551
|
Han DP, Zhu QL, Cui JT, Wang PX, Qu S, Cao QF, Zong YP, Feng B, Zheng MH, Lu AG. Polo-like kinase 1 is overexpressed in colorectal cancer and participates in the migration and invasion of colorectal cancer cells. Med Sci Monit 2012; 18:BR237-46. [PMID: 22648245 PMCID: PMC3560731 DOI: 10.12659/msm.882900] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 11/13/2011] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Polo-like kinase 1 (PLK1) is an important molecule in proliferation of many human cancers. The aim of study is to clarify the expression patterns and potential function of PLK1 in colorectal cancers. MATERIAL/METHODS Fifty-six colorectal cancers samples were collected and arranged onto a tissue array and the expression of PLK1 were detected by immunohistochemistry and correlated with clinico-pathological characteristics and expression of PCNA. Expression of PLK1 in 9 colorectal cancer cells lines was investigated by RT-PCR and Western blot, then SW1116 cells lines were treated with PLK1 siRNA and the efficiency was examined by Western blot. Transwell test was applied to detect the migration and invasion capability of cancer cells by counting the number of cells passing through the membranes. Cell proliferation and apoptosis were examined by Cell Counting Kit-8 (CCK-8) and Annexin-V Kit. RESULTS PLK1 was positively expressed in 73.2% (41/56) of colorectal cancers tissues, but in only 3.6% (2/56) of normal tissues, and was associated with Duke's stage (P<0.01), tumor size (P<0.01), invasion extent (P<0.05) and lymphatic metastasis (P<0.01). The expression of PLK1 was correlated with expression of PCNA (R=0.553, P<0.01). PLK1 was inhibited in SW1116 cells by treating with PLK1 siRNA oligos, which resulted in a decreased number of cells passing through the membrane as compared with control groups (P<0.01) at 24 hours after transfection. Cell proliferation was inhibited from 48 hours after transfection, while cells apoptosis was induced from 72 hours after transfection. CONCLUSIONS PLK1 could be a progression marker for colorectal cancer patients and PLK1 depletion can inhibit migration and invasion capability of colorectal cancer cells SW1116, suggesting that PLK1 might be involved in metastasis and invasion of colorectal cancer. Therapeutic strategies targeting PLK1 may be a new approach to colorectal cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Ai-guo Lu
- Lu Ai-Guo, Department of General Surgery, Shanghai Ruijin Hospital, Shanghai Minimally Invasive Surgery Center, 197 Ruijin Er Rd, Shanghai 200025, China, e-mail:
| |
Collapse
|
552
|
Kanthan R, Senger JL, Kanthan SC. Molecular events in primary and metastatic colorectal carcinoma: a review. PATHOLOGY RESEARCH INTERNATIONAL 2012; 2012:597497. [PMID: 22997602 PMCID: PMC3357597 DOI: 10.1155/2012/597497] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2011] [Accepted: 02/23/2012] [Indexed: 12/13/2022]
Abstract
Colorectal cancer (CRC) is a heterogeneous disease, developing through a multipathway sequence of events guided by clonal selections. Pathways included in the development of CRC may be broadly categorized into (a) genomic instability, including chromosomal instability (CIN), microsatellite instability (MSI), and CpG island methylator phenotype (CIMP), (b) genomic mutations including suppression of tumour suppressor genes and activation of tumour oncogenes, (c) microRNA, and (d) epigenetic changes. As cancer becomes more advanced, invasion and metastases are facilitated through the epithelial-mesenchymal transition (EMT), with additional genetic alterations. Despite ongoing identification of genetic and epigenetic markers and the understanding of alternative pathways involved in the development and progression of this disease, CRC remains the second highest cause of malignancy-related mortality in Canada. The molecular events that underlie the tumorigenesis of primary and metastatic colorectal carcinoma are detailed in this manuscript.
Collapse
Affiliation(s)
- Rani Kanthan
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK, Canada S7N 0W8
- Royal University Hospital, Room 2868 G-Wing, 103 Hospital Drive, Saskatoon, SK, Canada S7N 0W8
| | - Jenna-Lynn Senger
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK, Canada S7N 0W8
| | | |
Collapse
|
553
|
Shaukat A, Arain M, Anway R, Manaktala S, Pohlman L, Thyagarajan B. Is KRAS mutation associated with interval colorectal cancers? Dig Dis Sci 2012; 57:913-7. [PMID: 22138963 DOI: 10.1007/s10620-011-1974-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 11/08/2011] [Indexed: 12/17/2022]
Abstract
BACKGROUND Colorectal cancers diagnosed in the interval after a complete colonoscopy may occur due to rapid tumor growth. Interval colorectal cancers are associated with microsatellite instability (MSI). AIMS Our aim was to study the association of KRAS mutation with interval colorectal cancers and MSI. METHODS We searched our institution's cancer registry for interval colorectal cancers, defined as colorectal cancers that developed within 5 years of a complete colonoscopy. These were frequency matched to patients with non-interval colorectal cancers. Archived cancer specimens were evaluated for KRAS mutations in codons 12 and 13 using sequencing, and MSI by sequencing microsatellite loci. Multivariable logistic regression was used to analyze the association between KRAS mutation status, MSI status and interval colorectal cancers. RESULTS There were 63 interval and 131 non-interval colorectal cancers. KRAS mutation was present in 12.9% of interval cancers compared to 28.9% of non-interval cancers (P = 0.03). In multivariable logistic regression model, KRAS was inversely associated with interval cancers (OR 0.36; 95% CI 0.15-0.90). In Cox proportional hazards model, adjusting for age, tumor grade, TNM Stage and MSI status, we found no association between KRAS mutation and 5-year survival compared to cancers without KRAS mutation (HR 0.84; 95% CI 0.4-1.46; P = 0.5). CONCLUSIONS KRAS mutation is inversely associated with interval cancers and with MSI, suggesting that it is a marker of the chromosomal instability pathway associated with slow tumor growth, and distinct from MSI rapidly growing cancers. Molecular characterization of colorectal cancers is helpful in determining underlying pathway and may determine therapy.
Collapse
Affiliation(s)
- Aasma Shaukat
- Division of Gastroenterology, VA Medical Center, University of Minnesota, One-Veterans Drive, 111-D, Minneapolis, MN 55417, USA.
| | | | | | | | | | | |
Collapse
|
554
|
Belt EJT, te Velde EA, Krijgsman O, Brosens RPM, Tijssen M, van Essen HF, Stockmann HBAC, Bril H, Carvalho B, Ylstra B, Bonjer HJ, Meijer GA. High lymph node yield is related to microsatellite instability in colon cancer. Ann Surg Oncol 2012; 19:1222-30. [PMID: 21989661 PMCID: PMC3309135 DOI: 10.1245/s10434-011-2091-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Indexed: 12/12/2022]
Abstract
BACKGROUND Lymph node (LN) yield in colon cancer resection specimens is an important indicator of treatment quality and has especially in early-stage patients therapeutic implications. However, underlying disease mechanisms, such as microsatellite instability (MSI), may also influence LN yield, as MSI tumors are known to exhibit more prominent lymphocytic antitumor reactions. The aim of the present study was to investigate the association of LN yield, MSI status, and recurrence rate in colon cancer. METHODS Clinicopathological data and tumor samples were collected from 332 stage II and III colon cancer patients. DNA was isolated and PCR-based MSI analysis performed. LN yield was defined as "high" when 10 or more LNs were retrieved and "low" in case of fewer than 10 LNs. RESULTS Tumors with high LN yield were significantly associated with the MSI phenotype (high LN yield: 26.3% MSI tumors vs low LN yield: 15.1% MSI tumors; P=.01), mainly in stage III disease. Stage II patients with high LN yield had a lower recurrence rate compared with those with low LN yield. Patients with MSI tumors tended to develop fewer recurrences compared with those with MSS tumors, mainly in stage II disease. CONCLUSIONS In the present study, high LN yield was associated with MSI tumors, mainly in stage III patients. Besides adequate surgery and pathology, high LN yield is possibly a feature caused by biologic behavior of MSI tumors.
Collapse
Affiliation(s)
- E. J. Th. Belt
- Department of Surgery, VU University Medical Centre, Amsterdam, The Netherlands
- Department of Surgery, Kennemer Gasthuis, Haarlem, The Netherlands
| | - E. A. te Velde
- Department of Surgery, VU University Medical Centre, Amsterdam, The Netherlands
| | - O. Krijgsman
- Department of Pathology, VU University Medical Centre, Amsterdam, The Netherlands
| | - R. P. M. Brosens
- Department of Surgery, VU University Medical Centre, Amsterdam, The Netherlands
- Department of Surgery, Zaans Medical Centre, Zaandam, The Netherlands
| | - M. Tijssen
- Department of Pathology, VU University Medical Centre, Amsterdam, The Netherlands
| | - H. F. van Essen
- Department of Pathology, VU University Medical Centre, Amsterdam, The Netherlands
| | | | - H. Bril
- Department of Pathology, Kennemer Gasthuis, Haarlem, The Netherlands
| | - B. Carvalho
- Department of Pathology, VU University Medical Centre, Amsterdam, The Netherlands
| | - B. Ylstra
- Department of Pathology, VU University Medical Centre, Amsterdam, The Netherlands
| | - H. J. Bonjer
- Department of Surgery, VU University Medical Centre, Amsterdam, The Netherlands
| | - G. A. Meijer
- Department of Pathology, VU University Medical Centre, Amsterdam, The Netherlands
| |
Collapse
|
555
|
Fernández-Marcelo T, Morán A, de Juan C, Pascua I, Head J, Gómez A, Hernando F, López-Asenjo JA, Hernández S, Sánchez-Pernaute A, Torres AJ, Benito M, Iniesta P. Differential expression of senescence and cell death factors in non-small cell lung and colorectal tumors showing telomere attrition. Oncology 2012; 82:153-64. [PMID: 22433385 DOI: 10.1159/000335678] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Accepted: 12/06/2011] [Indexed: 12/22/2022]
Abstract
OBJECTIVE The main aim of this work is to investigate the expression of factors related to senescence and cell death pathways in non-small cell lung cancers (NSCLCs) and colorectal cancers (CRCs) in relation to telomere status. METHODS We analyzed 158 tissue samples, 36 NSCLCs, 43 CRCs, and their corresponding control tissues obtained from patients submitted to surgery. Telomere function was evaluated by determining telomerase activity and telomere length. Expression of factors related to senescence, cell death pathways, transformation and tumorigenesis was investigated using arrays. Results were validated by real-time quantitative PCR. RESULTS Considering tumors with telomere shortening, expression for BNIP3, DAPK1, NDRG1, EGFR, and CDKN2A was significantly higher in NSCLC than in CRC, whereas TP53 was overexpressed in CRC with respect to NSCLC. Moreover, compared to nontumor samples, DAPK1, GADD45A, SHC1, and TP53 were downregulated in the group of NSCLCs with telomere shortening, and no significant differences were found in CRC. CONCLUSIONS In NSCLC, the failure of pathways which involve factors such as DAPK1, GADD45A, SHC1, and TP53, in response to short telomeres, could promote tumor progression. In CRC, the viability of these pathways in response to short telomeres could contribute to limiting tumorigenesis.
Collapse
Affiliation(s)
- Tamara Fernández-Marcelo
- Departamento de Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad Complutense, Madrid, España
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
556
|
Yan DW, Fan JW, Yu ZH, Li MX, Wen YG, Li DW, Zhou CZ, Wang XL, Wang Q, Tang HM, Peng ZH. Downregulation of metallothionein 1F, a putative oncosuppressor, by loss of heterozygosity in colon cancer tissue. Biochim Biophys Acta Mol Basis Dis 2012; 1822:918-26. [PMID: 22426038 DOI: 10.1016/j.bbadis.2012.02.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 02/24/2012] [Accepted: 02/28/2012] [Indexed: 12/13/2022]
Abstract
PURPOSE Downregulation of metallothionein (MT) genes has been reported in several tumors with discrepant results. This study is to investigate molecular mechanism of MT gene regulation in colon cancer which is characterized by tumor suppressor gene alterations. EXPERIMENTAL DESIGN Integral analysis of microarray data with loss of heterozygosity (LOH) information was employed. Quantitative real-time PCR and immunohistochemistry were used to validate MT isoform expression in colon cancer tissues and cell lines. The effects of MT1F expression on RKO cell survival and tumorigenesis was analyzed. Bisulphite sequencing PCR (BSP) and methylation-specific PCR were employed to detect the methylation status of the MT1F gene in colon cancer tissues and cell lines. DNA sequencing was used to examine the LOH at the MT1F locus. RESULTS MT1F, MT1G, MT1X, and MT2A gene expression was significantly downregulated in colon cancer tissue (p<0.05). Exogenous MT1F expression increased RKO cell apoptosis and inhibited RKO cell migration, invasion and adhesion as well as in vivo tumorigenicity. Downregulation of MT1F gene in majority of human colon tumor tissues is mainly through mechanism by loss of heterozygosity (p=0.001) while CpG island methylation of MT1F gene promoter region was only observed in poorly differentiated, MSI-positive RKO and LoVo colon cancer cell lines. CONCLUSIONS MT1F is a putative tumor suppressor gene in colon carcinogenesis that is downregulated mainly by LOH in colon cancer tissue. Further studies are required to elucidate a possible role for MT1F downregulation in colon cancer initiation and/or progression.
Collapse
Affiliation(s)
- Dong-Wang Yan
- Department of General Surgery, Shanghai Jiaotong University Affiliated First People's Hospital, 85 Wujin Road, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
557
|
A genome-wide study of cytogenetic changes in colorectal cancer using SNP microarrays: opportunities for future personalized treatment. PLoS One 2012; 7:e31968. [PMID: 22363777 PMCID: PMC3282791 DOI: 10.1371/journal.pone.0031968] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 01/19/2012] [Indexed: 01/10/2023] Open
Abstract
In colorectal cancer (CRC), chromosomal instability (CIN) is typically studied using comparative-genomic hybridization (CGH) arrays. We studied paired (tumor and surrounding healthy) fresh frozen tissue from 86 CRC patients using Illumina's Infinium-based SNP array. This method allowed us to study CIN in CRC, with simultaneous analysis of copy number (CN) and B-allele frequency (BAF)--a representation of allelic composition. These data helped us to detect mono-allelic and bi-allelic amplifications/deletion, copy neutral loss of heterozygosity, and levels of mosaicism for mixed cell populations, some of which can not be assessed with other methods that do not measure BAF. We identified associations between CN abnormalities and different CRC phenotypes (histological diagnosis, location, tumor grade, stage, MSI and presence of lymph node metastasis). We showed commonalities between regions of CN change observed in CRC and the regions reported in previous studies of other solid cancers (e.g. amplifications of 20q, 13q, 8q, 5p and deletions of 18q, 17p and 8p). From Therapeutic Target Database, we identified relevant drugs, targeted to the genes located in these regions with CN changes, approved or in trials for other cancers and common diseases. These drugs may be considered for future therapeutic trials in CRC, based on personalized cytogenetic diagnosis. We also found many regions, harboring genes, which are not currently targeted by any relevant drugs that may be considered for future drug discovery studies. Our study shows the application of high density SNP arrays for cytogenetic study in CRC and its potential utility for personalized treatment.
Collapse
|
558
|
Boleij A, Tjalsma H. Gut bacteria in health and disease: a survey on the interface between intestinal microbiology and colorectal cancer. Biol Rev Camb Philos Soc 2012; 87:701-30. [PMID: 22296522 DOI: 10.1111/j.1469-185x.2012.00218.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A healthy human body contains at least tenfold more bacterial cells than human cells and the most abundant and diverse microbial community resides in the intestinal tract. Intestinal health is not only maintained by the human intestine itself and by dietary factors, but is also largely supported by this resident microbial community. Conversely, however, a large body of evidence supports a relationship between bacteria, bacterial activities and human colorectal cancer. Symbiosis in this multifaceted organ is thus crucial to maintain a healthy balance within the host-diet-microbiota triangle and accordingly, changes in any of these three factors may drive a healthy situation into a state of disease. In this review, the factors that sustain health or drive this complex intestinal system into dysbiosis are discussed. Emphasis is on the role of the intestinal microbiota and related mechanisms that can drive the initiation and progression of sporadic colorectal cancer (CRC). These mechanisms comprise the induction of pro-inflammatory and pro-carcinogenic pathways in epithelial cells as well as the production of (geno)toxins and the conversion of pro-carcinogenic dietary factors into carcinogens. A thorough understanding of these processes will provide leads for future research and may ultimately aid in development of new strategies for CRC diagnosis and prevention.
Collapse
Affiliation(s)
- Annemarie Boleij
- Department of Laboratory Medicine, Nijmegen Institute for Infection, Inflammation and Immunity (N4i) & Radboud University Centre for Oncology (RUCO) of the Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, the Netherlands
| | | |
Collapse
|
559
|
Grizzi F, Bianchi P, Laghi L. On the prognostic & predictive impact of immune cells system in colorectal cancer. Indian J Med Res 2012; 135:147-9. [PMID: 22446852 PMCID: PMC3336841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Affiliation(s)
- Fabio Grizzi
- Laboratory of Molecular Gastroenterology, IRCCS Istituto Clinico Humanitas, Rozzano, Milan, Italy,For correspondence: Laboratory of Molecular Gastroenterology, IRCCS Istituto Clinico Humanitas, Via Manzoni 56 20089 Rozzano, Milan, Italy
| | - Paolo Bianchi
- Laboratory of Molecular Gastroenterology, IRCCS Istituto Clinico Humanitas, Rozzano, Milan, Italy
| | - Luigi Laghi
- Laboratory of Molecular Gastroenterology, IRCCS Istituto Clinico Humanitas, Rozzano, Milan, Italy,Department of Gastroenterology, IRCCS Istituto Clinico Humanitas, Rozzano, Milan, Italy
| |
Collapse
|
560
|
de Miranda NFCC, Hes FJ, van Wezel T, Morreau H. Role of the microenvironment in the tumourigenesis of microsatellite unstable and MUTYH-associated polyposis colorectal cancers. Mutagenesis 2012; 27:247-53. [DOI: 10.1093/mutage/ger077] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
561
|
Differential gene expression between African American and European American colorectal cancer patients. PLoS One 2012; 7:e30168. [PMID: 22276153 PMCID: PMC3261881 DOI: 10.1371/journal.pone.0030168] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 12/15/2011] [Indexed: 12/11/2022] Open
Abstract
The incidence and mortality of colorectal cancer (CRC) is higher in African Americans (AAs) than other ethnic groups in the U. S., but reasons for the disparities are unknown. We performed gene expression profiling of sporadic CRCs from AAs vs. European Americans (EAs) to assess the contribution to CRC disparities. We evaluated the gene expression of 43 AA and 43 EA CRC tumors matched by stage and 40 matching normal colorectal tissues using the Agilent human whole genome 4x44K cDNA arrays. Gene and pathway analyses were performed using Significance Analysis of Microarrays (SAM), Ten-fold cross validation, and Ingenuity Pathway Analysis (IPA). SAM revealed that 95 genes were differentially expressed between AA and EA patients at a false discovery rate of ≤5%. Using IPA we determined that most prominent disease and pathway associations of differentially expressed genes were related to inflammation and immune response. Ten-fold cross validation demonstrated that following 10 genes can predict ethnicity with an accuracy of 94%: CRYBB2, PSPH, ADAL, VSIG10L, C17orf81, ANKRD36B, ZNF835, ARHGAP6, TRNT1 and WDR8. Expression of these 10 genes was validated by qRT-PCR in an independent test set of 28 patients (10 AA, 18 EA). Our results are the first to implicate differential gene expression in CRC racial disparities and indicate prominent difference in CRC inflammation between AA and EA patients. Differences in susceptibility to inflammation support the existence of distinct tumor microenvironments in these two patient populations.
Collapse
|
562
|
Dallosso AR, Øster B, Greenhough A, Thorsen K, Curry TJ, Owen C, Hancock AL, Szemes M, Paraskeva C, Frank M, Andersen CL, Malik K. Long-range epigenetic silencing of chromosome 5q31 protocadherins is involved in early and late stages of colorectal tumorigenesis through modulation of oncogenic pathways. Oncogene 2012; 31:4409-19. [PMID: 22249255 DOI: 10.1038/onc.2011.609] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Loss of tumour suppressor gene function can occur as a result of epigenetic silencing of large chromosomal regions, referred to as long-range epigenetic silencing (LRES), and genome-wide analyses have revealed that LRES is present in many cancer types. Here we utilize Illumina Beadchip methylation array analysis to identify LRES across 800 kb of chromosome 5q31 in colorectal adenomas and carcinomas (n=34) relative to normal colonic epithelial DNA (n=6). This region encompasses 53 individual protocadherin (PCDH) genes divided among three gene clusters. Hypermethylation within these gene clusters is asynchronous; while most PCDH hypermethylation occurs early, and is apparent in adenomas, PCDHGC3 promoter methylation occurs later in the adenoma-carcinoma transition. PCDHGC3 was hypermethylated in 17/28 carcinomas (60.7%) according to methylation array analysis. Quantitative real-time reverse transcription-polymerase chain reaction showed that PCDHGC3 is the highest expressed PCDH in normal colonic epithelium, and that there was a strong reciprocal relationship between PCDHGC3 methylation and expression in carcinomas (R=-0.84). PCDH LRES patterns are reflected in colorectal tumour cell lines; adenoma cell lines are not methylated at PCDHGC3 and show abundant expression at the mRNA and protein level, while the expression is suppressed in hypermethylated carcinoma cell lines (R=-0.73). Short-interfering RNA-mediated reduction of PCDHGC3 led to a decrease of apoptosis in RG/C2 adenoma cells, and overexpression of PCDHGC3 in HCT116 cells resulted in the reduction of colony formation, consistent with tumour suppressor capabilities for PCDHGC3. Further functional analysis showed that PCDHGC3 can suppress Wnt and mammalian target of rapamycin signalling in colorectal cancer cell lines. Taken together, our data suggest that the PCDH LRES is an important tumour suppressor locus in colorectal cancer, and that PCDHGC3 may be a strong marker and driver for the adenoma-carcinoma transition.
Collapse
Affiliation(s)
- A R Dallosso
- Cancer Epigenetics Laboratory, School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
563
|
Armaghany T, Wilson JD, Chu Q, Mills G. Genetic alterations in colorectal cancer. GASTROINTESTINAL CANCER RESEARCH : GCR 2012; 5:19-27. [PMID: 22574233 PMCID: PMC3348713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 01/10/2012] [Indexed: 05/31/2023]
Abstract
Colorectal cancer (CRC) is the third most common cancer in men and the second most common cancer in women worldwide. Both genetic and epigenetic alterations are common in CRC and are the driving force of tumorigenesis. The adenoma-carcinoma sequence was proposed in the 1980s that described transformation of normal colorectal epithelium to an adenoma and ultimately to an invasive and metastatic tumor. Initial genetic changes start in an early adenoma and accumulate as it transforms to carcinoma. Chromosomal instability, microsatellite instability and CpG island methylator phenotype pathways are responsible for genetic instability in colorectal cancer. Chromosomal instability pathway consist of activation of proto-oncogenes (KRAS) and inactivation of at least three tumor suppression genes, namely loss of APC, p53 and loss of heterozogosity (LOH) of long arm of chromosome 18. Mutations of TGFBR and PIK3CA genes have also been recently described. Herein we briefly discuss the basic concepts of genetic integrity and the consequences of defects in the DNA repair relevant to CRC. Epigenetic alterations, essential in CRC tumorigenesis, are also reviewed alongside clinical information relevant to CRC.
Collapse
|
564
|
Bartley AN, Yao H, Barkoh BA, Ivan C, Mishra BM, Rashid A, Calin GA, Luthra R, Hamilton SR. Complex patterns of altered MicroRNA expression during the adenoma-adenocarcinoma sequence for microsatellite-stable colorectal cancer. Clin Cancer Res 2011; 17:7283-93. [PMID: 21948089 PMCID: PMC3544185 DOI: 10.1158/1078-0432.ccr-11-1452] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE MicroRNAs are short noncoding RNAs that regulate gene expression and are over- or underexpressed in most tumors, including colorectal adenocarcinoma. MicroRNAs are potential biomarkers and therapeutic targets and agents, but limited information on microRNAome alterations during progression in the well-known adenoma-adenocarcinoma sequence is available to guide their usage. EXPERIMENTAL DESIGN We profiled 866 human microRNAs by microarray analysis in 69 matched specimens of microsatellite-stable adenocarcinomas, adjoining precursor adenomas including areas of high- and low-grade dysplasia, and nonneoplastic mucosa. RESULTS We found 230 microRNAs that were significantly differentially expressed during progression, including 19 not reported previously. Altered microRNAs clustered into two major patterns of early (type I) and late (type II) differential expression. The largest number (n = 108) was altered at the earliest step from mucosa to low-grade dysplasia (subtype IA) prior to major nuclear localization of β-catenin, including 36 microRNAs that had persistent differential expression throughout the entire sequence to adenocarcinoma. Twenty microRNAs were intermittently altered (subtype IB), and six were transiently altered (subtype IC). In contrast, 33 microRNAs were altered late in high-grade dysplasia and adenocarcinoma (subtype IIA), and 63 in adenocarcinoma only (subtype IIB). Predicted targets in 12 molecular pathways were identified for highly altered microRNAs, including the Wnt signaling pathway leading to low-grade dysplasia. β-catenin expression correlated with downregulated microRNAs. CONCLUSIONS Our findings suggest that numerous microRNAs play roles in the sequence of molecular events, especially early events, resulting in colorectal adenocarcinoma. The temporal patterns and complexity of microRNAome alterations during progression will influence the efficacy of microRNAs for clinical purposes.
Collapse
Affiliation(s)
- Angela N. Bartley
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hui Yao
- Department of Hematopathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Bioinformatics and Computational Biology, Division of Quantitative Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bedia A. Barkoh
- Department of Hematopathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cristina Ivan
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bal M. Mishra
- Department of Hematopathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Asif Rashid
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - George A. Calin
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Experimental Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rajyalakshmi Luthra
- Department of Hematopathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Stanley R. Hamilton
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
565
|
Razzak AA, Oxentenko AS, Vierkant RA, Tillmans LS, Wang AH, Weisenberger DJ, Laird PW, Lynch CF, Anderson KE, French AJ, Haile RW, Harnack LJ, Slager SL, Smyrk TC, Thibodeau SN, Cerhan JR, Limburg PJ. Alcohol intake and colorectal cancer risk by molecularly defined subtypes in a prospective study of older women. Cancer Prev Res (Phila) 2011; 4:2035-43. [PMID: 21900595 PMCID: PMC3584678 DOI: 10.1158/1940-6207.capr-11-0276] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Increased alcohol consumption is a putative colorectal cancer (CRC) risk factor. However, existing data are less conclusive for women than men. Also, to date, relatively few studies have reported alcohol-related CRC risks based on molecularly defined tumor subtypes. We evaluated associations between alcohol intake and incident CRC, overall and by microsatellite instability [MSI high (MSI-H) or MSI low/microsatellite stable (MSI-L/MSS)], CpG island methylator phenotype (CIMP positive or CIMP negative), and BRAF mutation (mutated or wild-type) status in the prospective, population-based Iowa Women's Health Study (IWHS; n = 41,836). Subjects were 55 to 69 years at baseline (1986), and exposure data were obtained by self-report. Incident CRCs were prospectively identified and archived, paraffin-embedded tissue specimens were collected from 732 representative cases, diagnosed through December 31, 2002. Multivariate Cox regression models were fit to estimate relative risks (RR) and 95% confidence intervals (CI). Among alcohol consumers, the median intake (range) was 3.4 (0.9-292.8) g/d. Compared with nonconsumers, alcohol intake levels of 3.4 g/d or less (RR = 1.00; 95% CI, 0.86-1.15) and more than 3.4 g/d (RR = 1.06; 95% CI, 0.91-1.24) were not significantly associated with overall CRC risk. Analyses based on alcohol intake levels of 30 g/d or less and more than 30 g/d or quartile distributions yielded similar risk estimates. Null associations were also observed between each alcohol intake level and the MSI-, CIMP- or, BRAF-defined CRC subtypes (P > 0.05 for each comparison). These data do not support an adverse effect from alcohol intake on CRC risk, overall or by specific molecularly defined subtypes, among older women.
Collapse
Affiliation(s)
| | | | - Robert A. Vierkant
- Division of Biomedical Statistics & Informatics, Mayo Clinic, Rochester, MN
| | - Lori S. Tillmans
- Department of Laboratory Medicine & Pathology, Mayo Clinic, Rochester, MN
| | - Alice H. Wang
- Division of Biomedical Statistics & Informatics, Mayo Clinic, Rochester, MN
| | | | | | | | | | - Amy J. French
- Department of Laboratory Medicine & Pathology, Mayo Clinic, Rochester, MN
| | - Robert W. Haile
- Department of Preventive Medicine, USC Keck School of Medicine, Los Angeles, CA
| | - Lisa J. Harnack
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Susan L. Slager
- Division of Biomedical Statistics & Informatics, Mayo Clinic, Rochester, MN
| | - Thomas C. Smyrk
- Department of Laboratory Medicine & Pathology, Mayo Clinic, Rochester, MN
| | | | | | | |
Collapse
|
566
|
Ciappio ED, Liu Z, Brooks RS, Mason JB, Bronson RT, Crott JW. Maternal B vitamin supplementation from preconception through weaning suppresses intestinal tumorigenesis in Apc1638N mouse offspring. Gut 2011; 60:1695-702. [PMID: 21659408 PMCID: PMC4193343 DOI: 10.1136/gut.2011.240291] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Variations in the intake of folate are capable of modulating colorectal tumorigenesis; however, the outcome appears to be dependent on timing. This study sought to determine the effect of altering folate (and related B vitamin) availability during in-utero development and the suckling period on intestinal tumorigenesis. DESIGN Female wildtype mice were fed diets either mildly deficient, replete or supplemented with vitamins B(2), B(6), B(12) and folate for 4 weeks before mating to Apc(1638N) males. Females remained on their diet throughout pregnancy and until weaning. After weaning, all Apc(1638N) offspring were maintained on replete diets for 29 weeks. RESULTS At 8 months of age tumour incidence was markedly lower among offspring of supplemented mothers (21%) compared with those of replete (59%) and deficient (55%) mothers (p=0.03). Furthermore, tumours in pups born to deficient dams were most likely to be invasive (p=0.03). The expression of Apc, Sfrp1, Wif1 and Wnt5a--all of which are negative regulatory elements of the Wnt signalling cascade--in the normal small intestinal mucosa of pups decreased with decreasing maternal B vitamin intake, and for Sfrp1 this was inversely related to promoter methylation. β-Catenin protein was elevated in offspring of deficient dams. CONCLUSIONS These changes indicate a de-repression of the Wnt pathway in pups of deficient dams and form a plausible mechanism by which maternal B vitamin intake modulates tumorigenesis in offspring. These data indicate that maternal B vitamin supplementation suppresses, while deficiency promotes, intestinal tumorigenesis in Apc(1638N) offspring.
Collapse
Affiliation(s)
- Eric D Ciappio
- Vitamins and Carcinogenesis Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts, USA
| | - Zhenhua Liu
- Vitamins and Carcinogenesis Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts, USA
| | - Ryan S Brooks
- Vitamins and Carcinogenesis Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts, USA
| | - Joel B Mason
- Vitamins and Carcinogenesis Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts, USA
| | - Roderick T Bronson
- Rodent Histopathology Core, Harvard Medical School, Boston, Massachusetts, USA
| | - Jimmy W Crott
- Vitamins and Carcinogenesis Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts, USA
| |
Collapse
|
567
|
Luebke AM, Baudis M, Matthaei H, Vashist YK, Verde PE, Hosch SB, Erbersdobler A, Klein CA, Izbicki JR, Knoefel WT, Stoecklein NH. Losses at chromosome 4q are associated with poor survival in operable ductal pancreatic adenocarcinoma. Pancreatology 2011; 12:16-22. [PMID: 22487468 DOI: 10.1016/j.pan.2011.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Here we tested the prognostic impact of genomic alterations in operable localized pancreatic ductal adenocarcinoma (PDAC). Fifty-two formalin-fixed and paraffin-embedded primary PDAC were laser micro-dissected and were investigated by comparative genomic hybridization after whole genome amplification using an adapter-linker PCR. Chromosomal gains and losses were correlated to clinico-pathological parameters and clinical follow-up data. The most frequent aberration was loss on chromosome 17p (65%) while the most frequent gains were detected at 2q (41%) and 8q (41%), respectively. The concomitant occurrence of losses at 9p and 17p was found to be statistically significant. Higher rates of chromosomal losses were associated with a more advanced primary tumor stage and losses at 9p and 18q were significantly associated with presence of lymphatic metastasis (chi-square: p = 0.03, p = 0.05, respectively). Deletions on chromosome 4 were of prognostic significance for overall survival and tumor recurrence (Cox-multivariate analysis: p = 0.026 and p = 0.021, respectively). In conclusion our data suggest the common alterations at chromosome 8q, 9p, 17p and 18q as well as the prognostic relevant deletions on chromosome 4q as relevant for PDAC progression. Our comprehensive data from 52 PDAC should provide a basis for future studies with a higher resolution to discover the relevant genes located within the chromosomal aberrations identified.
Collapse
MESH Headings
- Adenocarcinoma/genetics
- Adult
- Aged
- Aged, 80 and over
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/pathology
- Chromosome Aberrations
- Chromosome Deletion
- Chromosomes, Human, Pair 17
- Chromosomes, Human, Pair 18
- Chromosomes, Human, Pair 4
- Chromosomes, Human, Pair 8
- Chromosomes, Human, Pair 9
- Comparative Genomic Hybridization
- Female
- Humans
- Male
- Middle Aged
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/pathology
- Prognosis
- Survival Analysis
Collapse
Affiliation(s)
- A M Luebke
- Klinik und Poliklinik für Allgemein-, Visceral- und Thoraxchirurgie, Universitätsklinikum Hamburg-Eppendorf, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
568
|
Besson D, Pavageau AH, Valo I, Bourreau A, Bélanger A, Eymerit-Morin C, Moulière A, Chassevent A, Boisdron-Celle M, Morel A, Solassol J, Campone M, Gamelin E, Barré B, Coqueret O, Guette C. A quantitative proteomic approach of the different stages of colorectal cancer establishes OLFM4 as a new nonmetastatic tumor marker. Mol Cell Proteomics 2011; 10:M111.009712. [PMID: 21986994 DOI: 10.1074/mcp.m111.009712] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Expression profiles represent new molecular tools that are useful to characterize the successive steps of tumor progression and the prediction of recurrence or chemotherapy response. In this study, we have used quantitative proteomic analysis to compare different stages of colorectal cancer. A combination of laser microdissection, OFFGEL separation, iTRAQ labeling, and MALDI-TOF/TOF MS was used to explore the proteome of 28 colorectal cancer tissues. Two software packages were used for identification and quantification of differentially expressed proteins: Protein Pilot and iQuantitator. Based on ∼1,190,702 MS/MS spectra, a total of 3138 proteins were identified, which represents the largest database of colorectal cancer realized to date and demonstrates the value of our quantitative proteomic approach. In this way, individual protein expression and variation have been identified for each patient and for each colorectal dysplasia and cancer stage (stages I-IV). A total of 555 proteins presenting a significant fold change were quantified in the different stages, and this differential expression correlated with immunohistochemistry results reported in the Human Protein Atlas database. To identify a candidate biomarker of the early stages of colorectal cancer, we focused our study on secreted proteins. In this way, we identified olfactomedin-4, which was overexpressed in adenomas and in early stages of colorectal tumors. This early stage overexpression was confirmed by immunohistochemistry in 126 paraffin-embedded tissues. Our results also indicate that OLFM4 is regulated by the Ras-NF-κB2 pathway, one of the main oncogenic pathways deregulated in colorectal tumors.
Collapse
Affiliation(s)
- Damien Besson
- Institut de Cancérologie de l'Ouest, Paul Papin Cancer Center, INSERM U892, Angers, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
569
|
Field KM, Zalcberg JR. Biological Markers in Patients with Early-Stage Colon Cancer: Consensus and Controversies. CURRENT COLORECTAL CANCER REPORTS 2011. [DOI: 10.1007/s11888-011-0102-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
570
|
Leonard DF, Dozois EJ, Smyrk TC, Suwanthanma W, Baron TH, Cima RR, Larson DW. Endoscopic and surgical management of serrated colonic polyps. Br J Surg 2011; 98:1685-94. [PMID: 22034178 DOI: 10.1002/bjs.7654] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2011] [Indexed: 12/22/2022]
Abstract
BACKGROUND Serrated polyps are an inhomogeneous group of lesions that harbour precursors of colorectal cancer. Current research has been directed at further defining the histopathological characteristics of these lesions, but definitive treatment recommendations are unclear. The aim was to review the current literature regarding classification, molecular genetics and natural history of these lesions in order to propose a treatment algorithm for surgeons to consider. METHODS The PubMed database was searched using the following search terms: serrated polyp, serrated adenoma, hyperplastic polyp, hyperplastic polyposis, adenoma, endoscopy, surgery, guidelines. Papers published between 1980 and 2010 were selected. RESULTS Sixty papers met the selection criteria. Most authors agree that recommendations regarding endoscopic or surgical management should be based on the polyp's neoplastic potential. Polyps greater than 5 mm should be biopsied to determine their histology so that intervention can be directed accurately. Narrow-band imaging or chromoendoscopy may facilitate the detection and assessment of extent of lesions. Complete endoscopic removal of sessile serrated adenomas in the left or right colon is recommended. Follow-up colonoscopy is recommended in 2-6 months if endoscopic removal is incomplete. If the lesion cannot be entirely removed endoscopically, segmental colectomy is strongly recommended owing to the malignant potential of these polyps. Left-sided lesions are more likely to be pedunculated, making them more amenable to successful endoscopic removal. CONCLUSION Even though the neoplastic potential of certain subtypes of serrated polyp is heavily supported, further studies are needed to make definitive endoscopic and surgical recommendations.
Collapse
Affiliation(s)
- D F Leonard
- Division of Colon and Rectal Surgery, Department of Anatomic Pathology, Division of Gastroenterology, Mayo Clinic, Gonda 9 South, 200 First Street SW, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | |
Collapse
|
571
|
Langner C. [Non-serrated precursor lesions of colorectal tumours]. DER PATHOLOGE 2011; 32 Suppl 2:206-10. [PMID: 21845358 DOI: 10.1007/s00292-011-1495-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Non-serrated precursor lesions of colorectal tumours include conventional adenomas (tubular, tubulovillous and villous), inflammatory bowel disease-associated dysplasia (intraepithelial neoplasia), and hamartoma-associated dysplasia. This short review summarizes the current literature on the adenoma-carcinoma sequence, focusing on colonic stem cells and functional crypt organization, patterns of stem cell division, niche succession and clonal conversion in the formation of a monocryptal adenoma. The process of clonal interaction between neighboring crypts as well as the development of large monoclonal adenomas from small polyclonal precursor lesions is discussed in detail. Finally, the molecular pathogenesis as well as the clinical significance of inflammatory bowel disease- and hamartoma-associated carcinogenesis is addressed.
Collapse
Affiliation(s)
- C Langner
- Institut für Pathologie, Medizinische Universität Graz, Auenbruggerplatz 25, 8036, Graz, Österreich.
| |
Collapse
|
572
|
Kang GH. Four molecular subtypes of colorectal cancer and their precursor lesions. Arch Pathol Lab Med 2011; 135:698-703. [PMID: 21631262 DOI: 10.5858/2010-0523-ra.1] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT In addition to chromosomal instability and microsatellite instability (MSI), a third pathway, epigenetic instability, has been implicated in progression to colorectal carcinogenesis. CpG island methylator phenotype (CIMP) refers to a subset of colorectal cancers (CRCs) that occur through the epigenetic instability pathway and that are characterized by widespread hypermethylation of promoter CpG island loci, resulting in the inactivation of several tumor suppressor genes or tumor-related genes. Colorectal cancers can be classified into 4 molecular subtypes according to their CIMP and MSI statuses: CIMP+/MSI+, CIMP+/MSI-, CIMP-/MSI+, and CIMP-/MSI-. There are differences between Western (United States and European Union) and Eastern (Korea and China) populations in the number of CRCs that are MSI+, and in the number of MSI+ CRCs that are CIMP+. OBJECTIVE To review the clinicopathologic and molecular features of the 4 molecular subtypes of CRCs and their precursor lesions, and to emphasize geographic differences in CRCs between Eastern and Western populations. DATA SOURCES This article is based on the author's own experimental data and a literature review of relevant articles indexed in PubMed (US National Library of Medicine). CONCLUSION The 4 molecular subtypes of CRC that are defined by their CIMP and MSI statuses are characterized by their own distinct clinicopathologic and molecular features and precursor lesions. In particular, the clinicopathologic features of MSI+ CRCs differ depending on the CIMP status. Further understanding of the heterogeneity in CRC molecular pathways may help to explain the diverse morphologic features of CRCs.
Collapse
Affiliation(s)
- Gyeong Hoon Kang
- Department of Pathology, Cancer Research Institute, Brain Korea 2nd Stage, Seoul National University College of Medicine, Korea.
| |
Collapse
|
573
|
Characterization of aneuploid populations with trisomy 7 and 20 derived from diploid human colonic epithelial cells. Neoplasia 2011; 13:348-57. [PMID: 21472139 DOI: 10.1593/neo.101580] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 01/19/2011] [Accepted: 01/20/2011] [Indexed: 01/10/2023] Open
Abstract
Chromosomal instability leading to aneuploidy occurs in most sporadic colorectal cancers (CRCs) and is believed to be an early driving force in disease progression. Despite this observation, the cellular advantages conferred by these cytogenetic alterations are poorly understood. Here, we provide evidence that serum-free passage of originally diploid, immortalized human colonic epithelial cells (HCECs) gave rise to the acquisition of trisomy 7 (+7), an aneuploidy detected in more than 40% of colorectal adenomas. These cells remain diploid under long-term growth in 2% serum conditions. Analysis by GTG banding and fluorescent in situ hybridization detected no rare preexisting +7 cell in the original population, suggesting a conversion of diploid cells to an aneuploid state. The acquisition of +7 also precedes loss or truncation of the adenomatosis polyposis coli gene as both diploid and +7 cells express full-length, functional protein. Coculturing of fluorescent-labeled cells demonstrate that +7 HCECs have a growth advantage over diploid cells in serum-free conditions. Defects in cell migration and aberrant regulation of the epidermal growth factor receptor, located on chromosome 7p, are also detected in +7 HCECs. Interestingly, knockdown of TP53 and expression of K-Ras(V12) in +7 HCECs resulted in the emergence of trisomy 20, another nonrandom aneuploidy observed in ∼85% of CRC. In summary, we describe isogenic colonic epithelial cells that represent cytogenetic changes occurring frequently in sporadic CRC. The emergence and characterization of trisomy 7 and 20 demonstrate that these HCECs may serve as unique human cell-based models to examine the effects of chromosomal instability in CRC progression.
Collapse
|
574
|
Zhang J, Roberts TM, Shivdasani RA. Targeting PI3K signaling as a therapeutic approach for colorectal cancer. Gastroenterology 2011; 141:50-61. [PMID: 21723986 DOI: 10.1053/j.gastro.2011.05.010] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 05/16/2011] [Accepted: 05/16/2011] [Indexed: 01/08/2023]
Abstract
Survival times of patients with colorectal cancer (CRC) have increased over the past decade, primarily as a result of treatment with combinations of conventional cytotoxic agents. Because CRC is commonly associated with mutations in genes that control growth factor signaling, therapies are being developed to target the products of these genes; individualized treatment might also be guided by specific mutations in tumors and by new biomarkers. Currently, targeted therapies confer limited clinical benefit; better drugs are therefore needed. Genomic studies indicate that phosphoinositide 3-kinase (PI3K) signaling is one of the most frequently deregulated pathways in several human cancers, including CRC. PI3K signaling has an important role in cancer cell proliferation, survival, motility, and metabolism and therefore could be an attractive therapeutic target. We review PI3K signaling in CRC and discuss current therapeutic approaches.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, and Department of Medicine, Brigham & Women's Hospital, Boston, MA 02215, USA
| | | | | |
Collapse
|
575
|
Zou J, Luo H, Zeng Q, Dong Z, Wu D, Liu L. Protein kinase CK2α is overexpressed in colorectal cancer and modulates cell proliferation and invasion via regulating EMT-related genes. J Transl Med 2011; 9:97. [PMID: 21702981 PMCID: PMC3132712 DOI: 10.1186/1479-5876-9-97] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Accepted: 06/25/2011] [Indexed: 02/08/2023] Open
Abstract
Background Protein kinase CK2 is a highly conserved, ubiquitous protein serine/threonine kinase that phosphorylates many substrates and has a global role in numerous biological and pathological processes. Overexpression of the protein kinase CK2α subunit (CK2α) has been associated with the malignant transformation of several tissues, with not nearly as much focus on the role of CK2α in colorectal cancer (CRC). The aims of this study are to investigate the function and regulatory mechanism of CK2α in CRC development. Methods Expression levels of CK2α were analyzed in 144 patients (104 with CRC and 40 with colorectal adenoma) by immunohistochemistry. Proliferation, senescence, motility and invasion assays as well as immunofluorescence staining and western blots were performed to assess the effect of CK2α in CRC. Results The immunohistochemical expression of nuclear CK2α was stronger in tumor tissues than in adenomas and normal colorectal tissues. Suppression of CK2α by small-interfering RNA or the CK2α activity inhibitor emodin inhibited proliferation of CRC cells, caused G0/G1 phase arrest, induced cell senescence, elevated the expression of p53/p21 and decreased the expression of C-myc. We also found that knockdown of CK2α suppressed cell motility and invasion. Significantly, CK2α inhibition resulted in β-catenin transactivation, decreased the expression levels of vimentin and the transcription factors snail1 and smad2/3, and increased the expression of E-cadherin, suggesting that CK2α regulates the epithelial-mesenchymal transition (EMT) process in cancer cells. Conclusions Our results indicate that CK2α plays an essential role in the development of CRC, and inhibition of CK2α may serve as a promising therapeutic strategy for human CRC.
Collapse
Affiliation(s)
- Jinjin Zou
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | | | | | | | | | | |
Collapse
|
576
|
Barzilai A. The neuro-glial-vascular interrelations in genomic instability symptoms. Mech Ageing Dev 2011; 132:395-404. [PMID: 21689674 DOI: 10.1016/j.mad.2011.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 05/25/2011] [Accepted: 06/01/2011] [Indexed: 12/14/2022]
Abstract
A hallmark of neurodegenerative diseases is impairment of certain aspects of "brain functionality", which is defined as the total input and output of the brain's neural circuits and networks. A given neurodegenerative disorder is characterized by affected network organization and topology, cell numbers, cellular functionality, and the interactions between neural circuits. Neuroscientists generally view neurodegenerative disorders as diseases of neuronal cells; however, recent advances suggest a role for glial cells and an impaired vascular system in the etiology of certain neurodegenerative diseases. It is now clear that brain pathology is, to a very great extent, pathology of neurons, glia and the vascular system as these determine the degree of neuronal death as well as the outcome and scale of the neurological deficit. This review article is focused on the intricate interrelations among neurons, glia, the vascular system, neuronal cells, and the DNA damage response. Here I describe various aspects of neural and glial cell fate and the vascular system in genomic instability disorders including ataxia telangiectasia (A-T) and Nijmegen breakage syndrome.
Collapse
Affiliation(s)
- Ari Barzilai
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
577
|
Hinoue T, Weisenberger DJ, Lange CPE, Shen H, Byun HM, Van Den Berg D, Malik S, Pan F, Noushmehr H, van Dijk CM, Tollenaar RAEM, Laird PW. Genome-scale analysis of aberrant DNA methylation in colorectal cancer. Genome Res 2011; 22:271-82. [PMID: 21659424 DOI: 10.1101/gr.117523.110] [Citation(s) in RCA: 475] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Colorectal cancer (CRC) is a heterogeneous disease in which unique subtypes are characterized by distinct genetic and epigenetic alterations. Here we performed comprehensive genome-scale DNA methylation profiling of 125 colorectal tumors and 29 adjacent normal tissues. We identified four DNA methylation-based subgroups of CRC using model-based cluster analyses. Each subtype shows characteristic genetic and clinical features, indicating that they represent biologically distinct subgroups. A CIMP-high (CIMP-H) subgroup, which exhibits an exceptionally high frequency of cancer-specific DNA hypermethylation, is strongly associated with MLH1 DNA hypermethylation and the BRAF(V600E) mutation. A CIMP-low (CIMP-L) subgroup is enriched for KRAS mutations and characterized by DNA hypermethylation of a subset of CIMP-H-associated markers rather than a unique group of CpG islands. Non-CIMP tumors are separated into two distinct clusters. One non-CIMP subgroup is distinguished by a significantly higher frequency of TP53 mutations and frequent occurrence in the distal colon, while the tumors that belong to the fourth group exhibit a low frequency of both cancer-specific DNA hypermethylation and gene mutations and are significantly enriched for rectal tumors. Furthermore, we identified 112 genes that were down-regulated more than twofold in CIMP-H tumors together with promoter DNA hypermethylation. These represent ∼7% of genes that acquired promoter DNA methylation in CIMP-H tumors. Intriguingly, 48/112 genes were also transcriptionally down-regulated in non-CIMP subgroups, but this was not attributable to promoter DNA hypermethylation. Together, we identified four distinct DNA methylation subgroups of CRC and provided novel insight regarding the role of CIMP-specific DNA hypermethylation in gene silencing.
Collapse
Affiliation(s)
- Toshinori Hinoue
- Department of Surgery and Department of Biochemistry and Molecular Biology, University of Southern California, USC Epigenome Center, Los Angeles, California 90089-9601, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
578
|
LIN28B fosters colon cancer migration, invasion and transformation through let-7-dependent and -independent mechanisms. Oncogene 2011; 30:4185-93. [PMID: 21625210 PMCID: PMC3165068 DOI: 10.1038/onc.2011.131] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lin28b is an RNA-binding protein that inhibits biogenesis of let-7 microRNAs. LIN28B is overexpressed in diverse cancers, yet a specific role in the molecular pathogenesis of colon cancer has yet to be elucidated. We have determined that human colon tumors exhibit decreased levels of mature let-7 isoforms and increased expression of LIN28B. In order to determine LIN28B's mechanistic role in colon cancer, we expressed LIN28B in immortalized colonic epithelial cells and human colon cancer cell lines. We found that LIN28B promotes cell migration, invasion, and transforms immortalized colonic epithelial cells. In addition, constitutive LIN28B expression increases expression of intestinal stem cell markers LGR5 and PROM1 in the presence of let-7 restoration. This may occur as a result of Lin28b protein binding LGR5 and PROM1 mRNA, suggesting that a subset of LIN28B functions are independent of its ability to repress let-7. Our findings establish a new role for LIN28B in human colon cancer pathogenesis, and suggest LIN28B post-transcriptionally regulates LGR5 and PROM1 through a let-7 independent mechanism.
Collapse
|
579
|
Deschoolmeester V, Baay M, Lardon F, Pauwels P, Peeters M. Immune Cells in Colorectal Cancer: Prognostic Relevance and Role of MSI. CANCER MICROENVIRONMENT 2011; 4:377-92. [PMID: 21618031 DOI: 10.1007/s12307-011-0068-5] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 05/19/2011] [Indexed: 12/14/2022]
Abstract
There is growing evidence that both local and systemic inflammatory responses play an important role in the progression of a variety of solid tumors. Colorectal cancer (CRC) results from the cumulative effect of sequential genetic alterations, leading to the expression of tumor-associated antigens possibly inducing a cellular anti-tumor immune response. It is well recognized that cytotoxic lymphocytes (CTLs) constitute one of the most important effector mechanisms of anti-tumor-immunity. However, their potential prognostic influence in CRC remains controversial. In addition, other key players like natural killer cells, tumor associated macrophages and regulatory T cells play an important role in the immune attack against CRC and need further investigation. This review will mainly focus on the role of the adaptive immune system in CRC and particularly in regard to microsatellite instability.
Collapse
Affiliation(s)
- Vanessa Deschoolmeester
- Laboratory of Cancer Research and Clinical Oncology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium,
| | | | | | | | | |
Collapse
|
580
|
Belt EJT, Fijneman RJA, van den Berg EG, Bril H, Delis-van Diemen PM, Tijssen M, van Essen HF, de Lange-de Klerk ESM, Beliën JAM, Stockmann HBAC, Meijer S, Meijer GA. Loss of lamin A/C expression in stage II and III colon cancer is associated with disease recurrence. Eur J Cancer 2011; 47:1837-45. [PMID: 21621406 DOI: 10.1016/j.ejca.2011.04.025] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 03/31/2011] [Accepted: 04/19/2011] [Indexed: 01/10/2023]
Abstract
AIM OF THE STUDY Loss of the nuclear lamina protein lamin A/C (LMNA) has been observed in several human malignancies. The present study aimed to investigate associations between LMNA expression and clinical outcome in colon cancer patients. PATIENTS AND METHODS Clinicopathological data and formalin-fixed paraffin embedded tissues were collected from 370 stage II and III colon cancer patients. Tissue microarrays were constructed, stained for lamin A/C and evaluated microscopically. Microsatellite instability status was determined for 318 tumours. RESULTS Low levels of LMNA expression were observed in 17.8% of colon tumours, with disease recurrence occurring in 45.5% of stage II and III colon cancer patients with LMNA-low expressing tumours compared to 29.6% of patients with LMNA-high expressing tumours (p=0.01). For stage II patients, disease recurrence was observed for 35.7% of LMNA-low compared to 20.3% of LMNA-high expressing tumours (p=0.03). Microsatellite stable (MSS) tumours exhibited more frequently low LMNA expression than microsatellite instable (MSI) tumours (21% versus 9.8%; p=0.05). Interestingly, disease recurrence among LMNA-low and LMNA-high expressing MSS tumours varied significantly for stage III patients who had not received adjuvant chemotherapy (100% versus 37.8%; p<0.01) while no such difference was observed for patients who received adjuvant chemotherapy (46.7% versus 46.0%; p=0.96). CONCLUSION These data indicate that low expression of LMNA is associated with an increased disease recurrence in stage II and III colon cancer patients, and suggest that these patients in particular may benefit from adjuvant chemotherapy.
Collapse
Affiliation(s)
- E J Th Belt
- Department of Surgery, VU University Medical Center, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
581
|
Abstract
Colon cancer (CC) therapies have improved patient outcomes significantly over the last decades in both the adjuvant and metastatic settings. With the introduction of a number of novel agents, both traditional chemotherapies and biologically targeted agents, the need to identify subgroups that are likely and not likely to respond to a particular treatment regimen is paramount. This will allow patients who are likely to benefit to receive optimal care, while sparing those unlikely to benefit from unnecessary toxicity and cost. With the identification of several novel biomarkers and a variety of technologies to interrogate the genome, we already are able to rapidly study patient tumor or blood samples and normal tissues to generate a large dataset of aberrations within the cancer. How to digest this complex information to obtain accurate, reliable, and meaningful results that will allow us to provide truly personalized care for CC patients is just starting to be addressed. In this article, we briefly review the history of CC treatment, with an emphasis on current clinical standards that incorporate a "personalized medicine" approach. We then review strategies that will potentially improve our ability to individualize therapy in the future.
Collapse
|
582
|
Guerra L, Guidi R, Frisan T. Do bacterial genotoxins contribute to chronic inflammation, genomic instability and tumor progression? FEBS J 2011; 278:4577-88. [DOI: 10.1111/j.1742-4658.2011.08125.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
583
|
Payne CM, Crowley-Skillicorn C, Bernstein C, Holubec H, Bernstein H. Molecular and cellular pathways associated with chromosome 1p deletions during colon carcinogenesis. Clin Exp Gastroenterol 2011; 4:75-119. [PMID: 21753893 PMCID: PMC3132853 DOI: 10.2147/ceg.s17114] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Indexed: 11/23/2022] Open
Abstract
Chromosomal instability is a major pathway of sporadic colon carcinogenesis. Chromosome arm 1p appears to be one of the "hot spots" in the non-neoplastic mucosa that, when deleted, is associated with the initiation of carcinogenesis. Chromosome arm 1p contains genes associated with DNA repair, spindle checkpoint function, apoptosis, multiple microRNAs, the Wnt signaling pathway, tumor suppression, antioxidant activities, and defense against environmental toxins. Loss of 1p is dangerous since it would likely contribute to genomic instability leading to tumorigenesis. The 1p deletion-associated colon carcinogenesis pathways are reviewed at the molecular and cellular levels. Sporadic colon cancer is strongly linked to a high-fat/low-vegetable/low-micronutrient, Western-style diet. We also consider how selected dietary-related compounds (eg, excess hydrophobic bile acids, and low levels of folic acid, niacin, plant-derived antioxidants, and other modulatory compounds) might affect processes leading to chromosomal deletions, and to the molecular and cellular pathways specifically altered by chromosome 1p loss.
Collapse
Affiliation(s)
- Claire M Payne
- Department of Cell Biology and Anatomy, College of Medicine, University of Arizona Tucson, AZ, USA
| | | | - Carol Bernstein
- Department of Cell Biology and Anatomy, College of Medicine, University of Arizona Tucson, AZ, USA
| | - Hana Holubec
- Department of Cell Biology and Anatomy, College of Medicine, University of Arizona Tucson, AZ, USA
| | - Harris Bernstein
- Department of Cell Biology and Anatomy, College of Medicine, University of Arizona Tucson, AZ, USA
| |
Collapse
|
584
|
Recent advances in understanding the role of diet and obesity in the development of colorectal cancer. Proc Nutr Soc 2011; 70:194-204. [PMID: 21385524 DOI: 10.1017/s0029665111000073] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is a major cause of premature death in the UK and many developed countries. However, the risk of developing CRC is well recognised to be associated not only with diet but also with obesity and lack of exercise. While epidemiological evidence shows an association with factors such as high red meat intake and low intake of vegetables, fibre and fish, the mechanisms underlying these effects are only now being elucidated. CRC develops over many years and is typically characterised by an accumulation of mutations, which may arise as a consequence of inherited polymorphisms in key genes, but more commonly as a result of spontaneously arising mutations affecting genes controlling cell proliferation, differentiation, apoptosis and DNA repair. Epigenetic changes are observed throughout the progress from normal morphology through formation of adenoma, and the subsequent development of carcinoma. The reasons why this accumulation of loss of homoeostatic controls arises are unclear but chronic inflammation has been proposed to play a central role. Obesity is associated with increased plasma levels of chemokines and adipokines characteristic of chronic systemic inflammation, and dietary factors such as fish oils and phytochemicals have been shown to have anti-inflammatory properties as well as modulating established risk factors such as apoptosis and cell proliferation. There is also some evidence that diet can modify epigenetic changes. This paper briefly reviews the current state of knowledge in relation to CRC development and considers evidence for potential mechanisms by which diet may modify risk.
Collapse
|
585
|
Abstract
Cohesin is a conserved multisubunit protein complex with diverse cellular roles, making key contributions to the coordination of chromosome segregation, the DNA damage response and chromatin regulation by epigenetic mechanisms. Much has been learned in recent years about the roles of cohesin in a physiological context, whereas its potential and emerging role in tumour initiation and/or progression has received relatively little attention. In this Opinion article we examine how cohesin deregulation could contribute to cancer development on the basis of its physiological roles.
Collapse
Affiliation(s)
- Huiling Xu
- Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria 8006, Australia
| | | | | |
Collapse
|
586
|
Migliore L, Migheli F, Spisni R, Coppedè F. Genetics, cytogenetics, and epigenetics of colorectal cancer. J Biomed Biotechnol 2011; 2011:792362. [PMID: 21490705 PMCID: PMC3070260 DOI: 10.1155/2011/792362] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 12/14/2010] [Indexed: 12/17/2022] Open
Abstract
Most of the colorectal cancer (CRC) cases are sporadic, only 25% of the patients have a family history of the disease, and major genes causing syndromes predisposing to CRC only account for 5-6% of the total cases. The following subtypes can be recognized: MIN (microsatellite instability), CIN (chromosomal instability), and CIMP (CpG island methylator phenotype). CIN occurs in 80-85% of CRC. Chromosomal instability proceeds through two major mechanisms, missegregation that results in aneuploidy through the gain or loss of whole chromosomes, and unbalanced structural rearrangements that lead to the loss and/or gain of chromosomal regions. The loss of heterozygosity that occur in the first phases of the CRC cancerogenesis (in particular for the genes on 18q) as well as the alteration of methylation pattern of multiple key genes can drive the development of colorectal cancer by facilitating the acquisition of multiple tumor-associated mutations and the instability phenotype.
Collapse
Affiliation(s)
- Lucia Migliore
- Department of Human and Environmental Sciences, University of Pisa, Street S. Giuseppe 22, 56126 Pisa, Italy.
| | | | | | | |
Collapse
|
587
|
Markle B, May EJ, Majumdar APN. Do nutraceutics play a role in the prevention and treatment of colorectal cancer? Cancer Metastasis Rev 2010; 29:395-404. [PMID: 20717706 DOI: 10.1007/s10555-010-9234-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Colorectal cancer is the third most common cancer worldwide with a 5-year survival of 50%. Current chemotherapeutic regimens used for advanced colorectal cancer provide an average survival of approximately 20 months. Non-toxic agents such as nutraceutics and supplements have been shown to aid in the prevention and adjuvant treatment of colorectal cancer. This article will discuss the epidemiology, progression, prevention, treatment, and recurrence of colorectal cancer and the role of nutraceutics and supplements in the treatment process.
Collapse
Affiliation(s)
- Brian Markle
- Department of Internal Medicine, Wayne State University, Detroit, MI 48201, USA.
| | | | | |
Collapse
|
588
|
Luo J, Li YN, Wang F, Zhang WM, Geng X. S-adenosylmethionine inhibits the growth of cancer cells by reversing the hypomethylation status of c-myc and H-ras in human gastric cancer and colon cancer. Int J Biol Sci 2010; 6:784-95. [PMID: 21152119 PMCID: PMC2999854 DOI: 10.7150/ijbs.6.784] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 12/03/2010] [Indexed: 02/07/2023] Open
Abstract
A global DNA hypomethylation might activate oncogene transcription, thus promoting carcinogenesis and tumor development. S-Adenosylmethionine (SAM) serves as a major methyl donor in biological transmethylation events. The object of this study is to explore the influence of SAM on the status of methylation at the promoter of the oncogenes c-myc, H-ras and tumor-suppressor gene p16 (INK4a), as well as its inhibitory effect on cancer cells. The results indicated that SAM treatment inhibited cell growth in gastric cancer cells and colon cancer cells, and the inhibition efficiency was significantly higher than that in the normal cells. Under standard growth conditions, C-myc and H-ras promoters were hypomethylated in gastric cancer cells and colon cancer cells. SAM treatment resulted in a heavy methylation of these promoters, which consequently downregulated mRNA and protein levels. In contrast, there was no significant difference in mRNA and protein levels of p16 (INK4a) with and without SAM treatment. SAM can effectively inhibit the tumor cells growth by reversing the DNA hypomethylation on promoters of oncogenes, thus down-regulating their expression. With no influence on the expression of the tumor suppressor genes, such as P16, SAM could be used as a potential drug for cancer therapy.
Collapse
Affiliation(s)
- Jin Luo
- Department of biochemistry, Tianjin Medical University, Tianjin, 300070 China
| | | | | | | | | |
Collapse
|
589
|
Gespach C. Stem cells and colon cancer: the questionable cancer stem cell hypothesis. ACTA ACUST UNITED AC 2010; 34:653-61. [PMID: 21051167 DOI: 10.1016/j.gcb.2010.08.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 08/27/2010] [Indexed: 12/22/2022]
Abstract
The fine-tuning between cell proliferation and differentiation of self-renewing stem cells and pluripotent progenitors in gastric glands and colon epithelial crypts is coordinated by the mechanisms that regulate colon epithelial cell migration and guidance along the crypt axis. This leads to the acquisition of specialized cellular functions and the exfoliation of desquamated senescent and apoptotic epithelial cells at the apical mucosa interface with the gut lumen. Self-renewing stem cells and pluripotent progenitors are involved in the clonal and polyclonal growth of digestive tumors. Several lines of evidence support the existence of a subpopulation of cancer cells with stem cell-like (SCL) phenotypes in solid tumors of breast and digestive system. Consistently, epithelial cancer cell lines in long-term culture are phenotypically and functionally heterogeneous. It is suggested that only a small proportion of transformed cells are clonogenic in vivo and ex vivo to form colonies and to initiate tumor growth in immunodeficient mice. A discrete subpopulation of tumor -initiating SCL cancer cells are highly competent to survive, propagate and spread through the invasive and metastatic cascade. A better understanding of the mechanisms driving the plasticity and pluripotency of stem cells, their derived progenitors and SCL colon cancer initiating cells during tumor progression will open new avenues for the early detection and treatment of local and distant tumors of the digestive tract.
Collapse
Affiliation(s)
- C Gespach
- Inserm U938, centre de recherche Saint-Antoine, hôpital Saint-Antoine, bâtiment Kourisky, 75571 Paris cedex 12, France.
| |
Collapse
|
590
|
Lichtman MA. Monoclonal gammopathy: do we know its significance? Blood Cells Mol Dis 2010; 45:267-8. [PMID: 20970359 DOI: 10.1016/j.bcmd.2010.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 09/24/2010] [Indexed: 01/10/2023]
|
591
|
Wilson PM, Lenz HJ. Integrating Biomarkers Into Clinical Decision Making for Colorectal Cancer. Clin Colorectal Cancer 2010; 9 Suppl 1:S16-27. [DOI: 10.3816/ccc.2010.s.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|