Force WR, Cheung TC, Ware CF. Dominant negative mutants of TRAF3 reveal an important role for the coiled coil domains in cell death signaling by the lymphotoxin-beta receptor.
J Biol Chem 1997;
272:30835-40. [PMID:
9388227 DOI:
10.1074/jbc.272.49.30835]
[Citation(s) in RCA: 75] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Ligation of the lymphotoxin-beta receptor (LTbetaR) recruits tumor necrosis factor receptor-associated factor-3 (TRAF3) and initiates cell death in HT29 adenocarcinoma cells. The minimal receptor binding domain (TRAF-C) defined by two hybrid analyses is not sufficient for direct recruitment to the ligated receptor. A series of TRAF3 deletion mutants reveal that a subregion of the coiled coil motif is required for efficient recruitment to the LTbetaR. Furthermore, the ability of TRAF3 to self-associate maps to an adjacent subregion. A TRAF3 deletion mutant that lacks the N-terminal zinc RING and zinc finger motifs, but retains the coiled coil and TRAF-C motifs, competitively displaces endogenous TRAF3 from the LTbetaR. A second TRAF3 mutant that lacks the receptor binding domain, yet contains the TRAF3 self-association domain, prevents TRAF3 homodimers from being recruited to the LTbetaR. Both of these mutants have a dominant negative effect on cell death and demonstrate that the recruitment of TRAF3 oligomers is necessary to initiate signal transduction that activates the cell death pathway.
Collapse