601
|
Gaspar V, de Melo-Diogo D, Costa E, Moreira A, Queiroz J, Pichon C, Correia I, Sousa F. Minicircle DNA vectors for gene therapy: advances and applications. Expert Opin Biol Ther 2014; 15:353-79. [PMID: 25539147 DOI: 10.1517/14712598.2015.996544] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Nucleic-acid-based biopharmaceuticals enclose a remarkable potential for treating debilitating or life-threatening diseases that currently remain incurable. This promising area of research envisages the creation of state-of-the-art DNA vaccines, pluripotent cells or gene-based therapies, which can be used to overcome current issues. To achieve this goal, DNA minicircles are emerging as ideal nonviral vectors due to their safety and persistent transgene expression in either quiescent or actively dividing cells. AREAS COVERED This review focuses on the characteristics of minicircle DNA (mcDNA) technology and the current advances in their production. The possible modifications to further improve minicircle efficacy are also emphasized and discussed in light of recent advances. As a final point, the main therapeutic applications of mcDNA are summarized, with a special focus on pluripotent stem cells production and cancer therapy. EXPERT OPINION Achieving in-target and persistent transgene expression is a challenging issue that is of critical importance for a successful therapeutic outcome. The use of miniaturized mcDNA cassettes with additional modifications that increase and prolong expression may contribute to an improved generation of biopharmaceuticals. The unique features of mcDNA render it an attractive alternative to overcome current technical issues and to bridge the significant gap that exists between basic research and clinical applications.
Collapse
Affiliation(s)
- Vítor Gaspar
- University of Beira Interior, CICS-UBI - Health Sciences Research Center , Av. Infante D. Henrique, 6200-506, Covilhã , Portugal +351 275 329 002, +351 275 329 055 ; +351 275 329 099 ; ;
| | | | | | | | | | | | | | | |
Collapse
|
602
|
Yamada T, Signorelli S, Cannistraro S, Beattie CW, Bizzarri AR. Chirality switching within an anionic cell-penetrating peptide inhibits translocation without affecting preferential entry. Mol Pharm 2014; 12:140-9. [PMID: 25478723 DOI: 10.1021/mp500495u] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Multiple substitution of d- for l-amino acids decreases the intracellular uptake of cationic cell penetrating peptides (CPP) in a cell line-dependent manner. We show here that a single d-amino acid substitution can decrease the overall uptake of the anionic, amphipathic CPP, p28, into cancer and histologically matched normal cell lines, while not altering the preferential uptake of p28 into cancer cells. The decrease appears dependent on the position of the d-substitution within the peptide and the ability of the substituted d-amino acid to alter chirality. We also suggest that when d-substitution alters the ratio of α-helix to β-sheet content of an anionic CPP, its translocation across the cell membrane is altered, reducing overall entry. These observations may have a significant effect on the design of future d-substituted analogues of cell penetrating peptides.
Collapse
Affiliation(s)
- Tohru Yamada
- Division of Surgical Oncology, Department of Surgery, University of Illinois College of Medicine , Chicago, Illinois 60612, United States
| | | | | | | | | |
Collapse
|
603
|
Cannazza G, Cazzato AS, Marraccini C, Pavesi G, Pirondi S, Guerrini R, Pelà M, Frassineti C, Ferrari S, Marverti G, Ponterini G, Costi MP. Internalization and stability of a thymidylate synthase Peptide inhibitor in ovarian cancer cells. J Med Chem 2014; 57:10551-6. [PMID: 25353379 DOI: 10.1021/jm501397h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Information on the cellular internalization and stability of the ovarian cancer cell growth inhibitor peptide, LSCQLYQR (LR), is vital for lead optimization. Ad-hoc-synthesized LR/fluorescent-probe conjugates were used to monitor the internalization of the peptide. Mass spectrometry was used to identify adducts resulting from the thiol reactivity of the cysteine residue in LR. A mechanistic model is proposed to explain the observed change in intracellular peptide amount over time. Structural modifications can be foreseen to improve the peptide stability.
Collapse
Affiliation(s)
- Giuseppe Cannazza
- Department of Life Sciences, University of Modena and Reggio Emilia , Via Campi 183, 41125 Modena, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
604
|
Herce HD, Garcia AE, Cardoso MC. Fundamental molecular mechanism for the cellular uptake of guanidinium-rich molecules. J Am Chem Soc 2014; 136:17459-67. [PMID: 25405895 PMCID: PMC4277769 DOI: 10.1021/ja507790z] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
![]()
Guanidinium-rich
molecules, such as cell-penetrating peptides,
efficiently enter living cells in a non-endocytic energy-independent
manner and transport a wide range of cargos, including drugs and biomarkers.
The mechanism by which these highly cationic molecules efficiently
cross the hydrophobic barrier imposed by the plasma membrane remains
a fundamental open question. Here, a combination of computational
results and in vitro and live-cell experimental evidence reveals an
efficient energy-independent translocation mechanism for arginine-rich
molecules. This mechanism unveils the essential role of guanidinium
groups and two universal cell components: fatty acids and the cell
membrane pH gradient. Deprotonated fatty acids in contact with the
cell exterior interact with guanidinium groups, leading to a transient
membrane channel that facilitates the transport of arginine-rich peptides
toward the cell interior. On the cytosolic side, the fatty acids become
protonated, releasing the peptides and resealing the channel. This
fundamental mechanism appears to be universal across cells from different
species and kingdoms.
Collapse
Affiliation(s)
- Henry D Herce
- Department of Physics, Applied Physics and Astronomy and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | | | | |
Collapse
|
605
|
Jobin ML, Alves ID. On the importance of electrostatic interactions between cell penetrating peptides and membranes: A pathway toward tumor cell selectivity? Biochimie 2014; 107 Pt A:154-9. [DOI: 10.1016/j.biochi.2014.07.022] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 07/26/2014] [Indexed: 02/04/2023]
|
606
|
Liu H, Zhang W, Ma L, Fan L, Gao F, Ni J, Wang R. The improved blood–brain barrier permeability of endomorphin-1 using the cell-penetrating peptide synB3 with three different linkages. Int J Pharm 2014; 476:1-8. [DOI: 10.1016/j.ijpharm.2014.08.045] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 08/14/2014] [Accepted: 08/21/2014] [Indexed: 11/28/2022]
|
607
|
Targeted siRNA therapy using cytoplasm-responsive nanocarriers and cell-penetrating peptides. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2014. [DOI: 10.1007/s40005-014-0155-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
608
|
Kim HY, Kim S, Pyun HJ, Maeng J, Lee K. Cellular uptake mechanism of TCTP-PTD in human lung carcinoma cells. Mol Pharm 2014; 12:194-203. [PMID: 25423047 DOI: 10.1021/mp500547f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We reported previously that human translationally controlled tumor protein (TCTP) contains, at its NH2-terminus, a protein transduction domain (PTD), which we called TCTP-PTD, with the amino acid sequence MIIYRDLISH. In this report we describe how TCTP-PTD penetrates A549 human lung cancer cell membranes and promotes protein internalization. Cellular uptake of fluorescent TCTP-PTD and a recombinant fusion protein consisting of TCTP-PTD and GFP (green fluorescent protein) was analyzed by confocal fluorescence microscopy and flow cytometry. Inhibitor assays using several agents that perturb the internalization process revealed that TCTP-PTD transduces the cells partly via lipid-raft/caveola-dependent endocytosis and partly by macropinocytosis in a dynamin/actin/microtubule-dependent pathway. To trace the pathway followed by the penetration of TCTP-PTD, the localization of PTDs was investigated in the lipid-raft, subcellular, and ER fractions. We found that, after entry, TCTP-PTD is localized in the cytoplasm and cytoskeleton, but not in the nucleus, and is transported into endoplasmic reticulum (ER). Expression levels of caveolin-1 in A549 and HeLa cells are different, and these differences appear to contribute to the sensitivity of TCTP-PTD uptake inhibition, against lipid-raft depleter, nystatin. This elucidation of the underlying mechanism of TCTP-PTD translocation may help the design of approaches that employ TCTP-PTD in the cellular delivery of bioactive molecules.
Collapse
Affiliation(s)
- Hyo Young Kim
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University , Seoul 120-750, Republic of Korea
| | | | | | | | | |
Collapse
|
609
|
The role of tryptophans on the cellular uptake and membrane interaction of arginine-rich cell penetrating peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:593-602. [PMID: 25445669 DOI: 10.1016/j.bbamem.2014.11.013] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 11/10/2014] [Accepted: 11/12/2014] [Indexed: 01/04/2023]
Abstract
Cell-penetrating peptides (CPP) are able to efficiently transport cargos across cell membranes without being cytotoxic to cells, thus present a great potential in drug delivery and diagnosis. While the role of cationic residues in CPPs has been well studied, that of Trp is still not clear. Herein 7 peptide analogs of RW9 (RRWWRRWRR, an efficient CPP) were synthesized in which Trp were systematically replaced by Phe residues. Quantification of cellular uptake reveals that substitution of Trp by Phe strongly reduces the internalization of all peptides despite the fact that they strongly accumulate in the cell membrane. Cellular internalization and biophysical studies show that not only the number of Trp residues but also their positioning in the helix and the size of the hydrophobic face they form are important for their internalization efficacy, the highest uptake occurring for the analog with 3 Trp residues. Using CD and ATR-FTIR spectroscopy we observe that all peptides became structured in contact with lipids, mainly in α-helix. Intrinsic tryptophan fluorescence studies indicate that all peptides partition in the membrane in about the same manner (Kp~10(5)) and that they are located just below the lipid headgroups (~10 Å) with slightly different insertion depths for the different analogs. Plasmon Waveguide Resonance studies reveal a direct correlation between the number of Trp residues and the reversibility of the interaction following membrane washing. Thus a more interfacial location of the CPP renders the interaction with the membrane more adjustable and transitory enhancing its internalization ability.
Collapse
|
610
|
Zhou Z, Hu T, Xu Z, Lin Z, Zhang Z, Feng T, Zhu L, Rong Y, Shen H, Luk JM, Zhang X, Qin N. Targeting Hippo pathway by specific interruption of YAP-TEAD interaction using cyclic YAP-like peptides. FASEB J 2014; 29:724-32. [PMID: 25384421 DOI: 10.1096/fj.14-262980] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Hippo signaling pathway is emerging as a novel target for anticancer therapy because it plays key roles in organ size control and tumorigenesis. As the downstream effectors, Yes-associated protein (YAP)-transcriptional enhancer activation domain family member (TEAD) association is essential for YAP-driven oncogenic activity, while TEAD is largely dispensable for normal tissue growth. We present the design of YAP-like peptides (17mer) to occupy the interface 3 on TEAD. Introducing cysteines at YAP sites 87 and 96 can induce disulfide formation, as confirmed by crystallography. The engineered peptide significantly improves the potency in disrupting YAP-TEAD interaction in vitro. To confirm that blocking YAP-TEAD complex formation by directly targeting on TEAD is a valid approach, we report a significant reduction in tumor growth rate in a hepatocellular carcinoma xenograft model after introducing the dominant-negative mutation (Y406H) of TEAD1 to abolish YAP-TEAD interaction. Our results suggest that targeting TEAD is a promising strategy against YAP-induced oncogenesis.
Collapse
Affiliation(s)
- Zheng Zhou
- *Discovery Technology, Medicinal Chemistry, and Discovery Oncology, Roche Pharmaceutical Research and Early Development, Roche Innovation Center Shanghai, Shanghai, China
| | - Taishan Hu
- *Discovery Technology, Medicinal Chemistry, and Discovery Oncology, Roche Pharmaceutical Research and Early Development, Roche Innovation Center Shanghai, Shanghai, China
| | - Zhiheng Xu
- *Discovery Technology, Medicinal Chemistry, and Discovery Oncology, Roche Pharmaceutical Research and Early Development, Roche Innovation Center Shanghai, Shanghai, China
| | - Zhaohu Lin
- *Discovery Technology, Medicinal Chemistry, and Discovery Oncology, Roche Pharmaceutical Research and Early Development, Roche Innovation Center Shanghai, Shanghai, China
| | - Zhisen Zhang
- *Discovery Technology, Medicinal Chemistry, and Discovery Oncology, Roche Pharmaceutical Research and Early Development, Roche Innovation Center Shanghai, Shanghai, China
| | - Teng Feng
- *Discovery Technology, Medicinal Chemistry, and Discovery Oncology, Roche Pharmaceutical Research and Early Development, Roche Innovation Center Shanghai, Shanghai, China
| | - Liangcheng Zhu
- *Discovery Technology, Medicinal Chemistry, and Discovery Oncology, Roche Pharmaceutical Research and Early Development, Roche Innovation Center Shanghai, Shanghai, China
| | - Yiping Rong
- *Discovery Technology, Medicinal Chemistry, and Discovery Oncology, Roche Pharmaceutical Research and Early Development, Roche Innovation Center Shanghai, Shanghai, China
| | - Hong Shen
- *Discovery Technology, Medicinal Chemistry, and Discovery Oncology, Roche Pharmaceutical Research and Early Development, Roche Innovation Center Shanghai, Shanghai, China
| | - John M Luk
- *Discovery Technology, Medicinal Chemistry, and Discovery Oncology, Roche Pharmaceutical Research and Early Development, Roche Innovation Center Shanghai, Shanghai, China
| | - Xiongwen Zhang
- *Discovery Technology, Medicinal Chemistry, and Discovery Oncology, Roche Pharmaceutical Research and Early Development, Roche Innovation Center Shanghai, Shanghai, China
| | - Ning Qin
- *Discovery Technology, Medicinal Chemistry, and Discovery Oncology, Roche Pharmaceutical Research and Early Development, Roche Innovation Center Shanghai, Shanghai, China
| |
Collapse
|
611
|
Hennemann H, Wirths S, Carl C. Cell-based peptide screening to access the undruggable target space. Eur J Med Chem 2014; 94:489-96. [PMID: 25458182 DOI: 10.1016/j.ejmech.2014.10.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 09/30/2014] [Accepted: 10/13/2014] [Indexed: 02/07/2023]
Abstract
Only 20-30% of drug target proteins can be accessed by common drug classes, like small molecules or therapeutic antibodies. The vast majority of the remaining proteins are considered "undruggable" and include drug target proteins, like transcription factors, scaffold or adapter proteins, which play important roles in disease. However over the last years innovative compound classes including nucleotide derived drugs (e.g. siRNA, antisense), macrocyclic compounds and cell-permeable peptides matured significantly and hold now the potential to modulate these hard to access target proteins for therapeutic use. This article will focus on the discovery of cell-permeable peptides and discuss intracellular screening systems for peptides, which yield highly relevant peptides, because peptide selection takes place in eukaryotic cells, under conditions, which are very similar to the later therapeutic use.
Collapse
Affiliation(s)
| | - Sabine Wirths
- Nexigen GmbH, Nattermannallee 1, 50829 Cologne, Germany
| | - Claudia Carl
- Nexigen GmbH, Nattermannallee 1, 50829 Cologne, Germany
| |
Collapse
|
612
|
Matson Dzebo M, Reymer A, Fant K, Lincoln P, Nordén B, Rocha S. Enhanced cellular uptake of antisecretory peptide AF-16 through proteoglycan binding. Biochemistry 2014; 53:6566-73. [PMID: 25289567 DOI: 10.1021/bi5010377] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Peptide AF-16, which includes the active site of Antisecretory Factor protein, has antisecretory and anti-inflammatory properties, making it a potent drug candidate for treatment of secretory and inflammatory diseases such as diarrhea, inflammatory bowel diseases, and intracranial hypertension. Despite remarkable physiological effects and great pharmaceutical need for drug discovery, very little is yet understood about AF-16 mechanism of action. In order to address interaction mechanisms, we investigated the binding of AF-16 to sulfated glycosaminoglycan, heparin, with focus on the effect of pH and ionic strength, and studied the influence of cell-surface proteoglycans on cellular uptake efficiency. Confocal laser scanning microscopy and flow cytometry experiments on wild type and proteoglycan-deficient Chinese hamster ovary cells reveal an endocytotic nature of AF-16 cellular uptake that is, however, less efficient for the cells lacking cell-surface proteoglycans. Isothermal titration calorimetry provides quantitative thermodynamic data and evidence for that the peptide affinity to heparin increases at lower pH and ionic strength. Experimental data, supported by theoretical modeling, of peptide-glycosaminoglycan interaction indicate that it has a large electrostatic contribution, which will be enhanced in diseases accompanied by decreased pH and ionic strength. These observations show that cell-surface proteoglycans are of general and crucial importance for the antisecretory and anti-inflammatory activities of AF-16.
Collapse
Affiliation(s)
- Maria Matson Dzebo
- Chemical and Biological Engineering, Physical Chemistry, Chalmers University of Technology , SE-412 96 Gothenburg, Sweden
| | | | | | | | | | | |
Collapse
|
613
|
Hu Y, Sinha SK, Patel S. Reconciling structural and thermodynamic predictions using all-atom and coarse-grain force fields: the case of charged oligo-arginine translocation into DMPC bilayers. J Phys Chem B 2014; 118:11973-92. [PMID: 25290376 PMCID: PMC4199542 DOI: 10.1021/jp504853t] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Using the translocation of short, charged cationic oligo-arginine peptides (mono-, di-, and triarginine) from bulk aqueous solution into model DMPC bilayers, we explore the question of the similarity of thermodynamic and structural predictions obtained from molecular dynamics simulations using all-atom and Martini coarse-grain force fields. Specifically, we estimate potentials of mean force associated with translocation using standard all-atom (CHARMM36 lipid) and polarizable and nonpolarizable Martini force fields, as well as a series of modified Martini-based parameter sets. We find that we are able to reproduce qualitative features of potentials of mean force of single amino acid side chain analogues into model bilayers. In particular, modifications of peptide-water and peptide-membrane interactions allow prediction of free energy minima at the bilayer-water interface as obtained with all-atom force fields. In the case of oligo-arginine peptides, the modified parameter sets predict interfacial free energy minima as well as free energy barriers in almost quantitative agreement with all-atom force field based simulations. Interfacial free energy minima predicted by a modified coarse-grained parameter set are -2.51, -4.28, and -5.42 for mono-, di-, and triarginine; corresponding values from all-atom simulations are -0.83, -3.33, and -3.29, respectively, all in units of kcal/mol. We found that a stronger interaction between oligo-arginine and the membrane components and a weaker interaction between oligo-arginine and water are crucial for producing such minima in PMFs using the polarizable CG model. The difference between bulk aqueous and bilayer center states predicted by the modified coarse-grain force field are 11.71, 14.14, and 16.53 kcal/mol, and those by the all-atom model are 6.94, 8.64, and 12.80 kcal/mol; those are of almost the same order of magnitude. Our simulations also demonstrate a remarkable similarity in the structural aspects of the ensemble of configurations generated using the all-atom and coarse-grain force fields. Both resolutions show that oligo-arginine peptides adopt preferential orientations as they translocate into the bilayer. The guiding theme centers on charged groups maintaining coordination with polar and charged bilayer components as well as local water. We also observe similar behaviors related with membrane deformations.
Collapse
Affiliation(s)
- Yuan Hu
- Department of Chemistry and Biochemistry, University of Delaware , Newark, Delaware 19716, United States
| | | | | |
Collapse
|
614
|
Rizzuti M, Nizzardo M, Zanetta C, Ramirez A, Corti S. Therapeutic applications of the cell-penetrating HIV-1 Tat peptide. Drug Discov Today 2014; 20:76-85. [PMID: 25277319 DOI: 10.1016/j.drudis.2014.09.017] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/11/2014] [Accepted: 09/23/2014] [Indexed: 12/29/2022]
Abstract
Over the past decades, many new therapeutic approaches have been developed for several conditions, including neurodegenerative diseases. However, efficient biodistribution and delivery at biological target sites are hampered by the presence of cell and tissue barriers, and a clinical therapy is prevented by the requirement of invasive administration routes. Candidate drug conjugation to cell-penetrating peptides, which are able to cross cellular membranes and reach biological targets even when administered systemically, represents a promising tool to overcome this issue. Here, we review the biology, classification and mechanisms of internalization of cell-penetrating peptides. We focus our attention on the cell-penetrating peptide: HIV-derived Tat peptide, and discuss its efficient but controversial use in basic, preclinical and clinical research from its discovery to the present day.
Collapse
Affiliation(s)
- Mafalda Rizzuti
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122 Milan, Italy
| | - Monica Nizzardo
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122 Milan, Italy.
| | - Chiara Zanetta
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122 Milan, Italy
| | - Agnese Ramirez
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122 Milan, Italy
| | - Stefania Corti
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122 Milan, Italy
| |
Collapse
|
615
|
Montrose K, Yang Y, Krissansen GW. X-pep, a novel cell-penetrating peptide motif derived from the hepatitis B virus. Biochem Biophys Res Commun 2014; 453:64-8. [PMID: 25251474 DOI: 10.1016/j.bbrc.2014.09.057] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 09/15/2014] [Indexed: 12/19/2022]
Abstract
Cell-penetrating peptides (CPPs) are able to penetrate the plasma membrane and gain access to the interior of any replicating or non-replicating cell, and are being considered as drug delivery agents. Here we describe the serendipitous discovery of a novel CPP motif (MAARLCCQ), designated X-pep, located at the extreme N-terminus of the X-protein of the hepatitis B virus. X-pep, and a C-terminally truncated form of the peptide (MAARL), readily penetrated HepG2 cells. Further truncation by removal of the terminal leucine residue impaired the cell-penetrating activity of peptide, indicating that MAARL is the active core of the peptide. X-pep is located adjacent to another CPP, namely Xentry, and like Xentry is unable to penetrate unactivated resting lymphocytes suggesting selective cell uptake. A D-isomeric form of the MAARL peptide was not cell-permeable, indicating that the cell-penetrating function of the peptide involves stereoselective interaction with a chiral receptor. The discovery of X-pep, which bears no resemblance to known CPPs, allows studies to be undertaken to determine additional characteristics of this novel CPP.
Collapse
Affiliation(s)
- Kristopher Montrose
- Department of Molecular Medicine & Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Yi Yang
- Department of Molecular Medicine & Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Geoffrey W Krissansen
- Department of Molecular Medicine & Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
616
|
A survey on "Trojan Horse" peptides: opportunities, issues and controlled entry to "Troy". J Control Release 2014; 194:53-70. [PMID: 25151981 DOI: 10.1016/j.jconrel.2014.08.014] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 08/08/2014] [Accepted: 08/11/2014] [Indexed: 12/31/2022]
Abstract
Cell-penetrating peptides (CPPs), often vividly termed as the "Trojan Horse" peptides, have attracted considerable interest for the intracellular delivery of a wide range of cargoes, such as small molecules, peptides, proteins, nucleic acids, contrast agents, nanocarriers and so on. Some preclinical and clinical developments of CPP conjugates demonstrate their promise as therapeutic agents for drug discovery. There is increasing evidence to suggest that CPPs have the potential to cross several bio-barriers (e.g., blood-brain barriers, intestinal mucosa, nasal mucosa and skin barriers). Despite revolutionary process in many aspects, there are a lot of basic issues unclear for these entities, such as internalization mechanisms, translocation efficiency, translocation kinetics, metabolic degradation, toxicity, side effect, distribution and non-specificity. Among them, non-specificity remains a major drawback for the in vivo application of CPPs in the targeted delivery of cargoes. So far, diverse organelle-specific CPPs or controlled delivery strategies have emerged and improved their specificity. In this review, we will look at the opportunities of CPPs in clinical development, bio-barriers penetration and nanocarriers delivery. Then, a series of basic problems of CPPs will be discussed. Finally, this paper will highlight the use of various controlled strategies in the organelle-specific delivery and targeted delivery of CPPs. The purpose of this review will be to emphasize most influential advance in this field and present a fundamental understanding for challenges and utilizations of CPPs. This will accelerate their translation as efficient vectors from the in vitro setting into the clinic arena, and retrieve the entry art to "Troy".
Collapse
|
617
|
Vasconcelos L, Madani F, Arukuusk P, Pärnaste L, Gräslund A, Langel U. Effects of cargo molecules on membrane perturbation caused by transportan10 based cell-penetrating peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:3118-29. [PMID: 25135660 DOI: 10.1016/j.bbamem.2014.08.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 07/30/2014] [Accepted: 08/08/2014] [Indexed: 11/25/2022]
Abstract
Cell-penetrating peptides with the ability to escape endosomes and reach the target are of great value as delivery vectors for different bioactive cargoes and future treatment of human diseases. We have studied two such peptides, NickFect1 and NickFect51, both originated from stearylated transportan10 (PF3). To obtain more insight into the mechanism(s) of peptide delivery and the biophysical properties of an efficient vector system, we investigated the effect of different bioactive oligonucleotide cargoes on peptide-membrane perturbation and peptide structural induction. We studied the membrane interactions of the peptides with large unilamellar vesicles and compared their effects with parent peptides transportan10 and PF3. In addition, cellular uptake and peptide-mediated oligonucleotide delivery were analyzed. Calcein leakage experiments showed that similar to transportan10, NickFect51 caused a significant degree of membrane leakage, whereas NickFect1, similar to PF3, was less membrane perturbing. The results are in agreement with previously published results indicating that NickFect51 is a more efficient endosomal escaper. However, the presence of a large cargo like plasmid DNA inhibited NickFect's membrane perturbation and cellular uptake efficiency of the peptide was reduced. We conclude that the pathway for cellular uptake of peptide complexes is cargo dependent, whereas the endosomal escape efficacy depends on peptide hydrophobicity and chemical structure. For small interfering RNA delivery, NickFect51 appears to be optimal. The biophysical signature shows that the peptide alone causes membrane perturbation, but the cargo complex does not. These two biophysical characteristics of the peptide and its cargo complex may be the signature of an efficient delivery vector system.
Collapse
Affiliation(s)
- Luís Vasconcelos
- Department of Neurochemistry, Arrhenius Laboratories for Natural Sciences, Stockholm University, Sweden.
| | - Fatemeh Madani
- Department of Neurochemistry, Arrhenius Laboratories for Natural Sciences, Stockholm University, Sweden
| | - Piret Arukuusk
- Laboratory of Molecular Biotechnology, Institute of Technology, University of Tartu, Estonia
| | - Ly Pärnaste
- Laboratory of Molecular Biotechnology, Institute of Technology, University of Tartu, Estonia
| | - Astrid Gräslund
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Sweden
| | - Ulo Langel
- Department of Neurochemistry, Arrhenius Laboratories for Natural Sciences, Stockholm University, Sweden; Laboratory of Molecular Biotechnology, Institute of Technology, University of Tartu, Estonia
| |
Collapse
|
618
|
Moscatiello R, Sello S, Novero M, Negro A, Bonfante P, Navazio L. The intracellular delivery of TAT-aequorin reveals calcium-mediated sensing of environmental and symbiotic signals by the arbuscular mycorrhizal fungus Gigaspora margarita. THE NEW PHYTOLOGIST 2014; 203:1012-1020. [PMID: 24845011 DOI: 10.1111/nph.12849] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 04/10/2014] [Indexed: 06/03/2023]
Abstract
Arbuscular mycorrhiza (AM) is an ecologically relevant symbiosis between most land plants and Glomeromycota fungi. The peculiar traits of AM fungi have so far limited traditional approaches such as genetic transformation. The aim of this work was to investigate whether the protein transduction domain of the HIV-1 transactivator of transcription (TAT) protein, previously shown to act as a potent nanocarrier for macromolecule delivery in both animal and plant cells, may translocate protein cargoes into AM fungi. We evaluated the internalization into germinated spores of Gigaspora margarita of two recombinant TAT fusion proteins consisting of either a fluorescent (GFP) or a luminescent (aequorin) reporter linked to the TAT peptide. Both TAT-fused proteins were found to enter AM fungal mycelia after a short incubation period (5-10 min). Ca2+ measurements in G. margarita mycelia pre-incubated with TAT-aequorin demonstrated the occurrence of changes in the intracellular free Ca2+ concentration in response to relevant stimuli, such as touch, cold, salinity, and strigolactones, symbiosis-related plant signals. These data indicate that the cell-penetrating properties of the TAT peptide can be used as an effective strategy for intracellularly delivering proteins of interest and shed new light on Ca2+ homeostasis and signalling in AM fungi.
Collapse
Affiliation(s)
- Roberto Moscatiello
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131, Padova, Italy
| | | | | | | | | | | |
Collapse
|
619
|
Bhat A, Roberts LR, Dwyer JJ. Lead discovery and optimization strategies for peptide macrocycles. Eur J Med Chem 2014; 94:471-9. [PMID: 25109255 DOI: 10.1016/j.ejmech.2014.07.083] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 07/22/2014] [Accepted: 07/23/2014] [Indexed: 10/25/2022]
Abstract
Peptide macrocycles represent a chemical space where the best of biological tools can synergize with the best of chemical approaches in the quest for leads against undruggable targets. Peptide macrocycles offer some key advantages in both lead discovery and lead optimization phases of drug discovery when compared to natural product and synthetic macrocycles. In addition, they are uniquely positioned to capitalize on the therapeutic potential of peptides because cyclization can help drive selectivity, potency and overcome the common limitations of metabolic instability of peptides.
Collapse
Affiliation(s)
- Abhijit Bhat
- Ipsen Bioscience, Inc. 650 East Kendall Street, Cambridge, MA 02142, USA.
| | - Lee R Roberts
- Pfizer Worldwide Medicinal Chemistry, 200 Cambridge Park Drive, Cambridge, MA 02140, USA.
| | - John J Dwyer
- Ferring Research Institute, 4245 Sorrento Valley Blvd., San Diego, CA 92121, USA.
| |
Collapse
|
620
|
Structural and Thermodynamic Insight into Spontaneous Membrane-Translocating Peptides Across Model PC/PG Lipid Bilayers. J Membr Biol 2014; 248:505-15. [PMID: 25008278 DOI: 10.1007/s00232-014-9702-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 06/18/2014] [Indexed: 12/20/2022]
Abstract
We present results of Martini coarse-grained force field simulations to estimate the potentials of mean force for a series of recently screened spontaneous membrane-translocating peptides, SMTPs. We consider model bilayer composed of POPC and POPG, the latter providing the anionic component as used in experimental studies. We observe a significant barrier for translocation in the case of the canonical cationic cell-penetrating peptide nona-arginine, ARG9. In the case of the TP1, TP2, and TP3 peptides, potentials of mean force are systematically lower relative to the ARG9 case. Though the barriers predicted by the simulations, on the order of 20 kcal/mol, are still rather large to recapitulate the experimental kinetics of internalization, we emphasize that the qualitative trend of reduction of barrier heights is a significant result. Decomposition of the PMFs indicates that though there is a substantial entropic stability when the peptides reside at bilayer center, barriers as predicted from these force field-based studies are largely determined by enthalpic (potential energy) interactions. We note that the binding of the SMTPs is critically dependent on the mix of hydrophilic and hydrophobic residues that constitute the amino acid motif/sequence of these peptides. For the cationic ARG9 which only contains hydrophilic residues, there is no tight binding observed. The specific motif [Formula: see text] (where [Formula: see text] is a general residue) is a potential sequence in drug/peptide design. The SMTPs with this motif are able to translocate into membrane at a significantly lower free energy cost, compared to the negative control peptides. Finally, we compare the different membrane perturbations induced by the presence of the different peptides in the bilayer center. In some cases, hydrophilic pores are observed to form, thus conferring stability to the internalized state. In other cases, SMTPs are associated only with membrane defects such as induced membrane curvature. These latter observations suggest some influence of membrane rigidity as embodied in the full range of membrane undulatory modes in defining pore-forming propensities in bilayers.
Collapse
|
621
|
Cai Y, Mikkelsen JG. Driving DNA transposition by lentiviral protein transduction. Mob Genet Elements 2014; 4:e29591. [PMID: 25057443 PMCID: PMC4092313 DOI: 10.4161/mge.29591] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 06/11/2014] [Accepted: 06/16/2014] [Indexed: 12/16/2022] Open
Abstract
Gene vectors derived from DNA transposable elements have become powerful molecular tools in biomedical research and are slowly moving into the clinic as carriers of therapeutic genes. Conventional uses of DNA transposon-based gene vehicles rely on the intracellular production of the transposase protein from transfected nucleic acids. The transposase mediates mobilization of the DNA transposon, which is typically provided in the context of plasmid DNA. In recent work, we established lentiviral protein transduction from Gag precursors as a new strategy for direct delivery of the transposase protein. Inspired by the natural properties of infecting viruses to carry their own enzymes, we loaded lentivirus-derived particles not only with vector genomes carrying the DNA transposon vector but also with hundreds of transposase subunits. Such particles were found to drive efficient transposition of the piggyBac transposable element in a range of different cell types, including primary cells, and offer a new transposase delivery approach that guarantees short-term activity and limits potential cytotoxicity. DNA transposon vectors, originally developed and launched as a non-viral alternative to viral integrating vectors, have truly become viral. Here, we briefly review our findings and speculate on the perspectives and potential advantages of transposase delivery by lentiviral protein transduction.
Collapse
Affiliation(s)
- Yujia Cai
- Department of Biomedicine; Aarhus University; Aarhus C, Denmark
| | | |
Collapse
|
622
|
Liu Y, Ran R, Chen J, Kuang Q, Tang J, Mei L, Zhang Q, Gao H, Zhang Z, He Q. Paclitaxel loaded liposomes decorated with a multifunctional tandem peptide for glioma targeting. Biomaterials 2014; 35:4835-47. [DOI: 10.1016/j.biomaterials.2014.02.031] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 02/20/2014] [Indexed: 12/17/2022]
|
623
|
Clavier S, Du X, Sagan S, Bolbach G, Sachon E. An integrated cross-linking-MS approach to investigate cell penetrating peptides interacting partners. EUPA OPEN PROTEOMICS 2014. [DOI: 10.1016/j.euprot.2014.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
624
|
Shin MC, Zhao J, Zhang J, Huang Y, He H, Wang M, Min KA, Yang VC. Recombinant TAT-gelonin fusion toxin: synthesis and characterization of heparin/protamine-regulated cell transduction. J Biomed Mater Res A 2014; 103:409-419. [PMID: 24733757 DOI: 10.1002/jbm.a.35188] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 03/31/2014] [Indexed: 11/05/2022]
Abstract
Protein toxins, such as gelonin, are highly desirable anti-cancer drug candidates due to their unparalleled potency and repetitive reaction mechanism in inhibiting protein translation. However, for its potential application in cancer therapy, there remains the cell membrane barrier that allows permeation of only small molecules, which must be overcome. To address this challenge, we conjugated gelonin with a protein transduction domain (PTD), the TAT peptide, via genetic recombination. The chimeric TAT-gelonin fusion protein (TAT-Gel) retained equipotent N-glycosidase activity yet displayed greater cell uptake than unmodified recombinant gelonin (rGel), thereby yielding a significantly augmented cytotoxic activity. Remarkably, TAT-Gel displayed up to 177-fold lower IC₅₀ (avg. 54.3 nM) than rGel (avg. IC₅₀ : 3640 nM) in tested cell lines. This enhanced cytotoxicity, however, also raised potential toxicity concerns due to the non-selectivity of PTD in its mediated cell transduction. To solve this problem, we investigated the plausibility of regulating the cell transduction of TAT-Gel via a reversible masking using heparin and protamine. Here, we demonstrated, both in vitro and in vivo, that the cell transduction of TAT-Gel can be completely curbed with heparin and yet this heparin block can be efficiently reversed by the addition of protamine. This reversible tight regulation of the cell transduction of TAT-Gel by heparin and protamine sheds light of possible application of TAT-Gel in achieving a highly effective yet safe drug therapy for the treatment of tumors.
Collapse
Affiliation(s)
- Meong Cheol Shin
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church St., Ann Arbor, MI 48109, USA
| | - Jingwen Zhao
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Jian Zhang
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yongzhuo Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Hai-ke Rd, Shanghai 201203, China
| | - Huining He
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Mei Wang
- College of Pharmacy, Xinjiang Medical University, 393 Xinyi Road, Urumqi 830011, China
| | - Kyoung Ah Min
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church St., Ann Arbor, MI 48109, USA
| | - Victor C Yang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church St., Ann Arbor, MI 48109, USA
| |
Collapse
|
625
|
Carter KP, Young AM, Palmer AE. Fluorescent sensors for measuring metal ions in living systems. Chem Rev 2014; 114:4564-601. [PMID: 24588137 PMCID: PMC4096685 DOI: 10.1021/cr400546e] [Citation(s) in RCA: 1545] [Impact Index Per Article: 154.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Indexed: 02/06/2023]
Affiliation(s)
- Kyle P. Carter
- Department
of Chemistry and
Biochemistry, BioFrontiers Institute, University
of Colorado, UCB 596,
3415 Colorado AvenueBoulder, Colorado 80303, United
States
| | - Alexandra M. Young
- Department
of Chemistry and
Biochemistry, BioFrontiers Institute, University
of Colorado, UCB 596,
3415 Colorado AvenueBoulder, Colorado 80303, United
States
| | - Amy E. Palmer
- Department
of Chemistry and
Biochemistry, BioFrontiers Institute, University
of Colorado, UCB 596,
3415 Colorado AvenueBoulder, Colorado 80303, United
States
| |
Collapse
|
626
|
Bogart LK, Pourroy G, Murphy CJ, Puntes V, Pellegrino T, Rosenblum D, Peer D, Lévy R. Nanoparticles for imaging, sensing, and therapeutic intervention. ACS NANO 2014; 8:3107-22. [PMID: 24641589 PMCID: PMC4123720 DOI: 10.1021/nn500962q] [Citation(s) in RCA: 195] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Indexed: 05/18/2023]
Abstract
Nanoparticles have the potential to contribute to new modalities in molecular imaging and sensing as well as in therapeutic interventions. In this Nano Focus article, we identify some of the current challenges and knowledge gaps that need to be confronted to accelerate the developments of various applications. Using specific examples, we journey from the characterization of these complex hybrid nanomaterials; continue with surface design and (bio)physicochemical properties, their fate in biological media and cells, and their potential for cancer treatment; and finally reflect on the role of animal models to predict their behavior in humans.
Collapse
Affiliation(s)
- Lara K. Bogart
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, Merseyside L69 3BX, United Kingdom
| | - Genevieve Pourroy
- Institut de Physique et Chimie des Matériaux de Strasbourg IPCMS, UMR 7504 CNRS-Université de Strasbourg, 23 rue du Loess BP 43, 67034 Strasbourg cedex 2, France
| | - Catherine J. Murphy
- Department of Chemistry, University of Illinois at Urbana—Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Victor Puntes
- Insitut Català de Nanociencia I Nanotecnologia, campus UAB (CERCA-CSIC-ICREA), 08193 Barcelona, Spain
| | - Teresa Pellegrino
- Nanochemistry, Instituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Daniel Rosenblum
- Laboratory of NanoMedicine, Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Department of Materials Science and Engineering, Faculty of Engineering, and Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dan Peer
- Laboratory of NanoMedicine, Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Department of Materials Science and Engineering, Faculty of Engineering, and Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Raphaël Lévy
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, Merseyside L69 3BX, United Kingdom
| |
Collapse
|
627
|
Bertoni C. Emerging gene editing strategies for Duchenne muscular dystrophy targeting stem cells. Front Physiol 2014; 5:148. [PMID: 24795643 PMCID: PMC4001063 DOI: 10.3389/fphys.2014.00148] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 03/28/2014] [Indexed: 01/06/2023] Open
Abstract
The progressive loss of muscle mass characteristic of many muscular dystrophies impairs the efficacy of most of the gene and molecular therapies currently being pursued for the treatment of those disorders. It is becoming increasingly evident that a therapeutic application, to be effective, needs to target not only mature myofibers, but also muscle progenitors cells or muscle stem cells able to form new muscle tissue and to restore myofibers lost as the result of the diseases or during normal homeostasis so as to guarantee effective and lost lasting effects. Correction of the genetic defect using oligodeoxynucleotides (ODNs) or engineered nucleases holds great potential for the treatment of many of the musculoskeletal disorders. The encouraging results obtained by studying in vitro systems and model organisms have set the groundwork for what is likely to become an emerging field in the area of molecular and regenerative medicine. Furthermore, the ability to isolate and expand from patients various types of muscle progenitor cells capable of committing to the myogenic lineage provides the opportunity to establish cell lines that can be used for transplantation following ex vivo manipulation and expansion. The purpose of this article is to provide a perspective on approaches aimed at correcting the genetic defect using gene editing strategies and currently under development for the treatment of Duchenne muscular dystrophy (DMD), the most sever of the neuromuscular disorders. Emphasis will be placed on describing the potential of using the patient own stem cell as source of transplantation and the challenges that gene editing technologies face in the field of regenerative biology.
Collapse
Affiliation(s)
- Carmen Bertoni
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles CA, USA
| |
Collapse
|
628
|
Peptide-membrane interactions of arginine-tryptophan peptides probed using quartz crystal microbalance with dissipation monitoring. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2014; 43:241-53. [PMID: 24743917 PMCID: PMC4053608 DOI: 10.1007/s00249-014-0958-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 03/20/2014] [Accepted: 03/31/2014] [Indexed: 11/11/2022]
Abstract
Membrane-active peptides include peptides that can cross cellular membranes and deliver macromolecular cargo as well as peptides that inhibit bacterial growth. Some of these peptides can act as both transporters and antibacterial agents. It is desirable to combine the knowledge from these two different fields of membrane-active peptides into design of new peptides with tailored actions, as transporters of cargo or as antibacterial substances, targeting specific membranes. We have previously shown that the position of the amino acid tryptophan in the peptide sequence of three arginine-tryptophan peptides affects their uptake and intracellular localization in live mammalian cells, as well as their ability to inhibit bacterial growth. Here, we use quartz crystal microbalance with dissipation monitoring to assess the induced changes caused by binding of the three peptides to supported model membranes composed of POPC, POPC/POPG, POPC/POPG/cholesterol or POPC/lactosyl PE. Our results indicate that the tryptophan position in the peptide sequence affects the way these peptides interact with the different model membranes and that the presence of cholesterol in particular seems to affect the membrane interaction of the peptide with an even distribution of tryptophans in the peptide sequence. These results give mechanistic insight into the function of these peptides and may aid in the design of membrane-active peptides with specified cellular targets and actions.
Collapse
|
629
|
Gasparini G, Bang EK, Molinard G, Tulumello DV, Ward S, Kelley SO, Roux A, Sakai N, Matile S. Cellular Uptake of Substrate-Initiated Cell-Penetrating Poly(disulfide)s. J Am Chem Soc 2014; 136:6069-74. [DOI: 10.1021/ja501581b] [Citation(s) in RCA: 178] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Giulio Gasparini
- School
of Chemistry and Biochemistry, National Centre of Competence in Research
(NCCR) Chemical Biology, University of Geneva, Geneva 1211, Switzerland
| | - Eun-Kyoung Bang
- School
of Chemistry and Biochemistry, National Centre of Competence in Research
(NCCR) Chemical Biology, University of Geneva, Geneva 1211, Switzerland
| | - Guillaume Molinard
- School
of Chemistry and Biochemistry, National Centre of Competence in Research
(NCCR) Chemical Biology, University of Geneva, Geneva 1211, Switzerland
| | - David V. Tulumello
- School
of Chemistry and Biochemistry, National Centre of Competence in Research
(NCCR) Chemical Biology, University of Geneva, Geneva 1211, Switzerland
- Department
of Pharmaceutical Sciences and Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Sandra Ward
- School
of Chemistry and Biochemistry, National Centre of Competence in Research
(NCCR) Chemical Biology, University of Geneva, Geneva 1211, Switzerland
| | - Shana O. Kelley
- Department
of Pharmaceutical Sciences and Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Aurelien Roux
- School
of Chemistry and Biochemistry, National Centre of Competence in Research
(NCCR) Chemical Biology, University of Geneva, Geneva 1211, Switzerland
| | - Naomi Sakai
- School
of Chemistry and Biochemistry, National Centre of Competence in Research
(NCCR) Chemical Biology, University of Geneva, Geneva 1211, Switzerland
| | - Stefan Matile
- School
of Chemistry and Biochemistry, National Centre of Competence in Research
(NCCR) Chemical Biology, University of Geneva, Geneva 1211, Switzerland
| |
Collapse
|
630
|
Kowalczyk T, Hnatuszko-Konka K, Gerszberg A, Kononowicz AK. Elastin-like polypeptides as a promising family of genetically-engineered protein based polymers. World J Microbiol Biotechnol 2014; 30:2141-52. [PMID: 24699809 PMCID: PMC4072924 DOI: 10.1007/s11274-014-1649-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 03/27/2014] [Indexed: 01/01/2023]
Abstract
Elastin-like polypeptides (ELP) are artificial, genetically encodable biopolymers, belonging to elastomeric proteins, which are widespread in a wide range of living organisms. They are composed of a repeating pentapeptide sequence Val-Pro-Gly-Xaa-Gly, where the guest residue (Xaa) can be any naturally occurring amino acid except proline. These polymers undergo reversible phase transition that can be triggered by various environmental stimuli, such as temperature, pH or ionic strength. This behavior depends greatly on the molecular weight, concentration of ELP in the solution and composition of the amino acids constituting ELPs. At a temperature below the inverse transition temperature (Tt), ELPs are soluble, but insoluble when the temperature exceeds Tt. Furthermore, this feature is retained even when ELP is fused to the protein of interest. These unique properties make ELP very useful for a wide variety of biomedical applications (e.g. protein purification, drug delivery etc.) and it can be expected that smart biopolymers will play a significant role in the development of most new materials and technologies. Here we present the structure and properties of thermally responsive elastin-like polypeptides with a particular emphasis on biomedical and biotechnological application.
Collapse
Affiliation(s)
- Tomasz Kowalczyk
- Department of Genetics and Plant Molecular Biology and Biotechnology, The University of Lodz, Banacha Street 12/16, 90-237, Lodz, Poland,
| | | | | | | |
Collapse
|
631
|
Yin Z, Wang Y, Whittell L, Jergic S, Liu M, Harry E, Dixon N, Kelso M, Beck J, Oakley A. DNA Replication Is the Target for the Antibacterial Effects of Nonsteroidal Anti-Inflammatory Drugs. ACTA ACUST UNITED AC 2014; 21:481-487. [DOI: 10.1016/j.chembiol.2014.02.009] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 02/03/2014] [Accepted: 02/13/2014] [Indexed: 12/11/2022]
|
632
|
Du AW, Stenzel MH. Drug Carriers for the Delivery of Therapeutic Peptides. Biomacromolecules 2014; 15:1097-114. [DOI: 10.1021/bm500169p] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Alice W. Du
- Centre for Advanced Macromolecular
Design, School of Chemistry, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Martina H. Stenzel
- Centre for Advanced Macromolecular
Design, School of Chemistry, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| |
Collapse
|
633
|
de Figueiredo IR, Freire JM, Flores L, Veiga AS, Castanho MARB. Cell-penetrating peptides: A tool for effective delivery in gene-targeted therapies. IUBMB Life 2014; 66:182-194. [PMID: 24659560 DOI: 10.1002/iub.1257] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 03/06/2014] [Indexed: 12/24/2022]
Abstract
The current landscapes of novel therapeutic approaches rely mostly on gene-targeted technologies, enabling to fight rare genomic diseases, from infections to cancer and hereditary diseases. Although, reaching the action-site for this novel treatments requires to deliver nucleic acids, or other macromolecules into cells, which may pose difficult tasks to pharmaceutical companies. To overcome this technological limitation, a wide variety of vectors have been developed in the past decades and have proven to be successful in delivering various therapeutics. Cell-penetrating peptides (CPP) have been one of the technologies widely studied and have been increasingly used to transport small RNA/DNA, plasmids, antibodies, and nanoparticles into cells. Despite the already proved huge potential that these peptide-based approaches may suggest, few advances have been put to pharmacological or clinical use. This review will describe the origin, development, and usage of CPP to deliver therapeutic agents into cells, with special emphasis on their current application to gene-therapies. Specifically, we will describe the current trials being conducted to treat cancer, gene disorders, and autoimmune diseases using CPP-based therapies. © 2014 IUBMB Life, 66(3):182-194, 2014.
Collapse
Affiliation(s)
- Inês Rego de Figueiredo
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - João Miguel Freire
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Luís Flores
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Salomé Veiga
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Miguel A R B Castanho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
634
|
Andreev OA, Engelman DM, Reshetnyak YK. Targeting diseased tissues by pHLIP insertion at low cell surface pH. Front Physiol 2014; 5:97. [PMID: 24659971 PMCID: PMC3952044 DOI: 10.3389/fphys.2014.00097] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 02/25/2014] [Indexed: 12/12/2022] Open
Abstract
The discovery of the pH Low Insertion Peptides (pHLIPs®) provides an opportunity to develop imaging and drug delivery agents targeting extracellular acidity. Extracellular acidity is associated with many pathological states, such as those in cancer, ischemic stroke, neurotrauma, infection, lacerations, and others. The metabolism of cells in injured or diseased tissues often results in the acidification of the extracellular environment, so acidosis might be useful as a general marker for the imaging and treatment of diseased states if an effective targeting method can be developed. The molecular mechanism of a pHLIP peptide is based on pH-dependent membrane-associated folding. pHLIPs, being moderately hydrophobic peptides, have high affinities for cellular membranes at normal pH, but fold and insert across membranes at low pH, allowing them to sense pH at the surfaces of cells in diseased tissues, where it is the lowest. Here we discuss the main principles of pHLIP interactions with membrane lipid bilayers at neutral and low pHs, the possibility of tuning the folding and insertion pH by peptide sequence variation, and potential applications of pHLIPs for imaging, therapy and image-guided interventions.
Collapse
Affiliation(s)
- Oleg A Andreev
- Department of Physics, University of Rhode Island Kingston, RI, USA
| | - Donald M Engelman
- Department of Molecular Biophysics and Biochemistry, Yale University New Haven, CT, USA
| | | |
Collapse
|
635
|
Hu Y, Liu X, Sinha SK, Patel S. Translocation thermodynamics of linear and cyclic nonaarginine into model DPPC bilayer via coarse-grained molecular dynamics simulation: implications of pore formation and nonadditivity. J Phys Chem B 2014; 118:2670-82. [PMID: 24506488 PMCID: PMC3983342 DOI: 10.1021/jp412600e] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
Structural mechanisms
and underlying thermodynamic determinants
of efficient internalization of charged cationic peptides (cell-penetrating
peptides, CPPs) such as TAT, polyarginine, and their variants, into
cells, cellular constructs, and model membrane/lipid bilayers (large
and giant unilamellar or multilamelar vesicles) continue to garner
significant attention. Two widely held views on the translocation
mechanism center on endocytotic and nonendocytotic (diffusive) processes.
Espousing the view of a purely diffusive internalization process (supported
by recent experimental evidence, [Säälik, P.; et al. J. Controlled Release2011, 153, 117–125]), we consider the underlying free energetics of
the translocation of a nonaarginine peptide (Arg9) into
a model DPPC bilayer. In the case of the Arg9 cationic
peptide, recent experiments indicate a higher internalization efficiency
of the cyclic structure (cyclic Arg9) relative to the linear
conformer. Furthermore, recent all-atom resolution molecular dynamics
simulations of cyclic Arg9 [Huang, K.; et al. Biophys.
J., 2013, 104, 412–420]
suggested a critical stabilizing role of water- and lipid-constituted
pores that form within the bilayer as the charged Arg9 translocates
deep into the bilayer center. Herein, we use umbrella sampling molecular
dynamics simulations with coarse-grained Martini lipids, polarizable
coarse-grained water, and peptide to explore the dependence of translocation
free energetics on peptide structure and conformation via calculation
of potentials of mean force along preselected reaction paths allowing
and preventing membrane deformations that lead to pore formation.
Within the context of the coarse-grained force fields we employ, we
observe significant barriers for Arg9 translocation from
bulk aqueous solution to bilayer center. Moreover, we do not find
free-energy minima in the headgroup–water interfacial region,
as observed in simulations using all-atom force fields. The pore-forming
paths systematically predict lower free-energy barriers (ca. 90 kJ/mol
lower) than the non pore-forming paths, again consistent with all-atom
force field simulations. The current force field suggests no preference
for the more compact or covalently cyclic structures upon entering
the bilayer. Decomposition of the PMF into the system’s components
indicates that the dominant stabilizing contribution along the pore-forming
path originates from the membrane as both layers of it deformed due
to the formation of pore. Furthermore, our analysis revealed that
although there is significant entropic stabilization arising from
the enhanced configurational entropy exposing more states as the peptide
moves through the bilayer, the enthalpic loss (as predicted by the
interactions of this coarse-grained model) far outweighs any former
stabilization, thus leading to significant barrier to translocation.
Finally, we observe reduction in the translocation free-energy barrier
for a second Arg9 entering the bilayer in the presence
of an initial peptide restrained at the center, again, in qualitative
agreement with all-atom force fields.
Collapse
Affiliation(s)
- Yuan Hu
- Department of Chemistry and Biochemistry, University of Delaware , 238 Brown Laboratory, Newark, Delaware 19716, United States
| | | | | | | |
Collapse
|
636
|
Swiecicki JM, Bartsch A, Tailhades J, Di Pisa M, Heller B, Chassaing G, Mansuy C, Burlina F, Lavielle S. The Efficacies of Cell-Penetrating Peptides in Accumulating in Large Unilamellar Vesicles Depend on their Ability To Form Inverted Micelles. Chembiochem 2014; 15:884-91. [DOI: 10.1002/cbic.201300742] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Indexed: 11/08/2022]
|
637
|
Alkotaji M, Pluen A, Zindy E, Hamrang Z, Aojula H. On the Cellular Uptake and Membrane Effect of the Multifunctional Peptide, TatLK15. J Pharm Sci 2014; 103:293-304. [DOI: 10.1002/jps.23778] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 09/26/2013] [Accepted: 10/18/2013] [Indexed: 11/08/2022]
|
638
|
Ariga K, Kawakami K, Ebara M, Kotsuchibashi Y, Ji Q, Hill JP. Bioinspired nanoarchitectonics as emerging drug delivery systems. NEW J CHEM 2014. [DOI: 10.1039/c4nj00864b] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bioinspired nanoarchitectonics opens a new era for designing drug delivery systems.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS)
- Tsukuba 305-0044, Japan
- Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST)
- Tokyo 102-0076, Japan
| | - Kohsaku Kawakami
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS)
- Tsukuba 305-0044, Japan
- Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST)
- Tokyo 102-0076, Japan
| | - Mitsuhiro Ebara
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS)
- Tsukuba 305-0044, Japan
| | - Yohei Kotsuchibashi
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS)
- Tsukuba 305-0044, Japan
| | - Qingmin Ji
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS)
- Tsukuba 305-0044, Japan
| | - Jonathan P. Hill
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS)
- Tsukuba 305-0044, Japan
- Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST)
- Tokyo 102-0076, Japan
| |
Collapse
|
639
|
Nair BG, Nakano Y, Ito Y, Abe H. Transmembrane molecular transport through nanopores formed by protein nanotubes. Chem Commun (Camb) 2014; 50:602-4. [DOI: 10.1039/c3cc45907a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
640
|
Okada H, Ogawa T, Tanaka K, Kanazawa T, Takashima Y. Cytoplasm-Responsive Delivery Systems for siRNA Using Cell-Penetrating Peptide Nanomicelles. J Drug Deliv Sci Technol 2014. [DOI: 10.1016/s1773-2247(14)50001-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
641
|
Glioma-homing peptide with a cell-penetrating effect for targeting delivery with enhanced glioma localization, penetration and suppression of glioma growth. J Control Release 2013; 172:921-8. [DOI: 10.1016/j.jconrel.2013.10.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 09/15/2013] [Accepted: 10/02/2013] [Indexed: 11/18/2022]
|
642
|
Deuss PJ, Arzumanov AA, Williams DL, Gait MJ. Parallel synthesis and splicing redirection activity of cell-penetrating peptide conjugate libraries of a PNA cargo. Org Biomol Chem 2013; 11:7621-30. [PMID: 24105028 PMCID: PMC4002126 DOI: 10.1039/c3ob41659c] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 10/01/2013] [Indexed: 11/21/2022]
Abstract
A novel method for the parallel synthesis of peptide-biocargo conjugates was developed that utilizes affinity purification for fast isolation of the conjugates in order to avoid time consuming HPLC purification. The methodology was applied to create two libraries of cell-penetrating peptide (CPP)-PNA705 conjugates from parallel-synthesized peptide libraries. The conjugates were tested for their ability to induce splicing redirection in HeLa pLuc705 cells. The results demonstrate how the novel methodology can be applied for screening purposes in order to find suitable CPP-biocargo combinations and further optimization of CPPs.
Collapse
Affiliation(s)
- Peter J. Deuss
- Medical Research Council , Laboratory of Molecular Biology , Cambridge Biomedical Campus , Francis Crick Avenue , Cambridge , CB2 0QH , UK .
| | - Andrey A. Arzumanov
- Medical Research Council , Laboratory of Molecular Biology , Cambridge Biomedical Campus , Francis Crick Avenue , Cambridge , CB2 0QH , UK .
| | - Donna L. Williams
- Medical Research Council , Laboratory of Molecular Biology , Cambridge Biomedical Campus , Francis Crick Avenue , Cambridge , CB2 0QH , UK .
| | - Michael J. Gait
- Medical Research Council , Laboratory of Molecular Biology , Cambridge Biomedical Campus , Francis Crick Avenue , Cambridge , CB2 0QH , UK .
| |
Collapse
|
643
|
Subrini O, Sotomayor-Pérez AC, Hessel A, Spiaczka-Karst J, Selwa E, Sapay N, Veneziano R, Pansieri J, Chopineau J, Ladant D, Chenal A. Characterization of a membrane-active peptide from the Bordetella pertussis CyaA toxin. J Biol Chem 2013; 288:32585-32598. [PMID: 24064217 PMCID: PMC3820891 DOI: 10.1074/jbc.m113.508838] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 09/09/2013] [Indexed: 12/27/2022] Open
Abstract
Bordetella pertussis, the pathogenic bacteria responsible for whooping cough, secretes several virulence factors, among which is the adenylate cyclase toxin (CyaA) that plays a crucial role in the early stages of human respiratory tract colonization. CyaA invades target cells by translocating its catalytic domain directly across the plasma membrane and overproduces cAMP, leading to cell death. The molecular process leading to the translocation of the catalytic domain remains largely unknown. We have previously shown that the catalytic domain per se, AC384, encompassing residues 1-384 of CyaA, did not interact with lipid bilayer, whereas a longer polypeptide, AC489, spanning residues 1-489, binds to membranes and permeabilizes vesicles. Moreover, deletion of residues 375-485 within CyaA abrogated the translocation of the catalytic domain into target cells. Here, we further identified within this region a peptidic segment that exhibits membrane interaction properties. A synthetic peptide, P454, corresponding to this sequence (residues 454-485 of CyaA) was characterized by various biophysical approaches. We found that P454 (i) binds to membranes containing anionic lipids, (ii) adopts an α-helical structure oriented in plane with respect to the lipid bilayer, and (iii) permeabilizes vesicles. We propose that the region encompassing the helix 454-485 of CyaA may insert into target cell membrane and induce a local destabilization of the lipid bilayer, thus favoring the translocation of the catalytic domain across the plasma membrane.
Collapse
Affiliation(s)
- Orso Subrini
- From the Institut Pasteur, CNRS UMR 3528, Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie, 28 Rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Ana-Cristina Sotomayor-Pérez
- From the Institut Pasteur, CNRS UMR 3528, Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie, 28 Rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Audrey Hessel
- From the Institut Pasteur, CNRS UMR 3528, Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie, 28 Rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Johanna Spiaczka-Karst
- From the Institut Pasteur, CNRS UMR 3528, Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie, 28 Rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Edithe Selwa
- the Institut Pasteur, CNRS UMR 3528, Unité de Bio-Informatique Structurale, Département de Biologie Structurale et Chimie, 28 Rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Nicolas Sapay
- the Commissariat à l'Energie Atomique, Direction des Sciences de la Vie, Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire de Chimie et Biologie des Métaux, CEA Grenoble, 17 Rue des Martyrs, 38054 Grenoble, France
| | - Rémi Veneziano
- the Institut Charles Gerhardt, UMR 5253 CNRS/ENSCM/UM2/UM1, Equipe "Matériaux Avancés pour la Catalyse et la Santé", UFR des Sciences Pharmaceutiques et Biologiques, 15 Avenue Charles Flahault-BP 14 491, 34093 Montpellier Cedex 05, France
| | - Jonathan Pansieri
- the Institut Charles Gerhardt, UMR 5253 CNRS/ENSCM/UM2/UM1, Equipe "Matériaux Avancés pour la Catalyse et la Santé", UFR des Sciences Pharmaceutiques et Biologiques, 15 Avenue Charles Flahault-BP 14 491, 34093 Montpellier Cedex 05, France
| | - Joel Chopineau
- the Institut Charles Gerhardt, UMR 5253 CNRS/ENSCM/UM2/UM1, Equipe "Matériaux Avancés pour la Catalyse et la Santé", UFR des Sciences Pharmaceutiques et Biologiques, 15 Avenue Charles Flahault-BP 14 491, 34093 Montpellier Cedex 05, France; the Université de Nîmes, Rue Docteur Georges Salan, 30021 Nîmes, France
| | - Daniel Ladant
- From the Institut Pasteur, CNRS UMR 3528, Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie, 28 Rue du Dr. Roux, 75724 Paris Cedex 15, France,.
| | - Alexandre Chenal
- From the Institut Pasteur, CNRS UMR 3528, Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie, 28 Rue du Dr. Roux, 75724 Paris Cedex 15, France,.
| |
Collapse
|