601
|
|
602
|
Ozcelik T. X chromosome inactivation and female predisposition to autoimmunity. Clin Rev Allergy Immunol 2008; 34:348-51. [PMID: 18097773 DOI: 10.1007/s12016-007-8051-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Tayfun Ozcelik
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, Bilkent, Ankara 06800, Turkey.
| |
Collapse
|
603
|
Khil PP, Camerini-Otero RD. Molecular Features and Functional Constraints in the Evolution of the Mammalian X Chromosome. Crit Rev Biochem Mol Biol 2008; 40:313-30. [PMID: 16338684 DOI: 10.1080/10409230500356703] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Recent advances in genomic sequencing of multiple organisms have fostered significant advances in our understanding of the evolution of the sex chromosomes. The integration of this newly available sequence information with functional data has facilitated a considerable refinement of our conceptual framework of the forces driving this evolution. Here we address multiple functional constraints that were encountered in the evolution of the X chromosome and the impact that this evolutionary history has had on its modern behavior.
Collapse
Affiliation(s)
- Pavel P Khil
- Genetics and Biochemistry Branch, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
604
|
Levy MA, Fernandes AD, Tremblay DC, Seah C, Bérubé NG. The SWI/SNF protein ATRX co-regulates pseudoautosomal genes that have translocated to autosomes in the mouse genome. BMC Genomics 2008; 9:468. [PMID: 18842153 PMCID: PMC2577121 DOI: 10.1186/1471-2164-9-468] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Accepted: 10/08/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pseudoautosomal regions (PAR1 and PAR2) in eutherians retain homologous regions between the X and Y chromosomes that play a critical role in the obligatory X-Y crossover during male meiosis. Genes that reside in the PAR1 are exceptional in that they are rich in repetitive sequences and undergo a very high rate of recombination. Remarkably, murine PAR1 homologs have translocated to various autosomes, reflecting the complex recombination history during the evolution of the mammalian X chromosome. RESULTS We now report that the SNF2-type chromatin remodeling protein ATRX controls the expression of eutherian ancestral PAR1 genes that have translocated to autosomes in the mouse. In addition, we have identified two potentially novel mouse PAR1 orthologs. CONCLUSION We propose that the ancestral PAR1 genes share a common epigenetic environment that allows ATRX to control their expression.
Collapse
Affiliation(s)
- Michael A Levy
- Department of Biochemistry, University of Western Ontario, London, N6A 4L6,
| | | | | | | | | |
Collapse
|
605
|
De Brasi CD, Bowen DJ. Molecular characteristics of the intron 22 homologs of the coagulation factor VIII gene: an update. J Thromb Haemost 2008; 6:1822-4. [PMID: 18647227 DOI: 10.1111/j.1538-7836.2008.03094.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
606
|
Rosandić M, Glunčić M, Paar V, Basar I. The role of alphoid higher order repeats (HORs) in the centromere folding. J Theor Biol 2008; 254:555-60. [DOI: 10.1016/j.jtbi.2008.06.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2007] [Revised: 05/13/2008] [Accepted: 06/06/2008] [Indexed: 10/21/2022]
|
607
|
The chicken (Gallus gallus) Z chromosome contains at least three nonlinear evolutionary strata. Genetics 2008; 180:1131-6. [PMID: 18791248 DOI: 10.1534/genetics.108.090324] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Birds have female heterogamety with Z and W sex chromosomes. These evolved from different autosomal precursor chromosomes than the mammalian X and Y. However, previous work has suggested that the pattern and process of sex chromosome evolution show many similarities across distantly related organisms. Here we show that stepwise restriction of recombination between the protosex chromosomes of birds has resulted in regions of the chicken Z chromosome showing discrete levels of divergence from W homologs (gametologs). The 12 genes analyzed fall into three levels of estimated divergence values, with the most recent divergence (d(S) = 0.18-0.21) displayed by 6 genes in a region on the Z chromosome corresponding to the interval 1-11 Mb of the assembled genome sequence. Another 4 genes show intermediate divergence (d(S) = 0.27-0.38) and are located in the interval 16-53 Mb. Two genes (at positions 42 and 50 Mb) with higher d(S) values are located proximal to the most distal of the 4 genes with intermediate divergence, suggesting an inversion event. The distribution of genes and their divergence indicate at least three evolutionary strata, with estimated times for cessation of recombination between Z and W of 132-150 (stratum 1), 71-99 (stratum 2), and 47-57 (stratum 3) million years ago. An inversion event, or some other form of intrachromosomal rearrangement, subsequent to the formation of strata 1 and 2 has scrambled the gene order to give rise to the nonlinear arrangement of evolutionary strata currently seen on the chicken Z chromosome. These observations suggest that the progressive restriction of recombination is an integral feature of sex chromosome evolution and occurs also in systems of female heterogamety.
Collapse
|
608
|
Abstract
A typical pattern in sex chromosome evolution is that Y chromosomes are small and have lost many of their genes. One mechanism that might explain the degeneration of Y chromosomes is Muller's ratchet, the perpetual stochastic loss of linkage groups carrying the fewest number of deleterious mutations. This process has been investigated theoretically mainly for asexual, haploid populations. Here, I construct a model of a sexual population where deleterious mutations arise on both X and Y chromosomes. Simulation results of this model demonstrate that mutations on the X chromosome can considerably slow down the ratchet. On the other hand, a lower mutation rate in females than in males, background selection, and the emergence of dosage compensation are expected to accelerate the process.
Collapse
|
609
|
McLysaght A. Evolutionary steps of sex chromosomes are reflected in retrogenes. Trends Genet 2008; 24:478-81. [PMID: 18774619 DOI: 10.1016/j.tig.2008.07.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 07/04/2008] [Accepted: 07/25/2008] [Indexed: 11/25/2022]
Abstract
It has been shown that selective pressure to compensate for the silencing of the sex chromosomes during male meiosis resulted in many X-linked genes being duplicated as functional retrogenes on autosomes. The silencing of male sex chromosomes was probably stratified during evolution, in accordance with their stratified diversification. Here I show that the timing of the retrocopying events is associated with the timing of the X-Y differentiation of the region of the X chromosome housing the parental copy of the gene.
Collapse
Affiliation(s)
- Aoife McLysaght
- Smurfit Institute of Genetics, University of Dublin, Trinity College, Dublin, Ireland.
| |
Collapse
|
610
|
Jonkers I, Monkhorst K, Rentmeester E, Grootegoed JA, Grosveld F, Gribnau J. Xist RNA is confined to the nuclear territory of the silenced X chromosome throughout the cell cycle. Mol Cell Biol 2008; 28:5583-94. [PMID: 18625719 PMCID: PMC2546918 DOI: 10.1128/mcb.02269-07] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 02/04/2008] [Accepted: 07/04/2008] [Indexed: 11/20/2022] Open
Abstract
In mammalian female cells, one X chromosome is inactivated to prevent a dose difference in the expression of X-encoded proteins between males and females. Xist RNA, required for X chromosome inactivation, is transcribed from the future inactivated X chromosome (Xi), where it spreads in cis, to initiate silencing. We have analyzed Xist RNA transcription and localization throughout the cell cycle. It was found that Xist transcription is constant and that the mature RNA remains attached to the Xi throughout mitosis. Diploid and tetraploid cell lines with an MS2-tagged Xist gene were used to investigate spreading of Xist. Most XXXX(MS2) tetraploid mouse embryonic stem (ES) cells inactivate the X(MS2) chromosome and one other X chromosome. Analysis of cells with two Xi's indicates that Xist RNA is retained by the Xi of its origin and does not spread in trans. Also, in XX(MS2) diploid mouse ES cells with an autosomal Xist transgene, there is no trans exchange of Xist RNA from the Xi to the autosome. We propose that Xist RNA does not dissociate from the Xi of its origin, which precludes a model of diffusion-mediated trans spreading of Xist RNA.
Collapse
Affiliation(s)
- Iris Jonkers
- Department of Cell Biology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
611
|
Analysis of transposon interruptions suggests selection for L1 elements on the X chromosome. PLoS Genet 2008; 4:e1000172. [PMID: 18769724 PMCID: PMC2517846 DOI: 10.1371/journal.pgen.1000172] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Accepted: 07/17/2008] [Indexed: 01/02/2023] Open
Abstract
It has been hypothesised that the massive accumulation of L1 transposable elements on the X chromosome is due to their function in X inactivation, and that the accumulation of Alu elements near genes is adaptive. We tested the possible selective advantage of these two transposable element (TE) families with a novel method, interruption analysis. In mammalian genomes, a large number of TEs interrupt other TEs due to the high overall abundance and age of repeats, and these interruptions can be used to test whether TEs are selectively neutral. Interruptions of TEs, which are beneficial for the host, are expected to be deleterious and underrepresented compared with neutral ones. We found that L1 elements in the regions of the X chromosome that contain the majority of the inactivated genes are significantly less frequently interrupted than on the autosomes, while L1s near genes that escape inactivation are interrupted with higher frequency, supporting the hypothesis that L1s on the X chromosome play a role in its inactivation. In addition, we show that TEs are less frequently interrupted in introns than in intergenic regions, probably due to selection against the expansion of introns, but the insertion pattern of Alus is comparable to other repeats. Recent experimental findings (for example the ENCODE project) show that many functional non-coding regions of genomes are not conserved across species, making the in-silico discovery of such regions challenging. Transposable elements (TEs), which represent 45 percent of the human genome and typically show no sequence conservation, are particularly intriguing from this point of view, because the highly nonrandom genomic distribution of many TE families in genomes has led to hypotheses that their presence is adaptive and have an epigenetic (regulatory) function. We use a novel approach based on the analysis of interrupted TEs to investigate if repeats are under selection that does not rely on sequence conservation. L1 elements, the most active transposable elements of the human genome, are highly overrepresented on the X-chromosome and were suggested to enhance its inactivation in mammals. We find that the interruption pattern of L1 repeats indicates a function for L1 elements in the inactivation of the mammalian X chromosome. Additionally, we show that a considerable fraction of TEs in introns are under selection for integrity, possibly due to selection on intron size or on TEs themselves.
Collapse
|
612
|
Zhu W, Fan Z, Zhang C, Guo Z, Zhao Y, Zhou Y, Li K, Xing Z, Chen G, Liang Y, Jin L, Xiao J. A dominant X-linked QTL regulating pubertal timing in mice found by whole genome scanning and modified interval-specific congenic strain analysis. PLoS One 2008; 3:e3021. [PMID: 18725948 PMCID: PMC2516528 DOI: 10.1371/journal.pone.0003021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Accepted: 07/11/2008] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Pubertal timing in mammals is triggered by reactivation of the hypothalamic-pituitary-gonadal (HPG) axis and modulated by both genetic and environmental factors. Strain-dependent differences in vaginal opening among inbred mouse strains suggest that genetic background contribute significantly to the puberty timing, although the exact mechanism remains unknown. METHODOLOGY/PRINCIPAL FINDINGS We performed a genome-wide scanning for linkage in reciprocal crosses between two strains, C3H/HeJ (C3H) and C57BL6/J (B6), which differed significantly in the pubertal timing. Vaginal opening (VO) was used to characterize pubertal timing in female mice, and the age at VO of all female mice (two parental strains, F1 and F2 progeny) was recorded. A genome-wide search was performed in 260 phenotypically extreme F2 mice out of 464 female progeny of the F1 intercrosses to identify quantitative trait loci (QTLs) controlling this trait. A QTL significantly associated was mapped to the DXMit166 marker (15.5 cM, LOD = 3.86, p<0.01) in the reciprocal cross population (C3HB6F2). This QTL contributed 2.1 days to the timing of VO, which accounted for 32.31% of the difference between the original strains. Further study showed that the QTL was B6-dominant and explained 10.5% of variation to this trait with a power of 99.4% at an alpha level of 0.05.The location of the significant ChrX QTL found by genome scanning was then fine-mapped to a region of approximately 2.5 cM between marker DXMit68 and rs29053133 by generating and phenotyping a panel of 10 modified interval-specific congenic strains (mISCSs). CONCLUSIONS/SIGNIFICANCE Such findings in our study lay a foundation for positional cloning of genes regulating the timing of puberty, and also reveal the fact that chromosome X (the sex chromosome) does carry gene(s) which take part in the regulative pathway of the pubertal timing in mice.
Collapse
Affiliation(s)
- Wangsheng Zhu
- College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai Songjiang, People's Republic of China
- Joint Laboratory for Model Animal Biodiversity, Shanghai Pudong, People's Republic of China
| | - Zhongpeng Fan
- College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai Songjiang, People's Republic of China
- Joint Laboratory for Model Animal Biodiversity, Shanghai Pudong, People's Republic of China
| | - Chao Zhang
- College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai Songjiang, People's Republic of China
- Joint Laboratory for Model Animal Biodiversity, Shanghai Pudong, People's Republic of China
| | - Zhengxia Guo
- College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai Songjiang, People's Republic of China
- Joint Laboratory for Model Animal Biodiversity, Shanghai Pudong, People's Republic of China
| | - Ying Zhao
- College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai Songjiang, People's Republic of China
- Joint Laboratory for Model Animal Biodiversity, Shanghai Pudong, People's Republic of China
- Shanghai British SIPPR/BK Lab Animal Ltd, Shanghai, People's Republic of China
| | - Yuxun Zhou
- College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai Songjiang, People's Republic of China
- Joint Laboratory for Model Animal Biodiversity, Shanghai Pudong, People's Republic of China
| | - Kai Li
- College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai Songjiang, People's Republic of China
- Joint Laboratory for Model Animal Biodiversity, Shanghai Pudong, People's Republic of China
| | - Zhenghong Xing
- Joint Laboratory for Model Animal Biodiversity, Shanghai Pudong, People's Republic of China
- Shanghai British SIPPR/BK Lab Animal Ltd, Shanghai, People's Republic of China
| | - Guoqiang Chen
- Joint Laboratory for Model Animal Biodiversity, Shanghai Pudong, People's Republic of China
- Shanghai British SIPPR/BK Lab Animal Ltd, Shanghai, People's Republic of China
| | - Yinming Liang
- College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai Songjiang, People's Republic of China
- Joint Laboratory for Model Animal Biodiversity, Shanghai Pudong, People's Republic of China
| | - Li Jin
- Joint Laboratory for Model Animal Biodiversity, Shanghai Pudong, People's Republic of China
- School of Life Science, Fudan University, Shanghai, People's Republic of China
| | - Junhua Xiao
- College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai Songjiang, People's Republic of China
- Joint Laboratory for Model Animal Biodiversity, Shanghai Pudong, People's Republic of China
- * E-mail:
| |
Collapse
|
613
|
The Y chromosome that lost the male-determining function behaves as an X chromosome in the medaka fish, Oryzias latipes. Genetics 2008; 179:2157-62. [PMID: 18689894 DOI: 10.1534/genetics.108.090167] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The medaka, Oryzias latipes, has an XX/XY sex-determination system, and a Y-linked DM-domain gene, DMY, is the sex-determining gene in this species. Since DMY appears to have arisen from a duplicated copy of the autosomal DMRT1 gene approximately 10 million years ago, the medaka Y chromosome is considered to be one of the youngest male-determining chromosomes in vertebrates. In the screening process of sex-reversal mutants from wild populations, we found a population that contained a number of XY females. PCR, direct sequencing, and RT-PCR analyses revealed two different null DMY mutations in this population. One mutation caused loss of expression during the sex-determining period, while the other comprised a large deletion in putative functional domains. YY females with the mutant-type DMY genes on their Y chromosomes were fully fertile, indicating that the X and Y chromosomes were functionally the same except for the male-determining function. In addition, we investigated the frequencies of the sex chromosome types in this population over four successive generations. The Y chromosomes bearing the mutant-type DMY genes were detected every year with no significant differences in their frequencies. These results demonstrate that aberrant Y chromosomes behaving as X chromosomes have been maintained in this population.
Collapse
|
614
|
Warshauer-Baker E, Bonham VL, Jenkins J, Stevens N, Page Z, Odunlami A, McBride CM. Family physicians' beliefs about genetic contributions to racial/ethnic and gender differences in health and clinical decision-making. COMMUNITY GENETICS 2008; 11:352-8. [PMID: 18690003 PMCID: PMC3399248 DOI: 10.1159/000133307] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Greater attention towards genetics as a contributor to group health differences may lead to inappropriate use of race/ethnicity and gender as genetic heuristics and exacerbate health disparities. As part of a web-based survey, 1,035 family physicians (FPs) rated the contribution of genetics and environment to racial/ethnic and gender differences in health outcomes, and the importance of race/ethnicity and gender in their clinical decision-making. FPs attributed racial/ethnic and gender differences in health outcomes equally to environment and genetics. These beliefs were not associated with rated importance of race/ethnicity or gender in clinical decision-making. FPs appreciate the complexity of genetic and environmental influences on health differences by race/ethnicity and gender.
Collapse
Affiliation(s)
- Esther Warshauer-Baker
- Social and Behavioral Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-0249, USA
| | | | | | | | | | | | | |
Collapse
|
615
|
Giorda R, Bonaglia MC, Milani G, Baroncini A, Spada F, Beri S, Menozzi G, Rusconi M, Zuffardi O. Molecular and cytogenetic analysis of the spreading of X inactivation in a girl with microcephaly, mild dysmorphic features and t(X;5)(q22.1;q31.1). Eur J Hum Genet 2008; 16:897-905. [PMID: 18301446 DOI: 10.1038/ejhg.2008.28] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
X chromosome inactivation involves initiation, propagation, and maintenance of gene inactivation. Studies of replication pattern and timing in X;autosome translocations have suggested that X inactivation may spread to autosomal DNA. To examine this phenomenon at the molecular level, we have tested the transcriptional activity of a number of chromosome 5 loci in a female subject with microcephaly, mild dysmorphic features and 46,X,der(X)t(X;5)(q22.1;q31.1) karyotype. RT-PCR analysis of 20 transcribed sequences spanning 5q31.1-qter revealed that nine of them were not expressed in somatic cell hybrid clones carrying the translocated chromosome. However, eight genes were expressed and therefore escaped inactivation. This direct expression test demonstrates that spreading of inactivation from the X chromosome to the adjoining autosomal DNA was incomplete and 'patchy'. Inactivation was associated in most instances to methylation of the CpG sequences in genes containing CpG islands, but was also present in CpG islandless genes. These results agree with those obtained for other X;autosome translocations and demonstrate that autosomes are partially resistant to Xist-mediated spreading and/or maintenance of inactivation. Repeat distribution analysis does not suggest an association between L1 and LINE repeat density on chromosome 5 and gene inactivation. The expression data may also explain why the proband manifests an attenuated clinical phenotype compared to subjects with partial chromosome 5 trisomy.
Collapse
Affiliation(s)
- Roberto Giorda
- Molecular Biology Laboratory, E. Medea Scientific Institute, Bosisio Parini, Lecco, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
616
|
Ross JA, Peichel CL. Molecular cytogenetic evidence of rearrangements on the Y chromosome of the threespine stickleback fish. Genetics 2008; 179:2173-82. [PMID: 18689886 PMCID: PMC2516089 DOI: 10.1534/genetics.108.088559] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Accepted: 06/10/2008] [Indexed: 11/18/2022] Open
Abstract
To identify the processes shaping vertebrate sex chromosomes during the early stages of their evolution, it is necessary to study systems in which genetic sex determination was recently acquired. Previous cytogenetic studies suggested that threespine stickleback fish (Gasterosteus aculeatus) do not have a heteromorphic sex chromosome pair, although recent genetic studies found evidence of an XY genetic sex-determination system. Using fluorescence in situ hybridization (FISH), we report that the threespine stickleback Y chromosome is heteromorphic and has suffered both inversions and deletion. Using the FISH data, we reconstruct the rearrangements that have led to the current physical state of the threespine stickleback Y chromosome. These data demonstrate that the threespine Y is more degenerate than previously thought, suggesting that the process of sex chromosome evolution can occur rapidly following acquisition of a sex-determining region.
Collapse
Affiliation(s)
- Joseph A Ross
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98101, USA
| | | |
Collapse
|
617
|
Molecular characterization of a null allele at locus DXS8378. FORENSIC SCIENCE INTERNATIONAL GENETICS SUPPLEMENT SERIES 2008. [DOI: 10.1016/j.fsigss.2007.10.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
618
|
Marais GAB, Nicolas M, Bergero R, Chambrier P, Kejnovsky E, Monéger F, Hobza R, Widmer A, Charlesworth D. Evidence for degeneration of the Y chromosome in the dioecious plant Silene latifolia. Curr Biol 2008; 18:545-9. [PMID: 18394889 DOI: 10.1016/j.cub.2008.03.023] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 03/11/2008] [Accepted: 03/11/2008] [Indexed: 11/26/2022]
Abstract
The human Y--probably because of its nonrecombining nature--has lost 97% of its genes since X and Y chromosomes started to diverge [1, 2]. There are clear signs of degeneration in the Drosophila miranda neoY chromosome (an autosome fused to the Y chromosome), with neoY genes showing faster protein evolution [3-6], accumulation of unpreferred codons [6], more insertions of transposable elements [5, 7], and lower levels of expression [8] than neoX genes. In the many other taxa with sex chromosomes, Y degeneration has hardly been studied. In plants, many genes are expressed in pollen [9], and strong pollen selection may oppose the degeneration of plant Y chromosomes [10]. Silene latifolia is a dioecious plant with young heteromorphic sex chromosomes [11, 12]. Here we test whether the S. latifolia Y chromosome is undergoing genetic degeneration by analyzing seven sex-linked genes. S. latifolia Y-linked genes tend to evolve faster at the protein level than their X-linked homologs, and they have lower expression levels. Several Y gene introns have increased in length, with evidence for transposable-element accumulation. We detect signs of degeneration in most of the Y-linked gene sequences analyzed, similar to those of animal Y-linked and neo-Y chromosome genes.
Collapse
Affiliation(s)
- Gabriel A B Marais
- Université de Lyon, Université Lyon 1, Centre National de la Recherche Scientifique, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, 69622 Villeurbanne Cedex, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
619
|
The status of dosage compensation in the multiple X chromosomes of the platypus. PLoS Genet 2008; 4:e1000140. [PMID: 18654631 PMCID: PMC2453332 DOI: 10.1371/journal.pgen.1000140] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Accepted: 06/24/2008] [Indexed: 12/02/2022] Open
Abstract
Dosage compensation has been thought to be a ubiquitous property of sex chromosomes that are represented differently in males and females. The expression of most X-borne genes is equalized between XX females and XY males in therian mammals (marsupials and “placentals”) by inactivating one X chromosome in female somatic cells. However, compensation seems not to be strictly required to equalize the expression of most Z-borne genes between ZZ male and ZW female birds. Whether dosage compensation operates in the third mammal lineage, the egg-laying monotremes, is of considerable interest, since the platypus has a complex sex chromosome system in which five X and five Y chromosomes share considerable genetic homology with the chicken ZW sex chromosome pair, but not with therian XY chromosomes. The assignment of genes to four platypus X chromosomes allowed us to examine X dosage compensation in this unique species. Quantitative PCR showed a range of compensation, but SNP analysis of several X-borne genes showed that both alleles are transcribed in a heterozygous female. Transcription of 14 BACs representing 19 X-borne genes was examined by RNA-FISH in female and male fibroblasts. An autosomal control gene was expressed from both alleles in nearly all nuclei, and four pseudoautosomal BACs were usually expressed from both alleles in male as well as female nuclei, showing that their Y loci are active. However, nine X-specific BACs were usually transcribed from only one allele. This suggests that while some genes on the platypus X are not dosage compensated, other genes do show some form of compensation via stochastic transcriptional inhibition, perhaps representing an ancestral system that evolved to be more tightly controlled in placental mammals such as human and mouse. Dosage compensation equalizes the expression of genes found on sex chromosomes so that they are equally expressed in females and males. In placental and marsupial mammals, this is accomplished by silencing one of the two X chromosomes in female cells. In birds, dosage compensation seems not to be strictly required to balance the expression of most genes on the Z chromosome between ZZ males and ZW females. Whether dosage compensation exists in the third group of mammals, the egg-laying monotremes, is of considerable interest, particularly since the platypus has five different X and five different Y chromosomes. As part of the platypus genome project, genes have now been assigned to four of the five X chromosomes. We have shown that there is some evidence for dosage compensation, but it is variable between genes. Most interesting are our results showing that there is a difference in the probability of expression for X-specific genes, with about 50% of female cells having two active copies of an X gene while the remainder have only one. This means that, although the platypus has the variable compensation characteristic of birds, it also has some level of inactivation, which is characteristic of dosage compensation in other mammals.
Collapse
|
620
|
Braga MDV, Sagot MF, Scornavacca C, Tannier E. Exploring the solution space of sorting by reversals, with experiments and an application to evolution. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2008; 5:348-356. [PMID: 18670039 DOI: 10.1109/tcbb.2008.16] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In comparative genomics, algorithms that sort permutations by reversals are often used to propose evolutionary scenarios of rearrangements between species. One of the main problems of such methods is that they give one solution while the number of optimal solutions is huge, with no criteria to discriminate among them. Bergeron et al. started to give some structure to the set of optimal solutions, in order to be able to deliver more presentable results than only one solution or a complete list of all solutions. However, no algorithm exists so far to compute this structure except through the enumeration of all solutions, which takes too much time even for small permutations. Bergeron et al. state as an open problem the design of such an algorithm. We propose in this paper an answer to this problem, that is, an algorithm which gives all the classes of solutions and counts the number of solutions in each class, with a better theoretical and practical complexity than the complete enumeration method. We give an example of how to reduce the number of classes obtained, using further constraints. Finally, we apply our algorithm to analyse the possible scenarios of rearrangement between mammalian sex chromosomes.
Collapse
Affiliation(s)
- Marília D V Braga
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Université de Lyon 1 Claude Bernard, 43, Bd du 11 Novembre 1918, F-69622 Villeurbanne, France.
| | | | | | | |
Collapse
|
621
|
Con: Newly Appreciated Pathophysiology of Ischemic Heart Disease in Women Mandates Changes in Perioperative Management. Anesth Analg 2008; 107:33-6. [DOI: 10.1213/ane.0b013e31816e5128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
622
|
Selcen D, Milone M, Shen XM, Harper CM, Stans AA, Wieben ED, Engel AG. Dok-7 myasthenia: phenotypic and molecular genetic studies in 16 patients. Ann Neurol 2008; 64:71-87. [PMID: 18626973 PMCID: PMC2570015 DOI: 10.1002/ana.21408] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Detailed analysis of phenotypic and molecular genetic aspects of Dok-7 myasthenia in 16 patients. METHODS We assessed our patients by clinical and electromyographic studies, by intercostal muscle biopsies for in vitro microelectrode analysis of neuromuscular transmission and quantitative electron microscopy EM of 409 end plates (EPs), and by mutation analysis, and expression studies of the mutants. RESULTS The clinical spectrum varied from mild static limb-girdle weakness to severe generalized progressive disease. The synaptic contacts were single or multiple, and some, but not all, were small. In vitro microelectrode studies indicated variable decreases of the number of released quanta and of the synaptic response to acetylcholine; acetylcholine receptor (AChR) channel kinetics were normal. EM analysis demonstrated widespread and previously unrecognized destruction and remodeling of the EPs. Each patient carries 2 or more heteroallelic mutations: 11 in genomic DNA, 7 of which are novel; and 6 identifiable only in complementary DNA or cloned complementary DNA, 3 of which are novel. The pathogenicity of the mutations was confirmed by expression studies. Although the functions of Dok-7 include AChR beta-subunit phosphorylation and maintaining AChR site density, patient EPs showed normal AChR beta-subunit phosphorylation, and the AChR density on the remaining junctional folds appeared normal. INTERPRETATION First, the clinical features of Dok-7 myasthenia are highly variable. Second, some mutations are complex and identifiable only in cloned complementary DNA. Third, Dok-7 is essential for maintaining not only the size but also the structural integrity of the EP. Fourth, the profound structural alterations at the EPs likely contribute importantly to the reduced safety margin of neuromuscular transmission.
Collapse
Affiliation(s)
- Duygu Selcen
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | | | |
Collapse
|
623
|
|
624
|
Characterization of the gender dimorphism after injury and hemorrhagic shock: are hormonal differences responsible? Crit Care Med 2008; 36:1838-45. [PMID: 18496363 DOI: 10.1097/ccm.0b013e3181760c14] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To characterize the gender dimorphism after injury with specific reference to the reproductive age of the women (young, <48 yrs of age, vs. old, >52 yrs of age) in a cohort of severely injured trauma patients for which significant variation in postinjury care is minimized. DESIGN Secondary data analysis of an ongoing prospective multicenter cohort study. SETTING Academic, level I trauma and intensive care unit centers. PATIENTS Blunt-injured adults with hemorrhagic shock. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Separate Cox proportional hazard regression models were formulated based on all patients to evaluate the effects of gender on mortality, multiple organ failure, and nosocomial infection, after controlling for all important confounders. These models were then used to characterize the effect of gender in young and old age groups. Overall mortality, multiple organ failure, and nosocomial infection rates for the entire cohort (n = 1,036) were 20%, 40%, and 45%, respectively. Mean Injury Severity Score was 32 +/- 14 (mean +/- SD). Men (n = 680) and women (n = 356) were clinically similar except that men required higher crystalloid volumes, more often had a history of alcoholism and liver disease, and had greater ventilatory and intensive care unit requirements. Female gender was independently associated with a 43% and 23% lower risk of multiple organ failure and nosocomial infection, respectively. Gender remained an independent risk factor in young and old subgroup analysis, with the protection afforded by female gender remaining unchanged. CONCLUSIONS The independent protective effect of female gender on multiple organ failure and nosocomial infection rates remains significant in both premenopausal and postmenopausal women when compared with similarly aged men. This is contrary to previous experimental studies and the known physiologic sex hormone changes that occur after menopause in women. These results suggest that factors other than sex hormones may be responsible for gender-based differences after injury.
Collapse
|
625
|
Potrzebowski L, Vinckenbosch N, Marques AC, Chalmel F, Jégou B, Kaessmann H. Chromosomal gene movements reflect the recent origin and biology of therian sex chromosomes. PLoS Biol 2008; 6:e80. [PMID: 18384235 PMCID: PMC2276528 DOI: 10.1371/journal.pbio.0060080] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Accepted: 02/14/2008] [Indexed: 12/25/2022] Open
Abstract
Mammalian sex chromosomes stem from ancestral autosomes and have substantially differentiated. It was shown that X-linked genes have generated duplicate intronless gene copies (retrogenes) on autosomes due to this differentiation. However, the precise driving forces for this out-of-X gene "movement" and its evolutionary onset are not known. Based on expression analyses of male germ-cell populations, we here substantiate and extend the hypothesis that autosomal retrogenes functionally compensate for the silencing of their X-linked housekeeping parental genes during, but also after, male meiotic sex chromosome inactivation (MSCI). Thus, sexually antagonistic forces have not played a major role for the selective fixation of X-derived gene copies in mammals. Our dating analyses reveal that although retrogenes were produced ever since the common mammalian ancestor, selectively driven retrogene export from the X only started later, on the placental mammal (eutherian) and marsupial (metatherian) lineages, respectively. Together, these observations suggest that chromosome-wide MSCI emerged close to the eutherian-marsupial split approximately 180 million years ago. Given that MSCI probably reflects the spread of the recombination barrier between the X and Y, crucial for their differentiation, our data imply that these chromosomes became more widely differentiated only late in the therian ancestor, well after the divergence of the monotreme lineage. Thus, our study also provides strong independent support for the recent notion that our sex chromosomes emerged, not in the common ancestor of all mammals, but rather in the therian ancestor, and therefore are much younger than previously thought.
Collapse
Affiliation(s)
- Lukasz Potrzebowski
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | | | - Ana Claudia Marques
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Frédéric Chalmel
- INSERM U625, IFR 140, Université Rennes I, Campus de Beaulieu, Rennes, France
| | - Bernard Jégou
- INSERM U625, IFR 140, Université Rennes I, Campus de Beaulieu, Rennes, France
| | - Henrik Kaessmann
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
626
|
Zhou Q, Wang J, Huang L, Nie W, Wang J, Liu Y, Zhao X, Yang F, Wang W. Neo-sex chromosomes in the black muntjac recapitulate incipient evolution of mammalian sex chromosomes. Genome Biol 2008; 9:R98. [PMID: 18554412 PMCID: PMC2481430 DOI: 10.1186/gb-2008-9-6-r98] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2007] [Revised: 03/04/2008] [Accepted: 06/14/2008] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The regular mammalian X and Y chromosomes diverged from each other at least 166 to 148 million years ago, leaving few traces of their early evolution, including degeneration of the Y chromosome and evolution of dosage compensation. RESULTS We studied the intriguing case of black muntjac, in which a recent X-autosome fusion and a subsequent large autosomal inversion within just the past 0.5 million years have led to inheritance patterns identical to the traditional X-Y (neo-sex chromosomes). We compared patterns of genome evolution in 35-kilobase noncoding regions and 23 gene pairs on the homologous neo-sex chromosomes. We found that neo-Y alleles have accumulated more mutations, comprising a wide variety of mutation types, which indicates cessation of recombination and is consistent with an ongoing neo-Y degeneration process. Putative deleterious mutations were observed in coding regions of eight investigated genes as well as cis-regulatory regions of two housekeeping genes. In vivo assays characterized a neo-Y insertion in the promoter of the CLTC gene that causes a significant reduction in allelic expression. A neo-Y-linked deletion in the 3'-untranslated region of gene SNX22 abolished a microRNA target site. Finally, expression analyses revealed complex patterns of expression divergence between neo-Y and neo-X alleles. CONCLUSION The nascent neo-sex chromosome system of black muntjacs is a valuable model in which to study the evolution of sex chromosomes in mammals. Our results illustrate the degeneration scenarios in various genomic regions. Of particular importance, we report--for the first time--that regulatory mutations were probably able to accelerate the degeneration process of Y and contribute to further evolution of dosage compensation.
Collapse
Affiliation(s)
- Qi Zhou
- CAS-Max Planck Junior Research Group, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences (CAS), 32# Jiao-chang Road, Kunming, Yunnan 650223, People's Republic of China
- Graduate School of Chinese Academy Sciences, 19# Yu-quan Road, Beijing 100039, People's Republic of China
| | - Jun Wang
- The Institute of Human Genetics, University of Aarhus, Nordre Ringgade 1, DK-8000 Aarhus C, Denmark
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark
- Beijing Genomics Institute, Bei-shan Road, Shenzhen 518083, People's Republic of China
| | - Ling Huang
- Graduate School of Chinese Academy Sciences, 19# Yu-quan Road, Beijing 100039, People's Republic of China
- Kunming Cell Bank, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 32# Jiao-chang Road, Kunming, Yunnan 650223, People's Republic of China
| | - Wenhui Nie
- Kunming Cell Bank, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 32# Jiao-chang Road, Kunming, Yunnan 650223, People's Republic of China
| | - Jinhuan Wang
- Kunming Cell Bank, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 32# Jiao-chang Road, Kunming, Yunnan 650223, People's Republic of China
| | - Yan Liu
- Graduate School of Chinese Academy Sciences, 19# Yu-quan Road, Beijing 100039, People's Republic of China
- Kunming Cell Bank, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 32# Jiao-chang Road, Kunming, Yunnan 650223, People's Republic of China
| | - Xiangyi Zhao
- CAS-Max Planck Junior Research Group, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences (CAS), 32# Jiao-chang Road, Kunming, Yunnan 650223, People's Republic of China
| | - Fengtang Yang
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Ickleton Road, Hinxton, Cambridge, CB10 1SA, UK
| | - Wen Wang
- CAS-Max Planck Junior Research Group, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences (CAS), 32# Jiao-chang Road, Kunming, Yunnan 650223, People's Republic of China
| |
Collapse
|
627
|
Jamilena M, Mariotti B, Manzano S. Plant sex chromosomes: molecular structure and function. Cytogenet Genome Res 2008; 120:255-64. [PMID: 18504355 DOI: 10.1159/000121075] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2007] [Indexed: 11/19/2022] Open
Abstract
Recent molecular and genomic studies carried out in a number of model dioecious plant species, including Asparagus officinalis, Carica papaya, Silene latifolia, Rumex acetosa and Marchantia polymorpha, have shed light on the molecular structure of both homomorphic and heteromorphic sex chromosomes, and also on the gene functions they have maintained since their evolution from a pair of autosomes. The molecular structure of sex chromosomes in species from different plant families represents the evolutionary pathway followed by sex chromosomes during their evolution. The degree of Y chromosome degeneration that accompanies the suppression of recombination between the Xs and Ys differs among species. The primitive Ys of A. officinalis and C. papaya have only diverged from their homomorphic Xs in a short male-specific and non-recombining region (MSY), while the heteromorphic Ys of S. latifolia, R. acetosa and M. polymorpha have diverged from their respective Xs. As in the Y chromosomes of mammals and Drosophila, the accumulation of repetitive DNA, including both transposable elements and satellite DNA, has played an important role in the divergence and size enlargement of plant Ys, and consequently in reducing gene density. Nevertheless, the degeneration process in plants does not appear to have reached the Y-linked genes. Although a low gene density has been found in the sequenced Y chromosome of M. polymorpha, most of its genes are essential and are expressed in the vegetative and reproductive organs in both male and females. Similarly, most of the Y-linked genes that have been isolated and characterized up to now in S. latifolia are housekeeping genes that have X-linked homologues, and are therefore expressed in both males and females. Only one of them seems to be degenerate with respect to its homologous region in the X. Sequence analysis of larger regions in the homomorphic X and Y chromosomes of papaya and asparagus, and also in the heteromorphic sex chromosomes of S. latifolia and R. acetosa, will reveal the degenerative changes that the Y-linked gene functions have experienced during sex chromosome evolution.
Collapse
Affiliation(s)
- M Jamilena
- Departamento de Biología Aplicada, Area de Genética, Escuela Politécnica Superior, Universidad de Almería, Almería, Spain.
| | | | | |
Collapse
|
628
|
Coffee B, Ikeda M, Budimirovic DB, Hjelm LN, Kaufmann WE, Warren ST. Mosaic FMR1 deletion causes fragile X syndrome and can lead to molecular misdiagnosis: a case report and review of the literature. Am J Med Genet A 2008; 146A:1358-67. [PMID: 18412117 PMCID: PMC2697959 DOI: 10.1002/ajmg.a.32261] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The most common cause of fragile X syndrome is expansion of a CGG trinucleotide repeat in the 5'UTR of FMR1. This expansion leads to transcriptional silencing of the gene. However, other mutational mechanisms, such as deletions of FMR1, also cause fragile X syndrome. The result is the same for both the expansion mediated silencing and deletion, absence of the gene product, FMRP. We report here on an 11-year-old boy with a cognitive and behavioral profile with features compatible with, but not specific to, fragile X syndrome. A mosaic deletion of 1,013,395 bp was found using high-density X chromosome microarray analysis followed by sequencing of the deletion breakpoints. We review the literature of FMR1 deletions and present this case in the context of other FMR1 deletions having mental retardation that may or may not have the classic fragile X phenotype.
Collapse
Affiliation(s)
- Bradford Coffee
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | | | | | | | | | |
Collapse
|
629
|
Warren WC, Hillier LW, Marshall Graves JA, Birney E, Ponting CP, Grützner F, Belov K, Miller W, Clarke L, Chinwalla AT, Yang SP, Heger A, Locke DP, Miethke P, Waters PD, Veyrunes F, Fulton L, Fulton B, Graves T, Wallis J, Puente XS, López-Otín C, Ordóñez GR, Eichler EE, Chen L, Cheng Z, Deakin JE, Alsop A, Thompson K, Kirby P, Papenfuss AT, Wakefield MJ, Olender T, Lancet D, Huttley GA, Smit AFA, Pask A, Temple-Smith P, Batzer MA, Walker JA, Konkel MK, Harris RS, Whittington CM, Wong ESW, Gemmell NJ, Buschiazzo E, Vargas Jentzsch IM, Merkel A, Schmitz J, Zemann A, Churakov G, Kriegs JO, Brosius J, Murchison EP, Sachidanandam R, Smith C, Hannon GJ, Tsend-Ayush E, McMillan D, Attenborough R, Rens W, Ferguson-Smith M, Lefèvre CM, Sharp JA, Nicholas KR, Ray DA, Kube M, Reinhardt R, Pringle TH, Taylor J, Jones RC, Nixon B, Dacheux JL, Niwa H, Sekita Y, Huang X, Stark A, Kheradpour P, Kellis M, Flicek P, Chen Y, Webber C, Hardison R, Nelson J, Hallsworth-Pepin K, Delehaunty K, Markovic C, Minx P, Feng Y, Kremitzki C, Mitreva M, Glasscock J, Wylie T, Wohldmann P, Thiru P, Nhan MN, Pohl CS, Smith SM, Hou S, Nefedov M, et alWarren WC, Hillier LW, Marshall Graves JA, Birney E, Ponting CP, Grützner F, Belov K, Miller W, Clarke L, Chinwalla AT, Yang SP, Heger A, Locke DP, Miethke P, Waters PD, Veyrunes F, Fulton L, Fulton B, Graves T, Wallis J, Puente XS, López-Otín C, Ordóñez GR, Eichler EE, Chen L, Cheng Z, Deakin JE, Alsop A, Thompson K, Kirby P, Papenfuss AT, Wakefield MJ, Olender T, Lancet D, Huttley GA, Smit AFA, Pask A, Temple-Smith P, Batzer MA, Walker JA, Konkel MK, Harris RS, Whittington CM, Wong ESW, Gemmell NJ, Buschiazzo E, Vargas Jentzsch IM, Merkel A, Schmitz J, Zemann A, Churakov G, Kriegs JO, Brosius J, Murchison EP, Sachidanandam R, Smith C, Hannon GJ, Tsend-Ayush E, McMillan D, Attenborough R, Rens W, Ferguson-Smith M, Lefèvre CM, Sharp JA, Nicholas KR, Ray DA, Kube M, Reinhardt R, Pringle TH, Taylor J, Jones RC, Nixon B, Dacheux JL, Niwa H, Sekita Y, Huang X, Stark A, Kheradpour P, Kellis M, Flicek P, Chen Y, Webber C, Hardison R, Nelson J, Hallsworth-Pepin K, Delehaunty K, Markovic C, Minx P, Feng Y, Kremitzki C, Mitreva M, Glasscock J, Wylie T, Wohldmann P, Thiru P, Nhan MN, Pohl CS, Smith SM, Hou S, Nefedov M, de Jong PJ, Renfree MB, Mardis ER, Wilson RK. Genome analysis of the platypus reveals unique signatures of evolution. Nature 2008; 453:175-83. [PMID: 18464734 PMCID: PMC2803040 DOI: 10.1038/nature06936] [Show More Authors] [Citation(s) in RCA: 485] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Accepted: 03/25/2008] [Indexed: 12/18/2022]
Abstract
We present a draft genome sequence of the platypus, Ornithorhynchus anatinus. This monotreme exhibits a fascinating combination of reptilian and mammalian characters. For example, platypuses have a coat of fur adapted to an aquatic lifestyle; platypus females lactate, yet lay eggs; and males are equipped with venom similar to that of reptiles. Analysis of the first monotreme genome aligned these features with genetic innovations. We find that reptile and platypus venom proteins have been co-opted independently from the same gene families; milk protein genes are conserved despite platypuses laying eggs; and immune gene family expansions are directly related to platypus biology. Expansions of protein, non-protein-coding RNA and microRNA families, as well as repeat elements, are identified. Sequencing of this genome now provides a valuable resource for deep mammalian comparative analyses, as well as for monotreme biology and conservation.
Collapse
Affiliation(s)
- Wesley C Warren
- Genome Sequencing Center, Washington University School of Medicine, Campus Box 8501, 4444 Forest Park Avenue, St Louis, Missouri 63108, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
630
|
Hansen MA, Nielsen JE, Retelska D, Larsen N, Leffers H. A shared promoter region suggests a common ancestor for the human VCX/Y, SPANX, and CSAG gene families and the murine CYPT family. Mol Reprod Dev 2008; 75:219-29. [PMID: 17342728 DOI: 10.1002/mrd.20651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Many testis-specific genes from the sex chromosomes are subject to rapid evolution, which can make it difficult to identify murine genes in the human genome. The murine CYPT gene family includes 15 members, but orthologs were undetectable in the human genome. However, using refined homology search, sequences corresponding to the shared promoter region of the CYPT family were identified at 39 loci. Most loci were located immediately upstream of genes belonging to the VCX/Y, SPANX, or CSAG gene families. Sequence comparison of the loci revealed a conserved CYPT promoter-like (CPL) element featuring TATA and CCAAT boxes. The expression of members of the three families harboring the CPL resembled the murine expression of the CYPT family, with weak expression in late pachytene spermatocytes and predominant expression in spermatids, but some genes were also weakly expressed in somatic cells and in other germ cell types. The genomic regions harboring the gene families were rich in direct and inverted segmental duplications (SD), which may facilitate gene conversion and rapid evolution. The conserved CPL and the common expression profiles suggest that the human VCX/Y, SPANX, and CSAG2 gene families together with the murine SPANX gene and the CYPT family may share a common ancestor. Finally, we present evidence that VCX/Y and SPANX may be paralogs with a similar protein structure consisting of C terminal acidic repeats of variable lengths.
Collapse
Affiliation(s)
- Martin A Hansen
- Department of Growth and Reproduction, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej, Denmark.
| | | | | | | | | |
Collapse
|
631
|
Augmenting the bootstrap to analyze high dimensional genomic data. TEST-SPAIN 2008. [DOI: 10.1007/s11749-008-0098-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
632
|
Zhou Y, Lu Q. DNA methylation in T cells from idiopathic lupus and drug-induced lupus patients. Autoimmun Rev 2008; 7:376-83. [DOI: 10.1016/j.autrev.2008.03.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Accepted: 03/03/2008] [Indexed: 10/22/2022]
|
633
|
Rossetti LC, Radic CP, Larripa IB, De Brasi CD. Developing a new generation of tests for genotyping hemophilia-causative rearrangements involving int22h and int1h hotspots in the factor VIII gene. J Thromb Haemost 2008; 6:830-6. [PMID: 18284600 DOI: 10.1111/j.1538-7836.2008.02926.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Inversions of F8-intron 22 (Inv22) and F8-intron 1 (Inv1) are responsible for 45-50% of severe hemophilia A cases. OBJECTIVE In order to improve the molecular diagnosis of Inv22 and Inv1, and to enable rapid discrimination of Inv22-type 1 and Inv22-type 2 patterns, int22h-mediated deletions (Del22) and duplications (Dup22), we developed a genotyping system based on a novel inverse shifting-polymerase chain reaction (IS-PCR) approach. METHODS IS-PCR involved BclI restriction, followed by self-ligation to create 'BclI circles', and finally PCR analysis. Three PCR analysis tests were developed: (i) Inv22-diagnostic for a pattern-sensitive detection of deleterious mutations (Inv22 and Del22) from non-deleterious variants (Dup22 and normal); (ii) Inv1-diagnostic; and (iii) Inv22-complementary for discrimination between Inv22 and Del22, and between Dup22 and normal. For rapid molecular analysis of F8, the Inv22 and Inv1 diagnostic tests can be performed simultaneously. The optional Inv22-complementary test need only be used for specific purposes. RESULTS AND CONCLUSIONS Diagnostic tests were validated using previously studied samples. IS-PCR evaluated carrier mosaicisms and performed robustly over wide ranges of DNA qualities and procedural conditions. IS-PCR improved the molecular diagnosis of hemophilia A. This genotyping strategy may potentially be adapted to virtually all known rearrangements in the human genome.
Collapse
Affiliation(s)
- L C Rossetti
- Departamento de Genética, Instituto de Investigaciones Hematológicas Mariano R. Castex, Academia Nacional de Medicina de Buenos Aires, Buenos Aires, Argentina.
| | | | | | | |
Collapse
|
634
|
Migeon BR. X inactivation, female mosaicism, and sex differences in renal diseases. J Am Soc Nephrol 2008; 19:2052-9. [PMID: 18448583 DOI: 10.1681/asn.2008020198] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
A good deal of sex differences in kidney disease is attributable to sex differences in the function of genes on the X chromosome. Males are uniquely vulnerable to mutations in their single copy of X-linked genes, whereas females are often mosaic, having a mixture of cells expressing different sets of X-linked genes. This cellular mosaicism created by X inactivation in females is most often advantageous, protecting carriers of X-linked mutations from the severe clinical manifestations seen in males. Even subtle differences in expression of many of the 1100 X-linked genes may contribute to sex differences in the clinical expression of renal diseases.
Collapse
Affiliation(s)
- Barbara R Migeon
- McKusick-Nathans Institute of Genetic Medicine, 459 Broadway Research Building, 733 N. Broadway, Baltimore, MD 21205, USA.
| |
Collapse
|
635
|
The human pseudoautosomal regions: a review for genetic epidemiologists. Eur J Hum Genet 2008; 16:771-9. [PMID: 18398439 DOI: 10.1038/ejhg.2008.63] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
636
|
Lose F, Arnold J, Young DB, Brown CJ, Mann GJ, Pupo GM, The Kathleen Cuningham Foundation Consortium for Research into Familial Breast Cancer, Khanna KK, Chenevix-Trench G, Spurdle AB. BCoR-L1 variation and breast cancer. Breast Cancer Res 2008; 9:R54. [PMID: 17697391 PMCID: PMC2206730 DOI: 10.1186/bcr1759] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Revised: 07/23/2007] [Accepted: 08/16/2007] [Indexed: 11/10/2022] Open
Abstract
Introduction BRCA1 is involved in numerous essential processes in the cell, and the effects of BRCA1 dysfunction in breast cancer carcinogenesis are well described. Many of the breast cancer susceptibility genes such as BRCA2, p53, ATM, CHEK2, and BRIP1 encode proteins that interact with BRCA1. BCL6 corepressor-like 1 (BCoR-L1) is a newly described BRCA1-interacting protein that displays high homology to several proteins known to be involved in the fundamental processes of DNA damage repair and transcription regulation. BCoR-L1 has been shown to play a role in transcription corepression, and expression of the X-linked BCoR-L1 gene has been reported to be dysregulated in breast cancer subjects. BCoR-L1 is located on the X chromosome and is subject to X inactivation. Methods We performed mutation analysis of 38 BRCA1/2 mutation-negative breast cancer families with male breast cancer, prostate cancer, and/or haplotype sharing around BCoR-L1 to determine whether there is a role for BCoR-L1 as a high-risk breast cancer predisposition gene. In addition, we conducted quantitative real-time PCR (qRT-PCR) on lymphoblastoid cell lines (LCLs) from the index cases from these families and a number of cancer cell lines to assess the role of BCoR-L1 dysregulation in cancer and cancer families. Results Very little variation was detected in the coding region, and qRT-PCR analysis revealed that BCoR-L1 expression is highly variable in cancer-free subjects, high-risk breast cancer patients, and cancer cell lines. We also report the investigation of a new expression control, DIDO1 (death inducer-obliterator 1), that is superior to GAPDH (glyceraldehyde-3-phosphate dehydrogenase) and UBC (ubiquitin C) for analysis of expression in LCLs. Conclusion Our results suggest that BCoR-L1 expression does not play a large role in predisposition to familial breast cancer.
Collapse
Affiliation(s)
- Felicity Lose
- Cancer and Cell Biology Division, Queensland Institute of Medical Research, 300 Herston Road, Brisbane, Queensland, Australia, 4006
- School of Medicine, Central Clinical Division, University of Queensland, Royal Brisbane Hospital, Corner Butterfield Street and Bowen Bridge Road, Brisbane, Queensland, Australia, 4029
| | - Jeremy Arnold
- Cancer and Cell Biology Division, Queensland Institute of Medical Research, 300 Herston Road, Brisbane, Queensland, Australia, 4006
| | - David B Young
- Cancer and Cell Biology Division, Queensland Institute of Medical Research, 300 Herston Road, Brisbane, Queensland, Australia, 4006
| | - Carolyn J Brown
- Department of Medical Genetics, Molecular Epigenetics Group, University of British Columbia, 2329 West Mall, Vancouver, BC, Canada, V6T 1Z4
| | - Graham J Mann
- Westmead Institute for Cancer Research, University of Sydney at Westmead Millennium Institute, Westmead Hospital, Darcy Road, Westmead, New South Wales, Australia, 2145
| | - Gulietta M Pupo
- Westmead Institute for Cancer Research, University of Sydney at Westmead Millennium Institute, Westmead Hospital, Darcy Road, Westmead, New South Wales, Australia, 2145
| | | | - Kum Kum Khanna
- Cancer and Cell Biology Division, Queensland Institute of Medical Research, 300 Herston Road, Brisbane, Queensland, Australia, 4006
| | - Georgia Chenevix-Trench
- Cancer and Cell Biology Division, Queensland Institute of Medical Research, 300 Herston Road, Brisbane, Queensland, Australia, 4006
| | - Amanda B Spurdle
- Cancer and Cell Biology Division, Queensland Institute of Medical Research, 300 Herston Road, Brisbane, Queensland, Australia, 4006
| |
Collapse
|
637
|
Eutherians intrinsically run a higher risk of replication deficiency. Biosystems 2008; 92:117-21. [PMID: 18313833 DOI: 10.1016/j.biosystems.2008.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Revised: 01/16/2008] [Accepted: 01/17/2008] [Indexed: 11/21/2022]
Abstract
Females inherit two X chromosomes from each parent, but males inherit only one from the mother. The POLA gene encodes the catalytic subunit of DNA polymerase alpha (pol-alpha), synthesizing a short DNA primer after RNA priming for DNA chain elongation in eukaryotic DNA replication. The POLA gene is established in the X-added region (XRA) of an X chromosome, translocated from a second autosome about 105 million years ago (mya). Dosage compensation for the mammalian X chromosome is accomplished by the silencing of one X chromosome to equalize gene expression between the male and female. We eutherians must replicate our DNA using pol-alpha expressed from a 'single copy' of genes, whose expression is probably reduced when chromosome translocation occurs. Spontaneous mutation occurring on the 'single' POLA gene, which decreases its replication fidelity, probably accounts for the increase of nucleotide substitution rates more effectively than in other organisms that possess the POLA gene on an autosome pair. Moreover, translocation of the POLA gene from an autosome to the X chromosome might reduce expression of pol-alpha, resulting in promotion of chromosome rearrangement. Therefore, the X-linked POLA gene possibly contributes to greater diversification of eutherian mammals.
Collapse
|
638
|
Bredenbeck A, Hollstein VM, Trefzer U, Sterry W, Walden P, Losch FO. Coordinated expression of clustered cancer/testis genes encoded in a large inverted repeat DNA structure. Gene 2008; 415:68-73. [PMID: 18395366 DOI: 10.1016/j.gene.2008.02.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Revised: 02/14/2008] [Accepted: 02/21/2008] [Indexed: 11/28/2022]
Abstract
Cancer/testis antigens (CTA) are expressed in cancers and testis or placenta only and, therefore are considered promising targets for cancer immunotherapy and diagnosis. One family of CTA is the MAGEA family which comprises 13 members and was shown to be expressed synchronously with members from the CSAG (TRAG-3) family of CTA. The MAGEA genes are arranged in 4 subclusters located on the X chromosome. Subcluster III exposes a remarkable gene organization with an inverted repeat (IR) DNA structure of a triplicated couplet of a MAGEA gene and a CSAG gene. Analyzing the mRNA expression pattern of all genes of the MAGEA and CSAG family of cancer/testis genes, we show that the MAGEA and CSAG genes encoded in the large IR are expressed coordinately and independent from the MAGEAs encoded outside the IR. These results reinforce our hypothesis that the large MAGEA/CSAG-IR DNA structure has an impact on the regulation of gene expression.
Collapse
Affiliation(s)
- Anne Bredenbeck
- Clinical Research Group Tumor Immunology, Department of Dermatology, Skin Cancer Center Charité, Charité-Universitätsmedizin Berlin, 10098 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
639
|
Jiang L, Jobst P, Lai L, Samuel M, Prather RS, Ayares D, Yang X, Tian XC. Expression of X-linked genes in deceased neonates and surviving cloned female piglets. Mol Reprod Dev 2008; 75:265-73. [PMID: 17474099 PMCID: PMC2494708 DOI: 10.1002/mrd.20758] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Animal cloning through somatic cell nuclear transfer (NT) is very inefficient, probably due to insufficient reprogramming of the donor nuclei, which in turn would cause the dysregulation of gene expression. X-Chromosome inactivation (XCI) is a multi-step epigenetic process utilized by mammals to achieve dosage compensation in females. Our aim was to determine if any dysregulation of X-linked genes, which would be indicative of unfaithful reprogramming of donor nuclei, was present in cloned pigs. Real time reverse transcription polymerase chain reaction (RT-PCR) was performed to quantify the transcript levels of five X-linked genes, X inactivation-specific transcript (XIST), TSIX (the reverse spelling of XIST), hypoxanthine guanine phosphoribosyltransferase 1 (HPRT1), glucose-6-phosphate dehydrogenase (G6PD), V-raf murine sarcoma 3,611 viral oncogene homolog 1 (ARAF1), and one autosomal gene, alpha-1 type IV collagen (COL4A1) in major organs of neonatal deceased and surviving female cloned pigs as well as their age-matched control pigs from conventional breeding. Aberrant expression level of these genes was prevalent in the neonatal deceased clones, while it was only moderate in cloned pigs that survived after birth. These results suggest a correlation between the viability of the clones and the normality of their gene expression and provide a possible explanation for the death of a large portion of cloned animals around birth.
Collapse
Affiliation(s)
- Le Jiang
- Department of Animal Science and Center for Regenerative Biology, University of Connecticut, Storrs, CT 06269
| | - Pete Jobst
- Revivicor Inc., 1700 Kraft Drive, Suite 2400, Blacksburg, VA 24060
| | - Liangxue Lai
- Division of Animal Science, University of Missouri-Columbia, Columbia, MO 65211
| | - Melissa Samuel
- Division of Animal Science, University of Missouri-Columbia, Columbia, MO 65211
| | - Randall S. Prather
- Division of Animal Science, University of Missouri-Columbia, Columbia, MO 65211
| | - David Ayares
- Revivicor Inc., 1700 Kraft Drive, Suite 2400, Blacksburg, VA 24060
| | - Xiangzhong Yang
- Department of Animal Science and Center for Regenerative Biology, University of Connecticut, Storrs, CT 06269
| | - X. Cindy Tian
- Department of Animal Science and Center for Regenerative Biology, University of Connecticut, Storrs, CT 06269
| |
Collapse
|
640
|
Abstract
The rat genome project and the resources that it has generated are transforming the translation of rat biology to human medicine. The rat genome was sequenced to a high quality “draft,” the structure and location of the genes were predicted, and a global assessment was published (Gibbs RA et al., Nature 428: 493–521, 2004). Since that time, researchers have made use of the genome sequence and annotations and related resources. We take this opportunity to review the currently available rat genome resources and to discuss the progress and future plans for the rat genome.
Collapse
Affiliation(s)
- K. C. Worley
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - G. M. Weinstock
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - R. A. Gibbs
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
641
|
Sheen CR, Jewell UR, Morris CM, Brennan SO, Férec C, George PM, Smith MP, Chen JM. Double complex mutations involving F8 and FUNDC2 caused by distinct break-induced replication. Hum Mutat 2008; 28:1198-206. [PMID: 17683067 DOI: 10.1002/humu.20591] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Genomic rearrangements are a well-recognized cause of genetic disease and can be formed by a variety of mechanisms. We report a complex rearrangement causing severe hemophilia A, identified and further characterized using a range of PCR-based methods, and confirmed using array-comparative genomic hybridization (array-CGH). This rearrangement consists of a 15.5-kb deletion/16-bp insertion located 0.6 kb from a 28.1-kb deletion/263-kb insertion at Xq28 and is one of the most complex rearrangements described at a DNA sequence level. We propose that the rearrangement was generated by distinct but linked cellular responses to double strand breakage, namely break-induced replication (BIR) and a novel model of break-induced serial replication slippage (SRS). The copy number of several genes is affected by this rearrangement, with deletion of part of the Factor VIII gene (F8, causing hemophilia A) and the FUNDC2 gene, and duplication of the TMEM185A, HSFX1, MAGEA9, and MAGEA11 genes. As the patient exhibits no clinically detectable phenotype other than hemophilia A, it appears that the biological effects of the other genes involved are not dosage-dependent. This investigation has provided novel insights into processes of DNA repair including BIR and the first description of SRS during repair in a pathological context.
Collapse
Affiliation(s)
- Campbell R Sheen
- Molecular Pathology Laboratory, Canterbury Health Laboratories, Christchurch, New Zealand.
| | | | | | | | | | | | | | | |
Collapse
|
642
|
Xing J, Witherspoon DJ, Ray DA, Batzer MA, Jorde LB. Mobile DNA elements in primate and human evolution. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2008; Suppl 45:2-19. [PMID: 18046749 DOI: 10.1002/ajpa.20722] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Roughly 50% of the primate genome consists of mobile, repetitive DNA sequences such as Alu and LINE1 elements. The causes and evolutionary consequences of mobile element insertion, which have received considerable attention during the past decade, are reviewed in this article. Because of their unique mutational mechanisms, these elements are highly useful for answering phylogenetic questions. We demonstrate how they have been used to help resolve a number of questions in primate phylogeny, including the human-chimpanzee-gorilla trichotomy and New World primate phylogeny. Alu and LINE1 element insertion polymorphisms have also been analyzed in human populations to test hypotheses about human evolution and population affinities and to address forensic issues. Finally, these elements have had impacts on the genome itself. We review how they have influenced fundamental ongoing processes like nonhomologous recombination, genomic deletion, and X chromosome inactivation.
Collapse
Affiliation(s)
- Jinchuan Xing
- Department of Human Genetics, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA
| | | | | | | | | |
Collapse
|
643
|
Probst FJ, Roeder ER, Enciso VB, Ou Z, Cooper ML, Eng P, Li J, Gu Y, Stratton RF, Chinault AC, Shaw CA, Sutton VR, Cheung SW, Nelson DL. Chromosomal microarray analysis (CMA) detects a large X chromosome deletion including FMR1, FMR2, and IDS in a female patient with mental retardation. Am J Med Genet A 2008; 143A:1358-65. [PMID: 17506108 DOI: 10.1002/ajmg.a.31781] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Chromosomal microarray analysis (CMA) by array-based comparative genomic hybridization (CGH) is a new clinical test for the detection of well-characterized genomic disorders caused by chromosomal deletions and duplications that result in gene copy number variation (CNV). This powerful assay detects an abnormality in approximately 7-9% of patients with various clinical phenotypes, including mental retardation. We report here on the results found in a 6-year-old girl with mildly dysmorphic facies, obesity, and marked developmental delay. CMA was requested and showed a heterozygous loss in copy number with clones derived from the genomic region cytogenetically defined as Xq27.3-Xq28. This loss was not cytogenetically visible but was seen on FISH analysis with clones from the region. Further studies confirmed a loss of one copy each of the FMR1, FMR2, and IDS genes (which are mutated in Fragile X syndrome, FRAXE syndrome, and Hunter syndrome, respectively). Skewed X-inactivation has been previously reported in girls with deletions in this region and can lead to a combined Fragile X/Hunter syndrome phenotype in affected females. X-inactivation and iduronate 2-sulfatase (IDS) enzyme activity were therefore examined. X-inactivation was found to be random in the child's peripheral leukocytes, and IDS enzyme activity was approximately half of the normal value. This case demonstrates the utility of CMA both for detecting a submicroscopic chromosomal deletion and for suggesting further testing that could possibly lead to therapeutic options for patients with developmental delay.
Collapse
Affiliation(s)
- Frank J Probst
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
644
|
Wallis MC, Waters PD, Delbridge ML, Kirby PJ, Pask AJ, Grützner F, Rens W, Ferguson-Smith MA, Graves JAM. Sex determination in platypus and echidna: autosomal location of SOX3 confirms the absence of SRY from monotremes. Chromosome Res 2008; 15:949-59. [PMID: 18185981 DOI: 10.1007/s10577-007-1185-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Revised: 11/01/2007] [Accepted: 11/01/2007] [Indexed: 11/25/2022]
Abstract
In eutherian ('placental') mammals, sex is determined by the presence or absence of the Y chromosome-borne gene SRY, which triggers testis determination. Marsupials also have a Y-borne SRY gene, implying that this mechanism is ancestral to therians, the SRY gene having diverged from its X-borne homologue SOX3 at least 180 million years ago. The rare exceptions have clearly lost and replaced the SRY mechanism recently. Other vertebrate classes have a variety of sex-determining mechanisms, but none shares the therian SRY-driven XX female:XY male system. In monotreme mammals (platypus and echidna), which branched from the therian lineage 210 million years ago, no orthologue of SRY has been found. In this study we show that its partner SOX3 is autosomal in platypus and echidna, mapping among human X chromosome orthologues to platypus chromosome 6, and to the homologous chromosome 16 in echidna. The autosomal localization of SOX3 in monotreme mammals, as well as non-mammal vertebrates, implies that SRY is absent in Prototheria and evolved later in the therian lineage 210-180 million years ago. Sex determination in platypus and echidna must therefore depend on another male-determining gene(s) on the Y chromosomes, or on the different dosage of a gene(s) on the X chromosomes.
Collapse
Affiliation(s)
- M C Wallis
- Comparative Genomics Group, Research School of Biological Sciences, the Australian National University, Canberra, ACT 2601, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
645
|
Gjerstorff MF, Ditzel HJ. An overview of the GAGE cancer/testis antigen family with the inclusion of newly identified members. ACTA ACUST UNITED AC 2008; 71:187-92. [PMID: 18179644 DOI: 10.1111/j.1399-0039.2007.00997.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
GAGE cancer/testis antigens are frequently expressed in many different types of cancer, whereas their expression in normal tissues is limited to the germ cells of the immune-privileged organs, testis and ovary. Thus, GAGE proteins may be attractive candidates for immunotherapy of cancer. This review describes the structure and phylogeny of the GAGE family members and presents a revised nomenclature, which will enable a more clear distinction of genes and gene products. The GAGE gene locus at chromosome X p11.23 consists of at least 16 genes, each of which is located in one of an equal number of highly conserved tandem repeats, and more genes remain to be identified. These genes are likely the creation of unequal replication under positive selection after the divergence of primates from other mammals. The encoded products are predicted to be highly similar small acidic proteins involved in germ cell biology. When expressed in tumor cells, GAGE proteins can elicit both cellular and humoral immune responses, indicating that they are appropriate targets for cancer immunotherapy. The potential use of GAGE proteins in cancer immunotherapy, including possible limitations, is also discussed.
Collapse
Affiliation(s)
- M F Gjerstorff
- Medical Biotechnology Center, Institute of Medical Biology, University of Southern Denmark, Odense C, Denmark
| | | |
Collapse
|
646
|
Moreno C, Lazar J, Jacob HJ, Kwitek AE. Comparative genomics for detecting human disease genes. ADVANCES IN GENETICS 2008; 60:655-97. [PMID: 18358336 DOI: 10.1016/s0065-2660(07)00423-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Originally, comparative genomics was geared toward defining the synteny of genes between species. As the human genome project accelerated, there was an increase in the number of tools and means to make comparisons culminating in having the genomic sequence for a large number of organisms spanning the evolutionary tree. With this level of resolution and a long history of comparative biology and comparative genetics, it is now possible to use comparative genomics to build or select better animal models and to facilitate gene discovery. Comparative genomics takes advantage of the functional genetic information from other organisms, (vertebrates and invertebrates), to apply it to the study of human physiology and disease. It allows for the identification of genes and regulatory regions, and for acquiring knowledge about gene function. In this chapter, the current state of comparative genomics and the available tools are discussed in the context of developing animal model systems that reflect the clinical picture.
Collapse
Affiliation(s)
- Carol Moreno
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | |
Collapse
|
647
|
Population genetic evaluation of eight X-chromosomal short tandem repeat loci using Mentype Argus X-8 PCR amplification kit. Forensic Sci Int Genet 2008; 2:69-74. [DOI: 10.1016/j.fsigen.2007.08.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Revised: 08/17/2007] [Accepted: 08/20/2007] [Indexed: 11/18/2022]
|
648
|
Fellgiebel A, Schermuly I, Gerhard A, Keller I, Albrecht J, Weibrich C, Müller MJ, Stoeter P. Functional relevant loss of long association fibre tracts integrity in early Alzheimer's disease. Neuropsychologia 2007; 46:1698-706. [PMID: 18243252 DOI: 10.1016/j.neuropsychologia.2007.12.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Revised: 12/04/2007] [Accepted: 12/10/2007] [Indexed: 11/18/2022]
Abstract
The aim of our study was to quantify the structural integrity of the long association fibre tracts in early Alzheimer's disease (AD) and to correlate the findings with the cognitive performance of the patients. We conducted region-of-interest-based analyses of color-coded diffusion-tensor imaging in 12 patients with early AD (age 69.8+/-8.0 years; MMSE 25.3+/-1.8) and 16 age- and education-matched healthy controls. Early AD patients showed significantly decreased fractional anisotropy (FA) of the cingulate bundles and the inferior fronto-occipital fascicles bilaterally, whereas FA values of the superior longitudinal fascicles (second division) did not differ significantly between patients and controls. Neuropsychological performance of patients in the verbal episodic memory test domain correlated significantly with disturbances of left cingulate fibre tract integrity. Reduced left cingulate bundle integrity was most strongly correlated with impaired performance in a verbal recognition task (Spearman's rho=0.81, P=0.001). Moreover, Boston naming test performance also correlated with the left cingulate bundle integrity (Spearman's rho=0.71, P=0.009). These findings suggest substantial disturbances of the structural connectivity within long association fibre tracts, especially the cingulate bundles and the inferior fronto-occipital fascicles, in early AD and highlight the important role of the cingulate bundles in verbal recognition.
Collapse
Affiliation(s)
- Andreas Fellgiebel
- Department of Psychiatry, University Hospital of Mainz, Untere Zahlbacher Strasse 8, 55131 Mainz, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
649
|
Fulka H, St John JC, Fulka J, Hozák P. Chromatin in early mammalian embryos: achieving the pluripotent state. Differentiation 2007; 76:3-14. [PMID: 18093226 DOI: 10.1111/j.1432-0436.2007.00247.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Gametes of both sexes (sperm and oocyte) are highly specialized and differentiated but within a very short time period post-fertilization the embryonic genome, produced by the combination of the two highly specialized parental genomes, is completely converted into a totipotent state. As a result, the one-cell-stage embryo can give rise to all cell types of all three embryonic layers, including the gametes. Thus, it is evident that extensive and efficient reprogramming steps occur soon after fertilization and also probably during early embryogenesis to reverse completely the differentiated state of the gamete and to achieve toti- or later on pluripotency of embryonic cells. However, after the embryo reaches the blastocyst stage, the first two distinct cell lineages can be clearly distinguished--the trophectoderm and the inner cells mass. The de-differentiation of gametes after fertilization, as well as the differentiation that is associated with the formation of blastocysts, are accompanied by changes in the state and properties of chromatin in individual embryonic nuclei at both the whole genome level as well as at the level of individual genes. In this contribution, we focus mainly on those events that take place soon after fertilization and during early embryogenesis in mammals. We will discuss the changes in DNA methylation and covalent histone modifications that were shown to be highly dynamic during this period; moreover, it has also been documented that abnormalities in these processes have a devastating impact on the developmental ability of embryos. Special attention will be paid to somatic cell nuclear transfer as it has been shown that the aberrant and inefficient reprogramming may be responsible for compromised development of cloned embryos.
Collapse
Affiliation(s)
- Helena Fulka
- Institute of Animal Science, Prátelství 815, 104 00 Prague 10, Czech Republic
| | | | | | | |
Collapse
|
650
|
Large-scale population study of human cell lines indicates that dosage compensation is virtually complete. PLoS Genet 2007; 4:e9. [PMID: 18208332 PMCID: PMC2213701 DOI: 10.1371/journal.pgen.0040009] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Accepted: 12/04/2007] [Indexed: 11/19/2022] Open
Abstract
X chromosome inactivation in female mammals results in dosage compensation of X-linked gene products between the sexes. In humans there is evidence that a substantial proportion of genes escape from silencing. We have carried out a large-scale analysis of gene expression in lymphoblastoid cell lines from four human populations to determine the extent to which escape from X chromosome inactivation disrupts dosage compensation. We conclude that dosage compensation is virtually complete. Overall expression from the X chromosome is only slightly higher in females and can largely be accounted for by elevated female expression of approximately 5% of X-linked genes. We suggest that the potential contribution of escape from X chromosome inactivation to phenotypic differences between the sexes is more limited than previously believed.
Collapse
|