-hydroxycytosine and thymine glycol, and two purine-derived lesions, 2,6-diamino-4-hydroxy-5-formamidopyrimidine and 4,6-diamino-5-formamidopyrimidine from gamma-irradiated DNA. In contrast, Ntg1 and Ntg2 proteins do not release 8-hydroxyguanine or 8-hydroxyadenine from gamma-irradiated DNA. The Ntg1 and Ntg2 proteins also release 2, 6-diamino-4-hydroxy-5-N-methylformamido-pyrimidine from damaged poly(dG-dC).poly(dG-dC). Excision was measured as a function of enzyme concentration and time. Furthermore, kinetic parameters were determined for each lesion. The results show that kinetic constants varied among the different lesions for the same enzyme. We also investigated the capacity of the Ntg1 and Ntg2 proteins to cleave 34mer DNA duplexes containing a single 8-OH-Gua residue mispaired with each of the four DNA bases. The results show that the Ntg1 protein preferentially cleaves a DNA duplex containing 8-OH-Gua mispaired with a guanine. Moreover, the Ntg1 protein releases free 8-OH-Gua from 8-OH-Gua/Gua duplex but not from duplexes containing 8-OH-Gua mispaired with adenine, thymine or cytosine. In contrast, the Ntg2 protein does not incise duplexes containing 8-OH-Gua mispaired with any of the four DNA bases. These results demonstrate that substrate specificities of the Ntg1 and Ntg2 proteins are similar but not identical and clearly different from that of the endonuclease III of E.coli and its homologues in Schizosaccharomyces pombe or human cells.
Collapse
Affiliation(s)
- S Sentürker
- Chemical Science and Technology Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | | | | | | | | | | |
Collapse
|
580
|
Ye N, Holmquist GP, O'Connor TR. Heterogeneous repair of N-methylpurines at the nucleotide level in normal human cells. J Mol Biol 1998; 284:269-85. [PMID: 9813117 DOI: 10.1006/jmbi.1998.2138] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Base excision repair rates of dimethyl sulfate-induced 3-methyladenine and 7-methylguanine adducts were measured at nucleotide resolution along the PGK1 gene in normal human fibroblasts. Rates of 7-methylguanine repair showed a 30-fold dependence on nucleotide position, while position-dependent repair rates of 3-methyladenine varied only sixfold. Slow excision rates for 7-methylguanine bases afforded the opportunity to study their excision in vitro as a model for base excision repair. A two-component in vitro excision system, composed of human N-methylpurine-DNA glycosylase (MPG protein) and dimethyl sulfate-damaged DNA manifested sequence context-dependent rate differences for 7-methylguanine of up to 185-fold from position to position. This in vitro system reproduced both the global repair rate, and for the PGK1 coding region, the position-dependent repair patterns observed in cells. The equivalence of in vivo repair and in vitro excision data indicates that removal of 7-methylguanine by the MPG protein is the rate-limiting step in base excision repair of this lesion. DNA "repair rate footprints" associated with DNA glycosylase accessibility were observed only in a region with bound transcription factors. The "repair rate footprints" represent a rare chromatin component of 7-meG base excision repair otherwise dominated by sequence-context dependence. Comparison of in vivo repair rates to in vitro rates for 3-methyladenine, however, shows that the rate-limiting step determining position-dependent repair for this adduct is at one of the post-DNA glycosylase stages. In conclusion, this study demonstrates that a comparison of sequence context-dependent in vitro reaction rates to in vivo position-dependent repair rates permits the identification of steps responsible for position-dependent repair. Such analysis is now feasible for the different steps and adducts repaired via the base excision repair pathway.
Collapse
Affiliation(s)
- N Ye
- Department of Biology, Beckman Research Institute, City of Hope National Medical Center, 1450 East Duarte Road, Duarte, CA, 91010, USA
| | | | | |
Collapse
|
581
|
Imai K, Sarker AH, Akiyama K, Ikeda S, Yao M, Tsutsui K, Shohmori T, Seki S. Genomic structure and sequence of a human homologue (NTHL1/NTH1) of Escherichia coli endonuclease III with those of the adjacent parts of TSC2 and SLC9A3R2 genes. Gene 1998; 222:287-95. [PMID: 9831664 DOI: 10.1016/s0378-1119(98)00485-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Genomic cloning and sequencing of a human homologue (the gene name, endonuclease III-like 1; gene symbol, NTHL1 or NTH1) for Escherichia coli endonuclease III, that is involved in pyrimidine base excision repair, were performed. The sequence covered the entire NTHL1 gene consisting of six exons and five introns spanning 8kb with 5' flanking (8kb) and 3' flanking (3.8kb) regions. Southern blot analysis suggested that the NTHL1 gene exists as a single copy in a haploid genome. The sequenced 5' flanking region lacks typical TATA and CAAT boxes, but contains a CpG island having putative binding sites for several transcription factors such as Ets1 and Sp1. The NTHL1 gene lies immediately adjacent to the tuberous sclerosis 2 (TSC2) gene on chromosome 16p13.3 in a 5'-to-5' orientation. Transcription initiation sites of both NTHL1 and TSC2 genes were suggested to be multiple by 5' RACE experiments. The northern hybridization experiment suggested that both genes are expressed in all tissues, but at different levels. Downstream of the NTHL1 gene, the gene for the regulatory factor 2 (SLC9A3R2/E3KARP; also called OCTS2, TKA-1 and SIP-1) of the solute carrier family 9 (sodium/hydrogen exchanger), isoform A3, lies in a 3'-to-3' orientation. This paper demonstrates for the first time the spatial relationship of these three genes (TSC2, NTHL1 and SLC9A3R2) at the nucleotide level, and the presence of multiple transcription initiation sites of the NTHL1 and TSC2 genes.
Collapse
Affiliation(s)
- K Imai
- Department of Molecular Biology, Institute of Cellular and Molecular Biology, Okayama University Medical School, Okayama 700-8558, Japan
| | | | | | | | | | | | | | | |
Collapse
|
582
|
Hazra TK, Izumi T, Maidt L, Floyd RA, Mitra S. The presence of two distinct 8-oxoguanine repair enzymes in human cells: their potential complementary roles in preventing mutation. Nucleic Acids Res 1998; 26:5116-22. [PMID: 9801308 PMCID: PMC147966 DOI: 10.1093/nar/26.22.5116] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
8-Oxoguanine (8-oxoG), induced by reactive oxygen species (ROS) and ionizing radiation, is arguably the most important mutagenic lesion in DNA. This oxidized base, because of its mispairing with A, induces GC-->TA transversion mutations often observed spontaneously in tumor cells. The human cDNA encoding the repair enzyme 8-oxoG-DNA glycosylase (OGG-1) has recently been cloned, however, its activity was never detected in cells. Here we show that the apparent lack of this activity could be due to the presence of an 8-oxoG-specific DNA binding protein. Moreover, we demonstrate the presence of two antigenically distinct OGG activities with an identical reaction mechanism in human cell (HeLa) extracts. The 38 kDa OGG-1, identical to the cloned enzyme, cleaves 8-oxoG when paired with cytosine, thymine and guanine but not adenine in DNA. In contrast, the newly discovered 36 kDa OGG-2 prefers 8-oxoG paired with G and A. We propose that OGG-1 and OGG-2 have distinct antimutagenic functions in vivo . OGG-1 prevents mutation by removing 8-oxoG formed in DNA in situ and paired with C, while OGG-2 removes 8-oxoG that is incorporated opposite A in DNA from ROS-induced 8-oxodGTP. We predict that OGG-2 specifically removes such 8-oxoG residues only from the nascent strand, possibly by utilizing the same mechanism as the DNA mismatch repair pathway.
Collapse
Affiliation(s)
- T K Hazra
- Sealy Center for Molecular Science and Department of Human Biological Chemistry and Genetics,University of Texas Medical Branch, Galveston, TX 77555
| | | | | | | | | |
Collapse
|
583
|
Kraszewska E, Dobrzańska M, Tudek B. Tobacco BY-2 cells excise both 3-methyladenine and 7-methylguanine from methylated DNA. Mutat Res 1998; 409:91-5. [PMID: 9838925 DOI: 10.1016/s0921-8777(98)00046-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Two of the major products in DNA resulting from exposure to alkylating agents are 7-methylguanine and 3-methyladenine. N-methylpurine-DNA-glycosylase is required for excision of these lesions. Recently, the 3-methyladenine-DNA-glycosylase gene of Arabidopsis thaliana was cloned and shown to be involved only in repair of 3-methyladenine. In BY-2 tobacco cells, we showed an enzymatic activity which excised both 3-methyladenine and 7-methylguanine from methylated DNA.
Collapse
Affiliation(s)
- E Kraszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| | | | | |
Collapse
|
584
|
Hang B, Medina M, Fraenkel-Conrat H, Singer B. A 55-kDa protein isolated from human cells shows DNA glycosylase activity toward 3,N4-ethenocytosine and the G/T mismatch. Proc Natl Acad Sci U S A 1998; 95:13561-6. [PMID: 9811839 PMCID: PMC24858 DOI: 10.1073/pnas.95.23.13561] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/1998] [Indexed: 12/25/2022] Open
Abstract
Etheno adducts in DNA arise from multiple endogenous and exogenous sources. Of these adducts we have reported that, 1,N6-ethenoadenine (epsilonA) and 3,N4-ethenocytosine (epsilonC) are removed from DNA by two separate DNA glycosylases. We later confirmed these results by using a gene knockout mouse lacking alkylpurine-DNA-N-glycosylase, which excises epsilonA. The present work is directed toward identifying and purifying the human glycosylase activity releasing epsilonC. HeLa cells were subjected to multiple steps of column chromatography, including two epsilonC-DNA affinity columns, which resulted in >1,000-fold purification. Isolation and renaturation of the protein from SDS/polyacrylamide gel showed that the epsilonC activity resides in a 55-kDa polypeptide. This apparent molecular mass is approximately the same as reported for the human G/T mismatch thymine-DNA glycosylase. This latter activity copurified to the final column step and was present in the isolated protein band having epsilonC-DNA glycosylase activity. In addition, oligonucleotides containing epsilonC.G or G/T(U), could compete for epsilonC protein binding, further indicating that the epsilonC-DNA glycosylase is specific for both types of substrates in recognition. The same substrate specificity for epsilonC also was observed in a recombinant G/T mismatch DNA glycosylase from the thermophilic bacterium, Methanobacterium thermoautotrophicum THF.
Collapse
Affiliation(s)
- B Hang
- Donner Laboratory, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
585
|
Felix CA, Walker AH, Lange BJ, Williams TM, Winick NJ, Cheung NK, Lovett BD, Nowell PC, Blair IA, Rebbeck TR. Association of CYP3A4 genotype with treatment-related leukemia. Proc Natl Acad Sci U S A 1998; 95:13176-81. [PMID: 9789061 PMCID: PMC23750 DOI: 10.1073/pnas.95.22.13176] [Citation(s) in RCA: 242] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Epipodophyllotoxins are associated with leukemias characterized by translocations of the MLL gene at chromosome band 11q23 and other translocations. Cytochrome P450 (CYP) 3A metabolizes epipodophyllotoxins and other chemotherapeutic agents. CYP3A metabolism generates epipodophyllotoxin catechol and quinone metabolites, which could damage DNA. There is a polymorphism in the 5' promoter region of the CYP3A4 gene (CYP3A4-V) that might alter the metabolism of anticancer drugs. We examined 99 de novo and 30 treatment-related leukemias with a conformation-sensitive gel electrophoresis assay for the presence of the CYP3A4-V. In all treatment-related cases, there was prior exposure to one or more anticancer drugs metabolized by CYP3A. Nineteen of 99 de novo (19%) and 1 of 30 treatment-related (3%) leukemias carried the CYP3A4-V (P = 0.026; Fisher's Exact Test, FET). Nine of 42 de novo leukemias with MLL gene translocations (21%), and 0 of 22 treatment-related leukemias with MLL gene translocations carried the CYP3A4-V (P = 0. 016, FET). This relationship remained significant when 19 treatment-related leukemias with MLL gene translocations that followed epipodophyllotoxin exposure were compared with the same 42 de novo cases (P = 0.026, FET). These data suggest that individuals with CYP3A4-W genotype may be at increased risk for treatment-related leukemia and that epipodophyllotoxin metabolism by CYP3A4 may contribute to the secondary cancer risk. The CYP3A4-W genotype may increase production of potentially DNA-damaging reactive intermediates. The variant may decrease production of the epipodophyllotoxin catechol metabolite, which is the precursor of the potentially DNA-damaging quinone.
Collapse
Affiliation(s)
- C A Felix
- Division of Oncology, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
586
|
DeMott MS, Zigman S, Bambara RA. Replication protein A stimulates long patch DNA base excision repair. J Biol Chem 1998; 273:27492-8. [PMID: 9765279 DOI: 10.1074/jbc.273.42.27492] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two pathways for completion of DNA base excision repair (BER) have recently emerged. In one, called short patch BER, only the damaged nucleotide is replaced, whereas in the second, known as long patch BER, the monobasic lesion is removed along with additional downstream nucleotides. Flap endonuclease 1, which preferentially cleaves unannealed 5'-flap structures in DNA, has been shown to play a crucial role in the long patch mode of repair. This nuclease will efficiently release 5'-terminal abasic lesions as part of an intact oligonucleotide when cleavage is combined with strand displacement synthesis. Further gap filling and ligation complete repair. We reconstituted the final steps of long patch base excision repair in vitro using calf DNA polymerase epsilon to provide strand displacement synthesis, human flap endonuclease 1, and human DNA ligase I. Replication protein A is an important constituent of the DNA replication machinery. It also has been shown to interact with an early component of base excision repair: uracil glycosylase. Here we show that human replication protein A greatly stimulates long patch base excision repair.
Collapse
Affiliation(s)
- M S DeMott
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | |
Collapse
|
587
|
Lau AY, Schärer OD, Samson L, Verdine GL, Ellenberger T. Crystal structure of a human alkylbase-DNA repair enzyme complexed to DNA: mechanisms for nucleotide flipping and base excision. Cell 1998; 95:249-58. [PMID: 9790531 DOI: 10.1016/s0092-8674(00)81755-9] [Citation(s) in RCA: 225] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
DNA N-glycosylases are base excision-repair proteins that locate and cleave damaged bases from DNA as the first step in restoring the genetic blueprint. The human enzyme 3-methyladenine DNA glycosylase removes a diverse group of damaged bases from DNA, including cytotoxic and mutagenic alkylation adducts of purines. We report the crystal structure of human 3-methyladenine DNA glycosylase complexed to a mechanism-based pyrrolidine inhibitor. The enzyme has intercalated into the minor groove of DNA, causing the abasic pyrrolidine nucleotide to flip into the enzyme active site, where a bound water is poised for nucleophilic attack. The structure shows an elegant means of exposing a nucleotide for base excision as well as a network of residues that could catalyze the in-line displacement of a damaged base from the phosphodeoxyribose backbone.
Collapse
Affiliation(s)
- A Y Lau
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
588
|
Otterlei M, Haug T, Nagelhus TA, Slupphaug G, Lindmo T, Krokan HE. Nuclear and mitochondrial splice forms of human uracil-DNA glycosylase contain a complex nuclear localisation signal and a strong classical mitochondrial localisation signal, respectively. Nucleic Acids Res 1998; 26:4611-7. [PMID: 9753728 PMCID: PMC147895 DOI: 10.1093/nar/26.20.4611] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nuclear (UNG2) and mitochondrial (UNG1) forms of human uracil-DNA glycosylase are both encoded by the UNG gene but have different N-terminal sequences. We have expressed fusion constructs of truncated or site-mutated UNG cDNAs and green fluorescent protein cDNA and studied subcellular sorting. The unique 44 N-terminal amino acids in UNG2 are required, but not sufficient, for complete sorting to nuclei. In this part the motif R17K18R19is essential for sorting. The complete nuclear localization signal (NLS) in addition requires residues common to UNG2 and UNG1 within the 151 N-terminal residues. Replacement of certain basic residues within this region changed the pattern of subnuclear distribution of UNG2. The 35 unique N-terminal residues in UNG1 constitute a strong and complete mitochondrial localization signal (MLS) which when placed at the N-terminus of UNG2 overrides the NLS. Residues 11-28 in UNG1 have the potential of forming an amphiphilic helix typical of MLSs and residues 1-28 are essential and sufficient for mitochondrial import. These results demonstrate that UNG1 contains a classical and very strong MLS, whereas UNG2 contains an unusually long and complex NLS, as well as subnuclear targeting signals in the region common to UNG2 and UNG1.
Collapse
Affiliation(s)
- M Otterlei
- Institute of Cancer Research and Molecular Biology and Department of Physics, Norwegian University of Science and Technology, N-7005 Trondheim, Norway
| | | | | | | | | | | |
Collapse
|
589
|
Sarker AH, Ikeda S, Nakano H, Terato H, Ide H, Imai K, Akiyama K, Tsutsui K, Bo Z, Kubo K, Yamamoto K, Yasui A, Yoshida MC, Seki S. Cloning and characterization of a mouse homologue (mNthl1) of Escherichia coli endonuclease III. J Mol Biol 1998; 282:761-74. [PMID: 9743625 DOI: 10.1006/jmbi.1998.2042] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endonuclease III (endoIII; nth gene product) of Escherichia coli is known to be a DNA repair enzyme having a relatively broad specificity for damaged pyrimidine bases of DNA. Here, we describe the cloning and characterization of the cDNA and the gene for a mouse homologue (mNthl1/mNth1) of endoIII. The cDNA was cloned from a mouse T-cell cDNA library with a probe prepared by PCR using the library and specific PCR primers synthesized based on the reported information of partial amino acid sequences of bovine NTHL1/NTH1 and of EST Data Bases. The cDNA is 1025 nucleotides long and encodes a protein consisting of 300 amino acids with a predicted molecular mass of 33.6 kDa. The amino acid sequence exhibits significant homologies to those of endoIII and its prokaryotic and eukaryotic homologues. The recombinant mNthl1 with a hexahistidine tag was overexpressed in a nth::cmr nei::Kmr double mutant of E. coli, and purified to apparent homogeneity. The enzyme showed thymine glycol DNA glycosylase, urea DNA glycosylase and AP lyase activities. Northern blot analysis indicated that mNthl1 mRNA is about 1 kb and is expressed ubiquitously. A 15 kb DNA fragment containing the mNthl1 gene was cloned from a mouse genomic library and sequenced. The gene consists of six exons and five introns spanning 6.09 kb. The sequenced 5' flanking region lacks a typical TATA box, but contains a CAAT box and putative binding sites for several transcription factors such as Ets, Sp1, AP-1 and AP-2. The mNthl1 gene was shown to lie immediately adjacent to the tuberous sclerosis 2 (Tsc2) gene in a 5'-to-5' orientation by sequence analysis and was assigned to chromosome 17A3 by in situ hybridization.
Collapse
Affiliation(s)
- A H Sarker
- Institute of Cellular & Molecular Biology, Okayama University Medical School, Okayama 700-8558, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
590
|
Sanderson RJ, Mosbaugh DW. Fidelity and mutational specificity of uracil-initiated base excision DNA repair synthesis in human glioblastoma cell extracts. J Biol Chem 1998; 273:24822-31. [PMID: 9733786 DOI: 10.1074/jbc.273.38.24822] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The fidelity of DNA synthesis associated with uracil-initiated base excision repair was measured in human whole cell extracts. An M13mp2 lacZalpha DNA-based reversion assay was developed to assess the error frequency of DNA repair synthesis at a site-specific uracil residue. All three possible base substitution errors were detected at the uracil target causing reversion of opal codon 14 in the Escherichia coli lacZalpha gene. Using human glioblastoma U251 whole cell extracts, approximately 50% of the heteroduplex uracil-containing DNA substrate was completely repaired, as determined by the insensitivity of form I DNA reaction products to cleavage by a combined treatment of E. coli uracil-DNA glycosylase and endonuclease IV. The majority of repair occurred by the uracil-initiated base excision repair pathway, since the addition of the bacteriophage PBS2 uracil-DNA glycosylase inhibitor protein to extracts significantly blocked this process. In addition, the formation of repaired form I DNA molecules occurred concurrently with limited DNA synthesis, which was largely restricted to the HinfI DNA fragment initially containing the uracil residue and specific to the uracil-containing DNA strand. Based on the reversion frequency of repaired M13mp2 DNA, the fidelity of DNA repair synthesis at the target was determined to be about one misincorporated nucleotide per 1900 repaired uracil residues. The major class of base substitutions propagated transversion mutations, which were distributed almost equally between T to G and T to A changes in the template. A similar mutation frequency was also observed using whole cell extracts from human colon adenocarcinoma LoVo cells, suggesting that mismatch repair did not interfere with the fidelity measurements.
Collapse
Affiliation(s)
- R J Sanderson
- Departments of Agricultural Chemistry and Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, USA
| | | |
Collapse
|
591
|
Affiliation(s)
- R S Lloyd
- Center for Molecular Science, University of Texas Medical Branch, Galveston 77555-1071, USA.
| |
Collapse
|
592
|
Miao F, Bouziane M, O'Connor TR. Interaction of the recombinant human methylpurine-DNA glycosylase (MPG protein) with oligodeoxyribonucleotides containing either hypoxanthine or abasic sites. Nucleic Acids Res 1998; 26:4034-41. [PMID: 9705516 PMCID: PMC147787 DOI: 10.1093/nar/26.17.4034] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Methylpurine-DNA glycosylases (MPG proteins, 3-methyladenine-DNA glycosylases) excise numerous damaged bases from DNA during the first step of base excision repair. The damaged bases removed by these proteins include those induced by both alkylating agents and/or oxidizing agents. The intrinsic kinetic parameters (k(cat) and K(m)) for the excision of hypoxanthine by the recombinant human MPG protein from a 39 bp oligodeoxyribonucleotide harboring a unique hypoxanthine were determined. Comparison with other reactions catalyzed by the human MPG protein suggests that the differences in specificity are primarily in product release and not binding. Analysis of MPG protein binding to the 39 bp oligodeoxyribonucleotide revealed that the apparent dissociation constant is of the same order of magnitude as the K(m) and that a 1:1 complex is formed. The MPG protein also forms a strong complex with the product of excision, an abasic site, as well as with a reduced abasic site. DNase I footprinting experiments with the MPG protein on an oligodeoxyribonucleotide with a unique hypoxanthine at a defined position indicate that the protein protects 11 bases on the strand with the hypoxanthine and 12 bases on the complementary strand. Competition experiments with different length, double-stranded, hypoxanthine-containing oligodeoxyribonucleotides show that the footprinted region is relatively small. Despite the small footprint, however, oligodeoxyribonucleotides comprising <15 bp with a hypoxanthine have a 10-fold reduced binding capacity compared with hypoxanthine-containing oligodeoxyribonucleotides >20 bp in length. These results provide a basis for other structural studies of the MPG protein with its targets.
Collapse
Affiliation(s)
- F Miao
- Beckman Research Institute, City of Hope National Medical Center, 1450 East Duarte Road, Duarte, CA 91010, USA
| | | | | |
Collapse
|
593
|
Muller-Weeks S, Mastran B, Caradonna S. The nuclear isoform of the highly conserved human uracil-DNA glycosylase is an Mr 36,000 phosphoprotein. J Biol Chem 1998; 273:21909-17. [PMID: 9705330 DOI: 10.1074/jbc.273.34.21909] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously demonstrated that human cells contain multiple forms of uracil-DNA glycosylase (Caradonna, S. J., Ladner, R., Hansbury, M., Kosciuk, M., Lynch, F., and Muller, S. J. (1996) Exp. Cell Res. 222, 345-359). One of these is an Mr 29,000 processed form of the highly conserved uracil-DNA glycosylase (UDG1) located in the mitochondria. The others are located in the nucleus and migrate as a group of at least three distinct bands within the 35,000-37,000 molecular weight range. In this report, we perform a detailed characterization of the Mr 35,000-37,000 purified proteins. To accomplish this, uracil-DNA glycosylases were affinity purified from HeLa cell nuclear extracts. The proteins were separated by SDS-PAGE, and their identities were verified by renaturation and activity assays. The three protein bands were individually digested with cyanogen bromide, and the resulting peptide fragments were analyzed by direct amino acid sequencing. Peptide sequence, derived from each band, was identical and corresponded to a recently identified isoform of UDG1. This isoform (UDG1A) has a unique 44-amino acid N-terminal region and a C-terminal region that is identical to UDG1. To begin to study the signals required for nuclear targeting, the N-terminal regions of UDG1 and UDG1A were isolated and cloned into pEGFP-N2 to generate fusions with a red-shifted variant of green fluorescent protein (GFP). When these constructs were transfected into NIH3T3 cells, UDG1/pEGFP was targeted to the mitochondria, and UDG1A/pEGFP was targeted to the nucleus. Further studies, using deletion mutants, demonstrate that the nuclear localization signal resides within the first 20 amino acids of UDG1A. To investigate the possibility that the heterogeneity observed on SDS-PAGE results from post-translational modification(s), the UDG/pEGFP fusion constructs were transfected into NIH3T3 cells, and the cells were metabolically labeled with [32P]orthophosphate. Results from these experiments show that UDG1A is a phosphoprotein. Subsequent phosphoamino acid analysis revealed that UDG1A is phosphorylated on both serine and threonine residues. As a final characterization, RNase protection assays were performed to examine expression of each of these isoforms. These studies demonstrate that UDG1A is expressed in a wide variety of cell types and that message levels are elevated in transformed cells.
Collapse
Affiliation(s)
- S Muller-Weeks
- Department of Molecular Biology, University of Medicine and Dentistry of New Jersey, School of Osteopathic Medicine, Stratford, New Jersey 08084, USA.
| | | | | |
Collapse
|
594
|
Ikeda S, Biswas T, Roy R, Izumi T, Boldogh I, Kurosky A, Sarker AH, Seki S, Mitra S. Purification and characterization of human NTH1, a homolog of Escherichia coli endonuclease III. Direct identification of Lys-212 as the active nucleophilic residue. J Biol Chem 1998; 273:21585-93. [PMID: 9705289 DOI: 10.1074/jbc.273.34.21585] [Citation(s) in RCA: 195] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human endonuclease III (hNTH1), a homolog of the Escherichia coli enzyme (Nth), is a DNA glycosylase with abasic (apurinic/apyrimidinic (AP)) lyase activity and specifically cleaves oxidatively damaged pyrimidines in DNA. Its cDNA was cloned, and the full-length enzyme (304 amino acid residues) was expressed as a glutathione S-transferase fusion polypeptide in E. coli. Purified wild-type protein with two additional amino acid residues and a truncated protein with deletion of 22 residues at the NH2 terminus were equally active and had absorbance maxima at 280 and 410 nm, the latter due to the presence of a [4Fe-4S]cluster, as in E. coli Nth. The enzyme cleaved thymine glycol-containing form I plasmid DNA and a dihydrouracil (DHU)-containing oligonucleotide duplex. The protein had a molar extinction coefficient of 5.0 x 10(4) and a pI of 10. With the DHU-containing oligonucleotide duplex as substrate, the Km was 47 nM, and kcat was approximately 0.6/min, independent of whether DHU paired with G or A. The enzyme carries out beta-elimination and forms a Schiff base between the active site residue and the deoxyribose generated after base removal. The prediction of Lys-212 being the active site was confirmed by sequence analysis of the peptide-oligonucleotide adduct. Furthermore, replacing Lys-212 with Gln inactivated the enzyme. However, replacement with Arg-212 yielded an active enzyme with about 85-fold lower catalytic specificity than the wild-type protein. DNase I footprinting with hNTH1 showed protection of 10 nucleotides centered around the base lesion in the damaged strand and a stretch of 15 nucleotides (with the G opposite the lesion at the 5'-boundary) in the complementary strand. Immunological studies showed that HeLa cells contain a single hNTH species of the predicted size, localized in both the nucleus and the cytoplasm.
Collapse
Affiliation(s)
- S Ikeda
- Sealy Center for Molecular Science, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
595
|
Glassner BJ, Rasmussen LJ, Najarian MT, Posnick LM, Samson LD. Generation of a strong mutator phenotype in yeast by imbalanced base excision repair. Proc Natl Acad Sci U S A 1998; 95:9997-10002. [PMID: 9707589 PMCID: PMC21450 DOI: 10.1073/pnas.95.17.9997] [Citation(s) in RCA: 153] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Increased spontaneous mutation is associated with increased cancer risk. Here, by using a model system, we show that spontaneous mutation can be increased several hundred-fold by a simple imbalance between the first two enzymes involved in DNA base excision repair. The Saccharomyces cerevisiae MAG1 3-methyladenine (3MeA) DNA glycosylase, when expressed at high levels relative to the apurinic/apyrimidinic endonuclease, increases spontaneous mutation by up to approximately 600-fold in S. cerevisiae and approximately 200-fold in Escherichia coli. Genetic evidence suggests that, in yeast, the increased spontaneous mutation requires the generation of abasic sites and the processing of these sites by the REV1/REV3/REV7 lesion bypass pathway. Comparison of the mutator activity produced by Mag1, which has a broad substrate range, with that produced by the E. coli Tag 3MeA DNA glycosylase, which has a narrow substrate range, indicates that the removal of endogenously produced 3MeA is unlikely to be responsible for the mutator effect of Mag1. Finally, the human AAG 3-MeA DNA glycosylase also can produce a small (approximately 2-fold) but statistically significant increase in spontaneous mutation, a result which could have important implications for carcinogenesis.
Collapse
Affiliation(s)
- B J Glassner
- Department of Cancer Cell Biology, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
596
|
Kaur B, Avery AM, Doetsch PW. Expression, purification, and characterization of ultraviolet DNA endonuclease from Schizosaccharomyces pombe. Biochemistry 1998; 37:11599-604. [PMID: 9708997 DOI: 10.1021/bi981008c] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Ultraviolet damage endonuclease (UVDE) is a 68.7 kDa DNA repair enzyme of Schizosaccharomyces pombe that recognizes cyclobutane pyrimidine dimers (CPDs) and 6-4 photoproducts (6-4 PPs). UVDE is thought to initiate the first step in an alternative excision repair pathway for removal of UV light-induced DNA damage. We have overexpressed Delta228-UVDE, an active truncated form of UVDE, and have purified this protein to apparent homogeneity. We have characterized purified Delta228-UVDE with respect to its physical properties, divalent cation requirements, and kinetic parameters on oligodeoxynucleotide substrates containing a single CPD. DNA strand cleavage analysis indicates that both full-length UVDE and Delta228-UVDE incise the CPD-containing strand immediately 5' to the lesion. These results provide further insight into the UVDE-mediated alternative excision repair pathway.
Collapse
Affiliation(s)
- B Kaur
- Department of Biochemistry, Division of Cancer Biology, Radiation and Oncology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
597
|
Abstract
The time course of removal of thymine by thymine DNA glycosylase has been measured in vitro. Each molecule of thymine DNA glycosylase removes only one molecule of thymine from DNA containing a G.T mismatch because it binds tightly to the apurinic DNA site left after removal of thymine. The 5'-flanking base pair to G.T mismatches influences the rate of removal of thymine: kcat values with C.G, T.A, G.C, and A.T as the 5'-base pair were 0.91, 0.023, 0. 0046, and 0.0013 min-1, respectively. Thymine DNA glycosylase can also remove thymine from mismatches with S6-methylthioguanine, but, unlike G.T mismatches, a 5'-C.G does not have a striking effect on the rate: kcat values for removal of thymine from SMeG.T with C.G, T. A, G.C, and A.T as the 5'-base pair were 0.026, 0.018, 0.0017, and 0. 0010 min-1, respectively. Thymine removal is fastest when it is from a G.T mismatch with a 5'-flanking C.G pair, suggesting that the rapid reaction of this substrate involves contacts between the enzyme and oxygen 6 or the N-1 hydrogen of the mismatched guanine as well as the 5'-flanking C.G pair. Disrupting either of these sets of contacts (i.e. replacing the 5'-flanking C.G base pair with a T.A or replacing the G.T mismatch with SMeG.T) has essentially the same effect on rate as disrupting both sets (i.e. replacing CpG.T with TpSMeG.T), and so these contacts are probably cooperative. The glycosylase removes uracil from G.U, C.U, and T.U base pairs faster than it removes thymine from G.T. It can even remove uracil from A.U base pairs, although at a very much lower rate. Thus, thymine DNA glycosylase may play a backup role to the more efficient general uracil DNA glycosylase.
Collapse
Affiliation(s)
- T R Waters
- Department of Biochemistry and Molecular Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom.
| | | |
Collapse
|
598
|
Nicolas E, Beggs JM, Haltiwanger BM, Taraschi TF. A new class of DNA glycosylase/apurinic/apyrimidinic lyases that act on specific adenines in single-stranded DNA. J Biol Chem 1998; 273:17216-20. [PMID: 9642291 DOI: 10.1074/jbc.273.27.17216] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although the biological function of DNA glycosylases is to protect the genome by removal of potentially cytotoxic or mutagenic bases, this investigation describes the existence of natural DNA glycosylases with activity on undamaged, nonmispaired bases. Gelonin, pokeweed antiviral protein, and ricin, previously described as ribosome-inactivating proteins, are shown to damage single-stranded DNA by removal of a protein-specific set of adenines and cleavage at the resulting abasic sites. Using an oligonucleotide as the substrate reveals that the reaction proceeds via the enzyme-DNA imino intermediate characteristic of DNA glycosylase/AP lyases. The adenine glycosylase activity on single-stranded DNA reported here challenges the concept that a normal base has to be in a mismatch to be specifically removed. By contrast to other glycosylases, these enzymes are expected to damage DNA rather than participate in repair processes. The significance of this DNase activity to the biological function of these plant proteins and to their toxicity to animal cells remains to be determined.
Collapse
Affiliation(s)
- E Nicolas
- Department of Pathology, Anatomy and Cell Biology, Jefferson Medical College, Philadelphia, Pennsylvania 19107, USA
| | | | | | | |
Collapse
|
599
|
Roy S, Purnapatre K, Handa P, Boyanapalli M, Varshney U. Use of a coupled transcriptional system for consistent overexpression and purification of UDG-Ugi complex and Ugi from Escherichia coli. Protein Expr Purif 1998; 13:155-62. [PMID: 9675057 DOI: 10.1006/prep.1998.0878] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have designed a novel coupled transcriptional construct wherein Escherichia coli uracil DNA glycosylase (UDG) and Bacillus subtilis phage PBS-2 encoded uracil DNA glycosylase inhibitor protein (Ugi) genes were cloned in tandem, downstream of an inducible promoter (Ptrc). Use of this bicistronic operon has allowed purification of large amounts of UDG-Ugi complex formed in vivo. The system has also been exploited for purification of large amounts of Ugi. While establishing the expression system, one of the constructs showed detectable suppression of UAG termination codon and resulted in accumulation of a minor population of a putative readthrough polypeptide corresponding to UDG. We discuss the likely occurrence of such a phenomenon in overproduction of other recombinant proteins. Finally, the usefulness of the operon construct in convenient mutational analysis to study the mechanism of UDG-Ugi interaction is also discussed.
Collapse
Affiliation(s)
- S Roy
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore-, 560 012, India
| | | | | | | | | |
Collapse
|
600
|
Abstract
Natural and exogenous processes can give rise to abasic sites with either a purine or pyrimidine as the base on the opposing strand. The solution state structures of the apyrimidinic DNA duplex, with D6 indicating an abasic site, [sequence: see text] referred to as AD, and the apurinic DNA duplex with a dC17, referred to as CD, have been determined. A particularly striking difference is that the abasic site in CD is predominantly a beta hemiacetal, whereas in AD the alpha and beta forms are equally present. Hydrogen bonding with water by the abasic site and the base on the opposite strand appears to play a large role in determining the structure near the damaged site. Comparison of these structures with that of a duplex DNA containing a thymine glycol at the same position as the abasic site and with that of a duplex DNA containing an abasic site in the middle of a curved DNA sequence offers some insight into the common and distinct structural features of damaged DNA sites.
Collapse
Affiliation(s)
- R D Beger
- Department of Chemistry, Wesleyan University, Middletown, Connecticut 06459, USA
| | | |
Collapse
|